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Abstract: 

Due to the popularity of the FaaS programming model, there is now a wide variety of commercial and 

open-source FaaS systems. Hence, for comparison of different FaaS systems and their configuration 

options, FaaS application developers rely on FaaS benchmarking frameworks. Existing frameworks, 

however, tend to evaluate only single isolated aspects, a more holistic application-centric benchmarking 

framework is still missing. 

In previous work, we proposed BeFaaS, an extensible application-centric benchmarking framework for 

FaaS environments that focuses on the evaluation of FaaS platforms through realistic and typical 

examples of FaaS applications. In this extended paper, we (i) enhance our benchmarking framework with 

additional features for distributed FaaS setups, (ii) design application benchmarks reflecting typical FaaS 

use cases, and (iii) use them to run extensive experiments with commercial cloud FaaS platforms (AWS 

Lambda, Azure Functions, Google Cloud Functions) and the tinyFaaS edge serverless platform. BeFaaS 

now includes four FaaS application-centric benchmarks, is extensible for additional workload profiles and 

platforms, and supports federated benchmark runs in which the benchmark application is distributed 

over multiple FaaS systems while collecting fine-grained measurement results for drill-down analysis. 

Our experiment results show that (i) network transmission is a major contributor to response latency for 

function chains, (ii) this effect is exacerbated in hybrid edge-cloud deployments, (iii) the trigger delay 

between a published event and the start of the triggered function ranges from about 100ms for AWS 

Lambda to 800ms for Google Cloud Functions, and (iv) Azure Functions shows the best cold start 

behavior for our workloads. 
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Abstract

Due to the popularity of the FaaS programming
model, there is now a wide variety of commercial
and open-source FaaS systems. Hence, for compar-
ison of different FaaS systems and their configura-
tion options, FaaS application developers rely on
FaaS benchmarking frameworks. Existing frame-
works, however, tend to evaluate only single iso-
lated aspects, a more holistic application-centric
benchmarking framework is still missing.

In previous work, we proposed BeFaaS, an exten-
sible application-centric benchmarking framework
for FaaS environments that focuses on the evalua-
tion of FaaS platforms through realistic and typical
examples of FaaS applications. In this extended
paper, we (i) enhance our benchmarking frame-
work with additional features for distributed FaaS
setups, (ii) design application benchmarks reflect-
ing typical FaaS use cases, and (iii) use them to
run extensive experiments with commercial cloud
FaaS platforms (AWS Lambda, Azure Functions,
Google Cloud Functions) and the tinyFaaS edge
serverless platform. BeFaaS now includes four
FaaS application-centric benchmarks, is extensible
for additional workload profiles and platforms, and
supports federated benchmark runs in which the
benchmark application is distributed over multiple
FaaS systems while collecting fine-grained measure-
ment results for drill-down analysis.

Our experiment results show that (i) network
transmission is a major contributor to response la-
tency for function chains, (ii) this effect is exacer-

∗This work extends [1].

bated in hybrid edge-cloud deployments, (iii) the
trigger delay between a published event and the
start of the triggered function ranges from about
100ms for AWS Lambda to 800ms for Google Cloud
Functions, and (iv) Azure Functions shows the best
cold start behavior for our workloads.

Keywords: FaaS; Benchmarking, Fog Comput-
ing, Cloud Computing, Infrastructure Automation,
Performance Testing

1 Introduction

All major cloud providers offer Function-as-a-
Service (FaaS) solutions where users only have to
take care of their source code (functions) while the
underlying infrastructure and environment are ab-
stracted away by the provider. FaaS applications
are composed of individual functions deployed on a
FaaS platform that handles, e.g., the execution and
automatic scaling. Developers do not have direct
control of the infrastructure and can only define
high-level parameters, such as the region in which
the function should run [2]. Due to this, FaaS plat-
forms are easy to use but comparing cloud plat-
form performance [3, 4] is challenging, as the cloud
variability is further compounded by an additional,
unknown infrastructure component.

Existing work on benchmarking of FaaS plat-
forms usually focuses on the execution of small,
isolated microbenchmarks that deploy and call a
single function, e.g., a matrix multiplication [5] or
a random number generator [6]. While microbench-
marks are useful for studying and comparing spe-
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cific characteristics, they can give only limited in-
sights into the platform behavior that will impact
real applications [7]. An application-centric bench-
mark, in contrast, mimics the behavior of a realistic
application in order to more realistically measure
platform performance. This allows developers to
better compare different service options, a strategy
also taken by the TPC benchmarks.1

In previous work, we proposed BeFaaS [1], an
extensible framework for executing application-
centric benchmarks against FaaS platforms that
included a realistic e-commerce benchmark as an
example, to address this gap. At the time, Be-
FaaS was the only FaaS benchmarking framework
with out-of-the-box support for federated cloud [8]
and edge-to-cloud deployments [9, 10], which al-
lowed us to evaluate complex application config-
urations distributed over platforms running on a
mixture of cloud, edge, and fog nodes. Beyond
this, BeFaaS focuses on ease-of-use and collects
fine-grained measurements which can be used for a
detailed post-experiment drill-down analysis, e.g.,
to identify cold starts or trace request chains in de-
tail.
In this extended version of our original paper [1],

we enhance the BeFaaS framework with asyn-
chronous cross-provider event pipelines, design and
implement three further FaaS benchmark applica-
tions, add support for benchmarking edge-based
FaaS platforms, and use BeFaaS to evaluate several
FaaS providers in realistic and typical FaaS appli-
cation setups. Specifically, we (i) compare FaaS
offerings using a typical microservice-based appli-
cation, (ii) evaluate hybrid edge-cloud FaaS setups,
(iii) analyze the event pipeline interaction within
and between providers, and (iv) study cold start
behavior of FaaS platforms.
In total, we make the following contributions:

• We derive requirements for an application-
centric FaaS benchmarking framework (Sec-
tion 3).

