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Abstract—In this paper, we propose a novel predictive safety
filter that is robust to bounded perturbations and is implemented
in an even-triggered fashion to reduce online computation. The
proposed safety filter extends upon existing work to reject
disturbances for discrete-time, time-varying nonlinear systems
with time-varying constraints. The safety filter is based on novel
concepts of robust, discrete-time barrier functions and can be
used to filter any control law. Here, we use the safety filter in
conjunction with Differentiable Predictive Control (DPC) as a
promising offline learning-based policy optimization method. The
approach is demonstrated on a two-tank system, building, and
single-integrator example.

I. INTRODUCTION

Control barrier functions are a useful tool for ensuring
constraint satisfaction of nonlinear, dynamical systems [1].
This method has received increasing attention recently due to
its modularity and applicability to learning-based techniques
that generally do not have guarantees of constraint satisfaction,
i.e., safety [2], [3]. Barrier functions are also advantageous for
being robust to perturbations and provide asymptotic stability
to the safe set.

One criticism of barrier function methods, however, is the
difficulty in constructing the functions themselves. [4] provides
a way to construct barrier functions using maximal output ad-
missible sets, but is dependent on a known stabilizing control
law. Verification methods have been developed for uncertain
system dynamics [5], but only probabilistic guarantees of
safety are provided. Some synthesis methods are restricted to
specific types of systems [6] or are dependent on sampling
methods or sum-of-squares techniques, which do not scale
well with system size [7]. Other approaches require expert-
provided trajectories in order to learn the barrier function [8],
[9]. Most of these approaches require significant offline data
and computation, may be subject to conservatism, and are
generally restricted to time-invariant systems. An alternative
approach considered here is to use a prediction horizon to
relax these restrictions.

Many existing barrier function methods implement the
safety-critical control as a nonlinear program, which is ef-
fectively a 1-step look-ahead model predictive control (MPC)
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Fig. 1: Schematics of the proposed event-triggered robust
predictive safety filter combined with learning-based policy.

problem. The ability to predict system behavior can relax
conservatism in the 1-step look-ahead approach. There exist
methods that combine the finite horizon, MPC setup with
control barrier functions [10]–[14] as well as those that use
robust MPC methods [15]–[19]. Here we focus on the discrete-
time safety addressed in [12]–[19], which unfortunately do
not provide hard guarantees of safety for perturbed, nonlinear,
time-varying systems with time-varying constraints. In [12],
a predictive safety filter is developed for time-invariant, non-
linear systems that is always guaranteed to be feasible and
ensures asymptotic stability to the safe set. In [13], safety and
asymptotic stability are addressed by combining MPC with
control barrier functions for nonlinear, time-invariant systems.
In [14], a disturbance observer is combined with an MPC-
based barrier function control law to guarantee the safety of
perturbed nonlinear, time-invariant systems with measurement
noise. Other types of predictive safety filters have been de-
veloped for handling perturbations, but are restricted to time-
invariant systems and require global bounds on the disturbance
[15], are restricted to linear time-invariant systems [16], or
focus on probabilistic safety [17]–[19]. We note that there
exist many robust, nonlinear MPC methods, but many time-
varying implementations are focused on linear systems [20],
[21] or adaptive methods [22], [23] wherein there is control
over how the the time-varying components update. Here we
are interested in the development of a robust, predictive safety
filter for time-varying systems with time-varying constraints.
This sole focus on safety (instead of safety and performance
common to MPC) allows for less restrictive conditions to be
satisfied, can yield additional properties such as convergence
to the safe region [12], and as will be shown here can reduce
the amount of computation needed online.

As mentioned previously, predictive safey encompasses the
1-step safety filters common to barrier function methods.
Existing discrete-time barrier function methods have been ap-
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plied to bipedal robotics [24] and adaptive high-order systems
[25], for example, but there is a limited range of methods
for handling bounded perturbations. [26] presents a robust
barrier function that uses GP estimate of disturbance, but no
hard guarantees of safety are provided. [27] presents barrier
functions that are robust to stochastic perturbations. [28] use
barrier functions for multi-agent partially observable Markov
decision processes for probabilistic safety guarantees. [29]
uses MPC in combination with barrier functions, but no
formal guarantees of safety are provided. [30] combines high-
order barrier functions in an MPC framework. [13] combines
nonlinear MPC with barrier functions, focusing on enhancing
feasibility. [31] uses MPC with barrier functions for obstacle
avoidance. Apart from [26], [27] [12], and [14], none of
the previous methodologies address robustness to perturba-
tions. The methods from [26] [27] only address probabilistic
safety, whereas the asymptotic stability results from [12] are
effective for vanishing perturbations, but not for bounded,
non-vanishing perturbations which are common in practice.
In the continuous-time domain, there exist many solutions
that are robust to bounded perturbations [32], [33], but this
has been lacking in the discrete-time domain. Furthermore,
many of the aforementioned approaches require constant on-
line computation of optimization problems, which can be
restrictive for computationally limited edge devices. A new
safety filter is needed that is robust, addresses time-varying
systems/constraints, and is only solved if the nominal control
will violate constraints.

In this work, we extend the predictive safety filter [12] to
address bounded perturbations as well as time-varying systems
and constraints. Furthermore, we address computation demand
via an event-triggering scheme. This event triggering only
requires solving the safety filter optimization problem if the
nominal control performs an unsafe action. We also extend
the existing results in the literature to address robust discrete-
time barrier functions with a 1-step safety filter that reduces
computation and simplifies the process of barrier function
verification. The resulting methodology is guaranteed to be
safe and robust. Figure 1 illustrates the proposed method. The
main contributions of this work are: (1) Robust predictive
safety filter for time-varying systems and constraints, (2) 1-
step robust safety filter for discrete-time systems, and (3)
event-triggering methods for reducing online computations.

The paper is outlined as follows. In Section II we intro-
duce the notation, relevant preliminaries, and the problem
formulation. In Section III, we introduce the robust barrier
function formulation and the robust predictive safety filter. In
Section IV, we extend the predictive safety filter with an event-
triggering scheme and develop a 1-step robust safety filter for
robust discrete-time barrier functions. In Section V, we apply
the proposed method to a two-tank system, a building system,
and a single integrator.

II. BACKGROUND

A. Notation and Preliminaries
Let N be the set of natural numbers including 0. The

notation Lk
f is used to denote the Lipschitz constant of a Lip-

schitz function, f(x, k), with respect to the second argument.

Similarly, Lx
f is used to denote the Lipschitz constant of f

with respect to the first argument. The notation Lf will be
used to denote a bound with respect to the function f and
will be explicitly defined in the text.

We say a function z : Rn × N → R is locally Lipschitz
continuous on D ⊂ Rn if z satisfies the following Lipschitz
condition:

∥z(x, k)− z(y, k)∥≤ Lx
z∥x− y∥

for all x,y ∈ D, k ∈ N. Unless otherwise stated, z can be
discontinuous with respect to k.

We say a function z : Rn × N → R is 1-step bounded on
N with Lk

z if z satisfies the following condition:

∥z(x, k + 1)− z(x, k)∥≤ Lk
z (1)

for all x ∈ Rn, k ∈ N.

B. Problem Formulation

Consider the following discrete-time dynamical system:

xk+1 = f(xk,uk, k) + d(xk,uk, k), x0 ∈ Rn, k ∈ N (2)

where f : Rn × Rm × N → Rn is a function defining the
known model, u ∈ U is the control input for the compact set
U ⊂ Rm, and d : Rn × Rm × N → D ⊂ Rn is a function
defining the unknown disturbance.

Next, we define the safe region. Consider a function b :
Rn×N → R. This function b is used to define general system
constraints that should be satisfied, whose related safe set is
defined as follows:

X (k) :=
{
x ∈ Rn : b(x, k) ≥ 0

}
(3)

The problem addressed here is to design a control law that
implements a nominal control law, denoted unom : Rn×N →
U , while always making sure the system remains in the safe
set X (k). Here the nominal control could be any previously
defined control law or learning-based control that has no safety
guarantees associated with it. The purpose of the proposed
control is to only override the nominal control to ensure safe
action.

