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ABSTRACT

Visual grounding occupies a pivotal position in multi-modality vision-language models. However,
current vision-language models concentrate on comprehending images, ignoring the human-computer
interaction with multi-tasks instructions, thereby imposing limitations on their versatility and depth of
responses. In this study, we propose ViLaM, a large multi-modality model, that supports multi-tasks
of visual grounding using the cycle training strategy, with abundant interaction instructions. The cycle
training between referring expression generation (REG) and referring expression comprehension
(REC) is introduced. It enhances the consistency between visual location and referring expressions,
and addresses the need for high-quality, multi-tasks visual grounding datasets. Moreover, multi-tasks
of visual grounding are promoted in our model, contributed by the cycle training strategy. The
multi-tasks in REC encompass a range of granularities, from region-level to pixel-level, which
include referring bbox detection, referring keypoints detection, and referring image segmentation. In
REG, referring region classification determines the fine-grained category of the target, while referring
region captioning generates a comprehensive description. Meanwhile, all tasks participate in the joint
training, synergistically enhancing one another and collectively improving the overall performance of
the model. Furthermore, leveraging the capabilities of large language models, ViLaM extends a wide
range of instructions, thereby significantly enhancing its generalization and interaction potentials. It
is particularly advantageous in domains beyond natural images, such as the medical field. Extensive
public datasets corroborate the superior capabilities of our model in visual grounding with muti-tasks.
Additionally, validating its robust generalization, ViLaM is validated under open-set and few-shot
scenarios. Especially in the medical field, our model demonstrates cross-domain robust generalization
capabilities. Furthermore, we contribute a visual grounding dataset, especially with multi-tasks. To
support and encourage the community focused on visual grounding, we have made both the dataset
and our code public: https://github.com/AnonymGiant/ViLaM.

Keywords Vision-Language Models · Visual Grounding · Multi-Task · Cycle Training

1 Introduction

Visual grounding serves as a vital bridge that facilitates communication between AI models and the world, representing
a significant milestone in the quest for achieving general intelligence. However, traditional approaches to visual
grounding predominantly prioritize image comprehension, striving to extract image features with greater accuracy and
align them with textual information. Ignoring the wealth of referential information present in the texts of referring
expressions leads to the lack of diverse instructions and limited versatility and generalization.

In contrast to traditional methods, the advent of Large Language Models (LLMs) has significantly mitigated this
issue, and spawned rethinking about the vision-language models. Leveraging extensive text data, LLMs have attained
remarkable proficiency in generating human-like responses and addressing a wide array of tasks. This breakthrough
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ushers in a new paradigm for human-computer interaction. Building upon LLMs, large multi-modality models like
BLIP2 [1] and MiniGPT4 [2] utilize a pre-trained image encoder and a text encoder, then align vision-language features
with simple linear layers. These models demonstrate impressive joint understanding capabilities of language and images,
allowing users to give instructions in natural language to perform specific tasks. Nonetheless, the visual grounding
task of aligning visual localization with referring expressions remains a challenge for large multi-modality models,
particularly when dealing with localization spanning various granularities, such as bounding boxes, keypoints, and
segmentated polygons that range from region-level to pixel-level precision. In particular, pre-trained LLMs mainly
developed for specific language tasks often struggle with image-processing tasks, arduous to ensure the consistency
between visual localization and referring expression.

There is a guy on bottom left 
blue suit in this image. Where
is the bounding box containing
 the guy on bottom left blue suit ?

The segmented polygons 
contain 1 part: [ [ 260 , 514 ], 
[ 279 , 548 ], ... , [ 260 , 514 ] ]

So, could you help me segment 
this guy on bottom left blue suit
using polygons and provide me 
25 points connected in clockwise 
order of each part?

In the bounding box of 
[220, 515, 358, 1000]

Step 2  Cycle Referring Expression--VQA

Large Language Model
OPT VicunaFlan-t5 LLaMA ……
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Viusal Grounding Objects

Step 1  Activation of Coordinates--Captioning

Caption: ”There is a man in the bounding 
box of [602, 489, 796, 972] in this image.” 

Prompt: ”Question: What is
 described in the bounding box of 

[602, 489, 796, 972] ? Answer:”

Referring Expression Generation

Bounding Box: [602, 489, 796, 972]

”find an old man sit reading 
something at road side in the 

bounding box of [602, 489, 796, 972].”

Referring Expression Comprehension

Prompt: ”Question: Where is an 
old man sit reading something 

at road side in the image? Answer:”
”In the bounding box of 

[602, 489, 796, 972].”

Cycle
Training

Referring Expression:an old man sit reading 
something at road side

There is a [refer expression] in the bounding box of [x1, y1, x2, y2] 
in this image. In this area of the bounding box [x1, y1, x2, y2] of this 
image, the target of the  [refer expression]   can be segmented using 
polygons with 25 points connected in clockwise order. The segmented 
polygons contains [num_parts] parts: [ [x1,y1], [x2,y2], ..., [xn,yn], [x1, 
y1] ] and ... . In this area of the segmented polygon, the target of the 
[refer expression] has [num_keypoints] keypoints: [ [x1,y1], [x2,y2], 
..., [xn,yn] ]   

Bounding Box
[x1, y1, x2, y2]

Keypoints
[ [x1, y1], [x2, y2], ..., [xn, yn] ]

Polygon
[ [x1, y1], [x2, y2], ..., [xn, yn], [x1, y1] ]

Multi Visual Grounding Tasks Joint Training

Figure 1: The workflow of our methodology. We design the strategy of cycle training for referring expressions to
activate the orientation capability of the vision-language model. The coordinates of the location will cycle through two
subtasks: referring expression generation and referring expression comprehension to enhance the consistency between
visual location and referring expressions. Furthermore, the joint training of multi-tasks of visual grounding is presented
to improve the visual grounding at various levels of granularity, including referring bounding box detection, referring
keypoints detection and referring image segmentation. The pre-trained visual model and large language model are
frozen in the training.

In this study, we introduce ViLaM, a large multi-modality model, that supports multi-tasks of visual grounding
using cycle training strategy, with abundant instructions. First, to enhance the visual grounding capabilities of large
multi-modality models, the cycle training strategy is introduced, wherein referring expression generation and referring
expression comprehension are cycled to enhance the consistency between visual location and referring expressions.
Furthermore, the cycle training approach also contributes to performance improvement through the additional datasets
without referring expressions or visual locations. The pairs of referring expressions and visual locations can be generated
using the cycle training, thereby harnessing the power of big data to drive the large model. Second, multi-tasks of visual
grounding are supported and participate in the joint training in our model. The visual localization capability of the
ViLam covers various granularities from the region-level to pixel-level, including bounding box (bbox), keypoints and
segmented polygons. Regarding captioning tasks, our proposed model excels in producing fine-grained categorization
of the identified targets and generating comprehensive descriptions that encapsulate the attributes of the pointed
target. Thereby, the joint training of multiple tasks enhances the consistency between visual localization and referring
expressions from various perspectives, leading to improved performance across different tasks and the overall model.
Meanwhile, leveraging the power of LLMs, our approach supports a wide array of abundant instruction prompts,
significantly enhancing the human-computer interaction and generalization capabilities of our model. Especially in
cross-domain tasks, such as the medical field, our model possesses the capability to effectively accomplish novel tasks
based on given instructions. Finally, recognizing the demand for higher-quality visual grounding data that encompasses
diverse forms of visual location, we developed a dataset called VGCoco. It contains about 240K images with grounding
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annotations varying from region-level to pixel-level, including bboxes, keypoints and segmented polygons. In order to
foster and support the visual grounding community, we have made our dataset and code publicly available.