• We propose BeFaaS, an extensible framework
for the execution of application-centric FaaS
benchmarks and describe four example bench-
mark applications (Section 4).

• We present our proof-of-concept prototype
which is available as open source (Section 5).

1https://www.tpc.org

• We run a number of experiments and use the
results to compare FaaS offerings in several se-
tups (Section 6).

Our extended study evaluates four different typi-
cal FaaS use cases on AmazonWeb Services (AWS),
Google Cloud Platform (GCP), Microsoft Azure
(Azure), and tinyFaaS [11]. Our experiments re-
sult in the following findings:

1. For simple functions which work as glue code
between frontend and storage layer, network
transmission is a major contributor to over-
all response latency while the pure computing
time of functions is almost negligible.

2. Even with a cloud database backend, an edge-
only function deployment can outperform a
mixed edge-cloud deployment in response la-
tency as a result of transmission latency be-
tween functions.

3. While publishing events to event pipelines can
be done within 100ms for all studied providers,
the delay between a published event and the
start of the triggered function ranges between
about 100ms for AWS and 800ms for GCP.

4. Despite function execution duration being
the highest on Azure Functions, our experi-
ments find that the platform outperforms AWS
Lambda and Google Cloud Functions in cold
start behavior.

BeFaaS can help FaaS application developers
compare cloud offerings and find the best provider
for their specific use case by either deriving find-
ings from our benchmark applications, adjusting
the workload profiles to match their scenario, or
using the BeFaaS library in their specific FaaS ap-
plication for most accurate findings. Furthermore,
FaaS platform developers could use BeFaaS as part
of their CI/CD pipelines [12, 13] to detect perfor-
mance regressions prior to live testing.

2 Related Work

Existing research on benchmarking of FaaS envi-
ronments has so far mostly focused on microbench-
marks. Application-centric benchmarks that con-
sider the overall performance of multiple functions,
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the interaction with external services, and the ef-
fects of different application load profiles are mostly
still missing.
Microbenchmarks call single functions repeat-

edly and evaluate the resulting metrics. These
functions are often designed for a specific purpose,
e.g., to stress the CPU of the test system or to eval-
uate the test system with a disk-intensive workload.
Most performance evaluation studies are based on
microbenchmarks deployed on FaaS platforms of
different vendors [14, 6, 15, 16, 17, 18, 5, 19, 20].
Besides scaling of functions, cold start latency, con-
tainerization overheads, and instance lifetimes, the
studies also evaluate metrics such as CPU utiliza-
tion, network throughput, and costs. Almost all
experiments, however, focus on a single isolated as-
pects and do not create a holistic comparability of
platforms performance for FaaS application devel-
opers.
Several studies also consider more complex ap-

plications and focus on specific FaaS related
features, e.g., by deploying image processing
pipelines [21], analyzing chained functions, or de-
ploying real world applications on serverless plat-
forms [19]. While the authors of these studies also
use application-centric workloads for experiments,
their goal was not to propose a comprehensive
framework for the execution of application-centric
FaaS benchmarks. Since the publication of the
initial version of BeFaaS [1], recent research work
has focused on benchmarking function triggers [22],
studying tail latency [23], implications of used pro-
gramming languages [24], hardware influence fac-
tors [25], concurrent function executions [26], take
a closer look at the cost perspective [27], perfor-
mance fluctuations over time [28], and general FaaS
characteristics [29].
Further, there are several studies and frameworks

that share some of the features and goals of BeFaaS:
PanOpticon [30] uses a deployment, workload, and
metrics module to evaluate chained functions and
a simple chat server on two different FaaS vendors.
Although PanOpticon has similar goals as BeFaaS,
it neither supports detailed drill-down analysis nor
federated multi-provider setups. Van Eyk et al. [31]
develop a high-level architecture and state require-
ments for serverless benchmarking. Unfortunately
their project still appears to be in a vision state.
FaaSdom [32] shares our motivation for a full appli-
cation deployment. It supports multiple platforms,

several languages (e.g., Node.js, Python, Go), and
an automatic deployment of performance tests via a
web frontend. All applications, however, use HTTP
triggers and there are no function chains but sin-
gle function applications which focus on different
aspects such as CPU, latency, or IO performance
similar to microbenchmarks. SeBS [33] is a FaaS
benchmarking framework that highlights the cost
efficiency of executions and, similar to FaaSdom,
also only considers single-function applications.

Scheuner et al. [34, 35] propose fine-grained trac-
ing for serverless applications. In contrast to Be-
FaaS, which uses the default logging mechanism
of each individual provider to collect traces, they
use the platforms’ tracing frameworks. This might
lower the tracing overhead compared to writing
traces to log files, yet it increases the difficulty of
studying cross-provider traces, which BeFaaS sup-
ports out-of-the-box. Besides a library which sup-
ports multi-cloud setups [36], to the best of our
knowledge, BeFaaS is still the only FaaS bench-
marking framework for evaluating federated cross-
provider setups which can also be used to trace re-
quest in the edge to cloud continuum.

Beyond FaaS, there are a number of application-
centric benchmarking frameworks in other do-
mains, e.g., for database and storage systems [37,
38] or for virtual machines [39]. These can, how-
ever, not easily be adapted to FaaS platforms.

3 Requirements

While microbenchmarks are highly useful for
studying individual features of a system-under-
test (SUT), application-centric benchmarks sup-
port end-to-end comparison of different platforms
and configurations. Aside from standard bench-
marking requirements such as portability or fair-
ness [40, 41, 37, 42, 7], an application-centric FaaS
benchmarking framework needs to fulfill a number
of specific requirements which we describe in this
section.

