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The Gorini-Kossakowski-Sudarshan-Lindblad master equation (ME) governs the density matrix
of open quantum systems (OQSs). When an OQS is subjected to weak continuous measurement,
its state evolves as a stochastic quantum trajectory, whose statistical average solves the ME. The
ensemble of such trajectories is termed an unraveling of the ME. We propose a method to opera-
tionally distinguish unravelings produced by the same ME in different measurement scenarios, using
nonlinear averages of observables over trajectories. We apply the method to the paradigmatic quan-
tum nonlinear system of resonance fluorescence in a two-level atom. We compare the Poisson-type
unraveling, induced by direct detection of photons scattered from the two-level emitter, and the
Wiener-type unraveling, induced by phase-sensitive detection of the emitted field. We show that
a quantum-trajectory-averaged variance is able to distinguish these measurement scenarios. We
evaluate the performance of the method, which can be readily extended to more complex OQSs,
under a range of realistic experimental conditions.

PACS numbers: 32.50.+d, 42.50.Ar, 42.50.-p
Keywords: Quantum trajectories, Poisson process, Wiener process, Dyson expansion, homodyne and hetero-
dyne detection, direct photoelectron counting, detector efficiency

Introduction.—Quantum systems interacting with
Markovian environments are ubiquitous in the physi-
cal sciences. A main tool for studying their dynam-
ics is the determinsitic Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation (ME) [1, 2]. This
specifies the time evolution of the density matrix ρ(t)
as the system experiences both coherent and incoherent
processes, with the latter involving leakage of state infor-
mation to the environment [3–6]. Despite its generality
and wide use, the GKSL ME does not fully describe the
quantum dynamics when the environment includes mea-
surement devices, which convert a portion of the leaked
information to usable form. The temporal evolution con-
ditioned on the measurement record m defines a quan-
tum trajectory, in the ideal case [7] expressed as the pure
state ρm(t) = |ψm(t)⟩ ⟨ψm(t)|. Averaging ρm(t) over the
measurement record solves the GKSL ME [8]. The iden-
tification of the ρ(t) with the ensemble average of ρm(t)
is an example of an unraveling of the ME into a stochas-
tic equation for the pure state ρm(t) [9–18]. Evidently,
different measurement schemes correspond to different
unravelings and lead to different ensembles of quantum
trajectories. Unravelings thus provide information that
is not available from the corresponding ME.

Quantities that are linear in the density matrix ρ(t),
such as averages of observables, are fully determined by
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the GKSL ME and, therefore, are independent of the
choice of the unraveling dictated by a given measurement
scheme. In this Letter, we develop nonlinear measures to
differentiate unravelings, thus opening a way to access
the physics beyond the ME. We demonstrate that eval-
uating an expectation value of a physical observable for
a specified quantum trajectory ρm(t), performing a non-
linear operation on the obtained result, and averaging
the result over the measurement record, yields a quan-
tity that allows for distinguishing different unravelings
of the same GKSL ME. We focus on a paradigmatic
open quantum system, the resonance fluorescence of a
two-level atom, and consider unravelings corresponding
to direct photodetection and to homodyne/heterodyne
detection.

The unravelings.—Electron shelving [19, 20] paved the
way to the first observations of quantum jumps [21–
23], followed by several atomic [24–26] and solid-state
physics experiments [27–29]. The theoretical description
of these investigations dates back to early works [30–39]
that stimulated the development of quantum trajectory
theory [10, 40–47]. Two unravelings of the GKSL ME
that play a fundamental role in the understanding of
the quantum trajectories are: (i) Poisson unraveling, re-
lated to direct photodetection and the so called quan-
tum Monte Carlo wave function approach [12, 48–51];
and (ii) Wiener-type unraveling (the quantum state dif-
fusion model proposed by Gisin and Percival) [52, 53],
relating conditional quantum dynamics to a continuous
Wiener process [54]. In the context of atomic physics ex-
periments, the distinct unravelings correspond to differ-
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FIG. 1. Schematic representation of the two main unraveling
schemes. In this setup, the trapped two-state atom is illumi-
nated in a Maltese-cross arrangement [57, 58] shown in (a).
The output radiation escaping a particular lens is directed to
either: (b) a collection of avalanche photodetectors (APDs)
producing a time-series of “click” events (Poisson-type un-
raveling); (c) a mixer with a strong local oscillator field, to
substantiate either a homodyne (ωLO = ωA) or a heterodyne
measurement (|ωLO − ωA| ≫ γ) scheme (Wiener-type unrav-
eling).

ent photodetection schemes [5], see Fig. 1. The Poisson
unraveling is relevant for the direct photodetection ex-
periments, while the continuous Wiener process arises in
homodyne and heterodyne photodection schemes [10, 55].

The disparities between the experimental setups is
reflected in the different nature of quantum trajecto-
ries [53]. The Wiener process yields a continuous evo-
lution of the system state |ψ(t)⟩. In contrast, the acts of
direct photodetection at times t1 < t2 < . . . < tn collapse
the conditional wavefunction. The resulting time evolu-
tion of |ψ(t)⟩ is discontinuous and the final state at t > tn
depends, in general, on a particular sequence of emission
times |ψ(t)⟩ = |ψt1,...,tn(t)⟩. By collecting photon count-
ing records, the experimenter effectively determines the
quantum trajectory of the atom. The entanglement be-
tween the electromagnetic field and the atom is the key
ingredient that allows for the inference of the atom’s state
based on the photodetection events [53, 56].

Source Master Equation and linear averages.—Our
starting point is the GKSL ME of resonance fluorescence,
governing the unconditional [PS: it is by definition uncon-
ditional evolution of the reduced system density matrix
ρ,

dρ

dt
= Lρ =− i 12ωA[σz, ρ]− iΩ[e−iωAtσ+ + eiωAtσ−, ρ]

+ γ
2 (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−),

(1)
where we have neglected thermal excitation [59]. In the
ME (1), σ+, σ−, σz are the raising, lowering and inver-
sion operators (represented by Pauli matrices), respec-
tively, for the two-level atom coherently driven by a res-
onant laser field of frequency ωA; ΩR = 2Ω is the Rabi
frequency at which the two-state atom periodically os-
cillates between its ground and excited states, and γ is
the spontaneous emission rate. The solution of the cor-

responding optical Bloch equations yields the following
expression for the average inversion when the atom is
initialized in its ground state,

⟨σz(t)⟩=Sz

[
1+Y 2e−(3γ/4)t

(
cosh δt+

(3γ/4)