To summarize, our contributions are four-fold: (1) We design the cycle training, enhancing the consistency between
visual localization and referring expressions, and satisfying the requirements of paired visual grounding datasets for the
large model training, both in quantity and quality. (2) Incorporating the LLMs with abundant instructions, multi-tasks
of visual grounding are supported in the ViLaM and participate in the joint training, enhancing the capabilities of visual
grounding and generalization. (3) We assess the performance of ViLaM in extensive public datasets with multi-tasks,
demonstrating its superior capabilities of visual grounding. Besides, the generalization of ViLaM is verified under
the open-set or few-shot seniors, especially in cross-domain, such as the medical field. (4) To foster and empower the
community, we contribute a visual grounding dataset with multi-tasks annotations. The dataset and our code are public.

2 Related Work

2.1 LLMs and Multi-modality Pre-training

Large Language Models (LLMs) have recently significantly impacted the field of natural language processing. Through
alignment techniques such as supervised learning and reinforcement learning with human feedback, LLMs can
effectively generalize to perform a wide range of tasks, even with limited training data. A remarkable application of
LLM is ChatGPT, which presents an amazing ability to interact with humans. OpenAI’s ChatGPT and GPT4 are prime
examples of the impact that AI can have, and there have been extensive open-source efforts to replicate their success,
such as OPT [3], BLOOM [4], PALM [5], LLaMA [6].

Multi-modality models have further promoted the development of the vision-language model [7, 8, 9, 1, 2, 10, 11].
GPT-4V [12, 10] has recently shown unprecedented ability in understanding and processing an arbitrary mix of input
images and texts. On the other hand, preliminary experiments show that visual grounding accuracy is still limited in the
comprehensive scene, like the medical field.

2.2 Visual Grounding

Referring Expression Comprehension Early pioneers typically used a two-stage approach to tackle visual grounding
tasks. The initial step involves extracting interest regions, which are subsequently prioritized based on their similarity
scores with the language query [13, 14, 15, 16]. Another line of work advocates a one-stage pipeline based on
dense anchors [17, 18, 19, 20, 21]. Other Transformer models like SeqTR [22], VGTR [23] and PolyFormer [24] in
Vision-Language Tasks are subsequently proposed for the visual grounding task and achieved satisfactory performance.

Generalist Model Recently, the potential of generalist models has been increasingly explored, garnering considerable
attention from the research community. Among these, OFA [25] integrates a diverse set of cross-modal and uni-modal
tasks within a simple sequence-to-sequence learning framework. It adheres to instruction-based learning in both
pre-training and fine-tuning stages, negating the need for additional task-specific layers for downstream tasks. Besides,
mPLUG-2 [26] presents a multi-module composition network that utilizes shared universal modules for modality
collaboration and separates distinct modality modules to address modality entanglement.

3 Methodology

In this section, we first introduce the architecture of our vision-language model, ViLaM. Then, we explore the activation
of object coordinates. Based on robustly outputting these object coordinates, we present the cycle training approach,
which serves to reinforce the consistency between visual locations and their corresponding referring expressions.
Moreover, the cycle training also allows datasets without referring expressions to participate in the training, thereby
facilitating the joint training of multiple tasks. Finally, we introduce our built VGcoco dataset, which includes multi-task
annotations for visual grounding.

3.1 Architecture

Image encoder: With an input image xi ∈ RH×W , visual features are extracted by image encoder and further
projected to feature dimension:

vi = Pimg(Eimg(xi)) ∈ R(hf×wf )×d (1)
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woman in front
R: [235, 292, 709, 955]
Y: [253, 380, 711, 936]

guy with glasses white shirt
R: [505, 439, 719, 936]
Y: [552, 435, 709, 932]

black shirt on left
R: [1,   52, 132, 829]
Y: [0, 363, 132, 859]

Persons
second plane from camera 

can read canada
R: [4, 100, 673, 507]
Y: [0,   20, 673, 410]

 express plane
R: [55, 257, 865, 705]
Y: [54, 197, 862, 730]

Non-person

(a) Referring Bbox Detection

skier in blue clothes

left eye right eye

left hip

left wrist

right wrist

left ankle
right ankle

right hip

Person

neck

antelope

root of tail

left front paw

left elbow

left shoulder

right shoulder

right elbow

right front paw

hip

left back paw

left knee

Non-person

(b) Referring Keypoints Detection

right dude with 
red board

Persons

cake below candles

Non-person

(c) Referring Image Segmentation

Figure 2: Results of multi-tasks of visual grounding, including (a) Referring bbox detection, (b) referring keypoints
detection and (c) referring image segmentation. The red is represented as the ground truth and the yellow denotes the
prediction. We choose the person and non-person to display the performance of our model in different tasks.

[23, 152, 454, 984]

Q: Could you please tell me what target it points 
to in the bound box of [23, 152, 454, 984] ?

A: The bounding box of [292, 195, 614, 930] in this 
image points to the target of a man in a chef ' s 
apron standing behind a counter.

Q: what about the [612, 374, 747, 944]?

A: The bounding box of [612, 374, 747, 944] in this 
image points to the target of a man in a chef ' s 
apron standing in front of a stainless steel counter.

Q: What color is the pot in the bounding box of 
[468, 480, 625, 688] in this image?

A: It is a sliver stainless pot in the bounding box of
[[468, 480], [625, 688]].

[612, 374, 747, 944]

[468, 480, 625, 688]

(a) Referring caption based on the bbox

Polygon
[[506, 755], [476, 762], ..., [506,755]]

Q: Could you please tell me what target the 
keypoints of [[382, 882], [468, 823], [656, 847]] 
points to in this image?

A: [[382, 882], [468, 823], [656, 847]] points to the
target of an elephant being ridden by a man in 
orange pants.
 
Q: So, what does the area segmented by the 
polygon of [[506, 755], [476, 762], ..., [506,755]] 
describe in this image?

A: The polygon of  [[506, 755], [476, 762], ..., 
[506,755]] points to the target of a man in orange
pants riding an elephant.

Keypoints
[[382, 882], [468, 823], [656, 847]]

(b) Referring caption based on the keypoints and segmented
polygon

Figure 3: Results of referring region caption

where hf and wf are the output size of visual features, and d represents the feature dimension. Eimg can be any
common visual backbones and we use Vit-Large in our case. Then by using Pimg, which is composed of two linear
layers, visual features are projected to feature dimension.

Language encoder: With any processed input instruction sequence ti, text features are extracted by language encoder:

li = Etxt(ti) ∈ Rnt×d (2)

where nt is the number of input tokens and d represents the feature dimension. In our case, Bert [27] is used as the
language encoder.