R1 – Realistic Benchmark Application: The
performance of a FaaS platform depends on the ap-
plication that is deployed on it. For instance, an ap-
plication that frequently causes cold starts through
a growing request rate will be better off on AWS
Lambda while an application that frequently causes
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cold starts through short temporary load spikes will
be better off on Apache OpenWhisk due to their
different request queuing mechanisms [43]. This
means that the benchmark application should be
as close as possible to the real application for which
the analysis is made [7], in line with the findings of
Shahrad et al. [44]. A key requirement is, hence,
that a FaaS benchmark should mimic real applica-
tions as closely as possible.

R2 – Extensibility for New Workloads: FaaS
platforms are highly flexible and can be used for a
wide variety of applications, so the world of FaaS
applications is evolving rapidly. As such, any set of
“typical” FaaS applications – and thus the work-
load profile for a FaaS platform – can only be con-
sidered a snapshot in time. Likewise, the load pro-
files of existing FaaS applications, i.e., the amount
and type of requests that the application handles,
are likely to evolve over time. Therefore, we ar-
gue that a FaaS benchmarking framework should be
easily extensible in terms of adding new benchmark
applications and updating load profiles for existing
benchmarks.

R3 – Support for Modern Deployments:
FaaS is often used as the “glue” between cloud ser-
vices, web APIs, and legacy systems [2]. Thus, a
benchmarking framework must also consider these
links and support external services. Furthermore,
applications today are often distributed over cloud,
edge, and fog resources, possibly even to the LEO
edge [45, 46, 47]. Here, for example, edge servers
can keep sensitive functions on premises while non-
critical functions are hosted in a public cloud; sim-
ilar setups exist for edge and fog computing use
cases [48, 49, 50, 9]. As such, assuming a single-
cloud deployment is unrealistic for benchmarks
aiming to be as similar as possible to realistic appli-
cations. A benchmarking framework needs to sup-
port external services and federated setups in which
application functions are deployed on one or more
FaaS platforms distributed across cloud, edge, and
fog.

R4 – Extensibility for New Platforms: To-
day, all major cloud service providers offer FaaS
platforms and there is a growing range of open-
source FaaS systems, e.g., systems that specifically

target the edge [51, 11]. As interfaces are con-
stantly evolving and new platforms are being intro-
duced, a cross-platform benchmarking framework
needs to be extensible to support future FaaS plat-
forms.

R5 – Support for Drill-down Analysis: An
application-centric FaaS benchmark can help to
evaluate the suitability of different sets and con-
figurations of FaaS platforms for a specific applica-
tion. What it can usually not provide are expla-
nations for its finding, e.g., the different cold start
management behavior of AWS Lambda and Apache
OpenWhisk mentioned above [43]. To facilitate
root cause analysis and help evaluators explain the
patterns they see in the benchmark results, we ar-
gue that an application-centric FaaS benchmark-
ing framework should support drill-down analysis
by logging fine-grained measurement results includ-
ing typical metrics of microbenchmarks.

R6 – Minimum Required Configuration
Overhead: An application-centric FaaS bench-
marking framework should be easy to use and pro-
vide reproducible results. This includes configu-
ration, deployment, execution, as well as collection
and analysis of results, e.g., using infrastructure au-
tomation. Hence, a FaaS benchmarking framework
should be designed to require as little manual effort
as possible.

4 Design

In this section, we give an overview of the BeFaaS
design, starting with an overview of the BeFaaS
architecture and components (Section 4.1) before
describing the key features of BeFaaS (Sections 4.2
to 4.5).

4.1 Architecture and Components

In BeFaaS, executing functions of a benchmark ap-
plication is the workload that actually benchmarks
the FaaS platform, i.e., executing a function creates
stress on the SUT. Since functions do not “self-
start” executing, we need an additional load gener-
ator that invokes the FaaS functions of our bench-
mark application We show a high-level architecture
overview in Figure 1.
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FaaS Platform 1 FaaS Platform 2 FaaS Platform 3

Benchmark Application

Load 
Generator Results

Figure 1: High-level overview of the BeFaaS ar-
chitecture.
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- In-/Output

- Component

- Resource

Figure 2: The Deployment Compiler transforms
application code into individual deployment arti-
facts based on a deployment configuration. These
are then deployed and invoked by the Load Gener-
ator to retrieve measurement results. Finally, the
Benchmark Manager aggregates and reports fine-
grained results.

For a benchmark run, BeFaaS requires three in-
puts: (i) the source code of the FaaS functions
forming the benchmark application, (ii) a load pro-
file for the load generator, and (iii) a deployment
configuration that describes the environment con-
figuration for each function and FaaS platform (the
SUTs). We show the components of BeFaaS and
their interaction in Figure 2.

Application code and deployment configuration
are initially converted into deployment artifacts
by the Deployment Compiler. The Deployment
Compiler instruments and wraps each function’s
code with BeFaaS library calls and injects vendor-
specific instructions defined in deployment adapters
to enable request tracing and fine-grained metrics.
The resulting deployment artifacts are passed to
the Benchmark Manager.
The Benchmark Manager orchestrates the exper-

iment: First, it configures the SUT by deploying
each function based on the information in the re-
spective artifact. If there are external services, e.g.,
a database service, these can either be deployed by
the Benchmark Manager as well or linked to the
SUT using environment variables. In the second
step, the Benchmark Manager initializes the Load
Generator with the workload information described
in a load profile. Then, the benchmark run is trig-
gered and the Load Generator invokes the functions
of the benchmark application, which log every re-
quest in detail, including timestamps, origin func-
tion, and called functions (if applicable). Once the
benchmark run is completed the Benchmark Man-
ager collects function logs, aggregates them, and
destroys all provisioned resources.

