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Abstract	

This	 paper	 explores	 uncertainty	 quantification	 (UQ)	 as	 an	 indicator	 of	 the	
trustworthiness	 of	 automated	 deep-learning	 (DL)	 tools	 in	 the	 context	 of	 white	
matter	lesion	(WML)	segmentation	from	magnetic	resonance	imaging	(MRI)	scans	
of	multiple	sclerosis	(MS)	patients.	Our	study	focuses	on	two	principal	aspects	of	
uncertainty	in	structured	output	segmentation	tasks.	Firstly,	we	postulate	that	a	
good	uncertainty	measure	should	indicate	predictions	likely	to	be	incorrect	with	
high	 uncertainty	 values.	 Second,	 we	 investigate	 the	 merit	 of	 quantifying	
uncertainty	 at	 different	 anatomical	 scales	 (voxel,	 lesion,	 or	 patient).	 We	
hypothesize	that	uncertainty	at	each	scale	is	related	to	specific	types	of	errors.	Our	
study	 aims	 to	 confirm	 this	 relationship	 by	 conducting	 separate	analyses	 for	 in-
domain	and	out-of-domain	settings.	Our	primary	methodological	contributions	are	
(i)	 the	development	of	novel	measures	 for	quantifying	uncertainty	at	 lesion	and	
patient	 scales,	 derived	 from	 structural	 prediction	 discrepancies,	 and	 (ii)	 the	
extension	 of	 an	 error	 retention	 curve	 analysis	 framework	 to	 facilitate	 the	
evaluation	of	UQ	performance	at	both	lesion	and	patient	scales.	The	results	from	a	
multi-centric	 MRI	 dataset	 of	 334	 patients	 demonstrate	 that	 our	 proposed	
measures	more	effectively	capture	model	errors	at	 the	lesion	and	patient	scales	
compared	to	measures	that	average	voxel-scale	uncertainty	values.	We	provide	the	
UQ	 protocols	 code	 at	 https://github.com/Medical-Image-Analysis-
Laboratory/MS_WML_uncs.	
	
Keywords:	 Multiple	sclerosis,	white	matter	lesion	segmentation,	magnetic	
resonance	imaging,	deep	learning,	uncertainty	quantification,	instance-wise	
uncertainty,	patient-wise	uncertainty	
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1. Introduction	

Multiple	sclerosis	(MS)	is	a	chronic,	progressive	autoimmune	disorder	of	
the	 central	 nervous	 system	 affecting	 approximately	 2.8	 million	 people	
worldwide	 (Walton	 et	 al.,	 2020).	 The	 primary	 characteristics	 of	 MS	 are	
demyelination,	axonal	damage,	and	inflammation	due	to	the	breakdown	of	
the	 blood-brain	 barrier	 (Reich	 et	 al.,	 2018;	 Thompson	 et	 al.,	 2018).	 The	
diagnostic	criteria	for	MS	include	both	neurological	symptoms	observation	
and	 magnetic	 resonance	 imaging	 (MRI)	 examination	 for	 the	 presence	 of	
lesions	disseminated	in	time	and	space	(Thompson	et	al.,	2018;	Hemond	and	
Bakshi,	 2018;	 Wattjes	 et	 al.,	 2021).	 White	 matter	 lesions	 (WMLs)	 are	 a	
hallmark	of	MS,	indicating	the	regions	of	inflammation	in	the	brain,	typically	
assessed	 through	FLAIR	 or	T1-weighted	modalities	 (Gramsch	 et	 al.,	 2015;	
Hemond	 and	 Bakshi,	 2018).	 On	 FLAIR	 scans,	 WMLs	 are	 visible	 as	
hyperintense	regions	with	periventricular	area,	brainstem,	and	spinal	cord	
being	 prevalent	 lesion	 sites.	 The	 size,	 shape,	 and	 count	 of	 WMLs	 vary	
markedly	 across	 patients.	While	 crucial	 for	 diagnosis	 and	monitoring,	 the	
manual	 annotation	 of	 new	 and	 enlarged	 lesions	 is	 a	 time-consuming	 and	
skill-demanding	process.	

The	task	of	automated	WML	segmentation	has	propelled	the	development	
of	novel	image	processing	techniques	for	many	years	(Kaur	et	al.,	2020;	Lladó	
et	al.,	2012).	More	recently,	algorithms	have	been	boosted	by	the	success	of	
deep	learning	(DL)	in	computer	vision.	DL	methods	quickly	became	the	state-
of-the-art	 for	WML	 segmentation,	 providing	 better	 performance	 at	 faster	
processing	times	(Zeng	et	al.,	2020;	Spagnolo	et	al.,	2023).	Various	DL	models	
were	explored	in	application	to	WML	segmentation,	with	U-Net	architecture	
being	the	most	common	model	(Spagnolo	et	al.,	2023).	

The	potential	clinical	application	of	DL	methods	raises	safety	concerns.	
These	 include	 the	 black-box	 nature	 of	 such	 approaches	 and	 their	
susceptibility	to	variations	in	test	data,	known	as	domain	shifts	(Reyes	et	al.,	
2020).	 Additionally,	 such	 common	 factors	 as	 limited	 data	 availability,	
imperfect	 annotations,	 and	 ground-truth	 ambiguity	 due	 to	 inter-rater	
variability	 further	 challenge	 the	 reliability	 of	 DL	 model	 predictions,	
potentially	hindering	their	seamless	integration	into	clinical	practice	(Begoli	
et	al.,	2019).	The	field	of	uncertainty	quantification	(UQ)	offers	a	possibility	
to	tackle	this	issue	by	estimating	the	”degree	of	untrustworthiness”	of	model	



 

 

predictions	(Begoli	et	al.,	2019),	focusing	on	two	main	uncertainty	sources	
(Gawlikowski	et	al.,	2023):	
i)	data	noise,	captured	by	data	uncertainty,	and	ii)	training	data	scarcity	or	
domain	 shifts,	 captured	 by	model	 uncertainty.	 Talking	 about	 high-risk	 AI	
applications,	the	information	about	the	trustworthiness	of	model	predictions	
is	important	not	only	from	an	engineering	perspective,	but	also	for	the	end-
users,	e.g.	clinicians	(Graziani	et	al,	2022).	

Consequently,	UQ	is	gaining	popularity	within	the	field	of	medical	image	
analysis	not	only	as	a	way	to	assess	prediction	trustworthiness.	The	usage	of	
uncertainty	 extends	 beyond	 quality	 control	 to	 accommodate	 such	
applications	 as	 improving	 prediction	 quality,	 domain	 adaptation,	 active	
learning,	 and	 other	 applications	 (Gawlikowski	 et	 al.,	 2023;	 Faghani	 et	 al.,	
2023;	Zou	et	al.,	2023;	Lambert	et	al.,	2022c).	In	medical	image	segmentation	
tasks,	uncertainty	is	usually	assessed	by	treating	semantic	segmentation	as	
pixel/	 voxel	 classification,	 computing	 uncertainty	 for	 each	 pixel/voxel	
prediction.	 Given	 the	 structure	 of	 a	 segmentation	model	 output,	 it	 is	 also	
possible	 to	 explore	 uncertainty	 values	 associated	 with	 some	 region	 of	
prediction.	Several	works	explore	uncertainty	associated	with	a	segmented	
region	of	interest,	e.g.	structure-/	lesion-wise	(Roy	et	al.,	2019;	Wang	et	al.,	
2019;	Rottmann	et	al.,	2019;	Nair	et	al.,	2020;	Lambert	et	al.,	2022b),	or	for	a	
whole	prediction	on	a	patient	(Jungo	et	al.,	2020;	Whitbread	and	Jenkinson,	
2022).	

	
1.1. Related	works	on	uncertainty	quantification	in	multiple	sclerosis	

Prior	research	on	UQ	for	WML	segmentation	explores	different	methods,	
including	 single-network	 deterministic	 methods	 (McKinley	 et	 al.,	 2020;	
Lambert	 et	 al.,	 2022a),	Monte	 Carlo	Dropout	 (MCDP)	 (Gal	&	Ghahramani,	
2015;	 Nair	 et	 al.,	 2020),	 batch	 ensembles	 (Lambert	 et	 al.,	 2022a).	 Our	
previous	study	 investigated	 the	deep	ensembles	and	compared	 them	with	
the	MCDP	method,	 showing	 the	 advantage	 of	 the	 first	 one	 (Malinin	 et	 al.,	
2022).	Utility	of	a	specific	UQ	method	depends	on	a	particular	application	and	
available	resources	(Gawlikowski	et	al.,	2023;	Faghani	et	al.,	2023;	Zou	et	al.,	
2023;	Lambert	et	al.,	2022c).	Deep	ensembles	have	been	subsequently	shown	
to	have	a	higher	quality	of	uncertainty	estimates	compared	to	other	methods,	
while	 being	 computationally	 less	 effective	 compared	 to	 heteroscedastic	
models	or	batch	ensembles	(Gawlikowski	et	al.,	2023;	Faghani	et	al.,	2023).	



 

 

The	 deep	 ensemble	 is	 a	 deterministic	 method	 as	 the	 inference	 of	 each	
member	is,	thus,	the	reliability	of	this	UQ	method	can	be	studied	without	a	
concern	about	the	repeatability	of	the	results.	

Using	ensemble	methods	or	 sampling	UQ	methods,	based	on	obtaining	
samples	from	the	posterior	distribution,	allows	for	the	exploration	of	various	
uncertainty	 measures.	 	 Several	 measures	 of	 voxel-scale	 uncertainty	 have	
been	explored,	including	variance,	entropy,	mutual	information	(Nair	et	al.,	
2020;	 Lambert	 et	 al.,	 2022b).	 Our	 previous	 study	 expanded	 this	 list	 by	
exploring	a	 common	negated	 confidence	 and	more	 advanced	measures	of	
model	uncertainty,	such	as	reverse	mutual	 information	and	expected	pair-
wise	 Kullback–Leibler	 divergence	 (Malinin	 et	 al.,	 2022,	Molchanova	 et	 al.,	
2023).	 Several	 studies	 with	 different	 UQ	 methods	 and	 measures	 used,	
observe	that	voxel	scale	uncertainty	tends	to	be	the	highest	at	the	borders	of	
WMLs,	especially	big	ones	(McKinley	et	al.,	2020;	Nair	et	al.,	2020;	Lambert	
et	 al.,	 2022b;	 Molchanova	 et	 al.,	 2023;	 Malinin	 et	 al.,	 2022),	 resembling	
partial-volume	 (Fartaria	 et	 al.,	 2018,	 2019)	 or	 inter-rater	 disagreement	
maps.		