Multi-modality module: This module follows an encoder-decoder architecture format. Given the input visual
features vi and text features li, we first generate fused multi-modality representations by combining the image and
text embeddings. These fused features serve as the keys and values in the cross-attention blocks in the decoder. By
conditioning on the partial sequence yi<j predicted so far, the decoder recursively makes predictions for the token at
position j, effectively generating aligned descriptions across modalities.

yi,j = Dmm(Emm(concat(vi, li)), yi<j) ∈ R1×d (3)
whereas, Dmm and Emm denote the decoder and the encoder of the multi-modality module, respectively.
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3.2 Activation of Coordinates

Leveraging its emergent capabilities, the vision-language model exhibits remarkable versatility in scenarios and tasks
related to orientation. Initially, the task of activating coordinates is transmuted into conventional object detection within
the framework of the vision-language model, devoid of referring expressions. Subsequently, extensive object detection
datasets, such as COCO 2017, are integrated into the activation procedure. The considerable quantity of data facilitates
the vision-language model in producing coordinates with enhanced robustness and precision.

Subsequently, to reconcile the divergence between semantic and linguistic coordinates, we establish a linguistic
representation of coordinates within the large language model: [x1, y1, x2, y2]. Here, x denotes horizontal coordinates,
while y signifies longitude. The pair (x1, y1) designates the upper-left point, and (x2, y2) corresponds to the lower-right
point. All coordinates adopt relative positions, normalization to 1000, and rounding.

We employ the captioning task to prompt our model to output coordinates that express orientation, owing to its proven
effectiveness in capturing information in knowledge-intensive scenarios [28]. During training, we utilize the captioning
format as follows:

find the <object> in the region of [x1, y1, x2, y2].

Due to the absence of referring expressions, more than one coordinate may correspond to multiple objects in the image.
The captioning form has more feasibility and practicability for the vision-language model to establish links between
orientation and linguistic coordinates robustly, without inferring in the prompt.

In the training of captioning, the proposed model is expected to output image captions containing object-related
coordinates and compute the loss. For activation of coordinates, we optimize using cross-entropy loss:

Lce = −
n∑

i=1

|y|∑
j=1

logPθ(yi,j |yi,<j , xi, ti) (4)

where n is the batch size, θ represents the model parameters, xi represents the input image, ti stands for the input
instruction, and yi,j denotes the output token at position j for the ith sample at each batch. We follow the training
strategy of BLIP2, which only trains the alignment layer and freezes the pre-trained visual model and large language
model. To enhance the quality of generation during inference, we employ various decoding techniques, such as beam
search.

3.3 Cycle Training

Obtaining the ability of localization in the vision-language model, we design the cycle training to align and enhance the
consistency between visual localization and referring expressions, as shown in Fig.1. Inspired by Cycle-GAN [29],
the cycle training is expected to learn alignment relationships between two domains X and Y given training samples
{xi}Ni=1 ∈ X and {yj}Mj=1 ∈ Y in the vision-language model, where X denotes the visual grounding features and Y
represents the linguistic referring expression.

The cycle training consists of two processes: referring expression generation (REG) represented as G : X → Y and
referring expression comprehension (REC) formulated as F : Y → X . The form of VQA is utilized to organize data,
wherein we pose questions involving visual coordinates, and exploit the answers with referring expressions obtained
from REG to construct new questions for REC. The visual localization from the answer of cycled REC is expected to
be the same as the original. Vice versa, we also perform the cycle from REC to REG.

With the above form of VQA, the visual localization and referring expression are cycled training in the vision-language
model. We argue that the learned alignment relationships should be cycle-consistent: for every visual localization
x belonging to domain X , the cycle-referring expression should possess the capability to restore x to its nearby
coordinates, indicated x → G(x) → F (G(x)) ≈ x. Similarly, for each referring expression y from domain Y , y should
be reduced to its original form, i.e. y → F (y) → G(F (y)) ≈ y. The cycle referring expression can be incentivized by
the consistency loss:

Lcyc(G,F ) = Lce(F (G(x)), x) + Lce(F (G(y)), y) (5)

Benefiting from the cycle training, more normal object detection datasets without referring expressions could be
expanded for the visual grounding training, such as COCO 2017. REG generates referring expressions from bounding
boxes in COCO 2017, and REC then inferences the bounding boxes from the generated referring expression. Thereby,
we can generate big data with visual localization and referring expressions to drive the large vision-language model to
achieve visual grounding.
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Table 1: Experimental settings of tasks, datasets and metrics. It is worth noting that COCO 2017 does not contain
referring expressions. Therefore, we do not utilize reference expressions when activating coordinates. While, in the
tasks of referring bbox detection (RBD), referring keypoints detection (RKD) and referring image segmentation (RIS),
the cycle training strategy generates the referring expressions for COCO 2017, enabling its participation in the training.

Tasks Datasets MetricsTraining Valiadation

Activation
of Coordinates COCO 2017

RBD RefCOCO/+/g RefCOCO/+/g Acc@0.5COCO 2017

RKD COCO 2017
COCO 2017

APHumanArt
AP-10K

RIS RefCOCO RefCOCO IoUCOCO 2017

RRCls COCO 2017 ACC / mAP

RRCap RefCOCOg METEOR
Visual Grenome CIDEr

Medical Foreign
Object Detection Object-CXR Acc@0.5

Disease
Localization

ChestXray14
(20-shot)

ChestXray14
Acc@0.5TBX11K

RSNA

3.4 Multi-Tasks Joint Learning

We integrate multiple visual grounding tasks for joint training. Firstly, two types of tasks are participated in the training,
namely referring expression comprehension (REC) and referring expression generation (REG). They are key factors of
the cycle training.

Among REC, various expression forms of visual coordinate are supported in our model, including bounding boxes,
keypoints and segmented polygons, with varying granularity from the region-level to the pixel-level. To leverage these
different modalities, we conducted joint training of REC by combining tasks of referring bounding box detection (RBD),
referring keypoints detection (RKD), and referring image segmentation (RIS). The coarse-grained RBD provides the
target position information to guide the more fine-grained RKD and RIS tasks. In turn, the keypoints can effectively
assist the polygons in deforming and outlining the boundaries of the targets. Vice versa, the pixel-level polygons also
contribute to the refinement of bounding box and keypoint coordinates.

While in REG, referring region classification (RRCls) aims to determine the fine-grained category of the located target,
and referring region caption (RRCap) focuses on generating a comprehensive description of the pointed target, including
its category, location, color, size, and relationship with the surroundings. Through the cycle training strategy, the
consistency between description and visual features is enhanced by the multi-tasks joint training.

3.5 Building VGcoco for Visual Grounding

Due to the inherent challenge of obtaining comprehensive location information, including bounding boxes, keypoints,
and segmented polygons, most visual grounding datasets struggle to offer location details at various levels of granularity.
Recognizing the demand for higher-quality referring expression data that encompasses diverse forms of visual location,
we developed a dataset called VGCoco. It contains about 240K images with grounding varying from region-level to
pixel-level and corresponding referring expressions.

We extend the open-source datasets, namely COCO-Pose [31], AP-10K [32] and a part of COCO 2017 [33]. With
the aid of the cycle training strategy, the reference expressions required by COCO-Pose are generated by our model.
Similarly, AP-10 only contains the keypoints of animal skeletons and bounding boxes, so the segmented polygons and
referring expressions are produced by our ViLaM. In addition to persons at COCO-Pose and animals at AP-10K, a part
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Table 2: Evaluation results of referring bbox detection on RefCOCO, RefCOCO+ and RefCOCOg datasets. The
best-performing multi-tasks models are highlighted in red, and the second-best in blue. Acc@0.5 is applied to evaluate
the performance of different methods.