4.2 Realistic Benchmarks

To provide a relevant and realistic application-
centric benchmark (R1), BeFaaS already comes
with four built-in benchmarks which mimic and
represent typical use cases for FaaS applications.
These include a microservice-based web application
to study request-response patterns, an IoT applica-
tion scenario to evaluate hybrid edge-cloud setups,
a smart factory application to measure event trig-
ger performance, and a microservice application to
study cold start behavior and elasticity capabili-
ties (details are further explained in Section 5).
Our application benchmarks are in line with the
empirical findings of Shahrad et al. [44] regard-
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Figure 3: A publisher function forwards incoming
events to the respective event pipeline to trigger
the called function.

ing typical FaaS applications: All are composed
of several functions that interact with each other
to form function chains, use synchronous HTTP
or asynchronous event triggers, and use external
services such as a database system for persistence.
The benchmark applications come with a default
load profile that covers all relevant aspects as well
as several further load profiles to emphasize se-
lected stress situations, e.g., to provoke more cold
starts. In combination, the benchmarks each rep-
resent complete FaaS applications: load balancing
at the provider endpoint(s), interconnected calls of
several functions, calls to external services such as
database systems, and multiple load profiles which,
e.g., provoke cold starts of functions.
The modular design of BeFaaS, however, also al-

lows us to easily add further benchmark applica-
tions and load profiles or to adapt existing ones
to the concrete needs of the developer (R2). For
adding a new benchmark, the respective applica-
tion only needs to use the BeFaaS library (de-
scribed in Section 5) for function calls and to have
unique function names.

4.3 Benchmark Portability and Fed-
erated FaaS Deployments

To support portability of benchmarks and feder-
ated deployments, BeFaaS relies on unique func-
tion names, individual deployment artifacts for ev-
ery function, and a single endpoint for every de-
ployed function (R3): With globally unique func-
tion names, the endpoints of the deployed functions
are already known during the compilation phase.
The Deployment Compiler maps these endpoints
to the canonical function names (defined in the ap-

plication) and compiles them into the source code.
Moreover, the compiler also injects endpoints to ex-
ternal services such as database systems using envi-
ronment variables which were set in the respective
setup script or defined manually. To enable asyn-
chronous function calls, the Deployment Compiler
creates and assigns a topic-based event pipeline on
the respective provider for each asynchronous func-
tion. To trigger this pipeline, requests are sent as
events to a publisher function, which is deployed
for every provider and forwards the request to the
respective event topic (see Figure 3). In total, this
decouples the ability of a function to call another
function or a platform service from its deployment
location and enables BeFaaS to support arbitrar-
ily complex deployments: it is indeed possible to
run every function on a different FaaS platform –
as configured by the benchmarker.

Each FaaS platform offers a different interface for
life-cycle and configuration management of func-
tions. As the smallest common interface, BeFaaS
requires that each platform provides API-based ac-
cess to (i) deploying functions, (ii) retrieving log
entries from the standard logging interface, and
(iii) removing functions. The Deployment Com-
piler wraps this functionality using an adapter
mechanism and selects the appropriate instructions
for the target platform specified in the deployment
configuration. Additional FaaS platforms that ful-
fill this minimal interface can easily be added by
implementing a corresponding adapter (R4).

4.4 Detailed Request Tracing

To enable a detailed drill-down analysis of exper-
iment results (R5), the Deployment Compiler in-
jects and wraps code that collects detailed measure-
ments during the benchmark run: The compiler
adds timestamping to determine start, end, and la-
tency of calls to functions and external services.

Besides these timestamps, the compiler also in-
jects code that generates context IDs and pair IDs
to assign individual calls to their respective context
later on. Here, a context ID is generated once for
each function chain (with the first function call)
and propagated to every subsequent call to other
functions. To link the individual calls of a function
chain, the compiler injects source code to create
pair IDs of randomly generated keys that link caller
and callee. Thus, it is possible to trace every single
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request through the benchmark application and to
generate call trees for every context and function
chain during post-experiment analysis.

Finally, to independently and reliably detect cold
starts, the Deployment Compiler also injects code
that evaluates a local environment variable on the
executor at the provider side. If this variable is not
present, the function runs on a new executor (cold
start), the variable is created, filled with a ran-
domly generated key, and the cold start is logged.

All data that enable fine-grained results (times-
tamps, context IDs, pair IDs, and executor keys)
are recorded on the console using the standard log-
ging interface of the respective FaaS vendor. In
initial experiments with AWS, GCP, and Azure, we
verified that the cost of logging is at most in the
microsecond range.

4.5 Automated Experiment Orches-
tration

The BeFaaS framework requires only the applica-
tion code, a deployment configuration, and a load
profile to automatically perform the benchmark ex-
periment (R6). First, all business logic, dependen-
cies, and BeFaaS instrumentation logic are bundled
into a single deployment artifact by the Deploy-
ment Compiler. Next, the Benchmark Manager or-
chestrates the experiment and provides a simple in-
terface for starting the benchmark run, monitoring
its process, and collecting fine-grained results for
further analysis.

5 Implementation

Our open-source prototype implementation of Be-
FaaS2 includes (i) the BeFaaS library, (ii) four
deployment adapters, (iii) the Deployment Com-
piler, (iv) the Benchmark Manager, (v) four real-
istic benchmark applications, and (vi) several load
profiles for the benchmark applications.

The BeFaaS library is written in JavaScript and
handles calls to other functions depending on their
canonical name, generates tracing IDs, and takes
timestamps. BeFaaS deployment adapters are im-
plemented using Terraform3 commands. Currently,

2https://github.com/Be-FaaS
3https://www.terraform.io/

BeFaaS thus supports three major cloud offer-
ings (AWS Lambda, Google Cloud Functions, and
Azure Functions) as well as the open-source system
tinyFaaS [11], which supports the deployment of
functions on private infrastructure, including edge
or fog nodes. The Deployment Compiler is a shell
script that uses several tools to build the deploy-
ment adapters for the respective platforms, parses
and injects information from the Deployment Con-
figuration, and generates the deployment artifacts
from the application code. The Benchmark Man-
ager uses Terraform to create the infrastructure
based on these artifacts, collect the logs, and later
remove provisioned resources. The implemented
benchmark applications are written in JavaScript
and include calls to external services such as a Re-
dis4 instance. The Load Generator uses Artillery5

to call the benchmark application. It either exe-
cutes a realistic default load profile that stresses all
relevant aspects of the application or specific addi-
tional load profiles that emphasize stress situations,
e.g., to provoke more cold starts. New load profiles
can easily be added by specifying new Artillery load
descriptions (YAML6 configuration files).