Problem 1. Consider the system (2) with unknown distur-
bance. Given a safe region X (k) from (3) defined for all
k ∈ N, and any nominal control unom : Rn ×N → U , design
a control law uk : Rn ×N → U such that xk ∈ X (k) for all
k ∈ N.

III. ROBUST PREDICTIVE SAFETY FILTER

A. Robust Barrier Functions

In this section, we present the proposed predictive safety
filter method to address Problem 1. The approach considered
here is based on control barrier functions for discrete-time
systems.

Let h : Rn × N → R denote a barrier function and let the
corresponding time-varying set be defined by:

C(k) = {x ∈ Rn : h(x, k) ≥ 0} (4)



The main idea behind the barrier function is that if h
satisfies certain dynamic conditions for (2), then for any
xk ∈ C(k), for any time k ∈ N, there exists a control law
to ensure C(k) is forward invariant, i.e., if x0 ∈ C(0), then
xk ∈ C(k) for all k ∈ N. Thus if C(k) ⊂ X (k) for all k ∈ N
and x0 ∈ C(k), then it follows that the safety condition from
Problem 1 is satisfied: xk ∈ X (k) for all k ∈ N. The key then
is to determine what dynamic conditions h needs to satisfy
in order to guarantee the safety condition in the presence of
unknown disturbances. We will also extend this notion using
prediction so that the dynamic condition only needs to hold
at a horizon N ∈ N, N ≥ 1.

Before presenting the dynamic condition to address un-
known disturbances we make the following realistic assump-
tions on (2) and h:

Assumption 1. The system (2) satisfies the following:

1) The function f : Rn ×Rm ×N → Rnis locally Lipschitz
continuous on a set W ⊂ Rn, for which W ⊃ X (k) ∀k ∈
N, with Lipschitz constant Lx

f ∈ R≥0.
2) For the unknown disturbance in (2), there exists a bound

Ld ∈ R≥0, Ld <∞, satisfying:

Ld := sup
x∈X (k),u∈U,k∈N

||d(x,u, k)|| (5)

Assumption 2. For N ∈ N, N ≥ 1, let Y ⊂ Rn satisfy:

Y ⊃
⋃

x∈X (k),k∈N

y ∈ Rn : ∥y − x∥≤ Ld

N−1∑
j=0

(Lx
f )

j


. The following Lipschitz conditions hold:

1) The function b : Rn × N → R is locally Lipschitz
continuous on Y with Lipschitz constant Lx

b ∈ R≥0.
2) The function h : Rn × N → R is locally Lipschitz

continuous on Y , with Lipschitz constant Lx
h ∈ R≥0.

Remark 1. Many dynamical systems satisfy the Lipschitz con-
dition in Assumption 1 including robotics and buildings [6],
[34], which is less restrictive than the smoothness requirement
in similar MPC settings [21]. Also, the disturbance condition
is a common assumption [15] and can be satisfied directly
if a) d is continuous on its domain, C(k) is compact for
all time, and d is bounded in time, or b) D is compact.
Many existing time-invariant barrier function methods assume
C(k) is compact which is a special case of this assumption
[12]. Furthermore, Assumption 2 restricts only how h and
b change with respect to x. This assumption still allows
for discontinuous jumps in time, which is reflected in many
building applications. The Lipschitz condition in Assumption
2 takes into account the effect of the disturbance on b and
h. The condition says that set Y must contain the set X (k)
in addition to a ball, dependent on the disturbance bound,
surrounding each point in X (k). Finally, there exist methods
to compute Lipschitz constants for general systems [35] as
well as neural-network models used in system identification
[36], [37].

Now we define the associated safety condition in a pre-
dictive context. For a horizon N , the associated dynamic
condition is:

δh̄N (xk,uk, k) := h(f(xk,uk, k), k+1)−Lx
hLd(Lx

f )
N−1

≥ 0 (6)

The condition in (6) requires that at the end of the N -step
horizon, the predicted system needs to be sufficiently far
into the safe region to take into account the worst possible
disturbance. We define the N-step robust, discrete-time barrier
function as follows:

Definition 1. Consider the system (2) and the function h :
Rn × N → R with C(k) defined by (4) and

K̄(x, k) := {u ∈ U : δh̄N (x,u, k) ≥ 0, if x ∈ C(k)}. (7)

We say h is an N-step robust, discrete-time barrier function,
if K̄(x, k) ̸= ∅, ∀x ∈ C(k), ∀k ∈ N.

Remark 2. The motivation behind (6) is based on recent
results for discrete-time barriers [4]. Consider the conven-
tional time-invariant barrier function where N = 1 and no
disturbance exists such that (6) becomes: h(xk+1) ≥ 0. This
is a necessary and sufficient condition for ensuring forward
invariance of C as shown in [4]. This is notably different
from other discrete-time barriers [25], [28] which adopt the
continuous-time formulation: h(xk+1)−h(xk) ≥ −γ(h(xk))
which rearranges to: h(xk+1) ≥ h(xk) − γ(h(xk)) for an
extended class-K function γ : R → R satisfying γ(r) ≤ r.
Although it seems that γ allows for freedom in the design
of h, in the discrete-time case this is not true. Consider
the simple choice of a scalar γ for which the condition
γ(r) ≤ r becomes γ ≤ 1, the difference condition becomes
h(xk+1) ≥ (1 − γ)(h(xk)). For any γ < 1, this requires
h(xk+1) to be strictly greater than zero which is overly
restrictive for ensuring safety. The choice of γ = 1 of course
results in the same condition from [4]. The proposed predictive
form in (6) extends the recent development from [4] to account
for prediction and robustness in the barrier function.

The N-step robust, discrete-time barrier function will be
used to ensure there always exists a control N steps in the
future to enforce safety. Before presenting the safety filter, we
present a result on how to ensure future state trajectories are
safe for an N -step look-ahead. To do so, we first define the
prediction of a future state as:

x̂N |k = f̂(xk, {ul|k}N−1
l=0 , k) :=

f(...f(xk,u0|k, k), ...uN−1|k, k +N − 1) (8)

where the notation {ul|k}Nl=0 := {u0,u1, ...,uN} is used to
denote the set of inputs ul+k starting from time l = 0 up to
l = N . The notation xN |k is the state xk+N at time k + N
beginning from time k at which point x̂0|k = xk.



Next, we define the following term to accommodate future
predictions with respect to X (k):

δb̂N |k(xk, {ul|k}N−1
l=0 , k) := b(f̂(xk, {ul|k}N−1

l=0 , k), k+N)

− Lx
bLd

N−1∑
j=0

(Lx
f )

j ≥ 0 (9)

Finally, we define the following set of safety-admissible con-
trol actions as:

K̂N |k(xk, k) :=
{
ui−1+k ∈ U , i ∈ [1, N ] ⊂ N :

δb̂i|k(xk, {ul|k}i−1
l=0 , k) ≥ 0

}
(10)

In the following proposition, we show that control inputs that
lie inside the predictive set of safety admissible actions from
(10) ensure open-loop safety of the system over the finite
horizon.

Proposition 1. Consider the system (2) for which Assumption
1 holds. Given a function b : Rn × N → R satisfying
Assumption 2.1, let K̂N |k, δb̂N |k, and X (k) be defined by
(10), (9), and (3) respectively. For a given xk0

∈ X (k0),
and k0, N ∈ N, N ≥ 1, if {ul|k0

}N−1
l=0 ∈ K̂N |k0

(xk0
, k0)

is applied to (2) in open-loop from time k0 to N − 1, then
xk ∈ X (k) for all k ∈ [k0, k0 +N ] ⊂ N.

Proof. Let i ∈ [1, N ] ⊂ N. The proof follows by showing that
the error between the unperturbed prediction x̂i|k (defined by
(8)) and perturbed prediction xi|k (defined by (2)) is appro-
priately bounded and that this bound is taken into account via
δb̂i|k. By definition of δb̂Nk

and K̂N |k, x̂i|k ∈ X (k+ i) ⊂ W
for all i ∈ [1, N ], i.e., the future trajectory of the unperturbed
system is safe, the dynamics are locally Lipschitz continuous
on this trajectory, and the bound on the disturbance holds. This
cannot yet be said for for the unperturbed trajectory.