RefCOCO RefCOCO+ RefCOCOg
Models Type Visual Encoder Language Model val testA testB val testA testB val-u test-u

SeqTR [22] Darknet-53 Bi-GRU 83.72 86.51 81.24 71.45 76.26 64.88 74.86 74.21
MDETR [19] EfficientNet-B3 RoBERTa-base 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89
VGTR [23]

Specialized
Models EfficientNet-B3 RoBERTa-base 79.30 82.16 74.38 64.40 70.85 55.84 66.83 67.28

OFA [25] ResNet-152 BART-Large 92.04 94.03 88.44 87.86 91.70 80.71 88.07 88.78
mPLUG-2 [26] ViT-L/14 BERT-Large 90.33 92.80 86.05 - - - 84.70 85.14
FERRET [30] ViT-L/14 Vicuna-7B 87.49 91.35 82.45 80.78 87.38 73.14 83.93 84.76
Ours

Generalist
Models

ViT-L/14 Vicuna-7B 92.99 95.90 90.39 90.96 94.78 86.93 90.05 89.51

of common objects at COCO 2017 are joined in the designed datasets. We use skeletonization and clustering methods
to obtain the keypoints of the target, and generate its reference expression through our model. To support and encourage
the community focused on visual grounding, we have released this dataset to the public. For further information about
VGcoco, please refer to the supplementary materials.

4 Experiments

4.1 Experimental Settings

The experimental settings are exhibited in the Table.1, including tasks, dataset and metrics. Our training dataset
primarily contains the COCO 2017 [33], RefCOCO [34], RefCOCO+ [34], and RefCOCOg [35, 36]. Besides, we use
the ChestXray14 [37] as the 20-shot training dataset to perform a case study of generalization of disease localization on
chest X-rays.

For validation, in addition to assessing the accuracy of our model on the respective closed-set dataset, we also evaluated
its generalizability in an open-set scenario, such as HumanArt [38] and AP-10K [32] in referring keypoints detection,
Visual Grenome [39] in referring region caption. Besides, the generalization is validated from different domains, such
as Object-CXR [40] in medical foreign object detection and RSNA Pneumonia dataset [41], TBX11K dataset [42] and
ChestXray14[37] in disease localization on Chest X-ray.

When assessing the performance of our model across multiple tasks, the Acc@0.5 evaluates the impact of bbox-related
tasks, OKS-based AP validates the performance of referring keypoints detection, and IoU measures the effectiveness of
referring image segmentation. Furthermore, in order to evaluate the capability of referring region caption, we select the
task of classification to output the category in the bbox with ACC metric and the task of the detailed caption to generate
the description with metrics of METEOR and CIDEr. More detailed experimental implementations are given in the
supplementary.

4.2 Accurate REC of Multi-Tasks

Qualitatively, Fig.2 exhibits the visual grounding results of multi-tasks, including referring bbox detection, referring
keypoints detection and referring image segmentation. For each task, we exhibit the performance of visual grounding in
person and non-person. The red denotes the ground truth and the yellow is the prediction.

For referring bbox detection, Fig.2(a) illustrates the superiority of our method. It accurately identifies the object and
understands its description words, such as position, color, and text on the object. Significantly, our model demonstrates
the ability to recognize objects that are overlapping and occluded. When overlapping targets of the same class are present,
our model reveals remarkable capabilities in understanding, discriminating, and locating them. This further corroborates
that the cycle training effectively enhances the consistency between visual location and referring expressions.

In the context of referring keypoints detection illustrated in Fig.2(b), our model leverages the power of large language
models to proficiently identify the corresponding keypoints by employing simple interactive questions, such as eyes, hips
and shoulders. In joint training of multi-tasks, the referring keypoints detection empowers the model to gain a deeper
understanding of the relationships among various targets. In addition to the referring expression of keypoints-level, we
extend the target-level referring expression through the cycle training strategy, such as changing "person" to "skier in
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Table 3: Evaluation results of referring keypoints detection on the close-set scenario with the COCO val2017 dataset,
and open-set generalization validation over the HumanArt and AP-10K datasets. The best-performing multi-tasks
models are highlighted in red, and the second-best in blue. Average precision is utilized to validate the performance of
keypoints detections.

Models Type COCO val HumanArt AP-10K

PCT [43] 80.20 63.70 14.60
ViTPose [44]

Specialized
Models 82.00 64.10 14.70

Unified-IO [45] 25.00 15.70 7.60
Painter [46] 70.20 12.40 15.30
InstructDiff [47] 71.20 51.40 15.90
Ours

Generalist
Models

76.10 54.62 44.67

Table 4: Evaluation results of referring image segmentation on RefCOCO dataset. The best-performing generalist
models are highlighted in red, and the second-best in blue. IoU is utilized to validate the performance of segmentation.

RefCOCO
Methods Type val testA testB

LAVT [48] 74.46 76.89 70.94
SeqTR [22] 71.70 73.31 69.82
PolyFormer [24]

Specialized
Models 74.82 76.64 71.06

Unified-IO [45] 46.42 46.06 48.05
InstructDiff [47] 61.74 65.20 60.17
LISA [49] 74.10 76.50 71.10
Ours

Generalist
Models

74.85 76.02 74.34

blue clothes". It enables the integration of target-level referring expressions during the joint training, thereby enhancing
the model’s comprehension capabilities.

Besides, our model expands the competencies of visual grounding to pixel-level shown in Fig.2(c). Polygon is adopted
to accurately delineate the objects denoted by referring expressions, thereby significantly enhancing the alignment
between the target shape and the referring expressions through the cycle training strategy.

Quantitatively, Table.12 presents a comparison of referring bbox detection results between our model and various types
of visual grounding models, including specialized models and multi-tasks models. It clearly demonstrates that our
method achieves SOTA performance across all test datasets. Notably, in the testB split of RefCOCO and RefCOCO+,
our model outperforms other methods by a significant margin. This highlights the superiority of our approach in
effectively handling the referring expression comprehension with bounding boxes, particularly for non-people objects.

Moreover, Table.3 indicates our model performs excellently in the referring keypoints detection, with the best perfor-
mance among multi-tasks models. Notably, our model demonstrates significantly stronger generalization performance
on the open-set datasets of HumanArt and AP-10K compared to other models. In fact, we surpass specialized models
by a significant margin in AP-10K, corroborating our main contribution of the cycle training strategy, which enhances
the capability of LLMs in understanding, discriminating, locating and generalization.

Additionally, Table.4 investigates the effectiveness of our model in referring image segmentation. Our performance
surpasses other methods, with the exception of being slightly inferior to LISA[49] on the testA split of RefCOCO
dataset, which employs ViT-H SAM [50] backbone as the vision backbone.

Table 5: Evaluation results of referring object classification on COCO 2017 val set. The best-performing generalist
models are highlighted in red, and the second-best in blue. ACC is utilized to validate the performance of classification.

Ours
LLaVA [10] Shikra[51] PVIT [52] keypoints bbox polygon

40.04 53.91 64.53 74.52 80.58 81.55
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Table 6: Evaluation results of the referring region caption on RefCOCOg and Visual Genome dataset. The best-
performing multi-tasks models are highlighted in red, and the second-best in blue. METEOR and CIDEr is utilized to
validate the performance of region captioning.