In	 MS,	 some	 works	 have	 explored	 uncertainty	 associated	 with	 a	
segmented	region	of	interest,	i.e.	at	the	lesion	scale	(Nair	et	al.,	2020;	Lambert	
et	 al.,	 2022b;	Molchanova	et	 al.,	 2023).	The	 pioneering	 study	 (Nair	 	 et	 al.,	
2020)	suggested	computing	a	 log-sum	of	voxel-scale	uncertainties	across	a	
predicted	 lesion	 region,	 using	 different	 voxel-scale	 uncertainty	 maps.		
Analogously,	mean	average	voxel	uncertainty	values	across	the	lesion	region	
were	explored	(Lambert	et	al.,	2022a).	Lambert	et	al.,	2022a	has	shown	the	
advantages	 of	 structural	 UQ	 based	 on	 graph	 neural	 networks	 over	 voxel	
aggregation	 methods.	 Our	 prior	 research	 (Molchanova	 et	 al.,	 2023)	
demonstrated	 that	 lesion-scale	 uncertainty,	 computed	 through	
disagreement	in	structural	predictions,	is	more	effective	at	identifying	false-
positive	lesions	than	aggregating	voxel-scale	uncertainties.	In	the	context	of	
MS	lesion	segmentation	the	patient-scale	uncertainty	is	less	explored.	

Besides	 these	 various	 proposed	 measures,	 prior	 works	 proposed	
different		ways	to	compare	uncertainty	measures.	Ideally,	a	high	uncertainty	
score	should	highlight	the	predictions	that	are	the	most	likely	to	be	wrong.	
Hence,	we	expect	a	good	quality	uncertainty	measure	to	reflect	the	increased	
likelihood	 of	 an	 erroneous	 prediction	 and	 thus	 correlate	 with	 model	
mistakes.	For	classification	tasks,	a	calibration	of	uncertainty	is	measured	to	



 

 

assess	its	quality,	similarly	the	uncertainty	quality	can	be	compared	at	the	
voxel	 scale.	 At	 the	 lesion-/	 patient-	 scales	 the	 calibration	metrics	 are	 not	
explicitly	defined.	When	investigating	lesion-scale	measures,	Nair		et	al.,	2020	
looked	 into	 uncertainty-based	 prediction	 filtering	 as	 a	means	 to	 correlate	
uncertainty	 and	 false	 positive	 errors,	 and	 Lambert	 et	 al.,	 2022a	 used	
accuracy-confidence	curves.	Our	previous	work	redefines	an	error	retention	
curve	analysis	to	quantify	the	relationship	between	uncertainty	and	lesion	
detection	errors	(Molchanova	et	al.,	2023).	Prior	to	that	the	error	retention	
curve	analysis	has	been	explored	to	compare	classification	or	segmentation	
pixel-/	 voxel-scale	 uncertainty	 measures	 for	 various	 tasks	 as	 a	 way	 to	
quantify	its	relationship	with	an	error	/	quality	metric	of	a	choice	(Malinin,	
2019;	Malinin	et	al.,	2022;	Mehta	et	al.,	2022).	This	is	a	necessary	analysis	for	
various	practical	clinical	implementations,	including	a	signaling	uncertainty-
based	 system	 to	 warn	 medical	 specialists	 about	 the	 potential	 errors	 in	
automatic	 predictions,	 automatic	 uncertainty-based	 filtering	 of	 errors,	 or	
active	learning	where	the	hardest,	i.e.	most	likely	erroneous	examples	need	
to	be	selected.	

Various	studies	on	UQ	for	WML	segmentation	use	similar	U-net-like	deep	
learning	models	(Ronneberger	et	al.,	2015;	Çiçek	et	al.,	2016;	Nair	et	al.,	2020;	
Malinin	et	al.,	2022;	Lambert	et	al.,	2022a),	which	have	been	widely	explored	
in	application	to	the	MS	lesion	segmentation	task	(Kaur	et	al.,	2020;	Zeng	et	
al.,	 2020;	 La	 Rosa	 et	 al.,	 2020;	 Spagnolo	 et	 al.,	 2023).	 While	 there	 is	 an	
agreement	about	the	DL	model,	studies	were	conducted	on	various	datasets,	
predominantly	private	ones.	There	has	not	been	a	public	benchmark	dataset	
for	 the	 UQ	methods	 evaluation	 within	 the	 context	 of	WML	 segmentation	
before	the	Shifts	2.0	Challenge	(Malinin	et	al.,	2022).	

	
1.2. Our	contributions	

This	 study	 extends	 our	 previous	 work	 (Molchanova	 et	 al.,	 2023)	 and	
introduces	 advancements	 in	 uncertainty	 quantification	 (UQ)	 methods,	
focusing	on	MRI	 segmentation	across	voxel,	 lesion,	 and	patient	 scales.	We	
introduce	a	novel	patient-scale	uncertainty	measure	that	leverages	ensemble	
member	disagreement	to	more	accurately	identify	segmentation	errors.	To	
compare	 patient-scale	 measures,	 we	 redefine	 the	 error	 retention	 curves	
analysis,	enabling	a	better	understanding	of	their	performance	in	detecting	
poor	segmentation	quality.	Our	quantitative	evaluation	is	conducted	in	both	



 

 

in-domain	 and	 out-of-domain	 settings	 to	mirror	 the	diversity	 of	MRI	 data	
coming	from	different	studies,	medical	centers,	and	scanners.	Additionally,	
this	 research	 provides	 a	 comparison	 of	 uncertainty	 measures	 across	
different	 anatomical	 scales,	 highlighting	 their	 capacity	 to	 detect	 voxel	
misclassification,	 lesion	 false	 discovery,	 and	 general	 segmentation	
inaccuracies,	considering	clinically-relevant	applications.	The	proposed	UQ	
framework	 is	 specifically	 tailored	 for	 white	 matter	 lesion	 (WML)	
segmentation	on	FLAIR	MRI	scans.	

Our	contributions	include:	
● Proposing	the	error	retention	curves	analysis	for	instance-detection	

tasks,	 enabling	 an	 evaluation	 of	 lesion-scale	 UQ	 methods	 in	 their	
ability	to	capture	lesion	false	detection	errors.	

● Proposing	a	patient-scale	uncertainty	measure,	a	novel	approach	for	
WML	 segmentation,	 enhancing	 the	 understanding	 of	 overall	
segmentation	failure.	

● Proposing	 the	 extension	 of	 the	 error	 retention	 curves	 analysis	 for	
patient-scale	to	compare	the	ability	of	different	uncertainty	measures	
to	capture	overall	segmentation	quality.	

	
	
2. Materials	and	methods	

2.1. Data	
The	study	setup	was	designed	as	a	part	of	the	Shifts	Challenge	(Malinin	et	

al.,	2022)	specifically	for	the	exploration	of	uncertainty	quantification	across	
shifted	 domains.	 For	 the	 setup	 creation,	 we	 used	 three	 publicly	 available	
datasets	 and	 a	 single	 private	 one.	 Despite	 the	 availability	 of	 various	
modalities	 in	 the	 Shifts	 data,	 this	 study	 uses	 only	 FLAIR	 (Gramsch	 et	 al.,	
2015)	scans	and	their	manual	WML	annotations.	Regardless	of	the	medical	
center,	 each	 FLAIR	 scan	 underwent	 a	 common	 pre-processing	 pipeline	
comprising	 denoising	 (Coupé	 et	 al.,	 2008),	 skull	 stripping	 (Isensee	 et	 al.,	
2019),	bias	field	correction	(Tustison	et	al.,	2010),	and	interpolation	to	1mm	
iso-voxel	 space.	 Manual	 WML	 annotations	 formed	 by	 max-voting	 or	 by	
consensus	 between	 several	 experts	 depending	 on	 the	 study	were	 used	 as	
ground	truth.	



 

 

Data	is	separated	into	in-	and	out-of-domain	subsets	where	the	domain	shift	is	
provided	by	 the	difference	 in	 study,	medical	 center,	 scanner	model,	 annotators,	
and	MS	stages.	In-domain	data	comprises	the	training	(Train,	33	scans),	validation	
(Val,	7	 scans),	 and	 in-testing	dataset	 (Testin,	 33	 scans)	 sets.	Out-of-domain	data	
includes	the	99	pure	testing	scans	(Testout,	99	scans).	Particular	data	split	into	in-	
and	out-of-domain	sets	was	designed	to	maximize	the	drop	of	model	performance	
in	lesion	segmentation	in	the	out-of-domain	setting	(Malinin	et	al.,	2022).		To	prove	
the	 replicability	 of	 our	 work,	 we	 extend	 this	 existing	 public	 benchmark	 by	
including	 a	 large	 in-house	 dataset	 (Testprivate,	 162	 scans)	 collected	 in	 the	 Basel	
University	Hospital,	Switzerland	(Granziera,	C.,	2018).	The	dataset	was	processed	
similarly	to	the	Shifts	data.	While	Testprivate	should	be	treated	as	an	out-of-domain,	
the	lesion	profiles	overlap	with	both	Testin	and	Testout	(see	Figure	1).	

Information	about	data	sources,	metadata,	and	data	splits	is	provided	in	Table	
1.	Figure	1	illustrates	some	differences	between	domains	brought	by	variations	in	
MS	stage	distributions	and	scanner	changes,	affecting	the	lesion	characterization	
and	intensity	features,	respectively.	Other	factors,	such	as	changes	in	study	design,	
lesion	annotators,	scanner	operators,	may	also	contribute	to	the	domain	shift.	

	

Figure	1:	Illustration	of	the	domain	shift	between	the	in-domain	datasets	(Train,	Val,	Testin)	
and	the	out-of-domain	dataset	(Testout	and	Testprivate)	brought	by	the	differences	in	the	MS	
stages	and	medical	centers.	On	the	left,	the	plot	of	the	total	lesion	volume	in	milliliters	versus	
the	number	of	lesions	per	scan	for	in-domain	(orange)	and	out-of-domain	(black	and	gray)	
sets	reveals	the	difference	in	the	lesion	load	(as	a	proxy	to	an	MS	stage)	between	different	
domains.	On	 the	 right,	 typical	 examples	 from	 the	Testin	 and	Testout	 sets	 to	 illustrate	 the	
difference	in	the	lesion	load,	as	well	as	the	intensity	differences	brought	by	the	change	of	the	
medical	center	(i.e.	scanner,	technicians,	annotators,	and	other	parameters	contributing	to	
the	domain	shift).	



 

 

	
2.2. Uncertainty	quantification	
	

This	work	implements	deep	ensembles	(Lakshminarayanan	et	al.,	2017)	
for	UQ	by	training	multiple	networks	with	identical	architecture	but	different	
random	seed	 initializations.	The	 random	seed	controls	 several	 factors,	 for	

Domain	 In-domain	 Out-of-domain	

Source	 Carass	et	al.	(2017),	
Commowick	et	al.	(2018)	

Lesjak	et	al.	
(2017),	

Bonnier	et	
al.	(2014)	

Basel	
University	
Hospital	
(Granziera,	
C.,	2018)	

Scanners	 Siemens	(Aera	1.5T,	Verio	3.0T),	GE	
Disc	3.0T,	Philips	(Ingenia	3.0T,	

Medical	3.0T)	

Siemens	
Magnetom	Trio	

3.0T	

Siemens	
Magnetom	
Prisma	3.0T	

M:F	ratio	range	 0.21-0.4	 0.23-0.70	 0.68	

MS	stages	 RR,	PP,	SP	 CIS,	RR,	SP,	PP	 RR,	PP,	SP	

#	raters	 2	or	7	 consensus	or	3	 consensus	

Inter-rater	
agreement	(Dice	

score)	

0.63	and	0.71	 0.78	 -	

Set	name	 Train	 Val	 Testin	 Testout	 Testprivate	

#	scans	 33	 7	 33	 99	 162	

#	lesions	per	
scan,	Q2	(IQR)	

34(20-50)	 26(19-61)	 30(15-47)	 39(20-77)	 63(25-88)	

Total	lesion	
volume	per	scan,	
Q2	(IQR)	[mL]	

12.5(3.1-27.8)	 15.5(4.0-24.7)	 7.2(3.7-11.3)	 2.7(1.3-7.3)	 7.4(2.4-14.3)	

Table	 1:	 Data	 splits	 and	 meta	 information.	 MS	 stages	 are	 clinically	 isolated	
syndrome	 (CIS),	 relapsing	 remitting	 (RR),	 primary	 progressive	 (PP),	 and	
secondary	progressive	(SP).	