We can however claim that for some i ∈ [1, N ] ⊂ N, xi|k ∈
X (k + i). This proof is straightforward by simply choosing
i = 1 and noting that x̂0|k0

= x0|k0
= xk0

∈ X (k0) ⊂ W
so the locally Lipschitz property and disturbance bound of
Assumption 1 hold for xk0 , which along with the triangle
inequality yields: ∥x̂1|k0

− x1|k0
∥= ∥f(x̂0|k0

,u0|k0
, k0) −

f(x0|k0
,u0|k0

, k0) −d(x0|k0
,u0|k0

, k0)∥≤ Ld+Lx
f∥x̂0|k0

−
x0|k0

∥. From Assumption 2, the local Lipschitz property of
b applies to x1|k0

and x̂1|k0
, such that the following holds:

|b(x̂1|k0
, k0 + 1) − b(x1|k0

, k0 + 1)|≤ Lx
b ∥x̂1|k0

− x1|k0
∥.

Thus from the previous relations we have: |b(x̂1|k0
, k0 +1)−

b(x1|k0
, k0+1)|≤ Lx

bLd. This implies that: b(x1|k0
, k0+1) ≥

b(x̂1|k0
, k0 +1)−Lx

bLd. By assumption, since {ul|k0
}N−1
l=0 ∈

K̂N |k(xk0
, k0), u0|k0

satisfies: δb̂1|k0
(xk0

, {u0|k0
}, k0) ≥ 0

for which b(x̂1|k0
, k0+1) ≥ Lx

bLd. This yields: b(x1|k0
, k0+

1) ≥ b(x̂1|k0
, k0 +1)−Lx

bLd ≥ 0 such that x1|k0
= xk0+1 ∈

X (k0 + 1).
To complete the proof, we repeat the above argument

recursively for i = 2, ..., N . Note that for a given i,
xi−1|k0

∈ X (k0 + i − 1) so that the Lipschitz property of f
always holds. Next we define the following relations for any
i ∈ 1, ..., N . Using the Lipschitz property of f and the bound
Ld along with the triangle inequality yields: ∥x̂i|k0

−xi|k0
∥=

∥f(x̂i−1|k0
,ui−1|k0

, k0+ i−1)−f(xi−1|k0
,ui−1|k0

, k0+ i−
1) − d(xi−1|k0

,ui−1|k0
, k0 + i− 1)∥≤ Ld +Lx

f∥x̂i−1|k0
−

xi−1|k0
∥. We repeatedly apply the above process until we

reach i = 1. This can be written as follows for F (y) =
Ld + Lx

fy and Fi(y) = F ◦ F ◦ ... ◦ F︸ ︷︷ ︸
i times

(y): ∥x̂i|k − xi|k∥≤

F ◦ F ◦ ... ◦ F︸ ︷︷ ︸
i times

(∥x̂0|k − x0|k∥) = Fi(∥x̂0|k − x0|k∥). Now

since x̂0|k0
= x0|k0

= xk0
, it is clear from the previous

relation that ∥x̂i|k − xi|k∥≤ Fi(0) for which by evaluation
Fi(0) = Ld

∑i−1
j=0(Lx

f )
j .

Now it is clear that from the bound defined by Fi(0),
the Lipschitz property of b applies to each xi|k0

so that
the following holds: |b(x̂i|k0

, k0 + i) − b(xi|k0
, k0 + i)|≤

Lx
b ∥x̂i|k0

−xi|k0
∥. Thus from the previous relations we have:

|b(x̂i|k0
, k0 + i) − b(xi|k0

, k0 + i)|≤ Lx
bLd

∑i−1
j=0(Lx

f )
j . This

implies that:

b(xi|k0
, k0 + i) ≥ b(x̂i|k0

, k0 + i)− Lx
bLd

i−1∑
j=0

(Lx
f )

j (11)

By assumption, since {ul|k0
}N−1
l=0 ∈ K̂N |k(xk0

, k0),
{ul|k0

}i−1
l=0 satisfies: δb̂i|k0

(xk0
, {ul|k0

}i−1
l=0 , k0) ≥ 0 for which

b(x̂i|k0
, k0 + i) ≥ Lx

bLd

∑i−1
j=0(Lx

f )
j (see (8), (9)). Com-

bined with (11) yields: b(xi|k0
, k0 + i) ≥ b(x̂i|k0

, k0 + i) −
Lx
bLd

∑i−1
j=0(Lx

f )
j ≥ 0 such that xi|k0

= xk0+i ∈ X (k0 + i).
Application of this for all i ∈ [1, N ] ⊂ N with k = k0 + i
completes the proof.

It is important to emphasize that Proposition 1 does not
require that b is a barrier function in any sense. This result is
a sufficient condition for ensuring that in the finite horizon, the
safety conditions will be met. The N-step robust, discrete-time
barrier function will then ensure that the open-loop control
from Proposition 1 can be applied for all future time to enforce
safety. This will be presented in the next subsection.

B. Predictive Control

Here we present the robust predictive safety filter control.
Consider h as an N-step robust, discrete-time barrier function.
The robust predictive safety filter is defined by the following
safety filter problem, respectively:

Psf (xk, k) =

argmin
ul|k

∥unom(xk, k)− u0|k∥ (12a)

s.t. ∀l = 0, ..., N − 1 :

x̂0|k = xk, (12b)
x̂l+1|k = f(x̂l|k,ul|k, l + k), (12c)
ul|k ∈ U , (12d)

b(x̂l|k, l + k) ≥ Lx
bLd

l−1∑
j=0

(Lx
f )

j
, (12e)

h(x̂N |k, k +N) ≥ Lx
hLd(Lx

f )
N−1 (12f)

{u∗
l|k}

N
l=0 = Psf (xk, k) (13)



Remark 3. There are several differences between the pro-
posed robust predictive safety filter and that of [12]. First,
the proposed safety filter only requires the solution of one
optimization problem whereas [12] requires an additional
feasibility problem to be solved. Second, the robustness-related
terms, i.e., Lx

b ,Ld, Lx
h, and Lx

f ensure any bounded distur-
bance cannot push the system outside of the safe set, which is
not ensured in [12].

The barrier function h acts as a terminal constraint and
must be an N-step robust, discrete-time barrier function for
robustness guarantees to hold. The h function must be con-
structed to satisfy the conditions of Definition 1, which will
most likely result in a conservative terminal set. Thus for more
aggressive, but safe performance, a designer would construct h
conservatively, but then enlarge the prediction horizon, N . The
constraints defined by b can then be satisfied without checking
that b itself is a barrier function in any sense. The trade-off
is that as N increases, more computation is required to check
that safety is guaranteed, while the system state is able to
deviate further from the conservative bound defined by h. For
a time-invariant h, the linearization approach from [12] can
be used to construct h to satisfy Definition 1.

C. Analysis

The following assumption is made regarding the terminal
constraint function h:

Assumption 3. The function h : Rn × N → R with corre-
sponding sets C(k) and K̄ defined by (4) and (7), respectively,
is an N-step robust, discrete-time barrier function.

In the following theorem, we show that the proposed control
is always feasible and ensures the states remain inside of the
safe set X (k) for all time in the presence of disturbances.
Let the robust safety set and robust terminal safe set be
respectively defined by:

X l(k) = {x ∈ Rn : b(x, k) ≥ Lx
bLd

l−1∑
j=0

(Lx
f )

j},

∀l ∈ {0, ..., N} (14)

XN
f (k) = {x ∈ Rn : h(x, k) ≥ Lx

hLd(Lx
f )

N−1} (15)

The following assumption is required to ensure the robust
safety sets are non-empty and that if the final state in the
horizon lies in terminal robust safety set, then it also lies in
the robust safety set, i.e., XN

f (k+N) ⊂ XN (k+N), ∀k ∈ N.

Assumption 4. The following conditions hold:
1) X l(k + l) ̸= ∅, ∀l ∈ {0, ..., N}, ∀k ∈ N
2) XN

f (k) ̸= ∅, ∀k ∈ N
3) XN

f (k +N) ⊂ XN (k +N), ∀k ∈ N.