RefCOCOg Visual Genome
Methods METEOR CIDEr METEOR CIDEr

GRIT [53] 15.2 71.6 17.1 142.0
Kosmos-2 [54] 14.1 62.3 - -
Ours(keypoints) 26.5 146.6 17.0 130.1
Ours(bbox) 26.3 167.2 19.7 131.3
Ours(polygon) 26.6 165.6 18.8 105.9

4.3 Region Captioning

Referring Object Classification The performance of object classification was evaluated on COCO 2017 dataset using
classification accuracy. As shown in Table.5, the referring object classification task achieved excellent results using
different visual prompts,i.e., keypoints, bbox, and polygon. Compared to PVIT method, there was an approximately
15% improvement in the ACC values with the bbox prompt of our method. We observed a significant improvement
when using the polygon prompt, indicating an inherent relationship between the shape and the object.

Referring Object Caption We further evaluate the region-level captioning ability of our model on the RefCOCOg
and Visual Genome datasets. As shown in Table.6, the region-level caption task has also achieved excellent results on
the RefCOCOg dataset, with improvements of more than 10% and 90% in METEOR and CIDEr scores, respectively,
compared to the results achieved by the Kosmos-2 method. There is no obvious difference among the results obtained
by various visual prompts. More ablation experiments for the caption task are provided in the supplementary materials.

Can you help me recognize the foreign object?

This is a picture of a person's chest x-ray. Is there anything 
foreign in this x-ray that is not in the patient's body?

find out by looking at the x-ray image in the region of [129, 0, 746, 753]

Yes, I can help you recognize the foreign object in the x-ray image. It 
looks like there is a small piece of metal or plastic in the patient's 
chest that is not part of the patient's body. It could be a medical im-
plant or a piece of debris that was left over from a surgical procedure. 

Figure 4: The zero-shot results of visual question answering for foreign objects detection in chest X-ray images. The
presence of foreign objects is accurately detected by giving its coordinates. Particularly, the model can deduce that the
foreign object is metal or plastic by asking to recognize the foreign object.

4.4 Case Studies of Robust Generalization in the Medical Domain

We conduct several case studies in the medical domain to corroborate the robust generalization of our model, namely
medical foreign object detection and disease localization in chest X-rays.

Regarding medical foreign object detection, we employed the model trained on natural images directly, without
fine-tuning specifically on chest X-rays. Fig.4 illustrates the results of visual question and answering for medical
foreign object detection on the Object-CXR dataset [40]. The necklace around the neck and the clip in the middle
retain their inherent shape in X-rays, so our model accurately identifies the presence of these foreign objects outside
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the body, attributed to its robust and considerable generalization. Beyond the localization, our model can recognize
the detected foreign object upon inquiry, and deduce that the object is likely made of metal or plastic debris. More
specially, ViLaM also exhibits an ability to infer the potential origin or source of the debris, leveraging its extensive
language understanding capacity. Moreover, on the quantitative of classify the presence or absence of foreign objects,
ViLaM achieves an AUC of 93.1%, demonstrating a substantial feasibility and robust generalization.

Table 7: Evaluation results of disease localization task with 20-shot setting on four typical disease labels from the
chest X-ray datasets. Acc@0.5 is applied to evaluate methods.

Datasets TBX11K RSNA ChestXray14
Diseases Tuberculosis Pneumonia Atelectasis Pneumothorax

VGTR [23] 1.99 4.67 3.70 0
OFA [25] 20.40 14.67 3.90 12.49
Ours 30.84 28.00 11.11 20.83

To further examine the generalization and scalability of our model in the medical field, we conduct preliminary
experiments of disease localization on three typical chest X-ray datasets, namely, TBX11K[42], RSNA Pneumonia[41],
and ChestXray14[37]. The proposed model is fine-tuned with 20-shot labels for each disease of ChestXray14 datasets.
As depicted in Table. 7, ViLaM consistently outperforms other approaches in various disease categories. Particularly
noteworthy is the significant improvement of more than 15% in detecting Pneumonia and Pneumothorax compared to
alternative methods. This robust performance further validates the exceptional generalization and practicality capability
of our model. More experiment results are available in the supplement material.

4.5 Ablation Study

4.5.1 Cycle Training

Table 8: Ablation evaluation results of referring bbox detection on RefCOCO dataset with different modules. ✓denotes
the applied module. Acc@0.5 is utilized to evaluate the performance of various conditions.

Modules RefCOCO

Coordinates
Activation

Cycle
Training

Cycle
Augment. val testA testB

✓ 79.95 79.24 80.99
✓ ✓ 85.59 87.54 82.60
✓ ✓ ✓ 92.99 95.90 90.39

Firstly, we conduct ablation studies to verify the improvement of the cycle training strategy. The cycle training brings
about improvements through two key factors. First, it enhances the consistency between reference expressions and their
related locations. Second, additional datasets without referring expressions can participate in the training by generating
referring expressions through cycle training.

Consequently, we conduct ablation experiments to evaluate the impact brought by these two key factors of cycle training
in Table.8, where "Cycle Training" denotes the performance gain from enhancing consistency using cycle training,
and "Cycle Augment." represents the boost from additional datasets, which uses cycle training to generate referring
expressions. The referring bbox detection is employed as the task of validation using RefCOCO dataset. Table.8
exhibits that the improvement from the enhanced consistency achieves an Acc@0.5 of 5.64% in val, 8.3% in testA and
1.61%, and from the additional datasets is Acc@0.5 of 7.4% in val, 8.36% in testA and 7.79%.

Upon analysis, we observe that the testA split of RefCOCO exclusively comprises people, thereby leading to a more
pronounced improvement resulting from the enhanced consistency achieved through cycle training, as compared to
the testB split, which includes non-people. Besides, data augmentation exhibits a significant enhancement effect in
different splits.

4.5.2 Joint Training

Furthermore, we implement ablation experiments to validate the effect of multi-tasks joint training of visual grounding
in Table.9. The referring keypoints detection and referring image segmentation are selected as the tasks of validation.
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Table 9: Ablation evaluation results of multi-tasks joint training of visual grounding. ✓denotes the participated tasks.
RIS and RKD are exploited as the validation tasks, and IoU and AP are opted for the metrics, respectively.

Multi-Task Joint Training RIS(IoU) RKD(AP)

RBD RKD RIS RefCOCO COCO valval testA testB

✓ ✓ - - - 70.46
✓ ✓ 62.83 63.28 61.06 -
✓ ✓ ✓ 74.85 76.02 74.34 76.10

Since the bbox detection is utilized to activate the coordinates of LLMs, the task of referring bbox detection is included
in all ablation experiments.

The results of Table.9 showcases the joint learning of multi-tasks of visual grounding substantially boosts the perfor-
mance of individual tasks. In particular, the referring keypoints detection considerably improves the segmentation task.
We analyze that it is mainly because keypoints can well assist polygons in deforming and outlining the boundaries of
the targets.