 



 

 

instance,	 weights	 initialization,	 training	 sample	 selection,	 random	
augmentations,	 and	 stochastic	 optimization	 algorithms.	 Although	 each	
ensemble	member	has	distinct	model	weights,	they	all	stem	from	the	same	
posterior	 distribution.	 This	 causes	 varied	 predictions	 among	 ensemble	
members	 for	 the	 same	 input	 example.	 The	 spread	 or	 variation	 in	 these	
predictions	serves	as	an	uncertainty	estimate.	

2.2.1. Uncertainty	quantification	at	different	anatomical	scales	
In	an	image	segmentation	task,	a	class	prediction	is	not	a	single	value	but	

an	image-size	map.	Thus,	the	disagreement	between	the	ensemble	members	
can	 be	 quantified	 not	 only	 for	 each	 voxel	 of	 the	 prediction	 but	 also	 for	 a	
subset	of	its	elements.	For	WML	segmentation,	the	model	prediction	is	a	3D	
probability	 map.	 We	 can	 quantify	 the	 uncertainty	 associated	 with	 the	
decision	taken	in	each	voxel,	thus	obtaining	another	3D	map	with	voxel-scale	
uncertainty	values.	We	can	also	quantify	uncertainty	associated	with	a	set	of	
predictions	 within	 a	 region	 of	 a	 particular	 lesion,	 thus	 obtaining	 an	
uncertainty	 score	 for	 each	 predicted	 lesion.	 Similarly,	 we	 can	 quantify	
uncertainty	 for	 the	 whole	 patient.	 We	 implement	 several	 uncertainty	
measures	 at	 each	 anatomical	 scale	 (voxel,	 lesion,	 or	 patient).	 The	 exact	
mathematical	 formulation	 for	 the	 previous	 existing	 and	 proposed	 UQ	
measures	are	summarized	in	Table	2	and	described	hereafter.	

Voxel-scale	 uncertainty	 measures.	 Perceiving	 segmentation	 as	 a	
classification	of	each	voxel	of	an	image,	one	could	use	uncertainty	measures	
available	 for	 classification	 tasks	 to	 quantify	 uncertainty	 for	 per-voxel	
predictions.	The	common	uncertainty	measures	in	this	case	will	be	negated	
confidence	and	 information	theory	measures	 such	as	entropy	of	 expected,	
expected	entropy,	or	mutual	information	which	respectively	depict	different	
total,	data,	and	knowledge	uncertainty.	

Lesion-scale	uncertainty	measures.	Given	a	WML	segmentation	 task,	
we	 can	 compute	 a	 single	 uncertainty	 score	 for	 each	 predicted	 connected	
component,	 i.e.	 lesion.	 Differently	 from	 previous	measures	 that	 aggregate	
voxel-scale	 uncertainties	 (Nair	 et	 al.,	 2020;	 Lambert	 et	 al.,	 2022a),	 our	
previous	 work	 (Molchanova	 et	 al.,	 2023)	 proposes	 a	 novel	 lesion-scale	
uncertainty	defined	directly	 through	 the	disagreement	between	 the	 lesion	
structural	predictions	of	ensemble	members.	We	hypothesize	that	looking	at	



 

 

the	 disagreement	 in	 structural	 predictions,	 i.e.	 predicted	 lesion	 regions,	
might	be	more	beneficial	for	the	discovery	of	false	positive	lesions.	

To	define	our	proposed	measure	we	should	consider	the	ensemble	of	M	
models,	 where	 each	 member	 model	 is	 parametrized	 by	 weights	 θm,m	 =	
0,1,...,M−1.	The	ensemble	probability	prediction	is	obtained	by	computing	a	
mean	average	across	members.	Then,	the	binary	lesion	segmentation	mask	
is	obtained	by	applying	a	 threshold	α	to	 the	 softmax	ensemble	prediction,	
where	α	is	chosen	based	on	the	Dice	similarity	coefficient	maximized	on	the	
validation	dataset.	Analogously,	by	applying	the	threshold	α	to	the	softmax	
predictions	of	each	of	the	ensemble	models,	we	can	obtain	the	binary	lesion	
segmentation	masks	predicted	by	each	model	m	in	the	ensemble.	Let	L	be	a	
predicted	lesion	that	is	a	connected	component	from	the	binary	segmentation	
map	obtained	from	the	ensemble	model;	and	Lm	is	the	corresponding	lesion	
predicted	by	the	model	m,	determined	as	the	connected	component	on	the	
binary	 segmentation	 map	 predicted	 by	 the	 mth	member	 with	 maximum	
intersection	over	union	(IoU)	with	L.	If	the	softmax	probability	threshold	is	
optimized	 for	 each	 member	 model	 separately	 based	 on	 the	 highest	 Dice	
score,	the	resulting	thresholds	will	be	different	from	α	and	will	be	member-
specific:	αm,m	=	0,1,...,M	−	1	instead	of	α.	Then,	the	binary	segmentation	maps	
obtained	with	αm	will	 lead	 to	different	corresponding	 lesion	regions,	 called	
Lm,+.	 Then,	 the	 proposed	 measures	 lesion	 structural	 uncertainty	 (LSU)	
measures	are	defined	as	follows:	

 𝐿𝑆𝑈 = 1 − !
"
∑ ⬚"#!
$%& 𝐼𝑜𝑈(𝐿, 𝐿$),	 (1)	

and	

 𝐿𝑆𝑈' = 1 − !
"
∑ ⬚"#!
$%& 𝐼𝑜𝑈(𝐿, 𝐿$,').	 (2)	

Patient-scale	 uncertainty	measures.	 Patient-scale	 uncertainty	 offers	
the	most	compact	way	of	uncertainty	representation	considering	the	clinical	
practice,	 that	 is	 presenting	 a	 single	 uncertainty	 score	 per	 patient.	
Analogously	 to	 the	 lesion	 scale,	 the	 patient-scale	 uncertainty	 can	 be	
computed	by	averaging	voxel	or	lesion	uncertainties.	

Using	similar	reasoning	as	for	the	lesion	scale,	we	propose	a	patient-scale	
measure	analogous	to	LSU	(Equation	(1)),	where	instead	of	the	lesion	region	
L	the	total	segmented	lesion	region	is	used.	



 

 

To	define	these	measures,	let	S	be	a	set	of	voxels	predicted	as	lesion	class	
by	the	ensemble	model,	Sm	-	set	of	voxels	predicted	as	lesion	class	by	the	mth	

member	model	in	the	ensemble,	and	Sm,+	is	the	same,	but	obtained	with	the	
member-specific	 threshold	 αm.	 Then,	 the	 proposed	 patient	 structural	
uncertainty	measures	are	defined	as:	

 𝑃𝑆𝑈 = 1 − !
"
∑ ⬚"#!
$%& 𝐼𝑜𝑈(𝑆, 𝑆$),	 (3)	

and	

 𝑃𝑆𝑈' = 1 − !
"
∑ ⬚"#!
$%& 𝐼𝑜𝑈(𝑆, 𝑆$,').	 (4)	

  



 

 
 

a) Voxel-scale	uncertainty	measures	computed	for	each	pixel	i	∈	B	of	an	input	scan	x	(B	is	a	set	of	voxels	defining	the	
brain	region),	y	-	targets,	c	=	0,1,..,C−1	is	the	class	(C	=	2	for	binary	segmentation),	P(yi	=	c|x,θm)	is	a	predictive	posterior	
of	model	m	parametrized	by	weights	θm	in	the	ensemble	of	M	models,	and	𝑃(𝑥) = !

"
∑ ⬚"#!
$%& 𝑃(𝑥, 𝜃$)	is	for	the	whole	

ensemble	model.	

Negated	confidence		

𝑁𝐶' = −𝑎𝑟𝑔𝑚𝑎𝑥(%&,..,+#!
1
𝑀
3⬚
"#!

$%&

𝑃(𝑥, 𝜃$) 

Entropy	of	expected	

𝐸𝑜𝐸' = −%⬚
+#!

(%&

𝑃(𝑥)𝑙𝑜𝑔𝑃(𝑥) 

Expected	entropy	

𝐸𝑥𝐸' = −
1
𝑀

∑
$%&

"#!
∑
(%&

+#!
𝑃(𝑥, 𝜃$)𝑙𝑜𝑔𝑃(𝑥, 𝜃$) 

Mutual	information	
MIi	=	EoEi	−	ExEi 

b) Lesion-scale	uncertainty	measures	computed	for	each	predicted	lesion	L,	that	is	a	connected	component	on	the	
ensemble-predicted	binary	segmentation	map.	The	last	is	obtained	by	applying	a	threshold	α	to	the	softmax	
ensemble	prediction	P(y	=	1|x)	=	{P(yi	=	1|x),i	∈	B},	where	α	is	chosen	based	on	the	Dice	similarity	coefficient	
maximized	on	the	validation	dataset.	Lm	is	the	corresponding	lesion	predicted	by	the	mth	member	model,	determined	
as	the	connected	component	on	the	binary	segmentation	map	predicted	by	the	mth	member	(threshold	α	applied	to	
P(y	=	1|x,θm),m	=	0,1,...,M	−1)	with	maximum	intersection	over	union	(IoU)	with	L.	If	the	softmax	probability	
threshold	is	optimized	based	on	the	highest	Dice	score	for	each	member	model	separately,	the	resulting	thresholds	
will	be	different	from	α	and	will	be	member-specific:	αm,m	=	0,1,...,M	−	1	instead	of	α.	Then,	the	binary	segmentation	
maps	obtained	by	applying	αm	to	P(y	=	1|x,θm),m	=	0,1,...,M	−1	will	lead	to	different	corresponding	lesion	regions,	
called	Lm,+.	

Voxel	uncertainties	aggregation	via	mean	average	𝐸𝑜𝐸𝐿 =
1

|𝐿|
∑
𝑖∈𝐿

𝐸𝑜𝐸𝑖 ,.	

	Analogously,	𝐸𝑥𝐸𝐿 , 𝑁𝐶𝐿 , 𝑀𝐼𝐿	are	defined. 

Proposed	lesion	structural	uncertainty	(LSU)	
𝐿𝑆𝑈 = 1 − !

"
∑ ⬚"#!
$%& 𝐼𝑜𝑈(𝐿, 𝐿$)		and	𝐿𝑆𝑈1 = 1 − !