Remark 4. The last condition in Assumption 4 requires that
the robust safety region at prediction time N must contain
the level set defined by the N-step robust, discrete-time barrier
function. The idea here is that we treat XN

f as the terminal set,
and so if the system reaches this terminal set at time N , then

it will satisfy the system constraints defined by X while taking
into account the effects of the perturbation. This condition can
be satisfied by shrinking C(k) appropriately.

The following theorem presents one of the main results
and states that the proposed robust safety filter ensures the
states remain inside of the safe region X (k) and feasibility
of the proposed control for all time. The main differences
between this result and that of [12] is that here we address
robustness to perturbations and extend the approach to time-
varying systems with time-varying constraints. The key in this
proof is in handling the disturbances in all future predictions
of the system by exploiting Proposition 1 and Definition 1.

Theorem 1. Consider the system (2) satisfying Assumption
1 and suppose a nominal control law unom : Rn × N → U
is given. Given functions b : Rn × N → R and h : Rn ×
N → R for which Assumption 2 holds, let K̂, δb̂N |k, and
X (k) be defined by (10), (9), and (3), respectively. Suppose
Assumptions 3 and 4 hold. For (2) in closed-loop with (12),
(13), and for any given k0 ∈ N, xk0 ∈ X (k0) for which
Psf (xk0

, k0) is feasible, the following statements hold:
1) The control defined by (12), (13) is feasible for all k ≥ k0.
2) xk ∈ X (k) for all k ≥ k0, k ∈ N.

Proof. Proposition 1 ensures that the open-loop application
of {u∗

l|k}
N−1
l=0 to (2) is safe, i.e., uk = u∗

0|k,uk+1 =
u∗
1|k, ...,uk+N−1 = u∗

N−1|k, ensures that xκ ∈ X (κ) for all
κ ∈ {k, ..., k + N}. Thus since Psf (xk0

, k0) is feasible, we
thus know that xk0+1 ∈ X (k0 + 1).

In the closed-loop response, we want to show that Psf is
always feasible so that we can repeatedly apply Proposition 1
to ensure safety holds for all future time. In order to show that
feasibility of Psf (xk, k) implies feasibility of Psf (xk+1, k+
1), we need to show that there exists a feasible control action
at k + 1.

We will denote the resulting state trajectory associated
with {u∗

l|k}
N−1
l=0 applied to the unperturbed system (12c) as

{x̂l|k}Nl=0, i.e., this is the predicted system trajectory with the
optimal control at time k. The feasible control action chosen
is defined as follows:

u+
l|k+1 ∈


{u∗

l+1|k},∀l ∈ {0, ..., N − 2},
K̄(x̂N−1|k+1, k +N), for l = N − 1

if x̂N−1|k+1 ∈ C(k +N),

{0}, for l = N − 1 if x̂N−1|k+1 /∈ C(k +N)
(16)

for which the chosen control action yields an unperturbed tra-
jectory {x̂l|k+1}N−1

l=0 , where x̂l|k+1 is defined by (12c) starting
at time k + 1 with x̂0|k+1 = xk+1. Note that {x̂l|k+1}N−1

l=0

may not be equal to {x̂l|k}Nl=1 because x̂0|k+1 = xk+1, i.e.,
the initial condition in the prediction of the unperturbed state
at time k + 1 is the result of the true system dynamics.

The last step here is to show that the control action
(16) yields x̂l|k+1 that satisfy b(x̂l|k+1, k + l + 1) ≥
Lx
bLd

∑l−1
j=0(Lx

f )
j for all l ∈ {0, ..., N−1} and h(x̂N |k+1, k+

N + 1) ≥ Lx
hLd(Lx

f )
N−1.

We first follow a similar approach to the proof of Proposi-
tion 1 and define the error between the unperturbed trajectory



at k, x̂i+1|k, and the resulting trajectory from u+
i|k+1, x̂i|k+1,

for all i ∈ {0, ..., N − 1} using the Lipschitz property of f .
Consider the following relation for i ∈ {1, ..., N − 1}:

∥x̂i|k+1 − x̂i+1|k∥=∥f(x̂i−1|k+1,u
+
i−1|k+1, k + i)

− f(x̂i|k,u
+
i−1|k+1, k + i)∥

≤Lx
f∥x̂i−1|k+1 − x̂i|k∥ (17)

For each i ∈ {1, ..., N − 1} we can repeat the appli-
cation of (17) until i = 1, which yields: ∥x̂i|k+1 −
x̂i+1|k∥≤ (Lx

f )
i∥x̂0|k+1 − x̂1|k∥. Now recall that x̂0|k+1 =

xk+1 = f(xk,u
∗
0|k, k) + d(xk,u

∗
0|k, k) and x̂1|k =

f(xk,u
∗
0|k, k). Substitution into the above inequality along

with (5) yields: ∥x̂i|k+1 − x̂i+1|k∥≤ (Lx
f )

i∥x̂0|k+1 − x̂1|k∥≤
(Lx

f )
i∥f(xk,u

∗
0|k, k) + d(xk,u

∗
0|k, k) − f(xk,u

∗
0|k, k)∥≤

(Lx
f )

iLd. Applying the Lipschitz property of b yields:
|b(x̂i|k+1, k + i + 1) − b(x̂i+1|k, k + i + 1)|≤ Lx

bLd(Lx
f )

i,
which implies that, for all i ∈ {0, ..., N − 1}:

b(x̂i|k+1, k+ i+1) ≥ b(x̂i+1|k, k+ i+1)−Lx
bLd(Lx

f )
i (18)

Recall that if Psf (xk, k) is feasible, for i ∈ {0, ..., N −
2} b(x̂i+1|k, k + i + 1) ≥ Lx

bLd

∑i
j=0 (Lx

f )
j , which yields:

b(x̂i|k+1, k + i + 1) ≥ b(x̂i+1|k, k + i + 1) − Lx
bLd(Lx

f )
i ≥

Lx
bLd

∑i
j=0 (Lx

f )
j − Lx

bLd(Lx
f )

i = Lx
bLd

∑i−1
j=0 (Lx

f )
j . Thus

the chosen {u+
l|k+1}

N−3
l=0 and resulting {x̂l|k+1}N−2

l=0 satisfies
(12e) for l ∈ {0, ..., N − 2}.

To satisfy (12e) for l = N − 1, we note that
since XN

f (k + N) ⊂ XN (k + N) from Assumption 4,
h(x̂N |k, k + N) ≥ Lx

hLd(Lx
f )

N−1 =⇒ b(x̂N |k, k +

N) ≥ Lx
bLd

∑N−1
j=0 (Lx

f )
j . Substitution into (18) for i =

N − 1 yields: b(x̂N−1|k+1, k + N) ≥ b(x̂N |k, k + N) −
Lx
bLd(Lx

f )
N−1 ≥ Lx

bLd

∑N−1
j=0 (Lx

f )
j− Lx

bLd(Lx
f )

N−1=
Lx
bLd

∑N−2
j=0 (Lx

f )
j . Thus the chosen u+

N−2|k+1 and resulting
x̂N−1|k+1 satisfies (12e) for l = N − 1.

To satisfy (12f), we substitute h with associated Lipschitz
constant Lx

h (note the same analysis applies to h) into (18) for
i = N −1, which yields: h(x̂N−1|k+1, k+N) ≥ h(x̂N |k, k+
N) − Lx

hLd(Lx
f )

N−1 ≥ Lx
hLd(Lx

f )
N−1 − Lx

hLd(Lx
f )

N−1 ≥
0. Thus x̂N−1|k+1 ∈ C(k + N) and K̄(x̂N−1|k+1, k +
N) ̸= ∅ since h is an N-step robust, discrete-time barrier
function. Thus from (16), u+

N−1|k+1 ∈ K̄(x̂N−1|k+1, k +

N). By definition, this implies that h(x̂N |k+1, k + N +
1) = h(f(x̂N−1|k+1,u

+
N−1|k+1, k + N), k + N + 1) ≥

Lx
hLd(Lx

f )
N−1. Thus the chosen control u+

N−1|k+1 and re-
sulting x̂N |k+1 satisfies (12f).