δ
sinh δt

)]
,

(2)

where Y ≡
√
2ΩR/γ, δ ≡ γ

4

√
1− 8Y 2 and Sz = −1/(1 +

Y 2) is the steady-state inversion. Hereinafter, we denote
by ⟨·⟩ the quantum mechanical average over an individ-
ual realization. For strong driving (Y ≫ 1) the average
inversion exhibits damped oscillations at ΩR, relaxing to
0 + O(γ2/Ω2). Equation (2) is an example of a typical
linear average computed directly from the ME, against
which our nonlinear averages are to be compared. We
now describe the nonlinear averages.
Nonlinear averages beyond the density-matrix

formalism.—The idea underlying our approach is
to perform a nonlinear operation on a quantum me-
chanical expectation value evaluated for an individual
quantum trajectory prior to averaging of the result
over the ensemble of quantum trajectories denoted by
(◦). A characteristic nonlinear average of our focus is

the quantity Var(σz) ≡ ⟨σz(t)⟩2 − [⟨σz(t)⟩]2, which we
hereinafter call quantum-trajectory-averaged variance
(QTAV).
The results depicted in Fig. 2 substantiate the piv-

otal influence of the environment when collecting records
of a strongly driven two-state atom and taking a sum
over a collection of them. The two principal unravel-
ings are presented in their ability to produce an osten-
sibly disparate Var(σz), while the corresponding average
inversion remains unchanged. For the direct photode-
tection [60–62], corresponding to the Poisson-type un-
raveling of the ME, we obtain an exact expression for
Var(σz) based on the waiting-time distribution [63]. For
γt ≫ 1, the asymptotic expression for the variance, in-
cluding first-order terms in γ/Ω of different frequencies,
reads [59]

Var(σz) =
1
2

{
1 + e−γt/2 cos(4Ωt) + γ

8Ωe
−γt/2[4 sin(4Ωt)

− sin(6Ωt)− 3 sin(2Ωt)] +O(γ2/Ω2)
}
.

(3)
The first observation to be made from Eq. (3) is that

the amplitude of the dominant term (second term in the
sum) to the QTAV – revealing a frequency doubling with
respect to the inversion – is independent of Ω. The vari-
ance ultimately relaxes to 1/2, as we can see in both
uppermost panels of frames (a) and (b). The asymptotic
evolution to the steady state is in very good agreement
with the exact Monte-Carlo simulations as well as with
the perturbative treatment of the Dyson-series expansion
for the variance [59], and the truncated hierarchy of mo-
ments produced from the adjoint Lindbladian.
Time evolution of QTAV is significantly altered, see the

middle panels of Fig. 2, when one places a beam split-
ter and a local oscillator in the environment, and the



3

FIG. 2. Linear vs. nonlinear quantum-trajectory averages for three principal unravelings. Monte-Carlo averages over 104

realizations of the QTAV Var(σz) plotted against the dimensionless time γt for a Poisson-type unraveling (direct photodetection)
and two Wiener-type unravelings (homodyne and heterodyne detection) as indicated in each panel, for (a) Y = 10 and (b)
Y = 30, with the two-level atom initialized in its ground state. The oscillatory dot-dashed curves with alternating sign in all
frames depict the average inversion ⟨σz(t)⟩. In the uppermost panels of both frames, the pink and blue curves depict Var(σz)
obtained from the perturbative treatment of the Dyson-series expansion to first order in γ/Ω, and the moment-based equations,
respectively. The latter results are indistinguishable from the Monte-Carlo simulations on the scale of the figure. The dashed
curves (in purple) depict the asymptotic expression (3). For heterodyne detection, the QTAV obtained from the numerical
simulations (in blue) is indistinguishable from the moment-based method results (in red). Homodyne detection is performed
with the local-oscillator phase selected along the anti-squeezed and squeezed quadratures of the fluorescent field, at θ = 0 and
π/2, respectively, corresponding to the same inversion average (brown curve overlapping with the dot-dashed).

fluorescent signal interferes with the latter before pho-
todetection [Fig. 1(c)], corresponding to the heterodyne
detection and exemplifying Wiener-type unraveling. The
frequency doubling is also in evidence although the con-
trast in the oscillations is visibly suppressed. The light
scattered by the two-level emitter is squeezed in the field
quadrature that is in phase with the mean scattered field
amplitude ∝ ⟨σ−(t)⟩ [64, 65]. The bottom panel in each
frame shows that the QTAV responds differently to the
detection of the squeezed vs. the direction of the anti-
squeezed quadrature of the fluorescent field, i.e., along
an axis perpendicular to the equator of the Bloch sphere
where quantum fluctuations are redistributed among the
quadratures.

Ensemble moments and adjoint Lindbladian.—To pro-
vide some analytical grounding to the behavior of the
QTAV, we will delineate a method akin to the optical
Bloch equations extended to account for the nonlinear
averages. The contributions from the Itô corrections to
the ensemble moments can be found easily in the Heisen-
berg picture [66]. Under the Poisson unraveling for an
observable A [41] (we denote ⟨A(t)⟩ by ⟨A⟩t):

d ⟨A⟩t =
〈
L†[A]

〉
t
dt+

( ⟨σ+Aσ−⟩t−
⟨σ+σ−⟩t−

− ⟨A⟩t−

)
dÑ(t),

(4)

where Ñ is the compensated Poisson process, dÑ =
dN − γ ⟨σ+σ−⟩t dt, with a future pointing differential of
expected value zero. This means that the ensemble av-
erage, here denoted by E for readability, is just

dE ⟨A⟩t = E
〈
L†[A]

〉
t
dt,

which is the Heisenberg unraveling of the ME. It is use-
ful to consider this equation for a Hilbert-Schmidt ba-
sis Xi for the space of observables. Call the quantum
expectation xi = ⟨Xi⟩. Thus each observable A has a
corresponding vector a such that ⟨A⟩ = (a, x). If we
use the basis corresponding to the three Pauli matrices
and the identity, all normalized in the Hilbert-Schmidt
norm, then the vector for A = σz is a = (0, 0, 0,

√
2).