"
∑ ⬚"#!
$%& 𝐼𝑜𝑈(𝐿, 𝐿$,1) 

c) Patient-scale	uncertainty	measures	computed	for	patient.	S	is	a	set	of	voxels	predicted	as	lesions	by	the	ensemble	
model,	Sm	is	a	set	of	voxels	predicted	as	lesions	by	the	model	m,	and	Sm,+	is	the	same,	but	obtained	with	the	member-
specific	threshold	αm,m	=	0,1,...,M	−	1.	W	-	set	of	lesions	predicted	by	the	ensemble	model.	

Voxel	uncertainties	aggregation	via	mean	average	𝐸𝑜𝐸𝐵 =
1

|𝐵|
∑
𝑖∈𝐵

𝐸𝑜𝐸𝑖 .	

Analogously,	𝐸𝑥𝐸𝐵 , 𝑁𝐶𝐵 , 𝑀𝐼𝐵are	defined. 

Proposed	lesion	uncertainties	aggregation	via	mean	average	𝐿𝑆𝑈 = !
|3|

∑
4∈3

𝐿𝑆𝑈4 .Analogously,	LSU+	is	defined. 

Proposed	patient	structural	uncertainty	(PSU)	
𝑃𝑆𝑈 = 1 − !

"
∑ ⬚"#!
$%& 𝐼𝑜𝑈(𝑆, 𝑆$)	and	𝑃𝑆𝑈1 = 1 − !

"
∑ ⬚"#!
$%& 𝐼𝑜𝑈(𝑆, 𝑆$,1) 

Table	2:	Definitions	of	uncertainty	measures	at	three	anatomical	scales:	voxel,	lesion,	and	patient. 

 



 

 

 
2.3. Quantitative	evaluation	of	uncertainty	measures	

Uncertainty	has	a	 relation	to	errors	made	by	a	model:	 ideally,	a	higher	
uncertainty	expresses	an	 increased	 likelihood	of	erroneous	prediction.	For	
each	of	the	anatomical	scales:	voxel,	lesion,	and	patient,	the	“error”	definition	
can	vary.	For	example,	a	voxel-scale	error	can	be	simply	defined	as	a	voxel	
misclassification,	a	lesion-scale	error	can	be	defined	as	a	lesion	misdetection,	
and	a	patient-scale	error	can	be	a	summary	of	voxel	errors.	In	this	work,	we	
want	to	compare	voxel-,	 lesion-,	and	patient-scale	uncertainty	measures	in	
terms	of	their	ability	to	capture	errors	of	different	kinds.	For	this,	we	use	an	
error	retention	curves	analysis	(Malinin,	2019;	Malinin	et	al.,	2022;	Mehta	et	
al.,	 2022),	 previously	 introduced	 only	 for	 voxel-scale	 uncertainty,	 and	
extended	for	lesion	and	patient	scales	in	this	work.	

2.3.1. Error	and	quality	metrics	
We	start	by	defining	errors	on	the	voxel	and	lesion	scale	as	well	as	quality	

metrics	used	in	this	work	for	model	performance	characterization	and	error	
retention	curves	analysis.	

Voxel-scale	 errors.	 Similarly	 to	 a	 classification	 task,	 the	 errors	 at	 the	
voxel	 scale	 will	 include	 false	 positives	 and	 negatives	 (FP	 and	 FN,	
respectively).	Based	on	FP,	FN,	true	positives	(TP),	and	true	negatives	(TN),	
one	 derives	 metrics	 like	 true	 positive	 rate	 (TPR)	 and	 positive	 predictive	
value	(PPV),	which	measure	correctly	classified	voxels	against	ground	truth	
or	predicted	lesions,	respectively.	To	evaluate	both	error	types,	we	use	the	F1	
score,	 also	 known	 as	 the	Dice	 similarity	 score	 (DSC)	 in	 image	 processing.	
However,	 it	 is	well	 known	 that	 the	 DSC	metric	 suffers	 from	 a	 bias	 to	 the	
occurrence	 rate	 of	 the	 positive	 class,	 i.e.	 lesion	 load,	 jeopardizing	 the	
comparison	 of	 results.	 We	 thus	 additionally	 utilize	 the	 normalized	 DSC	
(nDSC)	 (Raina	 et	 al.,	 2023)	 for	 the	model	 evaluation.	 In	 a	 nutshell,	 nDSC	
scales	the	precision	at	a	fixed	recall	rate	to	tackle	the	lesion	load	bias.	

Lesion-scale	errors.	Analogously,	true	positive,	false	positive,	and	false	
negative	 lesions	 (TPL,	 FPL,	 FNL)	 can	 be	 defined	 if	 the	 criteria	 for	 lesion	
(mis)detection	 are	 given.	While	 some	 studies	 accept	 minimal	 overlap	 for	
detection	(Nair	et	al.,	2020;	Carass	et	al.,	2017;	La	Rosa	et	al.,	2020),	we	apply	
a	 25%	 intersection	 over	 the	 union	 threshold	 for	 a	 predicted	 lesion	 to	 be	
considered	a	TPL.	For	the	FNL	definition,	we	consider	a	zero	overlap	with	the	



 

 

prediction.	 A	 FNL	 is	 a	 ground	 truth	 lesion	 that	 has	 no	 overlap	 with	
predictions.	Metrics	 derived	 from	 TPL,	 FPL,	 and	 FNL	 include	 Lesion	 TPR,	
PPV,	and	F1,	 further	referred	to	as	LTPR,	LPPV,	LF1.	The	differences	at	 the	
voxel	scale	include:	i)	uncertainty	cannot	be	quantified	for	FNLs,	as	they	are	
not	predicted	lesions;	ii)	it	is	not	possible	to	define	a	true	negative	lesion.	The	
metrics	definitions	can	be	found	in	Appendix	A.	

2.3.2. Error	retention	curve	analysis	
The	 error	 retention	 curves	 (RCs)	 (Malinin,	 2019;	Malinin	 et	 al.,	 2022;	

Mehta	et	al.,	2022)	assess	the	correspondence	between	a	chosen	uncertainty	
measure	and	an	error	or	a	quality	metric.	By	quantifying	this	correspondence	
for	various	uncertainty	measures	we	can	choose	a	measure	that	is	better	at	
pointing	 out	 errors	 in	 model	 predictions.	 This	 is	 relevant	 for	 the	 clinical	
applications,	 where	 uncertainty	 constitutes	 a	 signaling	 system	 requiring	
human	verification.	

Compared	 to	 the	 uncertainty	 calibration	 analysis	 (Gawlikowski	 et	 al.,	
2023),	 error	RCs	only	 take	 into	 account	 the	 ranking	of	uncertainty	values	
within	a	particular	scan,	thus,	avoiding	uncertainty	values	scaling	present	in	
the	 calibration	metrics.	Additionally,	 they	allow	 for	 the	choice	of	 a	quality	
metric	w.r.t.	to	which	the	uncertainty	measure	is	compared.	Thus,	allowing	
for	 extending	 their	 definition	 to	 different	 scales,	 e.g.	 lesion	 or	 patient.	
Moreover,	 compared	 to	 calibration	 metrics,	 the	 RC	 analysis	 allows	 us	 to	
estimate	 the	 upper	 and	 lower	 bounds	 of	 the	 uncertainty-robustness	
performance.	

Voxel-scale	 DSC-RC.	 Analogously	 to	 our	 previous	 investigation	
(Molchanova	et	al.,	2023),	we	use	voxel-scale	retention	curves	to	quantify	the	
average	across	patients	correspondence	between	per-voxel	uncertainty	and	
DSC,	i.e.	per-voxel	misclassification	errors	of	different	kinds:	either	FP	or	FN.	
The	voxel-scale	RC	 for	a	 single	patient	 is	built	by	 sequentially	 replacing	 a	
fraction	τ	of	the	most	uncertain	voxel	predictions	within	the	brain	mask	with	
the	 ground	 truth	 and	 re-computing	 the	 DSC.	 If	 one	measure	 has	 a	 better	
ability	 to	 capture	 model	 errors	 than	 another	 measure,	 then	 the	 most	
uncertain	voxels	will	be	faster	replaced	with	the	ground	truth	and	the	DSC-
RC	will	grow	faster.	Thus,	the	area	under	the	DSC	retention	curve	(DSC-RC),	
further	referred	to	as	DSC-AUC	can	be	used	to	compare	different	uncertainty	
measures	in	their	ability	to	capture	model	segmentation	errors.	Additionally,	



 

 

it	is	possible	to	estimate	lower	and	upper	bounds	of	performance	by	building	
random	 and	 ideal	 RCs.	 For	 a	 random	 RC,	 we	 assign	 random	 uncertainty	
values	to	each	voxel	of	predictions.	For	the	ideal	one,	a	zero	uncertainty	is	
assigned	to	true	positive	and	negative	(TP	and	TN)	voxels	while	false	positive	
and	negative	(FP	and	FN)	voxels	have	an	uncertainty	of	1.	To	build	the	RCs,	
we	use	τ	=	2.5	·	10−3.	An	illustrative	explanation	of	a	voxel-scale	RC	can	be	
found	in	Figure	2.		

	

Figure	 2:	 An	 illustration	 of	 a	 retention	 curve	 (RC)	 on	 the	 voxel	 scale	 for	 assessing	 the	
correspondence	 between	 an	 uncertainty	 (MEASURE1	 and	 MEASURE2)	 and	 model	
performance	measured	by	DSC	in	a	patient.	When	all	the	voxels	are	retained	the	y-value	is	
equal	to	the	original	DSC	of	the	model	on	the	subject	(DSC0).	IDEAL	and	RANDOM	lines	built	
using	ideal	and	random	uncertainty	measures	constitute	the	upper	and	lower	bounds	of	the	
uncertainty-robustness	performance.	

Lesion-scale	 LPPV-RC	 (proposed).	 In	 our	 previous	 investigation	
(Molchanova	et	al.,	2023)	we	proposed	an	extension	of	the	error	RC	analysis	
to	 the	 lesion	 scale	 through	 LF1-RC.	 LF1-RC	 assesses	 the	 correspondence	
between	 lesion-scale	 uncertainty	 and	 errors	 in	 lesion	 detection	 within	 a	
patient.	As	defined	in	Section	2.3.1,	the	LF1	is	reflective	of	both	FNL	and	FPL.	
However,	uncertainty	cannot	be	defined	for	FNLs	as	they	are	not	predicted,	
but	 ground-truth	 lesions.	 Thus,	 LF1-RCs	 are	 more	 suitable	 for	 the	
comparison	of	different	models	or	uncertainty	quantification	methods,	 for	
which	the	number	of	FNL	can	vary.	However,	for	the	comparison	of	lesion-



 

 

scale	uncertainty	measures,	where	the	number	of	FNL	does	not	change,	the	
LPPV-RC	analysis	 is	sufficient.	Thus,	we	propose	the	LPPV-RC	assesses	the	
correspondence	between	 lesion-scale	uncertainty	and	 lesion	 false	positive	
errors	within	a	patient.	Intuitively,	this	analysis	helps	to	understand	which	
uncertainty	measure	is	the	best	at	pointing	to	false	positive	lesions.	