5 Conclusion

We have developed a vision-language model, ViLaM, that enhances visual grounding capabilities and generalization
performance based on the foundations of a large language model. Despite being trained solely on the COCO 2017 and
RefCOCO/+/g datasets, we are able to generate a considerable amount of additional annotations through the cycle
training for multi-tasks, and exhibit competitive performance on multiple referring expression comprehension and
generation tasks. We further contribute a multi-task dataset, encompassing referring expression and related annotations
of bounding boxes, keypoints, and segmented polygons.
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Appendix

6 Experimental Details

6.1 Datasets

RefCOCO [34], RefCOCO+ [34], and RefCOCOg [35] are three visual grounding datasets that utilize images sourced
from MSCOCO [33]. In line with previous approaches, we adopt the train / validation / testA / testB split for both
RefCOCO and RefCOCO+ datasets, where testA and testB sets contain only people and only non-people respectively.
The split of RefCOCOg-umd [36] on RefCOCOg refers to the splits as the val-u, and test-u. Accuracy@0.5 (Acc@0.5)
is used to measure the performance of the visual grounding task, which is right if the IoU between the grounding-truth
box and the predicted bounding box is larger than 0.5.

To evaluate the model’s generalization capabilities in the medical field, we test its performance on public datasets for
disease identification across 6 modalities, namely endoscopy, photography, ultrasound, DR, CT, and MRI, to assess its
robustness and adaptability.

The Object-CXR [40] dataset is designed for the automatic detection of foreign objects in chest X-rays. It consists of
5,000 frontal chest X-ray images with foreign objects and 5,000 images without foreign objects. These DR images were
captured and collected from approximately 300 township hospitals in China. The ChestXray14 dataset [37] contains
112,120 chest X-ray images with labels for 14 common diseases. Among these, 984 images feature eight key findings
with hand-labelled bounding boxes. The RSNA Pneumonia dataset [41] is a binary classification chest X-ray dataset
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Table 10: Overview of 12 medical datasets across 6 modalities.
Medical
Datasets Modality Target Testset

Num

EndoVis18 [55, 56] Endoscopy Instrument 1200
LDPolypVideo [57] Polyp 1040

ISIC16 [58]
Photography

Skin
Lesions 379

HAM10000 [59] Skin
Lesions 2000

TN3K [60] Ultrasound
Thyroid
Nodule 614

BUID [61] Breast
Cancer 320

TBX11K [42] DR Tuberculosis 1000
RSNA Pneumonia [41] Pneumonia 1000

Luna16 [62] CT
Lung

Nodule 125

DeepLesion [63] Lesion 660

ADNI [64] MR Hippocampus 1700
LGG [65] Gliomas 680

Table 11: The training hyperparameters of our method.
Hyperparameters

Training Steps 70,000
Warmup Steps 1,000
Optimizer AdamW
Learning Rate 2e-5
Learning Rate Decay Cosine
Adam β (0.9, 0.98)
Weight Decay 0.05
Batch Size 12

consisting of 26,683 images. Each radiograph is categorized as either pneumonia or normal. The TBX11K dataset [42]
is a large collection comprising 11,000 chest X-ray images, each with corresponding bounding box annotations for
tuberculosis areas.

Moreover, we conduct extensive experiments to evaluate the generalization capability of our model on various medical
multi-modality datasets, as shown in Table.10. EndoVis18 [55] is a publicly available dataset for endoscopy image
analysis. We follow ISINet’s annotation and data set division of surgical instrument categories[56]. LDPolypVideo
[57] consists of 44 colonoscopy videos for polyp detection, with a total of 18,142 frames, and a resolution of 512×512
pixels. ISIC16 [58] is a collection of dermoscopic images of skin lesions, annotated by dermatologists and skin cancer
experts. It consists of 1,267 dermoscopic images of skin lesions, including melanomas and benign lesions, with a
resolution of 1024×768 pixels. HAM10000 [59] dataset is a large, publicly available dataset for skin lesion analysis,
specifically designed for melanoma detection and skin disease diagnosis. TN3K [60] dataset consists of 2D ultrasound
images of thyroid nodules with a resolution of 512×512 for thyroid nodules detection. BUID [61] dataset consists of
780 images with an average image size of 500×500 pixels from 600 female patients for breast cancer detection. Luna16
[62] dataset is a publicly available dataset for lung nodule analysis, specifically designed for lung nodule detection in
CT scans. DeepLesion [63] dataset is a large-scale, publicly available dataset for lesion detection and segmentation
in CT, with a resolution of 512x512 pixels. ADNI [64] is a large, publicly available dataset for Alzheimer’s disease
research from magnetic resonance imaging (MRI) scans, specifically designed for the development and evaluation
of algorithms for early detection and diagnosis of Alzheimer’s disease. LGG [65] (Low-Grade Glioma) dataset is a
publicly available dataset for brain tumor segmentation, specifically for detecting low-grade gliomas from MRI scans.
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Table 12: Evaluation results of visual grounding on RefCOCO, RefCOCO+ and RefCOCOg datasets. Acc@0.5 is
applied to evaluate the performance of two types of visual grounding methods, i.e., specialist and generalist model.

RefCOCO RefCOCO+ RefCOCOg
Models Venue Visual Encoder Language Model val testA testB val testA testB val-u test-u

Specialist:
CM-A-E [15] CVPR19 ResNet-101 LSTM 87.47 88.12 86.32 73.74 77.58 68.85 80.23 80.37
NMTREE[16] ICCV19 ResNet-101 Bi-LSTM 85.65 85.63 85.08 72.84 75.74 67.62 78.57 78.21

DGA [14] ICCV19 ResNet-101 Bi-LSTM 86.34 86.64 84.79 73.56 78.31 68.15 80.21 80.26
MCN [66] CVPR20 DarkNet-53 Bi-GRU 80.08 82.29 74.98 67.16 72.86 57.31 66.46 66.01

ReSC-Large [18] ECCV20 DarkNet-53 BERT-base 77.63 80.45 72.30 63.59 68.36 56.81 67.30 67.20
TransVG [21] ICCV21 ResNet-101 BERT-base 81.02 82.72 78.35 64.82 70.70 56.94 68.67 67.73
MDETR [19] ICCV21 EfficientNet-B3 RoBERTa-base 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89
SeqTR [22] ECCV22 DarkNet-53 Bi-GRU 83.72 86.51 81.24 71.45 76.26 64.88 74.86 74.21
VGTR [23] ICME22 EfficientNet-B3 RoBERTa-base 79.30 82.16 74.38 64.40 70.85 55.84 66.83 67.28

Generalist:
OFA [25] ICML22 ResNet-152 BART-Large 92.04 94.03 88.44 87.86 91.70 80.71 88.07 88.78

mPLUG-2 [26] ICML23 ViT-L14 BERT-Large 90.33 92.80 86.05 - - - 84.70 85.14
Kosmos-2 [54] ICLR24 ViT-L14 Magneto-1.3B - - - - - - 61.65 86.96

Ferret [67] ICLR24 ViT-L14 Vicuna-7B 87.49 91.35 82.45 80.78 87.38 73.14 83.93 84.76
VistaLLM [68] CVPR24 EVA ViT Vicuna-7B 88.10 91.50 83.00 82.90 89.80 74.80 83.60 84.40

RegionGPT [69] CVPR24 ViT-L14 Vicuna-7B - - - - - - 60.57 86.96
Shikra [51] arxiv 23.6 ViT-L14 Vicuna-13B 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16

Qwen-VL [70] arxiv 23.8 ViT-G QWen-7B 88.55 92.27 84.51 82.82 88.59 76.79 85.96 86.32
COMM [71] arxiv 23.10 CLIP+DINOv2 Vicuna-7B 91.73 94.06 88.85 87.21 91.74 81.39 87.32 88.33