5.1 Benchmark 1: Web Shop (Mi-
croservices)

Our e-commerce benchmark implements a web
shop as a FaaS application derived from Google’s
microservice demo application.7 Our correspond-
ing benchmark implementation follows a typical
request-response invocation style, comprises 17
functions, and uses a Redis instance as an exter-
nal service to persist state (see Figure 4). Besides
functions that provide recommendations and ad-
vertising, customers can log-in, set their preferred
currency, view products, fill a virtual shopping cart,
check out orders, and finally observe order ship-
ping. Each task is implemented in a separate func-
tion and all requests arrive at a single function, the
frontend, which takes the customer calls and routes
them to the respective backend functions. There
are blocking synchronous calls to other functions

4https://redis.io/
5https://artillery.io/
6https://yaml.org/
7https://github.com/GoogleCloudPlatform/

microservices-demo
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Frontend

AdsCheckoutRecommen-
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E-Mail
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Cart (4)
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- Synchronous Call

- Asynchronous Call

Figure 4: The e-commerce application imple-
ments a web shop in 17 functions. The Fron-
tend serves as a single entry point and an external
database is used to store state. We group some
functions to increase legibility.

as well as asynchronous call blocks that idle until
all called functions return.
The default load profile simulates four different

customer workflows and constant traffic for 15 min-
utes. Our e-commerce benchmark is particularly
well suited for comparing request-response behav-
ior and study request details of different cloud
providers but can also be used to explore federated
cloud deployments, e.g., for scenarios in which the
application is running on multiple cloud platforms.

5.2 Benchmark 2: Smart City (Hy-
brid Edge-Cloud)

Although several IoT applications and use cases al-
ready exist in research (e.g., [52, 53, 54, 55, 49]),
none of them could directly be used or adapted as a
FaaS application. Thus, we designed our smart city
benchmark application around typical IoT patterns
and implemented a use case based on a smart traf-
fic control scenario inspired by the InTraSafEd5G
system [56, 57].
The benchmark application uses a mix of syn-

chronous and asynchronous function calls and im-

Traffic Sensor 
Filter

Weather Sensor 
Filter

Object 
Recognition

Load 
Generator

Movement Plan Emergency 
Detection

Road Condition

Traffic Statistics

Light Phase 
Calculation (2)

DB DB

DB

Name (x)

- Single 
Function

Name

- Group of x 
Functions

Name (x)Name (x)

- Synchronous Call

- Asynchronous Call

Figure 5: The IoT application implements a smart
traffic light scenario in nine functions. The Load
Generator emulates sensor data and sends them to
three different entry points.

plements an IoT use case with a smart traffic light
which adapts its light phase based on traffic sen-
sors, a camera, and weather inputs (see Figure 5).
The functions initially filter incoming data streams
and perform object recognition on camera footage
to create a movement plan, detect ambulance/e-
mergency cars, and maintain a traffic statistic. The
regular light phase is then determined based on this
movement plan, road conditions, and the current
light phase. Emergency services can override the
regular phase at any time by raising an emergency
event that stops all other traffic.

The load profile for this application emulates sen-
sor data and injects emergency events. The traf-
fic sensor sends an update every two seconds to
the Traffic Sensor Filter, the Object Recognition
processes one image every two seconds, and the
weather is updated every twenty seconds. Fur-
thermore, the Load Generator also injects an emer-
gency event every two minutes which lasts five sec-
onds each. This default load profile runs for 15
minutes. As this use case will in practice typically
have a very predictable and stable load profile, we
did not implement alternative load profiles – bench-
mark users can, however, easily add them if needed.

The smart city benchmark is particularly well
suited for comparing different deployments across
cloud, edge, and fog.
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Figure 6: The Industry 4.0 application imple-
ments a smart factory in seven functions. An Or-
der Supplies function serves as single entry point for
different asynchronous event pipelines which can be
distributed among several providers.

5.3 Benchmark 3: Smart Factory
(Event Trigger)

Our smart factory benchmark application imple-
ments asynchronous event-based pipelines. In our
example use case, users order personalized couches
consisting of panels and cushions (see Figure 6).
First, an order function determines the number and
individual sizes of panels and cushions which are
then each ordered by sending an event to the re-
spective order function. Both order functions, in
turn, transform their order into a production event
which is sent to the production function which
mimics the production of the panel or cushion. Af-
ter production, the functions emit an accounting
event which is consumed by the billing function.
Once all panels and cushions are produced, and all
accounting events are processed, the payment func-
tion finally issues an invoice.

The default load profile orders a new couch ev-
ery five seconds for 15 minutes. Each order, in turn,
implies 8 to 18 order events, depending on the or-
dered couch model. This smart factory benchmark
application is particularly well suited to study event
pipelines, but can also be used to analyze the inter-
play between different FaaS providers. For exam-
ple, when collaborating with suppliers (panels and

Video (2)

Load 
Generator

DB

Name (x)

- Single 
Function

Name

- Group of x 
Functions

Name (x)Name (x)

- Synchronous Call

- Asynchronous Call

Metadata (2)Registration (2) Authentication

DB DB DB

Figure 7: The streaming service comprises seven
functions and a workload that triggers cold starts.
After an Internet outage, there is a high load on
functions dealing with authentication and meta-
data.

cushions in our case), they may also be deployed
on another provider, thus, requiring cross-cloud in-
teroperability.