Building	a	LPPV-RC	for	a	patient	starts	with	computing	the	number	of	TPL	
and	FPL,	 i.e.	#TPL	and	#FPL,	and	uncertainty	values	for	each	of	these	 lesions.	
Further,	the	most	uncertain	lesions	are	sequentially	replaced	with	TPL,	and	
LPPV	 is	 recomputed.	 Analogously	 to	 the	 voxel	 scale,	 if	 a	 lesion-scale	
uncertainty	 measure	 has	 a	 better	 ability	 to	 capture	 FPL	 than	 another	
measure,	 then	 FPL	will	 be	 replaced	 faster	 and	 the	 curve	will	 grow	 faster.	
Thus,	the	area	under	the	LPPV-RC,	that	is	LPPV-AUC,	can	be	used	to	compare	
different	measures	in	their	ability	to	capture	FPL	detection	errors.	As	each	
patient	 has	 a	 different	 number	 of	 predicted	 lesions,	 to	 obtain	 an	 average	
across	the	dataset	LPPV-AUC,	we	first	need	to	interpolate	all	LPPV-RCs	to	a	
similar	 set	 of	 retention	 fractions.	 For	 this,	 we	 use	 a	 piecewise	 linear	
interpolation	 and	 a	 set	 of	 retention	 fractions	 similar	 to	 the	 voxel	 scale.	
Additionally,	similarly	to	the	voxel	scale,	the	ideal	and	random	RCs	are	built.	
The	ideal	curve	is	built	by	considering	all	TPLs	having	an	uncertainty	of	0	and	
all	 FPLs	 having	 an	 uncertainty	 of	 1.	 The	 random	 curve	 is	 built	 by	 using	
random	uncertainties	for	each	of	the	lesions.	

Patient-scale	DSC-RC	 (proposed).	 In	 this	work,	we	 propose	a	way	 to	
extend	 an	 error	 RCs	 analysis	 to	 the	 patient	 scale	 to	 assess	 the	
correspondence	 between	 patient-scale	 uncertainty	 measures	 and	 overall	
prediction	 quality	 in	 a	 patient.	 We	 use	 DSC	 as	 a	 measure	 of	 overall	
segmentation	quality.	Then,	a	patient-scale	DSC-RC	 is	built	by	sequentially	
excluding	the	most	uncertain	patients,	 that	 is	replacing	their	DSC	with	1.0,	
and	recomputing	the	average	across	the	dataset	DSC.	Similarly	to	the	voxel	
and	lesion	scales,	the	area	under	the	patient-scale	DSC-RC	is	used	to	compare	
the	ability	of	different	patient-scale	uncertainty	measures	to	capture	patients	
with	a	greater	amount	of	erroneous	predictions.	In	analogy	to	the	voxel	and	
lesion	 scales,	 we	 want	 to	 assess	 the	 upper	 and	 lower	 bounds	 of	 the	
performance	 with	 ideal	 and	 random	 patient-scale	 DSC-RCs.	 To	 build	 a	
random	curve	we	assign	 random	uncertainties	 to	 each	 of	 the	patients.	 To	
build	the	ideal	curve,	we	use	a	negated	DSC	score	as	an	uncertainty	measure,	



 

 

as	we	want	 ideal	 uncertainty	 to	 point	 to	 the	most	 erroneous	 examples	 in	
terms	of	DSC.	

Statistical	 testing.	For	 the	voxel	 and	 lesion	 scales,	 the	error	 retention	
curves	 analysis,	 namely	 DSC-RC	 and	 LPPV-RC,	 are	 computed	 per	 patient.	
Therefore,	 when	 comparing	 different	 uncertainty	 measures	 across	 each	
other,	one	can	assess	the	differences	in	AUC	distributions	across	measures,	
e.g.	 statistics.	 For	 the	 patient	 scale,	 DSC-RC	 is	 computed	 per	 dataset	 (by	
iterative	 replacement	 of	 the	 most	 uncertain	 patients).	 Nevertheless,	 it	 is	
possible	 to	 estimate	 the	 bootstrap	 confidence	 intervals	 by	 treating	 the	
patient-scale	 DSC-RC	 as	 a	 statistic	 itself.	 Thus,	 to	 conduct	 the	 measures	
ranking	 for	 the	patient-scale	uncertainty	measures,	we	compare	the	mean	
patient-scale	 DSC-AUC,	 paying	 attention	 to	 the	 corresponding	 confidence	
intervals.	
2.3.3. Patient-scale	uncertainty	as	a	proxy	for	segmentation	quality	

In	addition	to	the	information	brought	by	the	error	RC,	we	would	like	to	
study	 if	 a	 patient-scale	 uncertainty	 can	 serve	 as	 a	 proxy	 to	 the	 model	
segmentation	quality,	measured	by	DSC.	For	 this,	we	compute	Spearman's	
correlation	 coefficient	 ρ	 between	 the	 DSC	 and	 uncertainty	 values.	 The	
Spearman’s	 correlation	 is	 computed	 for	different	 test	 sets	 separately,	 and	
then	jointly.	The	joint	correlation	coefficient	should	show	if	the	uncertainty	
measure	can	be	used	as	a	proxy	for	the	segmentation	quality	regardless	of	
the	domain	shift.	This	might	be	particularly	useful	for	the	scenario	where	the	
domain	shift	is	unknown.	

	
2.4. WML	segmentation	models	

For	this	study,	we	consider	two	models	based	on	a	3D	U-Net	architecture.	
Similar	 3D-U-net-based	 models	 have	 been	 previously	 used	 for	 WML	
segmentation	and	compared	to	other	approaches	(Kaur	et	al.,	2020;	Zeng	et	
al.,	2020;	La	Rosa	et	al.,	2020;	Spagnolo	et	al.,	2).	Furthermore,	our	choice	is	
supported	 by	 the	 fact	 that	 the	 same	 model	 has	 been	 extensively	 used	
previously	for	UQ	exploration	within	the	same	WML	segmentation	task	in	MS	
(McKinley	et	al.,	2020;	Nair	et	al.,	2020;	Malinin	et	al.,	2022;	Lambert	et	al.,	
2022a;	Lambert	et	al.,	2022b).	The	first	model	is	the	baseline	model	from	the	
Shifts	 2.0	 Challenge	 (Malinin	 et	 al,	 2022)	 dedicated	 to	 UQ	 for	 WML	
segmentation.	The	second	model	is	a	self-configuring	nnU-Net	architecture	



 

 

(Isensee	et	al.,	 2020).	Both	models	are	ensembles	with	5	members,	where	
each	member	 is	 a	3D	U-Net	model	 (Ronneberger	et	 al.,	 2015;	 Çiçek	 et	 al.,	
2016).	There	are	several	crucial	differences	between	the	Shifts	Baseline	(SB)	
U-Net	and	the	nnU-Net	models:	i)	architecture,	i.e	SB	has	the	depth	reduced	
by	one	and,	thus,	less	trainable	parameters;	ii)	loss	function,	i.e.	Focal-Dice	
loss	for	SB	and	cross-entropy	and	Dice	loss	for	nnU-Net;	iii)	deep	supervision	
is	utilized	by	nnU-Net,	compared	to	SB;	iv)	input,	SB’s	input	are	patches	of	the	
size		96	×	96	×	96	cropped	from	the	brain	using	a	sequence	of	transforms,	
while	 nnU-Net	 uses	 patches	 112	 ×	 160	 ×	 128	 cropped	 around	 the	whole	
brain.	 Both	 models	 represent	 public	 benchmarks	 and	 their	 training	 and	
inference	code	 is	available	online	4.	 	For	the	SB	model,	 the	only	difference,	
compared	to	the	original	model,	is	an	addition	of	2	more	ensemble	members,	
obtained	using	the	original	training	code.	For	the	nnU-Net	model,	we	used	a	
“3d_fullres”	 configuration,	 we	 ensured	 the	 consistency	 of	 training	 and	
validation	examples	across	folds	(for	the	model	to	be	comparable	to	SB),	and	
limited	 the	 number	 of	 training	 epochs	 to	 200	 (due	 to	 the	 validation	 loss	
stagnation,	to	prevent	overfitting).	Due	to	the	fact	that	the	Shifts	dataset	does	
not	contain	lesions	less	than	10	voxels,	we	process	the	outputs	of	each	of	the	
models	to	remove	all	the	connected	components	with	less	than	10	voxels.	
 	

 
4	The	original	code	including	model	implementation	and	weights,	training	

and	 inference	 code	 can	 be	 found	 at	 the	 Shifts	 Challenge	 GitGub:	
https://github.com/Shifts-Project/shifts/tree/main/mswml.	 nnU-Net	
model	code	is	publicly	available	at	https://github.com/MIC-DKFZ/nnUNet	.	
Model	weights	 can	 be	 found	 on	 our	 GitHub:	 https://github.com/Medical-
Image-Analysis-Laboratory/MS_WML_uncs	.	



 

 

3. Results	

3.1. Model	performance	
The	evaluation	of	the	ensemble	model	performance	in	terms	of	average	

segmentation	 and	 lesion	 detection	 quality	 is	 presented	 in	 Table	 3	 for	
training,	validation,	and	testing	sets.	Regardless	of	the	model,	SB	or	nnU-Net,	
the	in-domain	performance	reaches	its	upper	bound	determined	by	the	inter-
rater	agreement	reported	 in.	There	 is	 a	 considerable	drop	 in	performance	
(around	10%	depending	on	the	metric)	between	in-	and	out-of-domain	sets	
both	 in	 terms	of	segmentation	(DSC	and	nDSC)	and	lesion	detection	(LF1).	
The	performance	on	Testprivate		dataset	lies	in	between	Testin	and	Testout	with	
regards	to	segmentation	and	lesion	detection	quality.			Between	two	models,	
nnU-Net	 shows	 higher	 performance	 in	 terms	 of	 segmentation	 and	 lesion	
detection.	

	

	
Set	

DSC	 nDSC	 LF1	 LPPV	

SB	 nnU-Net	 SB	 nnU-Net	 SB	 nnU-Net	 SB	 nnU-Net	

Train	

0.756	
[0.737,	
0.774]	

0.906	
[0.892,	
0.917]	

0.725	
[0.699,	
0.749]	

0.856	
[0.826,	
0.883]	

0.547	
[0.493,	
0.596]	

0.845	
[0.787,	
0.876]	

0.689	
[0.627,	
0.735]	

0.971	
[0.957,	
0.981]	

Val	

0.720	
[0.602,	
0.783]	

0.776	
[0.701,	
0.821]	

0.684	
[0.625,	
0.740]	

0.736	
[0.669,	
0.783]	

0.444	
[0.345,	
0.547]	

0.643	
[0.555,	
0.707]	

0.533	
[0.425,	
0.608]	

0.762	
[0.624,	
0.871]	

Testin	

0.633	
[0.582,	
0.673]	

0.707	
[0.671,	
0.739]	

0.689	
[0.662,	
0.717]	

0.741	
[0.715,	
0.768]	

0.487	
[0.439,	
0.528]	

0.701	
[0.666,	
0.733]	

0.610	
[0.552,	
0.660]	

0.762	
[0.721,	
0.797]	

Testout	

0.488	
[0.457,	
0.515]	

0.571	
[0.538,	
0.600]	

0.533	
[0.501,	
0.560]	

0.603	
[0.570,	
0.630]	

0.333	
[0.308,	
0.361]	

0.502	
[0.477,	
0.525]	

0.623	
[0.586,	
0.659]	

0.828	
[0.799,	
0.852]	

Testprivate	

0.601	
[0.578,	
0.621]	

0.646	
[0.626,	
0.665]	

0.628	
[0.608,	
0.645]	

0.653	
[0.635,	
0.670]	

0.416	
[0.396,	
0.437]	

0.562	
[0.543,	
0.581]	

0.581	
[0.556,	
0.605]	

0.799	
[0.779,	
0.817]	

	
Table	 3:	Mean	average	models	performance	 in	 segmentation	 (DSC	and	nDSC)	and	 lesion	
detection	(LF1	and	LPPV).	90%	confidence	intervals	were	computed	using	bootstrapping.	
SB	-	Shifts	2.0	Challenge	baseline	model.	