CogVLM-17B [72] arxiv 23.11 EVA2-CLIP-E Vicuna-7B 92.76 94.75 88.99 88.68 92.91 83.39 89.75 90.79
MiniGPT-v2 [73] arxiv 23.10 EVA ViT LLaMA2-7B 88.06 91.29 84.30 79.58 85.52 73.32 84.19 84.31
NExT-Chat [74] arxiv 23.11 ViT-L14 Vicuna-7B 85.5 90.0 77.9 77.2 84.5 68.0 80.1 79.8

SPHINX-2K [75] arxiv 23.11 ViT-L14 LLaMA2 91.10 92.88 87.07 85.51 90.62 80.45 88.07 88.65
LLaVA-G [76] arxiv 23.12 Swin Tiny Vicuna-7B 89.16 - - 81.68 - 84.82 -
Ferret-v2 [77] arxiv 24.4 ViT-L14 Vicuna-7B 92.79 94.68 88.69 87.35 92.75 79.3 89.42 89.27

Ours ViT-L14 Vicuna-7B 92.99 95.90 90.39 90.96 94.78 86.93 90.05 89.51

We strictly follow the official train-test split for EndoVis18, LDPolypVideo, ISIC16, TN3k, Luna16 and ADNI. Due to
the absence of an official training/validation/test ratio or a released test set for HAM10000, BUID, TBX11K, RSNA
Pneumonia, DeepLesion and LGG, we randomly split each dataset into training/validation/test sets by 7:1:2 for the
visual grounding task.

6.2 Implementation Details

For our language-guided image tokenizer, we leverage the strengths of both BERT[78] and ViT as our text encoder
and visual encoder, respectively. We employ ViT-L14 as our visual encoder, which consists of 14 transformer encoder
layers and an FFN intermediate size of 4,096. The input image size is set to 224 × 224, with a patch size of 16×16.
The hidden dimensions of the ViT-L14 are 1,024, with 16 attention heads. Meanwhile, we utilize Vicuna-7B, a large
language model fine-tuned with instructions, as our text encoder. The Vicuna-7B model boasts 12 transformer layers,
with 768 hidden dimensions, 12 attention heads, and an FFN intermediate size of 3,072. The vocabulary size is 30,522,
and the maximum input sequence length is 512. To align the text encoder and visual encoder, we employ a Q-former
with 12 transformer layers. This Q-former has 768 hidden dimensions, 12 attention heads, and query, key, and value
dimensions of 256 each.

In terms of the training progress, the hyperparameters are presented in Table.11. We utilize the AdamW optimizer,
which is configured with a cosine annealing schedule as the learning policy. The initial learning rate is set to 2× 10−5,
and the AdamW optimizer is employed with hyperparameters β = (0.9, 0.98). Additionally, we set the weight decay to
0.05 and the dropout rate to 0.1. During the first 1,000 warm-up steps, the learning rate increases to 2 × 10−5, and
subsequently decays to 10−7. Unless otherwise specified, our training protocol consists of 70,000 steps, executed on
4× 8 NVIDIA V100 GPUs, which takes approximately two days to complete.

17



Running Title for Header

For the annotation, We normalize all coordinates to a uniform range of 0 to 1000, ensuring that all images have a
consistent coordinate system. For the polygon representation, we select the point closest to the origin as the starting
point and employ a 25-point labelling scheme to describe the polygon sequence in a clockwise direction. To demarcate
the beginning and end of the sequence, we utilize <BOS> and <EOS> tags, respectively. For the sampling rule for
polygons, we employ isometric sampling, wherein we initially calculate the perimeter of the polygon and subsequently
divide it into 25 equal segments to sample the polygon.

7 Additional Experiment Results

Table 13: Evaluation results of referring object classification on LVIS and COCO 2017 val set. ACC is utilized to
validate the performance of referring object classification.

LVIS COCO 17
Methods keypoints bbox polygon bbox

LLaVA [53] 50.10 50.30 - 40.04
Shikra[51] 57.82 67.71 - 53.91
Ferret [67] 67.94 79.42 69.77
Kosmos-2 [54] - 60.25 -
GPT4RoI [79] - 61.76 -
Ours 58.24 66.42 67.00 80.58

7.1 Referring Object Classification Task

The performance of object classification was evaluated on LVIS and COCO 2017 datasets using classification accuracy.
As shown in Table.13, the referring object classification task of our method achieved excellent results using different
visual prompts, i.e., keypoints, bbox, and polygon, narrowly surpassed only by the Ferret method on the LVIS dataset.
For the COCO 17 dataset, our method yield better performance than LLaVA and Shikra. The comparison results for
other methods on the LVIS and COCO 17 datasets in Table.13 are sourced from the Ferret [67]and PVIT [52] papers,
respectively.

7.2 VGCoco

In response to the growing need for high-quality referring expression data that captures diverse forms of visual
location, we introduce VGCoco, a comprehensive dataset designed to meet this demand. Comprising approximately
240,000 images, VGCoco features a range of grounding annotations, from region-level to pixel-level, accompanied by
corresponding referring expressions.

We build upon existing open-source datasets, including COCO-Pose [31], AP-10K [32], and a subset of COCO 2017
[33]. Notably, we leverage the cycle training strategy to generate the reference expressions required by COCO-Pose
using our model. COCO-Pose provides a wealth of the keypoints information on the human body with the skeleton for
pose estimation, as well as bounding boxes and segmentated polygons, but lacks referring expressions. Therefore, we
employ our model to generate the detailed referring expressions of persons in COCO-Pose. Besides, AP-10K is the
animal version of COCO-Pose, which consists of keypoints of animal skeletons. With the aid of SAM[80], we get the
masks of the target animal and transfer them to polygon by uniform sampling. Then, our model is exploited to produce
referring expressions for the target animal. Furthermore, we randomly selected a part of non-people and non-animal
targets in COCO 2017 to build the VGCoco dataset. In addition to using our model to generate key points, we use the
skeletonization method to obtain the key points of these targets.

7.3 Ablation Experiments

We implement ablation experiments to validate the effect of cycle training on the referring region caption task. As
shown in Table.15, regardless of whether keypoints, bounding boxes, or polygons are used as visual prompts, cycle
training consistently enhances captioning performance, with improvements of about 5% and 15% in METEOR and
CIDEr scores, respectively.
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Table 14: Evaluation results of referring bbox detection task on 12 typical medical datasets of 6 modalities. 20-shot
fine-tuning experiments were performed for non-radiology (Endoscopy, Photography and Ultrasound) and radiology
datasets (DR, CT and MRI). Acc@0.5 is applied to evaluate methods.

Datasets Endoscopy Photography Ultrasound DR CT MRI

EndoVis18 LDPolypVideo ISIC16 HAM10000 TN3K BUID TBX11K RSNA Luna16 DeepLesion ADNI LGG

VGTR [23] 3.87 7.30 64.12 63.20 12.70 31.46 1.99 4.67 0.00 0.36 2.46 3.67
OFA [25] 7.32 0.30 63.85 61.20 6.81 19.62 20.40 14.67 0.00 2.08 26.26 26.77
Ours 12.53 9.86 67.66 86.00 16.50 38.63 30.84 28.00 0.00 5.23 4.52 18.85

Table 15: Ablation experiment results of referring region caption on RefCOCOg. METEOR and CIDEr are utilized to
validate the performance of region captioning.