5.4 Benchmark 4: Streaming Ser-
vice (Cold Start Behavior)

An often stated advantage of FaaS applications is
their elastic scalability. Thus, we include a stream-
ing service benchmark application which triggers
cold starts and can require automatic scaling capa-
bilities. The Load Generator here mimics video
streaming devices which register users, request
video files, update meta information such as view-
ing progress, and handle backend authentication
(see Figure 7). In case of a larger Internet outage,
these devices are offline, but it is possible to con-
tinue watching already downloaded movies while
the corresponding metadata is updated. As soon
as network connectivity is restored and the stream-
ing devices are back online, all clients reconnect and
concurrently invoke functions, which triggers cold
starts.

The default load profile for this benchmark is
split into four phases. First, an initial set of users
and streaming devices is registered. Once all ini-
tial data has been read, the normal load phase
starts for 5 minutes in which 500 request flows
add new videos, request videos, and update meta-
data. Third, the failure is simulated by pausing
requests for 20 minutes. Finally, the benchmark
triggers cold starts by suddenly sending 1,500 re-
quest flows distributed over another 5 minutes.

10



Our streaming application benchmark is particu-
larly well suited for comparing the cold start be-
havior and automatic scaling capabilities of differ-
ent FaaS providers.

6 Evaluation

Our evaluation is split into two parts: First, we
present the results of four experiments in which we
use BeFaaS to stress different FaaS platforms (Sec-
tions 6.1 to 6.4). Second, in Section 6.5, we discuss
to which degree BeFaaS fulfills our requirements
from Section 3.

In all experiments, we deploy the Load Gen-
erator on a (vastly over-provisioned) virtual ma-
chine (2 vCPUs and 4 GB RAM) and let it exe-
cute the default load profile of the respective bench-
mark application against the SUT deployed in ei-
ther eu-west-1 for AWS, westeurope for Azure, or
europe-west1 for GCP. As runtime for the bench-
mark applications, we run node.js 18 on all SUT
options and use 256MB of memory per func-
tion (SKU Y1 on Azure). Moreover, the Redis
database system used by the SUTs also runs on
an over-provisioned virtual machine (2 vCPUs and
4 GB RAM; ta3.medium at AWS, Standard B2S
in Azure, and e2-medium at GCP) at the respec-
tive provider site. This ensures that the database
instance and Load Generator will not be a bottle-
neck during the experiments [7]. All experiment
results reported here are from the period June to
July 2023. We explicitly decided not to compare to
the results from our original paper [1] as we made a
number of smaller changes across the BeFaaS code-
base and also used the opportunity to update all
libraries and platform SDKs used. As a result, we
reran all experiments from scratch since we could
not rule out effects from our benchmarking tool.

6.1 Experiment 1: Using the web
shop application benchmark
to compare major cloud FaaS
providers

In our first experiment, we deploy BeFaaS in sin-
gle cloud provider setups in which all functions of
the web shop application are deployed on a single
provider (namely AWS, Azure, and GCP) and use

Provider 
(AWS, Azure, or GCP)

Web Shop Application 
(Microservices)

DB

Load 
Generator

Figure 8: As part of the FaaS application, the
database instance is deployed in the same region
and on the same provider as the rest of the web
shop.

the default load profile to compare them (see Fig-
ure 8). During each experiment, the Load Genera-
tor executes 18, 000 workflows, which each consist
of 1 to 9 requests, over a time span of 15 minutes.

Figure 9 shows the execution duration of four se-
lected functions with varying degree of complexity
which are called from the frontend function (vi-
sualized as box plots; boxes represent quartiles,
whiskers show the minimum and maximum values
without outliers beyond 1.5 times the interquartile
range). For the four functions examined in more
detail, the overall picture is similar for all three
providers: As expected, simpler functions that only
read or write a single value have a lower execu-
tion duration than more complex ones such as the
getCart() or checkout() function. In our experi-
ment, Azure provided the slowest environment for
this single run while GCP showed a higher variance
for the getProduct() and checkout() function.

In a further fine-grained analysis, we investigate
the distribution of computing, network transmis-
sion, and database query latency for a function
sequence putting an item into the shopping cart.
This includes synchronous and blocking calls to two
functions and several database operations.

For this evaluation, we consider the (i) computa-
tion part as function execution duration without
the duration of outgoing network calls, (ii) net-
work latency as the duration of outgoing calls to
other function without the execution duration of
the called function itself, and (iii) query latency as
the duration of calls to the external database. The
detailed timestamp mechanisms of BeFaaS allow us
to easily separate these times.

The results of this analysis are shown in Fig-
ure 10. In this specific but typical interaction in
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Figure 9: A detailed analysis of four functions
called from the frontend shows that AWS provides
the best performance and that the execution dura-
tion has the highest variance on GCP.
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Figure 10: A drill-down analysis of a function se-
quence reveals that the network transmission time
is the most relevant driver of execution time on all
providers.
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Figure 11: Functions related to the traffic light
are deployed on a Raspberry Pi at the edge location
while others run on public cloud providers.

which FaaS functions are the glue code to interact
with external services, it is noticeable that for all
providers time is mostly spent on network trans-
mission followed by the database round-trip time
while the actual computing time is below 1ms for
all providers. Furthermore, database access takes
longer for GCP than for the other providers.

6.2 Experiment 2: Evaluating hy-
brid edge-cloud setups using the
smart city application

In this experiment, we compare an edge-focused
and a hybrid edge-cloud setup. For the mixed
setup, we split the smart city application into
a cloud part, which is deployed on either AWS,
Azure, or GCP, and an edge part, which is deployed
on a local Raspberry Pi in Berlin, Germany run-
ning the tinyFaaS platform (see Figure 11). For the
edge-focused setup, we deploy all functions of the
smart factory application on tinyFaaS and only use
a cloud-located database at the respective provider.
During the experiment, the Load Generator sim-
ulates the smart city scenario for 15 minutes by
triggering the traffic sensor and object recognition
every two seconds and the weather sensor every 10
seconds for both evaluated setups.