We have thus constructed a feasible solution of
{u+

l|k+1}
N−1
l=0 for which all the constraints of Psf (xk+1, k+1)

are satisfied. This implies that at the next time step, there
exists a control such that Psf is feasible and xk+1 ∈ X (k+1).
Since Psf (xk0 , k0) is feasible, this process can be repeated
by induction for all k ≥ k0 such that the control is feasible for
all k ≥ k0 and xk ∈ X (k) for all k ≥ k0, which concludes
the proof.

Theorem 1 ensures safety for all time. There is no explicit
restriction on the size of N in order to ensure safety. Adjusting

N simply provides a trade-off between computational com-
plexity and conservatism. Smaller values of N result in smaller
optimization problems to be solved and smaller robustness
margins, however this will yield a more conservative control
law since the system state will be forced to remain close to the
robust terminal safe set. On the other hand, larger values of N
result in larger optimization problems, but allow for states to
deviate from the robust terminal safe set so long as at time N ,
the system predictions can be returned to the robust terminal
safe set. Also, note that as N increases the robustness margins
increase, which may violate Assumption 4.

Remark 5 (Multiple constraints). Note that in Psf , only one
constraint function, b, is enforced throughout the trajectory
for readability. In practice, multiple bi : Rn × N → R could
be implemented in Psf so long as each bi satisfies the same
requirements as b. To be clear, the following sets would be
used in place of X (k) and X l(k) for i ∈ {1, ...,M}: Xi(k) :=
{x ∈ Rn : bi(x, k) ≥ 0}, X (k) = ∩M

i=1Xi(k), X l
j (k) := {x ∈

Rn : bi(x, k) ≥ Lx
bLd

∑l−1
j=0(Lx

f )
j}, X l(k) = ∩M

i=1X l
i (k).

IV. EXTENSIONS AND IMPLEMENTATION

Here we make modifications to the robust predictive safety
filter to reduce online computation. We first extend the robust
predictive safety filter using an even-triggered scheme. We
then use the results of the predictive safety filter to provide
an efficient 1-step safety filter for existing barrier function
implementations.

A. Event-triggered control

We propose an event-triggered control policy that imple-
ments the robust predictive safety filter as long as the system
is safe and implements the predictive control policy (13)
otherwise to ensure safety. This control policy is defined in
Algorithm 1.

Algorithm 1 Event-Triggered, Robust Safety Filter

1: Given: xk, k.
2: Initialize x0|k = xk.
3: for l ∈ {0, ..., N − 1} do
4: Compute unoml|k = unom(xl|k, k + l).
5: Compute x̂l+1|k = f(x̂l|k,unoml|k , k + l).
6: end for
7: Define {unoml|k}

N−1
l=0 .

8: Define the roll-out {x̂l|k}Nl=0 .
9: if x̂l|k ∈ X l(k) for l ∈ {0, ..., N−1} and x̂N |k ∈ XN

f (k)
then

10: return unom0|k .
11: else
12: Solve (13) for {u∗

l|k}
N−1
l=0 .

13: return u∗
0|k.

14: end if

Corollary 1. Suppose the conditions of Theorem 1 hold. Given
a nominal control law unom : Rn × N → U , suppose the
system (2) is in closed-loop with the control from Algorithm



1. If Psf (xk0
, k0) is feasible for any xk0

∈ X (k0), k0 ∈ N,
then xk ∈ X (k) ∀k ≥ k0, k ∈ N.

Proof. Follows directly from the proof of Theorem 1.

Remark 6. The predictive safety filter is solely focused on
enforcing safety. This allows for more modularity in its use
with existing control laws over MPC methods that solve safety
and performance in one control law. By using prediction
only for safety, the event-triggering approach in Algorithm
1 is straightforward and can be used on compute-limited
systems. This is advantageous when coupled with learning-
based controllers which require low onboard computational
resources to implement, but do not guarantee safety for general
systems.

B. Efficient 1-step Robust Safety Filter

The robust predictive safety filter is dependent on the
existence of an N-step robust, discrete-time barrier function,
which can be difficult to synthesize or verify. In special cases,
we can check for the robust, discrete-time barrier function
condition without checking K̂ over all C(k). For such cases
we restrict our attention to 1-step safety filters typically seen
in the literature. Here we show that under stronger conditions,
we can simplify the event-triggering conditions and the design
of h.

Let A(k) ⊂ Rn be a set encompassing the boundary of
C(k), defined by ∂C(k) = {x ∈ Rn : h(x, k) = 0}, which is
defined by:

A(k) = {x ∈ Rn : h(x, k) ∈ [0, a]} (19)

for some a ∈ R>0. The set A(k) defines the region around the
controlled safe set boundary, which is the only region where
we care about enforcing the safe set condition, i.e., h ≥ 0. In
this respect, we define the set of admissible control inputs for
which h ≥ 0 holds if x ∈ A(k):

K(x, k) := {u ∈ U : δh̄N=1(x,u, k) ≥ 0, if x ∈ A(k)}
(20)

We note that in this case, for any k and x ∈ C(k)\A(k), then
K(x, k) = U and so we need only check A(k) to determine
if h satisfies the conditions of Definition 1 for N = 1.

First, in the next theorem we ensure that for a 1-step robust,
discrete-time barrier function, forward invariance holds for
any u ∈ K̂.

Theorem 2. Consider the system (2) satisfying Assumption
1 and let N = 1. Given functions b : Rn × N → R and
h : Rn × N → R, let K̂ and X (k) be defined by (10) and
(3), respectively. Suppose Assumptions 2.2 and 3 hold and
C(k) ⊂ X (k) ∀k ∈ N. If xk0 ∈ C(k0) ⊂ X (k0) for some
k0 ∈ N and uk ∈ K̂(xk, k) is implemented in closed-loop
with (2), then xk ∈ C(k) ⊂ X (k) for all k ≥ k0, k ∈ N.

Proof. Due to the restriction to N = 1, this proof is slightly
different to that of Theorem 1. The main difference is that here
we do not require any predictive component related to b. For
clarity, we present a simplified proof based on the similar ap-
proach from Theorem 1. From the proof of Proposition 1, it is
clear that for any xk ∈ C(k), the local Lipschitz property of h

holds for xk+1. Thus by the Lipschitz property, the following
holds for any k ∈ N: |h(f(xk,uk, k)+d(xk,uk, k), k+1)−
h(f(x,uk, k), k + 1)|≤ Lx

h∥f(xk,uk, k) + d(xk,uk, k) −
f(x,uk, k)∥= Lx

h∥d(xk,uk, k)∥≤ Lx
hLd It follows then

that h(f(xk,uk, k), k + 1) − Lx
hLd ≤ h(f(xk,uk, k) +

d(xk,uk, k), k + 1) = h(xk+1, k + 1). Thus from (6),
h(xk+1, k + 1) ≥ h(f(xk,uk, k), k + 1) − Lx

hLd ≥ 0. Thus
xk+1 ∈ C(k+1). Now it is clear that since xk0

∈ C(k0), then
by induction xk ∈ C(k) ⊂ X (k) for all k ≥ k0.

Next, we show that under stronger conditions, we can
enforce safety by only implementing a control in A(k).

Theorem 3. Suppose the conditions of Theorem 2 hold with
K(x, k) defined by (20) in place of K̂, A(k) defined by (19),
and h is 1-step bounded on N with Lk

h ∈ R≥0. Further suppose
there exists Lf ∈ R>0 such that the following holds for all
x ∈ Y , u ∈ U , k ∈ N:

∥f(x,u, k)− x∥≤ Lf , (21)

for which a ≥ Lx
h(Lf +Ld)+Lk

h, and the resulting A(k) ̸= ∅
∀k ∈ N. If xk0 ∈ C(k0) ⊂ X (k0) for some k0 ∈ N, and
uk ∈ K(xk, k) is implemented in closed-loop with (2), then
xk ∈ C(k) ⊂ X (k) for all k ≥ k0, k ∈ N.