Since a is just a constant vector, generally we have that
E ⟨A⟩ = E(a, x) = (a,Ex) and the square of the quan-

tum expectation becomes ⟨A⟩2 =
∑

ij aiajxixj so that

E ⟨A⟩2 =
∑

ij aiajExixj and so to see how the ensemble
average of square of the quantum expectation evolves in
time it is necessary to know how Exixj evolves. In the
Poisson case, we obtain

dExixj = E
(
xi
〈
L†[Xj ]

〉
t
dt+

〈
L†[Xi]

〉
t
xjdt

)
+

E
(
⟨σ+Xiσ−⟩t
⟨σ+σ−⟩t

− xi

)(
⟨σ+Xjσ−⟩t
⟨σ+σ−⟩t

− xj

)
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FIG. 3. Experimental limitations and decay of “conditional”
coherence. (a) Monte-Carlo average over 104 realizations of
the QTAV Var(σz) obtained with Y = 10, plotted against
the dimensionless time γt for the ideal case n = 0, η = 1 (in
green), n = 0, η = 0.5 (in blue), n = 1, η = 1 (in orange),

and n = 1, η = 0.5 (in red). The dashed curve depicts ⟨σz(t)⟩
in the ideal case. The inset shows two sample trajectories in
the Bloch sphere obtained with Y = 30 and for n = 0, η = 1
(i) and n = 1, η = 0.8 (ii). (b) Monte-Carlo average over

two realizations for the atomic inversion, ⟨σz(t)⟩ (in green)
and Var(σz) (in black) for the values of n, η indicated in each
textbox.

× ⟨σ+σ−⟩t dt = E
(
xi(u

j , x) + (ui, x)xj

+
1

(l, x)

(
(vi, xi)− xi(l, x)

) (
(vj , x)− xj(l, x)

) )
dt,

using the fact that dÑdÑ = dN with the rate of the Pois-
son process being γ ⟨σ+σ−⟩t dt and in the last line using
uj as the vector corresponding to L†[Xj ], l as σ+σ−,
and vj as σ+Xjσ−. This is an ordinary differential equa-
tion which however does not close since it requires higher
order moments such as Exixjxk. Again, using the Itô

product rule we can calculate the equation for the higher
order moments to obtain a system of ordinary differen-
tial equations which still do not close. We can repeat this
procedure to arbitrarily high order but at some point we
have to truncate. It can be shown that this truncation is
linear in the moments, which allows us to solve the sys-
tem using traditional methods of solving linear systems
of ODEs. The Wiener case [41, 52] can be similarly ap-
proximately solved by using the Heisenberg equation [66]

d ⟨A⟩t=
〈
L†[A]

〉
t
dt+

(
√
γ ⟨A(σ− − ⟨σ−⟩t)⟩

dW (t)√
2

+h.c.

)
,

whereW is a complex Wiener process. Solutions to these
kind of truncated systems of equations for the two prin-
cipal unravelings are depicted in Fig. 2, in very good
agreement with the Dyson-expansion method and Monte-
Carlo averages.

Direct photodetection revisited and compromised.—
Having laid out an operational approach to distinguish
the different unravelings, let us return to direct photode-
tection and discuss the most commonly encountered lim-
itations in an actual experiment, where the density ma-
trix cannot be unraveled into a pure-state ensemble, in
which we would have a conditional wavefunction obeying
a Schrödinger equation with a non-Hermitian Hamilto-
nian. This happens for a limited detector efficiency η < 1
and/or a surrounding bath with appreciable thermal ex-
citation n [59].

Figure 3 testifies to the rapid degradation of Var(σz) as
we move away from a pure-state description of the condi-
tional dynamics. The QTAV responds to quantum jumps
taking place in the course of individual realizations. This
is evident from Fig. 3(b) where Var(σz) remains zero un-
til a spontaneous-emission event occurs in a pair of re-
alizations. For an imperfect detector or for a thermally
excited bath, the regression of fluctuations following a
jump is damped. The decay concerns the coherent part
of the evolution between spontaneous emissions, at a rate
much faster than γ, for typical experimental parameters
where η ≪ 1. The inset of Fig. 3(a) shows how sample
trajectories spiral towards the center of the Bloch sphere,
while individual jumps reset the evolution to the south
pole.

Since the intensity correlation of the scattered light
reflects a nonexclusive probability of photocounting co-
incidences, the limited detector efficiency can be counter-
balanced by increasing the number of photon “clicks” N
in the course of a long experimental run. Indeed, for the
setup pictured in Fig. 1(a), we have concluded that the
signal-to-noise ratio for g(2)(γτ ≫ 1) in a window about

one inverse of the coherence time scales with
√
N [59].

This allows the determination of Var(σz) from single re-
alizations as low as 10−3, the order of magnitude Monte-
Carlo simulations indicate for η ≲ 0.05. This order of
magnitude can be increased using high numerical aper-
ture collection systems [57, 67] and efficient single-photon
detectors [68].
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Conclusions and outlook.—In summary, we have ex-
panded upon the fundamental concept of the variance
in quantum mechanics going beyond the conventional
density-matrix formulation. The different environments
devised to collect the output of an open quantum system
show up in a markedly different response of a quantity
where nonlinear operations are performed to individual
realizations prior to averaging over their ensemble. This
is in contrast to linear observable averages where the
complementary measurement strategies all abide by the
predictions of the GKSL equation, and multi-time cor-
relations – such as the intensity correlation function –
are obtained via the quantum regression formula. Fol-
lowing our strategy, we need to set the initial point for
two copies of the system (here a ground-state reset for
direct photodetection) and then post-select the trajecto-
ries in such a way that the photocounting record is the
same with satisfactory accuracy. Ergo, one gains, in prin-

ciple, the ability to characterize the experiment’s power
to collapse the wavefunction and add information to the
memory carried by a state conditioned on all events that
have taken place along a single trajectory.
This ability allows for an experimentally oriented test

of the objective quantum state assumption via an EPR
steering inequality [69, 70]. It would be interesting to
extend our considerations to non-Markovian evolution
case [71]. Finally, our conclusions are reflected by re-
cent investigations of quantum many-body systems stud-
ied in the context of quantum computing and quantum
simulation [72–74]. Quantum trajectories arising due to
multiple measurements of the system’s state, when an-
alyzed by relevant (nonlinear) statistical measures such
as entanglement entropy, exhibit phase transitions [75–
82], that are not evident in the average state [83–86]
unless specifically tuned feedback mechanisms are em-
ployed [87–94].

SUPPLEMENTARY INFORMATION

In the supplementary material, we first detail the calculation of the quantum-trajectory-averaged variance Var(σz)
for the Poisson-type unraveling, via the Dyson-series expansion of the conditional reduced system density operator. We
derive exact and approximate results, the latter in the limits of strong and weak driving where asymptotic expressions
can be obtained. Secondly, we expand on the generality of the moment-based method applicable to the two principal
types of unraveling (Poisson and Wiener). We also connect the quadrature amplitude squeezing encountered in
resonance fluorescence to Var(σz). Finally, we take into account experimental imperfections and discuss a strategy to
determine nonlinear averages in an exemplary and pioneering system of a single trapped fluorescing 87Rb atom whose
output radiation is collected by four partially transmitting mirrors in a Maltese-cross arrangement.