 

 

3.2. Quantitative	evaluation	of	uncertainty	measures	
3.2.1. Error	retention	curves	analysis	

The	error	RCs	for	the	assessment	of	uncertainty	measures	on	each	of	the	
anatomical	scales	(voxel,	lesion,	and	patient)	are	presented	in	Figure	3.	The	
voxel-scale	DSC-RCs	and	lesion-scale	LPPV-RCs	were	obtained	by	averaging	
across	 the	 respective	 datasets.	 The	mean	 areas	 under	 the	 error	 retention	
curves	and	the	results	of	the	statistical	testing	are	presented	in	Table	4.		

Regardless	 of	 the	 test	 set,	 all	 voxel-scale	 uncertainty	 measures	
outperform	random	uncertainty	 and	are	 closer	 to	 the	 ideal	uncertainty	 in	
terms	 of	 mean	 DSC-AUC,	 indicating	 their	 ability	 to	 capture	 errors	 in	
segmentation.	 However,	 the	 marginal	 difference	 between	 DSC-AUCs	 of	
different	measures	 is	 relatively	 small.	On	 the	 in-domain	Testin,	 there	 is	no	
agreement	between	two	models	in	terms	of	the	measures	with	the	highest	
mean	 DSC-AUC:	 while	 total	 and	 data	 uncertainty	 (𝑁𝐶), 𝐸𝑜𝐸) , 𝐸𝑥𝐸) )	 have	
higher	DSC-AUC	for	the	SB	model,	knowledge	uncertainty	(𝑀𝐼!)	has	a	higher	
DSC-AUC	for	the	nnU-Net	model.	On	the	out-of-domain	Testout	and	Testprivate	
datasets,	the	entropy-based	total	and	data	uncertainty	measures	(𝐸𝑜𝐸) 	and	
𝐸𝑥𝐸))	tend	to	have	an	advantage	compared	to	other	measures,	contributing	
to	 their	 overall	 advantage	 in	 the	 whole	 evaluation.	 Nevertheless,	 the	
aggregation	of	 	data	uncertainty	𝐸𝑥𝐸) 	for	 the	 lesion-/	patient-	uncertainty	
computation	yields	usually	the	worst	results	in	terms	of	lesion-scale	LPPV-
AUC	 /	 patient-scale	 DSC-AUC.	 This	 means	 that	 a	 good	 performance	 of	 a	
uncertainty	measure	in	capturing	voxel	misclassifications,	when	aggregated,	
will	not	necessarily	lead	to	an	optimal	uncertainty	measure	to	capture	lesion	
false	detection	errors	or	overall	segmentation	failure.		

Regardless	of	the	test	set,	at	the	lesion	scale,	there	is	a	greater	marginal	
difference	between	 different	measures,	 particularly	 for	 the	SB	model.	The	
proposed	measure	𝐿𝑆𝑈'	often	has	an	advantage	in	the	mean	LPPV-AUC	over	
other	measures,	 indicating	 a	 better	 ability	 to	 capture	 lesion	 false	 positive	
errors.	While	𝐿𝑆𝑈	and	𝐿𝑆𝑈"	have	similar	LPPV-AUCs,	 there	 is	usually	some	
difference	 in	 their	performances,	benefiting	 the	𝐿𝑆𝑈!	measure.	Among	the	
measures	based	on	the	aggregation	of	voxel	uncertainties,	aggregated	total	
uncertainty	𝐸𝑜𝐸𝐿	generally	provides	slightly	higher	mean	LPPV-AUC.		

At	the	patient	scale,	the	marginal	differences	between	various	measures	
are	prominent	compared	to	the	voxel	and	lesion	scales,	especially	on	the	out-



 

 

of-domain	sets.	The	results	are	aligned	for	both	 in-	and	out-of-domain	test	
sets	 and	 for	 both	 models,	 SB	 and	 nn-Unet.	 The	 proposed	𝑃𝑆𝑈'and	𝑃𝑆𝑈	
measures	 have	 comparable	 and	 the	 highest	 patient-scale	 DSC-AUCs,	
suggesting	their	superior	ability	to	capture	overall	segmentation	failure.	The	
aggregation	of	the	best	in	terms	of	LPPV-AUC	lesion	scale	uncertainty	(𝐿𝑆𝑈)	
yields	 lower	 patient	DSC-AUC.	 Averaging	of	 voxel	uncertainties	across	 the	
brain	 generally	 provides	 worse-than-random	 performance	 in	 the	 error	
retention	 curve	 analysis.	 The	 last	 means	 that	 an	 average	 across-subject	
voxel-scale	 uncertainty	 is	 not	 informative	 of	 an	 overall	 segmentation	
performance	 on	 a	 particular	 subject	measured	 by	 DSC,	 or	 has	 an	 inverse	
relationship	with	errors.	
3.2.2. Patient-scale	uncertainty	as	a	proxy	to	the	segmentation	quality	

Extending	 the	 analysis	 of	 the	 relationship	 between	 the	 patient-scale	
uncertainty	measures	and	the	segmentation	quality	measures	by	DSC,	Table	
5	 presents	 corresponding	 Spearman’s	 correlation	 coefficients.	 Figure	 4	
contains	plots	DSC	and	patient	uncertainty	for	the	measures	with	the	highest	
(proposed	𝑃𝑆𝑈(') ),	 median	 (proposed	 𝐿𝑆𝑈' ),	 and	 worse-than-random	
(𝑁𝐶𝐵	and	𝐸𝑜𝐸𝐵)	patient-scale	DSC-AUC	values.	For	the	SB	model	and	for	the	
rest	of	the	measures,	the	same	analysis	and	trends	can	be	found	in	Appendix	
B.	The	results	show	the	highest	correlation	between	the	patient	uncertainty	
and	DSC	is	provided	by	the	proposed	𝑃𝑆𝑈('))	measures,	with	ρ	around	0.8	
across	different	test	sets.	For	the	aggregation	of	the	lesion-scale	uncertainty	
the	correlation	with	the	segmentation	quality	drops	at	least	twice,,while	for	
the	 measures	 based	 on	 the	 voxel-scale	 uncertainty	 aggregation,	 the	
correlation	 is	 either	 weak,	 e.g.	 𝑁𝐶𝐵 ,	 or	 positive.	 There	 is	 a	 positive	
correlation	between	𝐸𝑜𝐸𝐵,	𝐸𝑥𝐸𝐵,	and	𝑀𝐼𝐵,	suggesting	that	high	uncertainty	
can	point	to	examples	with	high	DSC.	The	absolute	value	of	this	correlation	is	
around	0.5,	which	is	higher	than	for	𝐿𝑆𝑈('),	yet	lower	than	for	the	proposed	
𝑃𝑆𝑈(').	

	
	
	

	



 

 

Figure	3:	Error	retention	curves	for	the	assessment	of	uncertainty	measures	at	the	voxel,	
lesion,	and	patient	anatomical	scales	across	the	in-domain	Testin	(left	column)	and	the	out-
of-domain	Testout	(center	column)	and	Testprivate	(left	column)	sets	for	the	nnU-Net	model.	
Different	rows	correspond	to	different	anatomical	scales	indicated	with	icons	on	the	left.	The	
voxel-scale	 DSC-RCs	 and	 lesion-scale	 LPPV-RCs	 were	 obtained	 by	 averaging	 across	 the	
respective	datasets.	At	each	of	the	scales,	the	ideal	(black	dashed)	line	indicates	the	upper	
bound	of	an	uncertainty	measure	 performance	 in	 its	ability	 to	capture	model	 errors;	 the	
random	(gray	dashed)	indicates	no	relationship	between	an	uncertainty	measure	and	error;	
a	worse-than-random	performance	indicates	an	inverse	relationship.	Analogous	results	for	
the	SB	model	are	shown	in	Appendix	B.1.		
 	



 

 
 

Measure 

Testin Testout Testprivate 

SB nnU-Net SB nnU-Net SB nnU-Net 

Voxel-scale	DSC-AUC	(↑) 

Ideal 99.93[99.91,	99.94] 99.94[99.92,	99.95] 99.90[99.88,	99.91] 99.93[99.92,	99.94] 99.92[99.91,	99.92] 99.93[99.92,	99.94] 

𝑁𝐶! 99.17[98.99,	99.31] 99.17[98.29,	99.49] 96.74[96.23,	97.12] 97.59[97.02,	0.9797] 98.56[98.36,	98.70] 99.02[98.82,	99.16] 

𝐸𝑜𝐸! 99.16[98.99,	99.31] 99.11[98.10,	99.46] 97.02[96.56,	97.37] 97.72[97.22,	98.05] 98.65[98.46,	98.79] 99.02[98.82,	99.17] 

𝐸𝑥𝐸! 99.16[98.99,	99.31] 99.11[98.09,	99.46] 97.02[96.56,	97.38] 97.71[97.21,	98.05] 98.65[98.46,	98.80] 99.02[98.82,	99.16] 

𝑀𝐼! 99.05[98.85,	99.21] 99.27[98.74,	99.50] 96.69[96.19,	97.08] 97.28[96.70,	97.68] 98.46[98.25,	98.62] 98.86[98.63,	99.01] 

Random 80.91[76.77,	83.36] 84.87[82.79,	86.69] 76.20[74.88,	77.36] 80.00[78.72,	81.21] 80.18[78.99,	81.19] 82.79[81.85,	83.62] 

Lesion-scale	LPPV-AUC	(↑) 

Ideal 87.88[82.60,	90.91] 95.72[93.89,	96.88] 87.07[83.40,	89.46] 96.47[93.13,	97.66] 86.41[84.54,	87.93] 96.36[95.51,	96.96] 

𝐿𝑆𝑈 83.54[78.50,	87.04] 91.54[89.57,	93.15] 83.28[79.63,	85.91] 94.06[90.87,	95.41] 82.63[80.74,	84.28] 93.29[92.15,	94.21] 

𝐿𝑆𝑈" 83.90[78.83,	87.31] 91.51[89.53,	93.12] 83.89[80.27,	86.45] 93.97[90.80,	95.33] 82.70[80.83,	84.37] 93.29[92.15,	94.20] 

𝑁𝐶𝐿 83.33[78.34,	86.77] 91.71[89.46,	93.32] 83.24[79.60,	85.86] 94.06[90.84,	95.39] 82.34[80.38,	84.04] 93.14[92.05,	94.05] 