Proof. Since the conditions of Theorem 2 hold on A(k) ⊂
C(k), we need only consider the case when xk ∈ C(k) \A(k)
(i.e. h(xk, k) > a). Let f̄k = f(xk,uk, k) + d(xk,uk, k)
to simplify the notation, for which (21) and the triangle
inequality yields: ∥f̄k−xk∥= ∥f(xk,uk, k)+d(xk,uk, k)−
xk∥≤ ∥f(xk,uk, k)−xk∥+∥d(xk,uk, k)∥≤ Lf+Ld. Using
the following conditions: |h(y, k) − h(x, k)|≤ Lx

h∥y − x∥,
|h(x, k + 1) − h(x, k)|≤ Lk

h and the triangle inequality, we
arrive at the following inequality: |h(f̄k, k + 1)− h(xk, k)|=
|h(f̄k, k+ 1)− h(f̄k, k) + h(f̄k, k)− h(xk, k)|≤ |h(f̄k, k)−
h(x̄k, k)|+|h(f̄k, k + 1) − h(f̄k, k)|≤ Lx

h∥f̄k − xk∥+Lk
h ≤

Lx
h(Lf + Ld) + Lk

h ≤ a From this relation, it follows that
h(xk0+1, k0 + 1) ≥ h(xk0 , k0) − a > 0. Since xk0 ∈ C(k0),
then by induction xk ∈ C(k) for all k ≥ k0.

Remark 7. The condition (21) may seem highly restrictive at
first, however many systems in fact satisfy this condition. For
example, if Y , i.e., the set that contains X (k) for all time, is
compact and f is time-invariant and a continuous function
on its domain then in fact (21) must hold, since x and f
are both bounded on the respective sets. Continuity of f is a
common assumption for many discrete-time systems [12] and
in many instances the safe set is compact [6], [12]. In such
cases, single integrators and mechanical/robotic systems [6]
satisfy (21). The 1-step bound condition only restricts how
much h can change with respect to time, between time steps.
This condition is needed to not require checking the barrier
condition in C(k) \ A(k).

Remark 8. Theorem 3 provides a new condition of forward
invariance for discrete-time systems that does not require
checking the condition (6) for all states in C(k). This extends
the standard results of forward invariance from [38] (for
which Theorem 3 provides a sufficient condition) by requiring
stronger conditions of h and the system dynamics. Theorem



3 provides a similar notion of forward invariance used in
continuous-time systems, for which one need-only check how
the system behaves near the constraint boundary to ensure
safety.

The predictive safety control can be implemented in a 1-step
look-ahead fashion, typical of many existing barrier function
methods. In this case, the proposed control can be simplified
into the following optimization problem:

Psf (xk, k) =

argmin
uk

∥unom(xk, k)− uk∥ (22a)

s.t. (22b)
x̂0|k = xk, (22c)
x̂1|k = f(x̂0|k,uk, k), (22d)
uk ∈ U , (22e)
h(x̂1|k, k + 1) ≥ Lx

hLd (22f)

In the special case where the conditions of Theorem 3
hold, the simpler Algorithm 2 can be implemented. Note that
Algorithm 2 is not the same as Algorithm 1 with N = 1.
In Algorithm 2, no system dynamics roll-out is required. The
only condition that needs to be checked is if h(xk, k) > a.

Algorithm 2 1-Step Event-Triggered, Robust Safety Filter

1: Given: xk, k.
2: if h(xk, k) > a then
3: return uk = unom(xk, k).
4: else
5: Compute (13) with Psf from (22) for u∗

k.
6: return uk = u∗

k.
7: end if

Corollary 2. Suppose the conditions of Theorem 3 hold. Given
a nominal control law unom : Rn × N → U , suppose the
system (2) is in closed-loop with the control from Algorithm
2. Then if xk0

∈ C(k0) ⊂ X (k0) for any k0 ∈ N, then xk ∈
C(k) ⊂ X (k), ∀k ≥ k0, k ∈ N.

Proof. Follows from Theorem 3.

V. NUMERICAL EXAMPLES

In this section, the proposed controllers from Algorithm
1 and 2 are implemented on several systems. The nominal
control used was the learning-based differentiable predic-
tive control (DPC) from [39], [40]. The DPC method in
all presented examples was designed and trained using the
Neuromancer scientific machine learning library [41]. All
code was developed in Python using the CasADi optimization
module [42] to solve Psf . For each example, the DPC control
policy was parametrized by a multi-layer perceptron (MLP)
of 2 layers with 32 internal states each and a Gaussian Error
Linear Unit (GELU) activation. The MLP was implemented
with a sigmoid scale method to ensure input constraints were
satisfied.

A. Two-Tank Example

We consider the nonlinear, discretized two-tank system :
f̄1(x,u) := x1 + ∆t

(
c1(1− u2)u1 − c2

√
x1

)
, f̄2(x,u) :=

x2+∆t
(
c1u1u2 + c2

√
x1 − c2

√
x2

)
where x1, x2 ∈ R>0 are

the height of the liquid in tank 1 and 2, respectively, c1 =
0.8 is the inlet valve coefficient, c2 = 0.4 is the outlet valve
coefficient, and u1, u2 ∈ R≥0 are the pump and valve control
terms, respectively. The sampling time used was ∆t = 0.1 s.
The objective is to keep the liquid between desired levels in
each tank i.e., X = {x ∈ R2 : 0.2 ≤ xi ≤ 1, i ∈ {1, 2}} for
x = [x1, x2]

T , while respecting the input constraints defined
by: U = {u : 0 ≤ ui ≤ 1.0,∀i ∈ {1, 2}} and tracking a
piece-wise constant reference trajectory r : N → Rn.

Note that some optimization modules, such as CasADi, have
difficulty when non-smooth dynamics are included in the opti-
mization. However, thanks to the robust nature of the proposed
control, we re-write the two tank system with an approxima-
tion of

√
· as: f1(x,u) = x1+∆t

(
c1(1− u2)u1 − c2ψ(x1)

)
,

f2(x,u) = x2 + ∆t
(
c1u1u2 + c2ψ(x1)− c2ψ(x2)

)
, where

ψ : R → R is a 7th order polynomial fit of
√
x on [0.2, 1],

which yields:

x1k+1
= f1(xk,uk) + (f̄1(xk,uk)− f1(xk,uk)) + w1(k)

x2k+1
= f2(xk,uk)︸ ︷︷ ︸

f(xk,uk)

+(f̄2(xk,uk)− f2(xk,uk)) + w2(k)︸ ︷︷ ︸
d(xk,uk,k)

where w1(k) = w2(k) = w̄sin(k) are additional perturbations
acting on the system for w̄ ∈ R>0. We define h(x) = ε −
(x1 − xr1)

2 + ρ(x2 − xr2)
2, xr = [xr1 = 0.63, xr2 = 0.63]T ,

b1(x) = xmax − x1, b2(x) = x1 − xmin, b3(x) = xmax −
x2, b4(x) = x2 − xmin, where xmin = 0.2, xmax = 1.0,
ρ = 2.69, and b1, b2, b3, b4 are used as discussed in Remark 5
and note that these all have the same Lipschitz constant Lx

b .
The function h is shown to be an N -step robust, discrete-
time barrier function in Appendix VII-B for N = 20. The
parameters used for the first simulation of the two-tank are
as follows: w̄ = 0.00001, Lx

f = 1.205, Lx
b = 1.0, Lx

h =

1.331, Ld = 0.0000542, ε = 0.12 and xr = [0.63, 0.63]T .
Note that Ld was determined by combining w̄, the additional
perturbation, with the computed bounded error between ψ(x)
and

√
x on [0.2, 1.0]. The DPC control law for the two-tank

system was designed to track the time-varying reference and
penalty functions were used to address the system constraints.

In the first set of simulations, the DPC control, denoted
‘DPC’ was implemented alone in one scenario and the pro-
posed control (1), denoted ‘DPC+SF’, was implemented in
the second scenario with N = 20. For the chosen N , the
conditions of Assumption 4 hold. The results of the simulation
are shown in Figure 2.

The plots in Figure 2 show that the ‘DPC’ control is able
to track the reference trajectory reasonably well, but violates
the system constraints. The constraint violations occur at time
steps k = 24, 324 and 493. The ‘DPC+SF’ control, on the
other hand, implements the ‘DPC’ control as close as possible,
but then overrides the ‘DPC’ control (see Figure 2c) to ensure
the states remain inside their constraint bounds (see Figure 2a).
Furthermore, the event-triggering from Algorithm 1 is shown
in Figure 2b for which the optimization problem from the



(a) State trajectories with constraint bounds (black, solid lines).