1. Introduction: record making and complementarity

The theory of quantum trajectories ultimately attempts to describe the energy exchange between light and atoms,
given both the quantum and wave aspects of light. The exchange must be described in a background where the
quantum indicates discontinuity while the wave indicates continuity, and quantum trajectories fit both aspects in an
evolution over time [9]. They employ the random stochastic processes and a formal generalization of the quantum jump
to account for coherence [10, 39]. Both event-enhanced quantum theory [14] and consistent histories [13] emphasize
the need to attach meaningful time series of real numbers to a quantum evolution. The series are the records obtained
in the scattering scenario of a quantum optical experiment.

By producing photon counting records, we effectively define the environment by a particular idealization of what
might lie in the path of the scattered field – a perfectly absorbing boundary. Every photon scattered by the two-state
atom is then used up making a record appropriate to this environment. Other idealized environments will produce
different records, and disentangle the system and environment in different ways [56]. There are many different
environments that might, in fact, be encountered by the scattered field, all consistent with the master equation (ME).
Different environments correspond to mutually exclusive methods of record making, since every photon produces one
and only one happening. Each idealized environment defines a self-consistent pure-state unraveling. This is how
quantum-trajectory theory encounters Bohr’s complementarity. Apart from direct photodetection, there is another
particularly important way of making records. It introduces a beam splitter and a local oscillator into the environment,
and after the beam splitter every photon is counted. The scheme of homodyne and heterodyne detection uses
interference to unveil aspects of the scattering process associated with a wave amplitude and a spectrum [53]. In
the sections that follow, we will visit these complementary unravelings of the ME of resonance fluorescence, when
producing the single realizations which make the quantum-trajectory-averaged variance (QTAV).
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2. Resonance fluorescence and waiting-time distribution

We work with the paradigmatic system of resonance fluorescence, comprising a coherently driven two level atom
(whose ground and excited states are denoted by |↓⟩ and |↑⟩, respectively) immersed in the vacuum reservoir. The
derivation of the photoelectron counting distribution by Mollow [60] and Cook [61, 62] is based on a hierarchy of
equations that yield the probabilities for finding n photons in the multimode fluorescent field. These equations were
then used in the analysis of quantum jumps [50].

In such a system, the trajectories themselves are Markovian (as well as the averaged dynamics conforming to
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation), since the dynamical evolution is reset to the same
state following a quantum jump. As usual, we denote by σ− and σ+ the lowering and raising system operators,
respectively, Ω is the Rabi frequency which is taken real without loss of generality, and γ is the spontaneous decay
rate. The conditional evolution of the system state under direct photodetection (with unit detector efficiency) is
described by the ME [1, 2]

ρ̇c = Lρc = (ℓ+ J)ρc, (S.1)

where in the interaction picture we may write

ℓρc = [1/(iℏ)][H, ρc]−
γ

2
(σ+σ−ρc + ρcσ+σ−) = [1/(iℏ)](Heffρc − ρcH

†
eff), (S.2)

in which Heff is a non-Hermitian Hamiltonian. It describes a continuous evolution of the system state with decreasing
norm, between randomly occurring spontaneous emission events

Heff = ℏΩ(σ+ + σ−)− iℏ(γ/2)σ+σ−. (S.3)

The continuous evolution is interrupted by quantum jumps accounted for by the action of the super-operator

Jρc = γσ−ρcσ+. (S.4)

The above jump superoperator projects the system state to the ground state (|↓⟩), captures the aftermath of a photon
emission. The time τ lapsed (often called waited time) between successive emissions is governed by the waiting-time
distribution w(τ). This exclusive probability density function of the time intervals τ between two consecutive jumps,
is given by the expression

w (τ) = Tr
(
Jeℓτ (|↓⟩ ⟨↓|)

)
= γ|⟨↑ |e[1/(iℏ)]Heffτ | ↓⟩|2 = exp

(
−γτ

2

) γΩ2

µ2
sin2 (µτ), (S.5)

with µ = 1
2

√
4Ω2 −

(
γ
2

)2
. The waiting-time distribution forms the basis of the quantum-trajectory description of

resonance fluorescence in direct photodetection [63], as we will see in the following sections.

3. Dyson expansion and quantum-trajectory formulation in direct photodetection

The solution of the ME (S.1) can be expressed by means of the Dyson expansion [10, 49–51] as follows

ρc (t) = eℓtρc (0) +

∫ t

0

eℓ(t−t1)Jeℓt1ρc (0) dt1 +

∫ t

0

∫ t2

0

eℓ(t−t2)Jeℓ(t2−t1)Jeℓt1ρc (0) dt2dt1 + ... (S.6)

This form of the solution is very useful to see what an average over all the possible different quantum trajectories is
made of, i.e. track the conditioned evolution paths. For example, the first term of the RHS describes a trajectory with
no jumps at all. The second term describes all the possible trajectories with one jump at any time instant during the
evolution, and so on. In fact, assuming ρ (0) = |↓⟩ ⟨↓|, this solution can be recast in the explicit form of an average

ρc (t) =

∞∑
n=0

∫ t

0

∫ tn

0

...

∫ t2

0

dtn...dt1
eℓ(t−tn) (|↓⟩ ⟨↓|)
p0(t− tn)

pn(t, t1, t2, ..., tn), (S.7)

where

pn(t, t1, t2, ..., tn) = p0(t− tn)w(tn − tn−1)... w(t2 − t1)w(t1) (S.8)
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is the exclusive probability density for realizing one particular trajectory with n jumps at times t1, t2, ..., tn and no
jumps between tn and t [5]. Here,

p0(t− tn) = Tr(eℓ(t−tn) |↓⟩ ⟨↓|) = e−
γ(t−tn)

2

[
Ω2

µ2
− γ2

16µ2
cos (2µ (t− tn)) +

γ

4µ
sin (2µ (t− tn))

]
(S.9)

is the null measurement probability density, from the time tn when the last jump was recorded to the final time t.

a. Ensemble average of nonlinear functions of quantum mechanical expected values

Using the previously derived expressions, one can obtain the following formula for the ensemble average of the
quantum mechanical expected value of an operator O:

⟨O(t)⟩ = Tr (Oρc (t)) =

∞∑
n=0

∫ t

0

∫ tn

0

...