𝐸𝑜𝐸𝐿 83.38[78.41,	86.83] 91.81[89.61,	93.39] 83.26[79.63,	85.88] 94.07[90.86,	95.40] 82.28[80.30,	83.99] 93.22[92.11,	94.11] 

𝐸𝑥𝐸𝐿 81.73[76.70,	85.24] 91.70[89.50,	93.27] 81.55[77.88,	84.17] 93.41[90.32,	94.77] 78.74[76.68,	80.56] 91.99[90.77,	93.00] 

𝑀𝐼𝐿 82.63[77.70,	86.03] 91.37[89.22,	92.98] 82.31[78.64,	85.00] 94.06[90.86,	95.40] 81.62[79.69,	83.34] 93.05[91.89,	93.96] 

Random 76.69[71.57,	80.48] 86.65[83.96,	88.94] 76.35[72.71,	79.19] 90.59[87.65,	92.10] 73.97[71.91,	75.81] 88.61[87.18,	89.88] 

Patient-scale	DSC-AUC	(↑) 

Ideal 85.74	[84.16,	87.52] 88.72	[87.22,	90.36] 79.21	[77.96,	80.52] 83.55	[82.30,	84.95] 84.48	[83.72,	85.26] 86.23	[85.56,	86.91] 

𝑃𝑆𝑈 84.99	[83.16,	86.81] 87.90	[86.25,	89.73] 78.40	[77.11,	79.73] 82.68	[81.26,	84.18] 83.63	[82.79,	84.47] 85.73	[85.02,	86.46] 

𝑃𝑆𝑈" 84.82	[82.97,	86.68] 87.84	[86.17,	89.70] 78.39	[77.10,	79.70] 82.70	[81.28,	84.20] 83.60	[82.75,	84.44] 85.75	[85.04,	86.47] 

𝐿𝑆𝑈 83.77	[81.99,	85.42] 86.80	[84.69,	88.84] 75.48	[74.55,	77.26] 79.05	[77.66,	81.22] 79.91	[80.02,	82.28] 83.55	[82.54,	84.44] 

𝐿𝑆𝑈# 83.13	[81.04,	84.88] 86.87	[84.80,	88.89] 75.28	[74.36,	77.08] 78.96	[77.53,	81.16] 79.91	[80.02,	82.28] 83.52	[82.51,	84.42] 

𝑁𝐶𝐵 80.70	[78.27,	82.42] 84.13	[82.40,	85.57] 74.82	[72.96,	76.57] 79.90	[77.85,	81.73] 79.79	[78.55,	80.90] 82.00	[80.84,	82.97] 

𝐸𝑜𝐸𝐵 80.19	[76.20,	82.86] 84.71	[82.40,	86.80] 71.60	[69.62,	73.32] 75.04	[72.79,	76.84] 77.43	[75.81,	78.79] 79.98	[78.49,	81.19] 

𝐸𝑥𝐸𝐵 80.19	[76.20,	82.87] 84.64	[82.34,	86.72] 71.57	[69.53,	73.31] 74.94	[72.69,	76.72] 77.37	[75.74,	78.73] 79.83	[78.33,	81.04] 

𝑀𝐼𝐵 80.28	[76.25,	83.02] 85.07	[82.69,	87.20] 71.70	[69.76,	73.39] 75.18	[72.93,	77.00] 77.60	[75.97,	78.97] 80.20	[78.72,	81.42] 

Random 81.87	[79.09,	83.84] 85.73	[83.58,	87.62] 74.10	[72.53,	75.53] 78.03	[76.20,	79.60] 80.08	[78.85,	81.14] 82.26	[81.14,	83.23] 

Table	4:	Mean	average	areas	under	error	retention	curves	and	90%	bootstrap	confidence	intervals	for	the	assessment	of	the	
uncertainty	measures	at	the	voxel,	lesion,	and	patient	anatomical	scales	across	the	in-domain	Testin	(left	column)	and	the	out-
of-domain	Testout	(center	column)	and	Testprivate	(right	column)	sets.	Results	are	presented	for	the	Shifts	Challenge	Baseline	
(SB)	and	nnU-Net	models.	Highest	AUC	values	for	each	dataset,	model,	and	anatomical	scale	are	highlighted	in	bold,	lowest	-	
in	italic;	ideal	and	random	values	are	in	gray	colour	and	indicate	the	upper	and	lower	bounds	of	performance,	respectively. 

 



 

 

  
Figure	4:	The	relationship	between	DSC	and	patient-scale	uncertainty	assessed	 for	Testin	
(orange),	Testout	(black),	Testprivate	(gray)	separately	and	jointly	for	the	nnU-Net	model.	The	
presented	uncertainty	measures	were	chosen	based	on	the	results	of	the	error	RC	analysis	
(Figure	3	and	Table	4)	to	illustrate	the	relationship	between	DSC	and	uncertainty	brought	
by	measures	with	 the	 highest	 (proposed	𝑃𝑆𝑈(<)),	median	 (proposed	𝐿𝑆𝑈<),	 and	worse-
than-random	(𝑁𝐶𝐵	and	𝐸𝑜𝐸𝐵)	DSC-AUC	values.	Analogous	results	for	other	measures	and	
for	the	SB	model	can	be	seen	in	Appendix	B.2.	

	

Measures 

Testin Testout Testprivate Testin+out Testin+out+private 

SB nnU-Net SB nnU-Net SB nnU-Net SB nnU-Net SB nnU-Net 

𝑃𝑆𝑈 -0.81 -0.83 -0.81 -0.73 -0.84 -0.89 -0.83 -0.76 -0.68 -0.59 

𝑃𝑆𝑈! -0.75 -0.81 -0.8 -0.74 -0.84 -0.9 -0.82 -0.76 -0.68 -0.59 

𝐿𝑆𝑈 -0.45 -0.36 -0.26 -0.25 -0.37 -0.27 -0.37 -0.24 -0.3 -0.09 

𝐿𝑆𝑈< -0.29 -0.37 -0.22 -0.22 -0.34 -0.26 -0.3 -0.23 -0.25 -0.07 

𝑁𝐶𝐵 0.36 0.36 -0.1 -0.1 0 0 -0.2 -0.2 -0.18 -0.19 

𝐸𝑜𝐸𝐵 0.23 0.28 0.55 0.54 0.54 0.57 0.56 0.57 0.49 0.5 

𝐸𝑥𝐸𝐵 0.23 0.3 0.55 0.56 0.56 0.61 0.57 0.58 0.5 0.51 

𝑀𝐼𝐵 0.2 0.15 0.53 0.52 0.49 0.5 0.55 0.54 0.46 0.47 

Table	5.	Spearman	correlation	coefficients	quantifying	the	relationship	between	different	patient-scale	
uncertainty	values	and	segmentation	quality	measured	by	DSC	for	different	test	sets	and	their	combinations.	
The	highest	correlation	coefficients	are	highlighted	in	bold. 

 



 

 

	
	

3.3. Qualitative	evaluation	of	the	uncertainty	maps	
Our	results	show	that	uncertainty	quantification	mainly	at	the	lesion	and	

patient	 scales	 can	 well	 depict	 model	 error	 predictions,	 however,	 various	
anatomical	 scales	 provide	 information	 about	 different	 types	 of	 errors.	 In	
Figure	 5	 the	 uncertainty	 maps	 and	 values	 are	 shown	 for	 four	 different	
subjects,	corresponding	to	different	scenarios	with	respect	to	the	quality	of	
lesion	segmentation.	

Voxel-scale	 maps	 provide	 refined	 information	 about	 the	
misclassifications	in	each	voxel.	Moreover,	voxel-scale	uncertainty	is	always	
high	at	the	borders	of	lesions.	Hypothetically,	this	is	a	reflection	of	the	inter-
rater	disagreement	that	introduces	noise	in	the	ground	truth	itself	leading	to	
further	confusion	/	increased	likelihood	of	having	mistakes	at	the	borders	of	
lesions.	Nevertheless,	the	voxel-scale	uncertainty	can	be	high	in	the	center	of	
the	lesion,	reflecting	that	the	model	is	uncertain	in	the	whole	lesion	region,	
not	only	at	the	borders.	Sometimes	high	uncertainty	regions	can	be	related	
to	the	FNLs.	

Lesion-scale	maps	provide	a	visually	more	 intuitive	way	to	assess	 the	
correctness	 of	 the	 predicted	 lesion	 regions	 compared	 to	 the	 voxel-scale	
maps.	 Particularly,	 lesion-scale	 maps	 can	 be	 used	 to	 highlight	 FPLs.	
Nonetheless,	 high	 lesion	 uncertainty	 may	 be	 an	 indicator	 of	 wrong	
delineation	rather	than	detection.	Let	us	note	that,	compared	to	the	voxel-
scale,	the	lesion-scale	maps	lose	all	the	information	about	the	FNLs.	

Patient-scale	 values	 inform	 about	 the	 overall	 quality	 of	 the	
segmentation	without	indicating	the	particular	reasons	for	the	segmentation	
failure.	 As	 for	 the	 chosen	 examples	 (C)	 and	 (D),	 high	 patient	 uncertainty	
reveals	the	fact	of	the	algorithm	failure,	however	for	(C)	the	problem	is	in	the	
atypical	large	lesion	and	for	(D)	it	is	a	wrong	preprocessing,	i.e.	the	absence	
of	skull-stripping.	



 

 

	

Figure	5:	Examples	of	uncertainty	maps	at	the	voxel	and	lesion	scales	and	patient	uncertainty	
values.	The	two	left	columns	illustrate	axial	slices	of	a	FLAIR	scan	with	the	ground	truth	(in	
yellow)	and	predicted	(in	pink)	WML	masks;	the	middle	column	-	voxel-scale	uncertainty	
maps	computed	with	the	EoEi	measure;	the	fourth	column	-	lesion-scale	uncertainty	maps	
computed	with	 the	 proposed	LSU+;	 the	 fifth	 column	 -	 the	patient-scale	 uncertainty	value	
computed	with	 the	proposed	PSU+.	The	choice	of	measures	 is	based	on	 the	results	of	 the	
error	 retention	 curves	 analysis.	 (A),	 (B),	 (C),	 and	 (D)	 represent	 different	 scenarios	with	
gradually	 decreasing	 DSC.	 Cases	 (A)	 and	 (B)	 represent	 good	 and	 mediocre	 model	
performance,	respectively.	Patient	(C)	has	an	atypical	large	lesion,	which	the	algorithm	fails	
as	expected.	Patient	(D)	was	not	correctly	preprocessed	(the	skull	is	not	removed)	which	led	
to	the	algorithm’s	low	performance	and	high	patient	uncertainty.	