Similar to our first experiment, we analyze the
computing, network transmission, and database
round trip times for both setups and all providers
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Figure 12: The cloud database increases the
database duration for the edge setup for all
providers. In total, however, both compute and
network duration are reduced, and the total execu-
tion duration is lower for all edge setups.

(see Figure 12). For all providers, the default
workload finishes sightly faster in the edge-focused
setup. Here, the network transmission times are re-
duced as all functions run on the same edge device,
the compute duration is shorter compared to the
mixed cloud-edge setup, but the database round
trip time increases as every database access trig-
gers a cloud request. This last addition, however,
does not outweigh the other two improvements for
the given default load.

6.3 Experiment 3: Analyzing the
event pipeline interplay within
and across FaaS providers.

This experiment intends to investigate both how
event pipelines perform within a provider, but also
how well the interplay of cross-provider pipelines
works. Thus, we split the event-based smart fac-
tory application into three parts: 1. Couch (running
supplies, billing, and payment), 2. Panel (running
panel order and production), and 3. Cushion (run-
ning cushion order and production). Each part is
deployed on AWS, Azure, or GCP (see Figure 13).
The load for this experiment consists of 180 couch
orders over a time span of 15min, which triggers
thousands of function invocations.
First, we analyze the time it takes to publish an

event at the respective provider endpoint (see Fig-
ure 14). Again, we measure the outgoing call from
the calling function and subtract the execution du-
ration from the execution time of the called pub-

CouchLoad 
Generator

AWS
Panel

Azure

Cushion

GCP

Figure 13: Each provider hosts a part of the smart
factory application.
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Figure 14: The network latency to publish an
event usually ranges between 25ms and 100ms.

lisher function running on the destination provider.
Depending on the origin and destination provider
this usually takes between 25ms and 100ms, ex-
cept for the Azure-AWS pair, which may take up to
200ms. Moreover, there are outlier values of more
than one second in five pairs.

Second, we also investigate the total execution
time of the publisher function running on the des-
tination provider and the trigger delay between the
start of the publisher function and the start of the
triggered function (see Figure 15). Here, Azure
and AWS show fast publishing functions which usu-
ally finish within 100ms while for GCP it usu-
ally takes between 500ms and 1000ms to run the
publisher function. For the trigger delay, AWS
triggers the respective function fastest with about
100ms, followed by Azure with 75% of values below
250ms, and GCP with 75% of values above 500ms.
Furthermore, it is noticeable that outliers in the
other direction are possible, i.e., an event some-
times triggers the function execution immediately
within 10ms for Azure and GCP.
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Figure 15: The execution time of the publisher
function ranges from about 10ms on Azure to about
800ms on GCP. The trigger delay between pub-
lisher start and function start varies from 100ms
on AWS to about 800ms on GCP.

6.4 Experiment 4: Studying the
cold start behavior of different
providers.

In our last experiment, we study the cold start be-
havior of all cloud providers and deploy the stream-
ing service application once on each provider (see
Figure 17). Running the default workload for this
use case, we execute 500 requests within the first
5min load phase, which is then followed by a 20min
break, and finally execute 1,500 requests for an-
other 5 minutes.
Figure 16 shows the function execution time of

all calls of the streaming application in the first
30 seconds of the Load Peak phase. In this phase,
AWS and GCP both log cold starts and show larger
latency values in the first seconds of the experi-
ment. While for AWS the values do not stabilize
for the first 30 seconds, the GCP execution times
are stable after 10 seconds. Azure does not report
any cold starts and shows stable execution dura-
tions. However, we possibly also missed the respec-
tive log entry due to the log framework limitations:
The Azure logging framework only writes 250 log
lines per second at maximum, further lines are dis-
carded. Thus, only 9,143 out of about 15,000 values
across the whole experiment time are available for
this analysis.

6.5 Discussion of Requirements

In Section 3, we had identified six requirements
for application-centric FaaS benchmarking frame-

works. We now discuss to which degree BeFaaS
fulfills these requirements.

BeFaaS already comes with four standard bench-
mark applications that cover many representa-
tive FaaS application scenarios, namely standard
web applications, a hybrid edge-cloud scenario,
an event-based smart factory application, and a
microservice-based streaming service. Moreover,
BeFaaS can be easily extended by implementing
more FaaS application scenarios using the BeFaaS
library and further workload profiles. We, hence,
believe that BeFaaS fulfills the requirements R1
(Realistic Benchmark Application) and R2 (Exten-
sibility for New Workloads).

In BeFaaS, benchmark users can define arbitrar-
ily complex deployment mappings of functions to
target FaaS platforms including federated multi-
cloud setups or mixed cloud/edge/fog deployments.
In fact, each function could run on a different
platform. To achieve this, BeFaaS transforms the
benchmark application into deployment artifacts
fitted to the target platform. Adding another tar-
get platform is also straightforward and only re-
quires the benchmark user to implement an adapter
component for the respective FaaS platform or to
copy and adapt an existing adapter component.
Based on this, we argue that BeFaaS fulfills the re-
quirements R3 (Support for Modern Deployments)
and R4 (Extensibility for New Platforms).

At runtime, BeFaaS collects fine-grained mea-
surements and traces individual requests similar
to what Dapper [58] does for microservice applica-
tions. This offers the necessary information basis
for drill-down analysis. Beyond this, BeFaaS also
offers visualization capabilities for select standard
measurements to further support analysis needs.
Overall, we hence conclude that BeFaaS addresses
requirement R5 (Support for Drill-down Analysis).
Finally, we believe that BeFaaS is easy to use due

to its experiment automation features and requires
only very few configuration files (requirement R6 –
Minimum Required Configuration Overhead). Nev-
ertheless, this is a highly subjective matter that
depends on the respective individual.