∫ t2

0

dtn...dt1
Tr
(
Oeℓ(t−tn) |↓⟩ ⟨↓|

)
p0(t− tn)

pn(t, t1, t2, ..., tn). (S.10)

Here, the overbar denotes the ensemble average over all the possible trajectories and the brackets for the quantum
mechanical expected value of each one of them. It is the common average obtained from the ME. Based on Eq. (S.10)
we can construct a nonlinear average where the single-trajectory quantum mechanical average is raised to some power,
i.e., after effecting a nonlinear operation in a post-selection process

⟨O(t)⟩m =

∞∑
n=0

∫ t

0

∫ tn

0

...

∫ t2

0

dtn...dt1Om (t− tn)w(tn − tn−1)... w(t2 − t1)w(t1), (S.11)

with

Om (t) =

[
Tr
(
Oeℓt (|↓⟩ ⟨↓|)

)]m
pm−1
0 (t)

, (S.12)

a considerably simplified form given that after the last (n) jump the wavefunction has collapsed to |↓⟩ (the individual
trajectory is Markovian).

We remark that Eq. (S.11) is an expression which cannot be obtained from the ME without the quantum trajectories

point of view of the system evolution. Note that the expression for ⟨O(t)⟩m is just a sum over successive convolutions:

⟨O(t)⟩m =

∞∑
n=0

Om(t− tn) ∗
{
w (tn − tn−1) ... ∗

[
w (t2 − t1) ∗ w (t1)

]}
. (S.13)

Now, applying the Laplace transform (which we denote as an upper tilde), we obtain the following expression for the
ensemble average of the nonlinear quantum mechanical expected value:

˜⟨O(t)⟩m =

∞∑
n=0

Õm (z) w̃n (z) =
Õm (z)

1− w̃ (z)
. (S.14)

b. Characteristic examples of nonlinear averages obtained via the Dyson expansion

To illustrate the method, we chose the Pauli operator σz and as a nonlinear function of the quantum mechanical
average we select the square, i.e., m = 2. In this case,

σz m=2
(t) =

[
Tr
(
σze

ℓt (|↓⟩ ⟨↓|)
)]2

p0(t)
, (S.15)

with the denominator given by Eq. (S.9). Working on the numerator, we obtain the exact expression:(
Tr
(
σze

ℓt (|↓⟩ ⟨↓|)
))2

= e−γt

{
1

2
+

γ2

32µ2
+

1

2

[
1− γ2

16µ2

]
cos(4µt) +

γ

4µ
sin(4µt)

}
, (S.16)
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identifying a dominant oscillatory term of frequency 4µ. A frequency mixing, however, is bound to arise due to the
denominator p0(t), albeit scaled by powers of γ/Ω.

The above observation brings us to the strong-driving limit, Y ≫ 1, with Y ≡ 2
√
2Ω/γ. Neglecting second-order

terms in (γ/Ω)2 ≪ 1 we write µ ≈ Ω; taking the Laplace transform of σz m=2
(t), multiplying by 1/[1 − w̃(z)] and

going back to the time domain yields the following approximate form:

⟨σz(t)⟩2 ≈ 1

2
+

1

4
e−

3
4γt
[
C1 cos (CΩt) + C2 sin (CΩt)

]
+

+
1

4
e−

γ
2 t
[
C3 cos (4Ωt) + C4 sin (4Ωt) + C5 cos (6Ωt) + C6 sin (6Ωt)

]
.

(S.17)

The coefficients C1, ..., C6 depend nonlinearly on the ratio γ/Ω, while CΩ ≈ 2Ω, in agreement with the occurrence of
the pair of eigenvalues with real part −3γ/4 (distinct from the vertical line at −γ/2) shown in Fig. S.1.
In the case of σy, we find that the form of the solution is the same, and only the coefficients C1 − C6 change. On

the other hand, for the case of σx, the solution has an easier form, but it is different from zero only in the presence
of a finite detuning ∆ between the laser drive and the atomic resonance.

c. Asymptotic results for strong and weak drive in the long-time limit

Let us now consider the long-time limit of the QTAV from the perspective of the final-value theorem in the Laplace
Transform. We are still working under Y ≫ 1 (with µ ≈ Ω). We then obtain(

Tr
(
σze

ℓt (|↓⟩ ⟨↓|)
))2

= 1
2e

−γt[1 + cos(4Ωt)] +O(γ/Ω), (S.18)

while p0(t) ≈ e−γt/2+O(γ/Ω). As we have seen in the previous section, this leaves us to leading order with a damped
oscillatory term e−γt/2 cos2(2Ωt) + O(γ/Ω), “screened” by a convolution kernel, the inverse Laplace Transform of
[1 − w̃(z)]−1. Applying the final-value theorem, where [1 − w̃(z)]−1 ≈ (z + γ/2)/z for z ∼ γ, yields 1/2 +O(γ2/Ω2)
for the long-time limit of Var(σz). Given that Sz ≡ ⟨σz⟩ss = 0 + O(γ2/Ω2), the asymptotic expression for the
time-evolving variance–including first-order terms in γ/Ω of different frequencies–becomes (for t≫ γ−1)

Var(σz) =
1
2

{
1 + e−γt/2 cos(4Ωt) + γ

8Ωe
−γt/2[4 sin(4Ωt)− sin(6Ωt)− sin(2Ωt)]− γ

4Ωe
−γt/2 sin(2Ωt)

}
+O(γ2/Ω2),

(S.19)
which makes Eq. (3) of the main text, one of our central results. Although limited in its applicability, is shows that
all oscillatory terms decay with the same rate, γ/2, consistent with the eigenvalue distribution plotted in Fig. S.1.
Comparing with Eq. (S.17), we expect that the coefficient C3 does not scale with γ/Ω for Y ≫ 1 but approaches
a constant value. Indeed, we find that C3 ≈ 2, while C4 ∼ 1/Y . At the same time, the initial-value theorem gives
Var(σz)(t→ 0+) = 0 +O(γ2/Ω2), which we have also numerically confirmed (see Fig. 2 of the main text).
In the opposite limit, Ω/γ ≪ 1, we use µ/γ = i 14 +O((Ω/γ)2). This yields(