 

 

4. Discussion	

Our	 research	 offers	 a	 detailed	 framework	 for	 the	 assessment	 of	
uncertainty	quantification	for	a	clinically	relevant	task	of	white	matter	lesion	
segmentation	in	multiple	sclerosis.	The	specificity	of	the	segmentation	task	
allowed	for	the	exploration	of	UQ	at	different	anatomical	scales:	voxel,	lesion,	
and	patient.	We	introduced	novel	structure-based	UQ	measures	at	the	lesion	
and	 patient	 scales.	 On	 each	 of	 these	 scales,	 we	 performed	 a	 comparative	
study	between	different	uncertainty	measures	 (among	 the	 state-of-the-art	
and	the	proposed)	to	determine	the	measures	that	can	point	 to	 the	model	
errors	of	a	particular	kind:	voxel	misclassification,	lesion	false	discovery,	or	
overall	 low	 quality	 of	 segmentation.	 For	 this,	 we	 use	 the	 error	 retention	
curves	 analysis	previously	 introduced	 for	 the	pixel/	voxel	 scales	 (Malinin,	
2019;	Malinin	et	al.,	2022;	Mehta	et	al.,	2022),	and	extended	to	the	structural	
scales	in	this	and	our	previous	work	(Molchanova	et	al.,	2023).	Our	proposed	
uncertainty	measures	(𝐿𝑆𝑈(') 	on	the	lesion	scale	and	𝑃𝑆𝑈(') 	on	the	patient	
scale	 from	 the	 equations	 1-4)	 quantify	 the	 disagreement	 in	 the	 structural	
predictions	between	the	ensemble	model	and	 its	members,	demonstrating	
enhanced	error	detection	over	state-of-the-art	aggregation-based	metrics	on	
both	in-	and	out-of-domain	datasets.	Furthermore,	𝑃𝑆𝑈(') 	is	shown	to	be	a	
reliable	indicator	of	overall	segmentation	quality	both	in-	and	out-of-domain.	

This	study	compares	a	variety	of	voxel-scale	measurements	adopted	from	
classification	 tasks,	 noting	 their	 similar	 capabilities	 in	 capturing	 voxel	
misclassification	 errors.	 A	 more	 pronounced	 difference	 between	 these	
measures	 is	 observed	 after	 aggregation	 at	 other	 anatomical	 scales.	
Particularly,	at	 the	 lesion	scale,	higher	areas	under	 the	respective	RCs	are	
observed	 for	 the	 total	 uncertainty	measures,	 compared	 to	 the	measure	of	
knowledge	 uncertainty,	 and	 even	 more	 data	 uncertainty.	 However,	 voxel	
uncertainty	aggregation	at	the	patient	scale	yielded	results	akin	to	random	
uncertainty	 judging	 by	 the	 error	 RC	 analysis.	 Closer	 examination	 of	 the	
correlation	 between	 patient	 scale	 uncertainty	 measures	 and	 the	 DSC	
revealed	 a	 positive	 relationship,	 suggesting	 that	 a	 higher	 average	 voxel	
uncertainty	correlates	with	improved	DSC.	To	explain	this	counterintuitive	
finding,	 we	 need	 to	 recall	 the	 fact	 that	 the	 model	 is	 biased	 towards	
segmenting	better	subjects	with	higher	lesion	load	which	comes	from	the	loss	



 

 

function	construction	and	has	been	previously	highlighted	 in	 (Raina	et	 al.,	
2023).		

Then,	 considering	 our	 qualitative	 assessment	 revealing	 that	 the	
uncertainty	is	the	highest	at	the	borders	of	lesions,	the	positive	correlation	
between	average	voxel	uncertainty	in	a	subject	and	the	DSC	on	this	subject	
becomes	clear.	Similar	behaviour	of	the	measures	based	on	an	aggregation	of	
voxel	uncertainties	has	been	previously	observed	for	the	task	of	brain	tumor	
segmentation	 (Jungo	et	 al.,	 2020),	 but	not	 for	 the	 task	of	brain	 structures	
segmentation	(Roy	et	al.,	2019),	where	the	segmented	objects	are	the	same	
and	of	similar	sizes	in	each	of	the	images.	This	supports	our	hypothesis	that	
voxel-scale	uncertainty	aggregation	 is	unsuitable	 for	 tasks	affected	by	this	
bias.	 In	 such	 cases,	 structural	 disagreement	 metrics	 present	 a	 viable	
alternative	to	aggregation-based	methods,	showing	a	 strong	connection	 to	
different	error	types.	

	
4.1	Limitations	and	future	work	

The	 fact	 that	 lesion	 and	 patient	 uncertainty	 measures	 depend	 on	 the	
choice	of	the	threshold	at	the	model’s	output,	necessary	for	the	instances	/	
segmented	 region	 definition,	 remains	 a	 matter	 of	 ongoing	 debate.	 We	
proposed	 to	 address	 the	 issue	 by	 introducing	 two	 analogs	 of	 the	 same	
measure	 corresponding	 to	 different	 strategies	 of	 the	 threshold	 choice,	 i.e.	
𝐿𝑆𝑈 	versus	 𝐿𝑆𝑈' 	and	 𝑃𝑆𝑈 	and	 𝑃𝑆𝑈' .	 Nevertheless,	 a	 more	 detailed	
investigation	 of	 this	 aspect	 might	 be	 needed.	 For	 instance,	 exploring	 the	
model	calibration	as	a	way	to	circumvent	threshold	tuning	or	investigating	
measures	of	uncertainty	where	this	dependence	is	mitigated.	

This	paper	is	focused	on	the	WML	segmentation	task.	While	this	is	a	very	
relevant	 task	 in	 clinical	 practice,	 there	 are	 several	 medical	 image	
segmentation	tasks	that	could	adopt	the	proposed	multi-scale	approach	for	
UQ.	 This	 includes,	 for	 instance,	 nuclei	 segmentation	 on	 histopathology	
images	(Kumar	et	al.,	2020),	bone	metastases	segmentation	on	the	full-body	
MRI	or	CT	(Colombo	et	al.,	2021;	Afnouch	et	al.,	2023),	vascularized	lymph	
nodes	on	CT	or	MRI	 (Hassani	et	al.,	2020),	or	white	matter	 lesions	 in	MRI	
from	non-MS	patients	 (Malova	et	 al.,	 2021).	 Still,	 finding	 the	multi-centric	
data	and	benchmarks	needed	for	UQ	methods	validation	under	the	domain	
shift	in	these	new	tasks	is	not	straightforward.		



 

 

While	 Trustworthy	 AI	 gains	 momentum,	 the	 practical	 integration	 of	
uncertainty	 measures	 in	 clinical	 workflows	 necessitates	 further	
investigation	 and	 clinical	 feedback,	 balancing	 the	 provision	 of	 additional	
information	 to	 clinicians	 with	 the	 risk	 of	 biasing	 their	 decisions	 poses	 a	
unique	 challenge	 (Evans	 et	 al.,	 2022b).	 Given	 the	 knowledge	 about	 the	
information	 brought	 by	 uncertainty	 quantified	 at	 different	 scales	 and	 the	
relationship	of	uncertainty	 to	errors,	 it	 is	 further	 important	 to	 investigate	
different	transitional	scenarios	and	the	potential	perceptual	biases	that	the	
uncertainty	 (maps)	 can	 create	 in	 the	perception	of	 clinicians.	Thus,	 future	
research	direction	should	focus	on	obtaining	clinical	feedback	to	study	the	
perception,	usability,	 and	 biases	 induced	 by	 showing	 uncertainty	maps	 to	
radiologistsIt	would	be	particularly	important	to	pursue	a	clinical	validation	
of	the	hypotheses	made	about	the	informativeness	of	the	proposed	measures	
as	a	way	to	point	clinicians	to	model	errors.	
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Appendix	A.	Definitions	of	quality	metrics	

Let	#TP	,#FP	 ,#FN	be	the	number	of	true	positive	(TP),	false	positive	(FP),	
and	false	negative	(FN)	voxels,	respectively.		

True	positive	rate:	𝑇𝑃𝑅 = #./
#./"#01

.	

Positive	predictive	value:	𝑃𝑃𝑉 = #./
#./"#0/

.	

Dice	similarity	score	or	F1-score:	𝐷𝑆𝐶 = 𝐹# =
$%&⋅%%(
$%&"%%(

=
)⋅#./

)⋅#./"#0/"#01
.	

Normalized	Dice	similarity	score	Raina	et	al.	(2023):		

𝑛𝐷𝑆𝐶 = )⋅#./
)⋅#./"*⋅#0/"#01

, 𝜅 = ℎ(𝑟+# − 1),		

where	h	represents	the	ratio	between	the	positive	and	the	negative	classes	
while	0	<	r	<	1	denotes	a	reference	value	that	is	set	to	the	mean	fraction	of	the	
positive	class,	i.e.	a	lesion	class	in	our	case,	across	a	large	number	of	subjects.	

Analogous,	lesion-scale	metrics	can	be	defined	by	replacing	#TP	,	#FP	,	#FN	
with	 a	 number	 of	 TP,	 FP,	 and	 FN	 lesions	 (TPL,	 FPL,	 FNL).	 As	 mentioned	
before,	the	definition	of	lesion	types	can	vary.	This	work	uses	25%	overlap	to	
distinguish	TPL	and	FPL	among	the	predicted	lesions.	FNL	is	defined	as	the	
ground	truth	lesions	that	have	no	overlap	with	predictions.	

 	



 

 

Appendix	B.	Additional	results	

B.1	Error	retention	curve	analysis	

Figure	6:	Error	retention	curves	for	the	assessment	of	uncertainty	measures	at	the	voxel,	
lesion,	and	patient	(rows	one,	two,	and	three,	respectively)	anatomical	scales	across	the	in-
domain	Testin	(left	column)	and	the	out-of-domain	Testout	(center	column)	and	Testprivate	(left	
column)	 sets	 for	 the	 SB	model.	Different	 rows	 correspond	 to	 different	 anatomical	 scales	
indicated	with	icons	on	the	left.	The	voxel-scale	DSC-RCs	and	lesion-scale	LPPV-RCs	were	
obtained	by	averaging	across	the	respective	datasets.	At	each	of	the	scales,	the	ideal	(black	
dashed)	line	indicates	the	upper	bound	of	an	uncertainty	measure	performance	in	its	ability	
to	capture	model	errors;	the	random	(gray	dashed)	indicates	no	relationship	between	an	
uncertainty	measure	 and	 error;	 a	worse-than-random	 performance	 indicates	 an	 inverse	
relationship.	



 

 

	
B.2	Patient-scale	uncertainty	as	a	proxy	for	segmentation	quality	

	
Figures	7	and	8	extend	the	error	retention	curves	analysis	of	the	patient-scale	

uncertainty	measures	revealing	more	information	about	the	relationship	between	
the	uncertainty	measures	and	the	segmentation	quality	measures	by	DSC.	

	

Figure	7:	The	relationship	between	DSC	and	patient-scale	uncertainty	assessed	 for	Testin	
(orange),	Testout	(black),	and	Testprivate	(gray)	separately	and	jointly	for	the	SB	model.	The	
Spearman	correlation	coefficients	ρ	between	DSC	and	uncertainty	are	reported	in	the	plots ’
legends.	



 

 

	
Figure	8:	The	relationship	between	DSC	and	patient-scale	uncertainty	assessed	for	Testin	(orange),	
Testout	(black),	and	Testprivate	(gray)	separately	and	jointly	for	the	nnU-Net	model.	The	Spearman	
correlation	coefficients	ρ	between	DSC	and	uncertainty	are	reported	in	the	plots ’legends. 
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