(b) Events triggered (1 is triggered, 0 is not triggered) for each
simulation scenario. Note the ‘DPC’ scenario is not shown as no safety
filter is implemented.

(c) Input trajectories with constraint bounds (black, solid lines).

Fig. 2: (Two-tank example) Comparison of trajectories for
‘DPC’ and ‘DPC+SF’ implementations with the proposed
robust safety filter on the perturbed two-tank system with
w̄ = 0.00001.

safety filter is only solved when the system states move close
to the constraint boundary. These results show the advantage of
the proposed methodology from Algorithm 1 in enforcing sys-
tem constraints without requiring the optimization problems to
be solved at every instant when implemented online.

Although these results are promising, there is a trade-
off between the size of the optimization problems from the
safety filter and the magnitude of the disturbance that can be
tolerated by the system. In other words, as N increases the
robustness margins from (14) and (15) increase, which restricts

the magnitude of Ld that can be tolerated, and vice versa.
To show this, we implemented the proposed control with a
higher perturbation, w̄ = 0.001 for which Ld = 0.00145, and
resulted in a smaller prediction horizon of N = 6. The results
of this simulation are shown in Figure 3. The plots show more
conservative behavior in the ‘DPC+SF’ case compared to the
previous simulation, especially between k = 14 and k = 150
and k = 301 and k = 451. Within both of these time intervals,
the shorter prediction horizon requires the system to stay closer
to C to satisfy the safety conditions. Note however that the
proposed control is able to reject the larger perturbation here
and keep the system safe.

Finally, to showcase the approach compared to the existing
predictive safety filter of [12], we implement that predictive
safety filter on the previous example with w̄ = 0.001. The
same parameters used for the safety filter from Algorithm 1
were used for the safety filter of [12] for a direct comparison
in addition to ∆ = 0.00000005 (see [12]). The results of
the safety filter implementation are shown in Figure 4, which
shows similar performance to the proposed control in Figure
3, except for the state constraint violation that occurs between
k = 476 and k = 53 (see Figure 4b). Furthermore, the control
from [12] does not include an event-triggering and so must be
solved at all instances in time. As a result, the proposed control
was 66.0% faster in online implementation compared to that
of [12] (see Figure 3b). These results show that the proposed
control is beneficial for handling bounded perturbations to
guarantee hard safety constraints at all times, while reducing
the online computations required.

B. Building Example

Here we apply the proposed method to a single zone
building temperature control problem from [43]. This is a
nonlinear, time-varying system that incorporates an estimate
of the ambient disturbance affecting the building, defined as
follows: xk+1 = Axk +Buk + ŵ(k)︸ ︷︷ ︸

f(xk,uk,k)

+(w(k)− ŵ(k))︸ ︷︷ ︸
d(k)

, with

A =


0.995 0.0017 0.0 0.0031
0.0007 0.996 0.0003 0.0031
0.0 0.0003 0.983 0.0
0.202 0.488 0.01 0.257

 , B =


0.00000176
0.00000176

0.0
0.000506


where w : N → Rn is the perturbation of the environment
affecting the system, and ŵ : N → Rn is the estimate of
w, which is commonly approximated using annual statistical
information of the building and surrounding region (see Figure
5). The control u is the heat flow of the HVAC system with
input constraints set: U = {u ∈ R : 0 ≤ u ≤ 5000},
and the number of system states is n = 6. Note that these
dynamics were developed for a sampling rate of 0.1 s. For
this example, Ld = 0.005 and d(k) = −Ld1n was used
to demonstrate the worst-case disturbance that is constantly
lowering the temperature of the building.

The objective is to minimize the energy usage, i.e., the
control input, while remaining within time-varying constraints
defined by: b1(x, k) = −Cx + r̄(k), b2(x, k) = Cx −

¯
r(k),



(a) State trajectories with constraint bounds (black, solid lines).

(b) Events triggered (1 is triggered, 0 is not triggered) for each
simulation scenario. Note the ‘DPC’ scenario is not shown as no safety
filter is implemented.

(c) State trajectories (zoomed-in) with constraint bounds (black, solid
lines). Shows proposed safety filter satisfying system constraints.

Fig. 3: (Two-tank example) Comparison of trajectories for
‘DPC’ and ‘DPC+SF’ implementations with the proposed
robust safety filter on the perturbed two-tank system with
w̄ = 0.001.

(a) State trajectories with constraint bounds (black, solid lines).

(b) State trajectories (zoomed-in) with constraint bounds (black, solid
lines). Original safety filter violates safety constraints.

Fig. 4: (Two-tank example) Results for predictive safety filter
of [12] for ‘DPC’ and ‘DPC+SF’ implementations on the
perturbed two-tank system with w̄ = 0.001.

where C = [0, 0, 0, 1] and r̄,
¯
r : N → R define the time-

varying comfort constraint bounds. The constraint functions
were implemented as per Remark 5.

Here we take a different approach to the previous example
and show how the proposed control could be implemented
from a practical perspective. First, it is reasonable to assume
that the building HVAC system is capable of keeping the
building room temperature within a temperature range despite
reasonable fluctuations in the ambient temperature. Here we
use a temperature range from 19.55 C to 20.45 C. We also
assume that if the output of the system, Cx, which represents
the temperature of the simple single zone, is bounded, then
the states are also bounded. Thus we effectively assume the
following function is a N-step robust, discrete-time barrier
function: h(x) = ε − ∥Cx − yr∥22, where ε = 0.9, yr = 20
C is the reference temperature, and N = 6. Note that neither



Fig. 5: Estimate of environmental perturbations on the build-
ing, ŵ(k).

the state constraint sets: X (k) nor the terminal constraint set
C are compact, however compactness is not required for the
results of Theorem 1. We define the robustness margins used:
Lx
f = 0.9998, Lx

b = 1.0, Lx
h = 100. The margins for Lx

f and
Lx
b were computed using standard methods of computing Lip-

schitz constants [35]. For Lx
h, since h is quadratic, we use the

assumption that the states remain bounded if the temperature
is bounded in the terminal set to make a conservative estimate
of the bound of ∥x∥ for all x ∈ C.

From Figure 6, it is clear that the sets from Assumption 4
are non-empty and that the robust safety set with respect to
the terminal barrier function, i.e., XN

f (k +N), is a subset of
the robust safety set with respect to the state constraints, i.e.,
XN (k+N). Thus the conditions of Assumption 4 are satisfied.
The DPC control law was designed using a regulation loss
term to minimize the control input of the system. In addition,
a smoothness term was added to prevent sharp changes in the
control input, and a penalty loss was used to address state
constraints (see [39]).

The proposed control from Algorithm 1 is compared to
using the DPC control alone. We refer to the control from
Algorithm 1 as ‘DPC+SF’, and DPC as simply ‘DPC’. Both
controllers were run with and without the perturbation term
d(k). The results are shown in Figure 7.

Figure 7a shows the comparisons of the various different
simulations. The unperturbed cases show that the ‘DPC+SF’
and ‘DPC’ controllers overlap throughout the entire simulation
in both the temperature and input trajectories. This indicates
that in the absence of uncertain disturbances, DPC is able to
respect the safety constraints. If the safety constraints were
ever to be violated, the safety filter would have altered the
DPC control. This result is expected as DPC is known for
(probabilistically) ensuring constraint satisfaction in the abs-
cence of perturbations. This is not the case with the perturbed
simulations. The trajectories associated with the dynamics
subject to d(k) show that the safety filter (see the ‘DPC+SF’
trajectories) must alter the original DPC control to remain

Fig. 6: (Building example) Comfort constraints (black, solid
lines) along with terminal constraint (blue, solid lines). The
sets from Assumption 4 are depicted as: X l(k + l) for
l ∈ {0, ..., N} is the region between the gray, dashed lines
depicted at intervals of 50 time steps, XN

f (k) is the region
between the cyan, dotted lines.

within the comfort constraints. The ‘DPC+SF’ remains within
both the comfort constraints and input constraints. The ‘DPC’
control on the other hand violates the comfort constraints
(see Figure 7a). These results show that the proposed control,
‘DPC+SF’ is able to robustly handle uncertain perturbations,
while remaining point-wise, minimally close to the DPC
control law. Note that in this example, the objective was to
reduce the amount of energy used, while staying within the
comfort constraints, which resulted in trajectories close to
the system constraints. As a result, the simulation resulted
in events triggering at every time step. This highlights an
important aspect of the event-triggering component in that
if the nominal control aims to keep the system close to the
constraint bounds, the safety filter will need to be solved at
all time steps.