Tr
(
σze

ℓt (|↓⟩ ⟨↓|)
))2

= e−γt[cosh(γt) + sinh(γt)], (S.20)

and

p0(t) = e−γt/2[cosh(γt/2) + sinh(γt/2)], (S.21)

to leading order in Ω/γ. At the same time, from Eq. (S.11) we see that w̃(z) → 1 for z → 0, which means that we
cannot use the Laplace transform and the geometric series expansion of [1− w̃(z)]−1. Instead, we allow at most one
jump in the approach to the steady state (n = 1) and we directly appeal to the Dyson expansion in the time domain.
The asymptotic expression for the variance, then, reads:

Var(σz) = e−γt/2 cosh γt+ sinh γt

cosh (γt/2) + sinh (γt/2)
− 1 +O((Ω/γ)2) = 0 +O((Ω/γ)2). (S.22)

In fact, Monte-Carlo simulations show that Var(σz) ∼ 10−6 for γ/Ω = 56.
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4. The moment-based method and the truncated hierarchy of equations: Poisson- and Wiener-type
unraveling

There are two principal unravelings which define the evolution of the conditioned state vector |ψc⟩ = |ψc(t)⟩. One
is driven by Wiener noise [41, 52] (in this section we set ℏ = 1 and denote ⟨A(t)⟩ by ⟨A⟩t)

d |ψc⟩ = −iH |ψc⟩ dt+
∑
i

(〈
L†
i

〉
t
Li −

1

2
L†
iLi −

1

2
| ⟨Li⟩t |

2

)
|ψc⟩ dt

+
1√
2

∑
i

(Li − ⟨Li⟩t) |ψc⟩ dWi(t), (S.23)

where Wi is a complex Wiener process with Itô rule dW ∗
i dWj = dWidW

∗
j = 2δijdt and all others zero. The other

unravelling is driven by Poisson noise [41],

d |ψc⟩ = −
(
iH +

1

2

∑
i

L†
iLi −

〈
L†
iLi

〉
t

)
|ψc⟩ dt

+
∑
i

(
Li

⟨L†
iLi⟩1/2t−

− I

)
|ψt−⟩ dNi(t), (S.24)

where Ni are real Poisson processes with Itô rule dNidNj = δijdNi and dNidt = 0.
We can derive the evolution of the expectation of an observable A by using the Itô product formula [66], d ⟨A⟩ =

d ⟨ψc|A|ψc⟩ = (d ⟨ψc|)A |ψc⟩+ ⟨ψc|A(d |ψc⟩) + (d ⟨ψc|)A(d |ψc⟩). The resulting equations are

d ⟨A⟩t =
〈
L†[A]

〉
t
dt+

1√
2

∑
j

⟨A(Lj − ⟨Lj⟩)⟩t dWj(t) + h.c.

 (S.25)

and

d ⟨A⟩t =
〈
L†[A]

〉
t
dt+

∑
j


〈
L†
jALj

〉
t−〈

L†
jLj

〉
t−

− ⟨A⟩t−

 dÑj , (S.26)

where dÑj = dNj −
〈
L†
jLj

〉
t
dt is the compensated Poisson process (which in the main text assumed the form

dÑ = dN − γ ⟨σ+σ−⟩t dt).
Let us denote by Xi the basis operators of the space of observables, with xi = ⟨Xi⟩t. In this basis the operators

A are described by vectors a, with ai = Tr[A†Xi] so that expectations become inner products ⟨A⟩t = (a, x). Powers
of quantum expectations become powers of inner products and thus if the ensemble average is then taken of these
powers, the problem of describing their evolution reduces to finding the evolution of moments, i.e. terms like Exixjxk.
Using equations S.25 and S.26, we can write the evolution equations of xi as

dxi = (ui, x)dt+
∑
j

f ijdWj + f i∗j dW
∗
j (S.27)

in the Wiener case with ui the vector corresponding to L†[Xi] and f
i
j = (f ij)t = ⟨Xi(Lj − ⟨Lj⟩)⟩t. In the Poisson case

we can similarly write

dxi = (ui, x)dt+
∑
j

gijdÑj , (S.28)

with gij = (gij)t =
1〈

L†
jLj

〉
t

(〈
L†
jXiLj

〉
t
−
〈
L†
jLj

〉
t
⟨Xi⟩t

)
. To calculate the evolution of terms like Exixjxk, we

apply the Itô product formula iteratively to get d(xixjxk) = (dxi)xjxk + xid(xjxk) + dxid(xjxk), then take the
expectation so that all martingale terms cancel out. In the Poisson case we use the fact that for a Poisson integral

E
∫ t

0

f(s)dNj(s) = E
∫ t

0

f(s)
〈
L†
jLj

〉
s
ds, (S.29)
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FIG. S.1. Eigenvalues of the dynamical matrix M corresponding to the Poisson and Wiener-type unravelings for Y = 10, 30,
as indicated on top of each frame. For a Wiener-type unraveling we note that, as Y grows, the spectrum of M aligns better
with integer multiples of the Rabi frequency ΩR = 2Ω.

which gives us license to replace dNj(t) with
〈
L†
jLj

〉
t
dt. Applying these rules leads to very simple combinatorial

expressions for the evolution of moments. In the Wiener case, for the second moment we have

dExixj = E

[
(ui, x)xj + xi(u

j , x) +
∑
k

f i∗k f
j
k + f ikf

j∗
k

]
dt. (S.30)
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Due to the structure of the Itô product formula, simple combinatorial patterns arise for higher moments:

dExi1 · · ·xin = E
n∑

j=1

(uij , x)xi1 · · · x̂ij · · ·xindt+

E
∑
k

∑
σ∈C2

f
σ(i1)
k f

σ(i2)∗
k xσ(i3) · · ·xσ(in)dt,

(S.31)

where Ck is the set {i1, . . . , in} choose k and hat denotes omission. For the Poisson case the pattern is a bit more

complex. If lk denotes the vector representing L†
kLk, then we have for the quadratic case

dExixj = E

[
(ui, x)xj + xi(u

j , x) +
∑
k

gikg
j
k(l

k, x)

]
dt (S.32)

and for the general case

dExi1 · · ·xin = E

 n∑
j=1

(uij , x)xi1 · · · x̂ij · · ·xin +
∑
k

∑
σ∈C2

g
σ(i1)
k g

σ(i2)
k xσ(i3) · · ·xσ(in)(l

k, x)

+
∑
k

∑
σ∈C3

g
σ(i1)
k g

σ(i2)
k g

σ(i3)
k xσ(i4) · · ·xσ(in)(l

k, x) + · · ·+
∑
k

gi1k · · · gink (lk, x)

]
dt,

(S.33)

where in this case there is a summation for every set Cl, l = 1, . . . , n, each having l many g
σ(i)
k terms.