7 Discussion

BeFaaS is a powerful application-centric FaaS
benchmarking framework. There are, however, also

14



0 5 10 15 20 25 30

Time (sec)

0

25

50

75

100

125

150

175

200

La
te

nc
y 

(m
s)

Provider = AWS

0 5 10 15 20 25 30

Time (sec)

Provider = Azure

0 5 10 15 20 25 30

Time (sec)

Provider = GCP

function
authDevice
addVideo
getUserMeta
getVideos
updateUserMeta

Figure 16: In the first 30 seconds of the load peak phase, AWS and GCP show larger latencies due to
cold starts. Azure is presumably not affected by cold starts for this workload.
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Figure 17: Similar to experiment 1, we deploy
BeFaaS in single cloud provider setups in which all
functions of the steaming service application are
deployed on a single provider (namely AWS, Azure,
and GCP).

some points to consider and limits when using Be-
FaaS.

Tracing Overhead BeFaaS supports a detailed
tracing of requests by injecting a small token in
each call. On the one hand, this supports the clear
mapping of different calls to function chains, yet
on the other hand, it also causes an additional net-
work overhead. This token, however, is of con-
stant size (depending on the length of the respec-
tive function name), so the overhead can be easily
determined and considered in results analysis. Fur-
thermore, this will only matter if the goal of the
benchmark is to find the optimal deployment for
an existing application which is then instrumented
to be used as a BeFaaS benchmark. For any of
our standard benchmarks, it simply increases the
benchmark workload stress slightly.

Measuring External Services Currently, Be-
FaaS handles external services and components as
a black-box and only measures end-to-end latency
of such service calls. In future work, however, we
plan to implement a small BeFaaS sidecar proxy
that can be deployed on external service instances
to forward calls to the respective service and to in-
ject the BeFaaS tracing token there as well.

Fairness with External Dependencies The
included benchmark uses an external database sys-
tem to persist state but further benchmarks and
use cases may also require external services such as
pub/sub message brokers or web APIs. Although
the modular design of BeFaaS supports this, there
are also some pitfalls in terms of fairness and com-
parability: In our experiments, we deployed the
database instance with the same provider and in
the same region as our functions to minimize la-
tency between functions and database. In this
setup, a function calling the external service and
awaiting the response will not idle for a long time
and the execution environment at the provider side
will soon be available again for the next request.
On the other hand, a function calling an exter-
nal service in another region with larger latency
will block the environment and (may) cause a cold
start for the next incoming request. Thus, when
using external services, these should be located
and deployed with similar latency for all alterna-
tives. Moreover, as cloud environments at least ap-
pear to be infinitely scalable, it has to be assured
that the external service does not become a per-
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formance bottleneck during the experiment. Oth-
erwise, the benchmark would benchmark the com-
pute resources of the external service instead of the
performance of the FaaS platforms.

Provider-specific Features Competing FaaS
vendors are constantly developing new and exclu-
sive features that simplify development and deploy-
ment for customers. These features, however, can
also affect the portability of the BeFaaS framework
if a (future) benchmark uses exclusive features that
are not available at all vendors. Thus, we strongly
recommend not to use exclusive features of individ-
ual providers when developing new BeFaaS bench-
marks. BeFaaS can, however, help to determine the
impact of new features within a provider or across
multiple providers by adjusting and configuring the
respective deployment adapter.

Time Synchronization The drill-down analysis
features of BeFaaS require approximately synchro-
nized clocks. Although this will usually be pro-
vided by the provider with sufficient accuracy, a
user should assert this before running experiments
as this will affect the reliability of tracing insights.
Nevertheless, such detailed insights may often not
be needed and the tracing of BeFaaS also offers a
mechanism to partially mitigate this: If the call fol-
lows a request-response pattern, BeFaaS measures
the total round trip time at the calling function and
knows the computing duration at the called func-
tion. Thus, it is possible to approximate the net-
work transmission latency under the assumptions
that both directions took comparably long. This
is even possible for event-based calls that do not
return a message to the sender, as calling functions
submit the trigger events to the respective pub-
lisher function which runs on the same provider as
the called function. In our experience, though, this
is neither a problem in the cloud nor for self-hosted
FaaS platforms, where the user has direct control
over clock synchronization.

8 Conclusion

FaaS platforms are a popular cloud compute
paradigm and have also been proposed for edge
environments. For comparing and choosing differ-
ent FaaS platforms in terms of performance, de-

velopers usually rely on benchmarking. Existing
FaaS benchmarks, however, tend to fall into the
microbenchmark category – an application-centric
FaaS benchmarking framework is still missing.

In this paper, we presented BeFaaS, an exten-
sible framework for executing application-centric
benchmarks against FaaS platforms which comes
with four realistic FaaS benchmark applications.
BeFaaS is the first benchmarking framework with
out-of-the-box support for federated cloud setups
which allows us to also evaluate complex configu-
rations in which an application is distributed over
multiple FaaS platforms running on a mixture of
cloud, edge, and fog nodes. Beyond this, BeFaaS is
focused on ease-of-use through automation and col-
lects fine-grained measurements which can be used
for a detailed post-experiment drill-down analysis,
e.g., to identify cold starts or other request-level
effects; it can easily be extended with additional
benchmarks or adapters for further FaaS platforms.

With BeFaaS, we provide developers with the
necessary tool to explore, compare, and analyze
FaaS platforms for their suitability for applica-
tion scenarios. We also offer researchers the abil-
ity to study the performance effects of different
FaaS deployment options across cloud, edge, and
fog through experiments. Finally, FaaS platform
developers can use BeFaaS in their CI/CD pipeline
to compare their own platform to previous versions
of it as well as to their competitors.
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López. Benchmarking parallelism in faas plat-
forms. Future Generation Computer Systems,
124:268–284, 2021.

[27] Tobias Pfandzelter, Sören Henning, Trever
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