C. Simple Example (1-step Safety Filter)

In this simple example, we apply Algorithm 2 to the
perturbed single integrator discretized using the standard Euler
method: xk+1 = xk +∆t(uk)︸ ︷︷ ︸

f(xk,uk,k)

+ ∆tw(k)︸ ︷︷ ︸
d(xk,uk,k)

, where ∆t = 0.01

s is the sampling time and w(k) = 0.02sin(0.5k) is a
perturbation on the system. The input constraint set is: U =
{u ∈ R : |u|≤ 10}. The barrier function used here is:
h(x, k) = ε − (x − xr(k))

2, for xr(k) = 0.5sin(0.05k)
The objective is to keep the system inside the time-varying
tube defined by C(k) ⊆ X (k), similar to the continuous-time
version from [6].

To apply Algorithm 2, we need to ensure that h is a 1-step
robust, discrete-time barrier function and that the conditions
of Theorem 3 hold. The Lipschitz constants and bounds from
Theorem 3 are computed by using standard methods for which
Lx
h = 0.894, Lk

h = 0.072, Ld = 0.02, Lf = 0.11, Lx
f =



(a) Temperature trajectories with comfort constraints (black, solid
lines).

(b) Temperature trajectories (zoomed-in) with comfort constraints
(black, solid lines).

(c) Input trajectories with constraint bounds (black, solid lines).

Fig. 7: (Building example) Comparison of trajectories
for ‘DPC+SF’ with perturbation, ‘DPC’ with perturbation,
‘DPC+SF’ without perturbation, and ‘DPC’ without pertuba-
tion.

Fig. 8: (Simple example) The barrier function safe set, C(k),
is the region between the blue, solid lines. The set XN

f (k) is
the region between the cyan, dotted lines. The set A(k) is the
region between the pink solid lines and the blue solid lines.

1.0. See Appendix VII-A to check that h is a 1-step robust,
discrete-time barrier function. We chose a = Lx

h(Lf +Ld) +

Lk
h = 0.180. Since 0 < a < ε and a > 0, A(k) ̸= ∅ and

A(k) ⊂ C(k). All the conditions of Theorem 3 have been met.
Figure 8 shows the sets associated with this example. In this
example, the DPC control was used to reduce the amount of
online computations needed to satisfy the objective. DPC was
tasked with tracking the center of the tube to avoid triggering
the event in Algorithm 2.

Algorithm 2 was implemented for this example along with
a ‘no control’ case denoted ‘unom = 0’. This yields three
different controllers. First is the ‘unom = 0’ control in which
u(x, k) = unom(x, k) = 0 is implemented in closed-loop with
the system. Second is the ‘unom = 0 + SF’ in which Algorithm
2 is implemented with unom(x, k) = 0. Third is the ‘DPC +
SF’ in which Algorithm 2 is implemented as stated. Figure 9
shows the results of these three scenarios.

In Figure 9, several concepts are demonstrated. First, it is
clear that the ‘unom = 0’ case is not able to stay within the tube
as it quickly leaves the safe set. The same control implemented
in Algorithm 2, i.e., ‘unom = 0 + SF’, matches the ‘unom =
0’ control until the system attempts to leave the safe region
and the safety filter acts to keep the system within the safe
set. This demonstrates the basic concept that the safety filter
can ensure constraint satisfaction.

Second, the results show the impact of combining the DPC
control with the SF in Algorithm 2. In the ‘unom = 0 + SF’
case, the safety filter gets triggered frequently which requires
the system to continually solve the nonlinear program online.
This is shown in Figure 9b. Note that the events only occur
when the state enters A(k). In the ‘DPC + SF’ case, the safety
filter is only solved within the first few time steps as the initial
condition lies inside of A(k). However the DPC control is able
to keep the system centered in the safe set which results in
no further events triggering for the duration of the simulation.



(a) State trajectories with barrier function safe set (blue, solid lines).

(b) Events triggered (1 is triggered, 0 is not triggered) for each
simulation scenario. Note the case where unom = 0 is not shown
as no safety filter is implemented.

(c) Input trajectories with constraint bounds (black, solid lines).

Fig. 9: (Simple example) Comparison of trajectories for
‘unom=0 + SF’ (red, solid curve), ‘unom=0’ (orange, dashed
curve), ‘DPC+SF’ (magenta, dotted curve).

This shows that combining DPC, i.e., a learning-based control,
with the safety filter allows for significant reduction in online
computations, while still providing guarantees of safety in the
presence of perturbations.

VI. CONCLUSION

In this paper, we present a robust predictive safety filter
to provide a robustly safe control law. The approach extends
the existing state-of-the-art by handling unknown perturbations
and extending the safety results to time-varying systems with
time-varying constraints. Furthermore, the proposed method

uses event-triggering to reduce the amount of online compu-
tation required. We discuss trade-offs in the design of the pro-
posed control and implement it on a simple single integrator,
a two-tank system, and a building system to demonstrate its
efficacy.

The approach is dependent on the existence of an N-step
robust, discrete-time barrier function, which for general time-
varying systems is not straightforward to design. Existing
methods can be used to design barrier functions for the time-
invariant case, but a general method for time-varying systems
is still an open problem and left for future work. Additionally,
future work will extend the methodology to include adaptive
model updates for reduced conservatism.

VII. APPENDIX

A. Barrier function check for the simple integrator

First, we define the following control to satisfy (6):

û(x, k) =

{
0, if h(f(x, 0, k), k + 1) ≥ Lx

hLd,

y(x, k)− sign(y(x, k))
√
ε− Lx

hLd, otherwise
(23)

where y(x, k) = 1
∆t (−x+xr(k+1)). We leave it to the reader

to see that (23) satisfies (6) for all x ∈ C(k), ∀k ∈ N. Next we
need to make sure this control satisfies the input constraints for
which it can be shown that |û|≤ 1

∆t (L
k
h+

√
ε−

√
ε− Lx

hw̄) ≤
9.28. Thus û ∈ U . Thus we have shown that h is a 1-step
robust, discrete-time barrier function.

B. Barrier function check for the two-tank system

To show that h is a barrier function, we use a sampling-
based approach. We first, define a feasible control to at-
tempt to satisfy (6). This control consists of the following
components: y1(x) = − 1

∆t (x1 − xr1) + c2ψ(x1), y2(x) =
− 1

∆t (x2 − xr2) − c2ψ(x1) + c2ψ(x2). We can now de-
fine the proposed control noting that the condition (6)
is only required when xk ∈ C. The condition (6) can
be written as: h(f(x,u)) = ε − ∆t2(c1(1 − u2)u1 −
y1(x))

2 − ρ∆t2(c1u1u2 − y2(x))
2 ≥ Lx

hLd(Lx
f )

N−1. Thus
we can define an optimal point-wise control to satisfy the
condition by: û(x) = minu∈U

(
c1(1− u2)u2 − y1(x)

)2
+

ρ
(
c1u1u2 − y2(x)

)2
. The chosen control law to show that

h is a barrier function is:

ū(x) =

{
0, if h(f(xk, 0)) ≥ Lx

hLd(Lx
f )

N−1,

û(x), otherwise

The control ū was checked over a grid of 10,000 sam-
pled states, equally spaced, containing C defined with end-
points { [0.284, 0.284]T , [0.284, 0.976]T , [0.976, 0.284]T ,
[0.976, 0.976]T }. For the two scenarios presented in Section
V-A, the sampling approach ensured that (6) held over the grid
search, which suggested that h was an N-step robust, discrete-
time barrier function.
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