In both cases, the evolution is described by a linear equation in the moments (even in the Poisson case where a
polynomial division must be performed which has remainder 0), however the equations for the evolution of a moment
generally contain higher order moments so the equations do not close. One way to handle this is to truncate at some
high order and not consider the evolution of terms beyond that order. Then the system of equations can be solved
using standard methods. We can collect the elementary moments Exi1 · · ·xin into a vector y and the coefficients of
the moments in each equation dExj1 · · ·xjn to get a matrix, M . This matrix can be exponentiated to arrive at a time
evolution for the vector y. To obtain the spectrum of M and the results depicted in Fig. 2 of the main text, a 10th

order truncation of the iterative scheme was used. Eigenvalues of the matrix M for Y = 10, 30 are plotted in Fig. S.1.
They show a banded structure at even multiplies of Ω, which gives rise to the characteristic periodicity in the solutions
of Var(σz). For homodyne and heterodyne detection, closely-spaced eigenvalues of the same imaginary parts give rise
to “destructive interference”, dephasing the variance, as we have seen in Fig. 2 of the main text. A similar dephasing
is noted in the QTAV Var(σy) for direct phototodetection, shown in Fig. S.2. Once more, we note the good agreement
between the Monte-Carlo simulations, the moment-based method and the Dyson-expansion perturbative treatment
to first order in γ/Ω. Evidently, the agreement betters for increasing Y .

5. Direct photoelectron-counting with imperfect detectors and/or a thermal bath

For a limited detector efficiency η < 1 we cannot use a pure state to describe the evolution between collapses.
Instead, the general form must be implemented in density matrix form. Between collapses the propagation rule reads

ℓ′ρc = (L − ηJ)ρc =
1

iℏ
[H, ρc] + γ(1− η)σ−ρcσ+ − γ

2
{ρc, σ+σ−}, (S.34)

({., .} stands for the anti-commutator) while the collapse probability for the interval (t, t+∆t] is

pc(t) = ηtr[Jρc(t)]∆t = η(γ∆t)tr[ρc(t)σ+σ−], (S.35)

and the (un-normalized) state becomes ηJρc. For η ≪ 1, a single trajectory closely follows the deterministic evolution
governed by the ME. This explains the significant reduction in the variance (the case for very weak drive), which –
as we have seen in the main text – “responds” to quantum jumps and the oscillatory regression of the fluctuation.

If we now admit a thermal light injecting a photon flux γn, then the following term is added to the coherent
evolution between collapses [to RHS of Eq. (S.34)]:

γn(σ−ρcσ+ + σ+ρcσ− − σ+σ−ρc − ρcσ−σ+). (S.36)
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FIG. S.2. Comparison of Var(σy) plotted against the dimensionless time γt for the ideal case n = 0 and η = 1, with three
different methods and for six different driving strengths Y , indicated in the top-right corner of each panel. The Monte-Carlo
average over 104 realizations is plotted in orange. The blue line and green dots correspond to the analytical results obtained
from the Dyson-series expansion to first order in γ/Ω, and the moment-based equations, respectively. As the driving strength
increases, so does the agreement between the three methods. Note the negative artefact in the short-time evolution of Var(σy),
which disappears when higher-order terms in γ2/Ω2 are considered in Eq. (S.12). We also remark that in the long-time limit
and for Y ≫ 1, Var(σy) + Var(σz) =

1
2
+ 1

2
= 1. As in Fig. 2 of the main text, the atom is initialized to its ground state.

In the ideal case, n = 0, η = 1, the series of photon “clicks” fully defines the quantum trajectory, since the wavefunction
evolves under the action of Heff defined in Eq. (S.3), being reset to the ground state after a spontaneous emission
occurs. At optical frequencies, one has n ≪ 1, whence the most detrimental factor to the coherence of individual
realizations is the limited detector efficiency. In that case, the propagation rule of Eq. (S.34) must be used between
jumps which, for η ≪ 1, coincides with the action of the Lindblad superoperator L. Photoelectron counting and
waiting-time distributions for nonunit detection efficiency are presented in [63].

6. Homodyne detection and quadrature amplitude squeezing

Let us briefly discuss a third type of unravelling (one of Wiener type), in addition to direct photodetection and
heterodyne detection, the latter being equivalent to the quantum-state diffusion model [52]. In 1981, Walls and
Zoller [64] reported that light scattered in resonance fluorescence is squeezed in the field quadrature that is in phase
with the mean scattered field amplitude, proportional to ⟨σ−⟩ss = +iY/(1 + Y 2) in the steady state, whence in
a direction along θ = π/2. A year later, Mandel came up with a scheme for detecting squeezing, which involved
homodyning the scattered light with a strong local oscillator and measuring photon counting statistics as a function
of the local oscillator phase [65]. Following this approach, the (un-normalized) conditional wavefunction evolves
according to the stochastic Schrödinger equation

d

dt
|ψc⟩ =

1

iℏ
HW (t) |ψc⟩ , (S.37)

in which HW (t) is the stochastic non-Hermitian Hamiltonian:

HW (t) = H − iℏγσ+σ− + iℏ[
√
γ ⟨ψc(t)|(eiθσ+ + e−iθσ−)|ψc(t)⟩+ ηW (t)]e−iθ√γσ−, (S.38)

where θ is the local-oscillator phase, |ψc(t)⟩ is the normalized state and ηW is a Gaussian white noise. Instances of the
conditional variance Var(σz) under this unravelling are depicted in Fig. 2 of the main text for θ = π/2 and θ = 0. For
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an imperfect detector, the noise ηW is replaced by two uncorrelated noise sources added in the proportion η and 1−η,
with the former featuring in the photocurrent while the latter not [10]. In Fig. 2 of the main text (bottom panels)
we show that the QTAV Var(σz) captures the redistribution of fluctuations among the squeezed and anti-squeezed
quadratures. Finally, we recall that in heterodyne detection, θ is effectively replaced by −(ωLO − ωA)t (see Fig. 1 of
the main text). The frequency mismatch between the local oscillator and the drive (here resonant with the atom) is
assumed to be very large in comparison to the field fluctuations (∼ γ). A time average over the period 2π/(ωLO−ωA)
is then performed to simplify the resulting stochastic Schrödinger equation.