With cycle training Without cycle training
Visual Prompt METEOR CIDEr METEOR CIDEr

keyoints 26.5 164.6 19.4 149.3
bbox 26.3 167.2 19.1 152.7
polygon 26.6 165.5 19.8 151.2

Table 16: Evaluation results of referring bbox detection task with 20-shot setting on seven labels from the EndoVis18
dataset. Acc@0.5 is applied to evaluate methods. Seven surgical instruments contain Bipolar Forceps (BF), Prograsp
Forceps (PF), Large Needle Driver (LND), Monopolar Curved Scissors (MCS), Ultrasound Probe (UP), Suction
Instrument (SI) and Clip Applier (CA).

Label Mean BF PF LND MCS UP SI CA

VGTR [23] 3.87 12.29 0.00 0.00 14.78 0.00 0.00 0.00
OFA [25] 7.32 22.49 19.73 0.94 4.85 0.00 0.00 3.22
Ours 12.53 16.88 4.17 3.33 13.55 0.00 0.00 16.67

This is a picture of a person's 
chest x-ray. Where is the 
tuberculosis in the image?

It is in the center of the image, 
in front of the woman's hand 
on the right side of the image. 
in the region of [620, 149, 803, 
457]

R: [615, 156, 838, 455]
Y: [620, 149, 803, 457]

(a) VQA in chest X-ray for the tuberculosis localization in
the TBX11K dataset, without referring expressions.

This is a picture of a person's 
chest x-ray. Where is the 
pneumonia on the middle 
right side in the image?

[496, 306, 697, 616] in this 
chest x-ray image

R: [496, 302, 687, 596]
Y: [496, 306, 697, 616]

(b) VQA in chest X-ray for the pneumonia localization in
the RSNA Pneumonia dataset, with the orientation-related
referring expression.

Figure 5: The 20-shot results of disease localization in chest X-ray images. The red box denotes the grounding truth, and
the yellow box represents the prediction. (a) Tuberculosis detection in the TBX11K dataset. (b) Pneumonia detection in
the RSNA dataset.
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Figure 6: Typical medical datasets for referring bbox detection task, containing 6 modalities: (a) Endoscopy: EndoVis18,
LDPolypVideo; (b) DR: TBX11k, RSNA Pneumonia; (c) Photography: ISIC16, HAM10000; (d) CT: Luna16,
Deeplesion; (f) MRI: ADNI, LGG

7.4 Generalization Performance in the Medical Domain

To further examine the generalization and scalability of our model, we conduct preliminary experiments of the referring
bbox detection task on 12 typical datasets across 6 modalities in the medical domain. The proposed model is fine-tuned
with 20-shot labels for each disease of non-radiology and radiology datasets, respectively. We conduct comparative
experiments with VGTR and OFA(Large) as representatives of specialist and generalist models, respectively, to evaluate
their performance and versatility in the referring bbox detection task.

7.4.1 Non-radiology Images

Endoscopy We evaluated the generalization performance of instrument and disease localization on two typical
endoscopy datasets, namely, EndoVis18 and LDPolyVideo. As depicted in Table. 14, ViLaM consistently outperforms
other approaches. Table. 16 further demonstrates that the proposed method achieves superior performance in multiple
surgical instrument categories. However, there is still room for improvement in some categories, which may be attributed
to the issue of data imbalance.

Photography We evaluated the visual grounding performance of three methods on two datasets, ISIC16 and HAM10000,
and found that all three methods achieved an accuracy of over 60% on both datasets. This is likely due to the fact that
skin disease images and their corresponding features share similar characteristics.

Ultrasound We compared the visual grounding performance of three methods on two ultrasound datasets, TN3K and
BUID, and our method achieved the best results. Specifically, our method achieved an accuracy of 16.50% on the TN3K
validation set and 38.63% on the BUID breast cancer dataset.
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7.4.2 Radiology Images

Chest X-ray Fig.5 illustrates the application of VQA in chest X-ray analysis for the localization of tuberculosis and
pneumonia. This demonstrates that our generalist model effectively scales to the medical field, and it can adapt to
medical disease localization tasks, with or without the use of referring expressions. Quantitatively, our approach
demonstrated a significant advantage over VGTR and OFA, with an improvement of over 10% on the TBX11K and
RSNA Pneumonia datasets.

CT We compared the visual grounding performance of three methods on two CT datasets, Luna16 and DeepLesion,
and found that all three methods achieved nearly 0% accuracy in the 20-shot finetuning experiment on both datasets.
This is likely due to the fact that the features of CT images and general images are quite different, and the lesions, such
as lung nodules, are too small, as shown in Fig.6 (d).

MRI Two MRI datasets, the ADNI dataset and the LGG dataset, verify the visual grounding performance of three
methods. For Gliomas with larger contrast in the LGG dataset, we have better performance than VGTR. Our result of
hippocampus detection is poor due to the low contrast of ADNI, as illustrated in Fig.6 (f).

7.5 Qualitative Examples

This section provides more qualitative examples of multiple tasks, including referring bbox detection, and referring
image segmentation as illustrated in Fig.7 and Fig.8, respectively.

guy on the right
R: [606, 139, 794, 796]
Y: [611,   79, 794, 739]

left skier not center
R: [230,132,430,839]
Y: [226,  99,430,839]

middle person blue vest
R: [404,159,562,838]
Y: [405,  99,562,839]

person on left purple shirt
lady on left in blue
R: [0, 1, 503,   987]
Y: [0, 0, 507, 1000]

left shoulder person on right
R: [739, 2, 1000, 994]
Y: [739,  2, 1000, 946]

the little bear infront
R: [535, 333, 830, 775]
Y: [533, 321, 882, 777]

largest bear center
R: [64, 82, 602, 627]
Y: [34, 81, 602, 675]

plate on right
R: [466, 82, 1000, 868]
Y: [465, 76, 1000, 968]

first bowl on the left
R: [134, 408, 596, 961]
Y: [134, 400, 568, 982]

back bowl with cucumbers in it
R: [117, 66, 501, 458]
Y: [112, 65, 568, 468]

sandwich left
R: [365, 558, 571, 894]
Y: [365, 539, 581, 889]

uncooked pizza farthest on right
R: [828, 520, 1000, 889]
Y: [785, 511, 1000, 889]

Figure 7: More Results of referring bbox detection in RefCOCO. The images of the first row are from testA split
containing only people, while the second row images from testB consisting of only non-people. We display typical cases
of referring expressions, especially with common indications of orientation, size, color, attachment and markings. The
referring expressions of the object are presented in the text box with two coordinates, where R (red) denotes grounding
truth and Y (yellow) symbolizes the prediction. The red and yellow bounding boxes are also depicted in the image,
respectively.

8 Limitation and Future Work

Our model, leveraging cycle training and multi-task design based on the large language model, exhibited outstanding
performance and generalization abilities on a large-scale test set. Nevertheless, there is still room for improvement,
particularly in the referring image segmentation task, and the model’s generalizability demands further enhancement.
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guy on left person with hat right

hippy in the front with silver tie

second row third donut
bear on left left screen

Figure 8: More Results of referring image segmentation in RefCOCO. The images of the first row are from testA
split containing only people, while the second row images from testB consisting of only non-people. The referring
expressions of the object are presented in the text box. In the image, the red denotes grounding truth and the yellow
symbolizes the prediction.
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