Appendix A: EPR steering for system-environment entanglement

We will now digress a little to discuss the relevance of the QTAV and its evolution vis-a-vis the discussion of
Wiseman and Gambetta in Ref. [70] on EPR steering for resonance fluorescence with Y ≫ 1. In such a configuration,
Bob has direct access to the coherently driven two-state system while Alice is situated in the environment where she
is able to alternate between unravelings. Then the objective quantum state assumption entails the inequality [69]

S(ρc,D, ρc,H) ≡ f1(ρc,D) + f2(ρc,H) ≤ 1, (SA.1)

where f1(ρ) ≡ (tr[σxρ])
2 and f2(ρ) ≡ (tr[σyρ])

2 + (tr[σzρ])
2; here ρ a state conditioned on a particular measurement

scheme selected by Alice.

In assessing whether the EPR steering inequality can be violated in our case, the superscripts D and H denote direct
photodetection in vacuum (n = 0) and heterodyne detection, respectively (the latter performed with unit efficiency).
Therefore, ρc,D solves ME (1) with ℓ→ ℓ′ from Eq. (S.34), yielding a mixed state, while ρc,H solves Eq. (S.23) yielding
a pure state at all times.

FIG. SA.3. EPR steering S = S(ρc,D, ρc,H) value from the inequality (SA.1) for: Y = 10 and η = 1 in (a), Y = 30 and η = 1
in (b), Y = 30 and η = 0.8 in (c), and Y = 30 and η = 0.6 in (d).

Figure SA.3 plots the value of S for different values of Y and η. As noted in [70], for S > 1 the experiment would
rule out all theories of objective atomic state reduction. For unit-efficiency direct detection (η = 1), the steady-state
value of S always exceeds unity. We note the envelope is primarily determined by the detection efficiency while the
carrier frequency is set by Y . Figures SA.3(c, d) show that the envelope drops below unity for η ≲ 0.8, satisfying
the inequality (SA.1), whence making the experiment “not provably measurement dependent”. In contrast, we note
that the feedback scheme adopted for direct photodetection in [70] guarantees S > 1 for any value of η and a perfect
heterodyne detector.
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FIG. SA.4. (a) The arrival times of the photons coming from the lenses L1 and L2 are measured by avalanche photodiodes
(APDs). (b) Normalized second-order correlation function for integration times of 65 (blue) or 1700 (black) seconds and fit
using Eq. (SA.2) from a two-level system approximation including experimental imperfections (red). The gray shaded box

corresponds to the time range where the signal-to noise of g(2) is computed and shown in (c) as a function of the integration
time and fitted by Eq. (SA.3).

1. Experimental setup and considerations

In this section, we describe the different experimental imperfections that can affect the measurements of a linear
average of σz: the second-order correlation g

(2)(τ). The same spirit could be applied for non-linear averages. Second-
order correlation functions are routinely measured experimentally using photon counting techniques in a Hanbury
Brown and Twiss configuration. The photon flux enters a beam-splitter and both outputs are monitored by two
detectors after a long integration time.

We consider real experimental data based on the setup of [57] in order to highlight the different imperfections. The
experimental setup consists of a Maltese-cross coupling of single neutral atoms of 87Rb. The atom is illuminated by
a laser field with Rabi frequency Ω and detuning ∆. The photons are collected by high-numerical aperture lenses,
as shown in the main text, and the photon arrival times are measured [Fig. SA.4(a)] using single-photon avalanche
photodiodes (APDs). From these measurements, the normalized second-order correlation function between the lenses
L1 and L2 is computed [Fig. SA.4(b)]. The average atomic scattering rate on a single detector is Rsca,det = 9000
counts/s.

Let us focus on the measured correlation g
(2)
mes(τ) after a long integration time. The fit function for the correlation

based on a two-level atom model and including different experimental imperfections is given by:

g(2)mes(τ) =
A(τ)g(2)(τ,∆,Ω) + 2

SNRDet
+ 1

SNR2
Det

1 + 2
SNRDet

+ 1
SNR2

Det

, (SA.2)

where SNRDet = Rsca,det/RDC = 18 accounts for false positive photon detections due to the dark counts of the
detectors. In the experiment, the dark count rate was RDC = 500 counts/s for each detector. Then, for single atoms,
the photon counts are usually measured using red-detuned light in order to maintain the atom in the trap while
acquiring the resonance fluorescence signal. A large negative detuning ∆ < 0 causes an overshoot of the maximum
value of g(2) above 2. It is taken into account by an explicit dependence on the detuning of g(2)(τ,∆,Ω) which
comes from the steady-state solution of the optical Bloch equations for a two-level atom. Finally, an empirical global
envelop A(τ) = a + be−cτ takes into account the effect of the atomic motion in the trap [58] where the parameters
a, b, c are extracted from a fit on microsecond timescales. After including these corrections, the correlation function
is fitted from which we extract the Rabi frequency Ω = 3.3γ and the detuning ∆ = −3.2γ. As shown on Fig. SA.4(c),
modeling the atom as a two-level system including experimental imperfections is enough to explain the experimental
data. This agreement justifies the use of a two-level atom model to compute the different unravelings.

Now, let us consider that each photon flux arriving on the two detectors is measured with same efficiency η. In
an optical detection system, η is given by the product of the collection efficiency ηcol, the optical path losses ηloss
and the quantum efficiency of the detectors ηQE. The g(2) statistics is recovered by measuring coincidences on two
detectors over a large dataset after a long integration time tint. In the long time limit (γτ ≫ 1), where the counts are
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uncorrelated, the coincidences follow a Poissonian statistics. Therefore, the signal-to-noise SNR of the measured g(2)

scales as:

SNR =
√
η2g(2)Rsca,dettint. (SA.3)

Experimentally, we evaluate the signal-to-noise of the measured g
(2)
mes [Fig. SA.4(c)] by computing the ratio of the

average and the standard deviation in the steady-state limit [gray shaded area in Fig. SA.4(b)].
By fitting the signal-to-noise using Eq. (SA.3), we end up with η = 0.25%. First, the optical losses ηloss = 50%

can be improved by a better mode-matching of the emitting spatial modes and the collecting optical fibers. Second,
the detector quantum efficiency ηQE = 50% at a specific wavelength λ = 780 nm can be increased up to 90% using
superconducting nanowires [67]. Finally, for an atom scattering photons isotropically, the collection efficiency ηcol is
determined by the solid angle covered by the optical system. Based on these numbers, we deduce the experimental
collection efficiency of a single lens of 1%. By summing all channels up, the Maltese-cross coupling scheme employing
the four lenses increases in principle this coupling by a factor of 4 for an atom tightly trapped in all spatial directions.
Other geometries could also be used to increase the collection efficiency, such as a parabolic mirror trap [68].
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