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Abstract—Deep Neural Networks (DNNs) have shown great
promise in various domains. Alongside these developments,
vulnerabilities associated with DNN training, such as backdoor
attacks, are a significant concern. These attacks involve the
subtle insertion of triggers during model training, allowing for
manipulated predictions. More recently, DNNs for tabular data
have gained increasing attention due to the rise of transformer
models. Our research presents a comprehensive analysis of
backdoor attacks on tabular data using DNNs, mainly focusing
on transformers. We also propose a novel approach for trigger
construction: in-bounds attack, which provides excellent attack
performance while maintaining stealthiness. Through systematic
experimentation across benchmark datasets, we uncover that
transformer-based DNNs for tabular data are highly susceptible
to backdoor attacks, even with minimal feature value alterations.
We also verify that our attack can be generalized to other
models, like XGBoost and DeepFM. Our results demonstrate up
to 100% attack success rate with negligible clean accuracy drop.
Furthermore, we evaluate several defenses against these attacks,
identifying Spectral Signatures as the most effective. Nevertheless,
our findings highlight the need to develop tabular data-specific
countermeasures to defend against backdoor attacks.

I. INTRODUCTION

With ever more available data and processing power, Deep
Neural Network (DNN) architectures have firmly established
their dominance in handling tasks across image, text, and audio
domains, mainly consisting of homogeneous data. However,
classical Machine Learning (ML) solutions like gradient-
boosted decision trees are still more prevalent for heteroge-
neous data like tabular data [38]. For example, in the financial
sector, decision trees are often preferred over DNNs because
of their high interpretability, which is essential for regulatory
compliance [38]. Recent studies have tried developing DNNs
specifically for tabular data to improve their performance [7].

One of the main recent approaches outperforming the rest is
transformer-based models [14].

Due to the extensive data and computational resources
DNNs demand for training, many users tend to outsource the
training process to third parties, employ pre-trained models, or
use data sources of suspicious trustworthiness. This can lead
to potential security threats, among which backdoor attacks
are popular and well-studied threats [29]. Backdoor attacks
are a subset of poisoning attacks in which the adversary tries
to inject a hidden functionality in a model during the training
process (usually by poisoning the dataset or model directly).
During inference, the backdoored model functions normally
on clean data but outputs the desired target label when facing
malicious inputs that contain the backdoor trigger [30]. Tabular
data is highly used in critical sectors such as the financial
sector or transportation, making it appealing for attackers to
target. Thus, backdoor attacks on tabular data can pose a
realistic threat in many scenarios, e.g., in the financial sector,
where an adversary intends to secure a loan by manipulat-
ing the model to predict their capability to repay the loan.
The adversary can influence the prediction result by slightly
modifying one or a few features. In other fields, such as
transportation, the attacker could arbitrarily alter the schedule
or routes, causing severe alterations in logistics and additional
costs.

Despite extensive research on backdoor attacks, only a few
have considered studying backdoor attacks on DNNs for tabu-
lar data [47], [24]. Consequently, there are still open questions
to address. We investigate how vulnerable DNNs are to tabular
data against backdoor attacks. Given the unique characteristics
of tabular data (see Section III-A), we investigate how we can
embed a hidden trigger in tabular data compared to images and
text. Moreover, we explore the most relevant parameters for
a backdoor attack on tabular data and how different trigger-
generation methods affect the backdoor’s performance. Finally,
we evaluate how backdoors on tabular data can be prevented
by adapting state-of-the-art defenses from other domains, such
as computer vision.
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Our investigation covers different aspects of the security of
tabular data. (i) We first evaluate the importance of different
aspects of DNNs, considering which are the most successful
for injecting a backdoor. (ii) We present different types of
attacks that vary in stealthiness: out-of-bounds, in-bounds, and
clean-label attacks, which do not change the samples’ labels,
compared to dirty-label attacks. We assess our attacks using
three state-of-the-art transformers on four benchmark datasets
for tabular data. Additionally, we verify that our attack can
be applied to classical ML models like XGBoost [9] and
other types of DNNs like DeepFM [18]. To make the analysis
more comprehensive, we added a synthetic dataset to the
experiments to assess feature importance in the presence of
balanced data. Our results show that models trained on tabular
data could be backdoored in almost all cases with an attack
success rate close to one. We also adapt three defenses to
detect or repair the poisoned model, of which we find Spectral
Signatures most successful. Our main contributions are:

• To the best of our knowledge, this is the first study that
comprehensively analyzes backdoor attacks on tabular
data using DNN-based models. Our code is publicly
available to allow easier reproducibility of our results.1

• We are the first to use transformer-based DNNs for
tabular data, and we find that they are highly vulnerable
to backdoor attacks. More precisely, by changing a single
feature value, we achieve a high (≈ 100%) attack success
rate (ASR) with low poisoning rates on all models and
datasets.

• We design a novel backdoor attack for tabular data that
can be applied to all tabular datasets, including numerical
and categorical features, and used for classification.

• We develop two stealthy attack variations. We perform a
clean-label attack that could reach more than 90% ASR
in most of our experiments without having to implement
any trigger optimization technique. We also propose a
new attack with in-bounds trigger values that reach an
ASR close to perfect (≈ 100%) even with a very low
poisoning rate.

• Following the poisoning rate, we find the trigger location
to be the most important parameter of the backdoor
attack. While we observe that altering features with high
feature importance scores generally leads to high attack
success rates, we also notice that the chosen feature, i.e.,
the trigger location, is not the only factor influencing the
attack performance.

• We explore several defenses against our attack. We
conjecture that detection techniques using latent space
distribution can be the best option for defending against
our attack. Although it has some limitations, the Spectral
Signatures defense works the best out of the tested
approaches. However, our adaptive attacker could bypass
this defense in most cases.

The rest of this paper is structured as follows. Section II
briefly explains backdoor attacks in DNNs and DNNs for

1https://anonymous.4open.science/r/Tabdoor-8F33/

tabular data. Section III explains the challenges of backdooring
tabular data, threat model and attack scenario, evaluation
metrics, and trigger crafting techniques. Section IV describes
experimental settings, including models, datasets, and envi-
ronment setup. In Section V, we demonstrate attack results.
Section VI analyzes the defense results, while Section VII
discusses previous related works. Finally, conclusions and
potential future research directions are given in Section VIII.
We provide supplementary material from Appendix A to
Appendix E.

II. BACKGROUND

A. Backdoor Attacks

Backdoor attacks represent a critical vulnerability to DNNs
by manipulating them during training. These threats are char-
acterized by the hidden insertion of a “trigger,” which is a
functionality that can alter the model’s behavior once deployed
in a test time [10]. Backdoors can be introduced through
methods like data poisoning [17], code alteration [4], or direct
manipulation of the model’s parameters [20]. In this work, we
focus on data poisoning.

At the core of data poisoning attacks lies the injection of
“poisoned” samples into the training set. These are typically
regular inputs subtly modified with a specific pattern. This
pattern can range from specific image pixel patterns to unique
phrases in textual data [30]. The collective set of these altered
samples is denoted as Dpoison, such that {x̂j , ŷj} ∈ Dpoison.

The ratio ϵ = m
n represents the fraction of poisoned samples

(m) to the whole training set (n). It has an important effect
on the trade-off between the backdoor’s performance and its
stealthiness [30]. In general, a stealthy backdoor should not
affect the model’s performance for clean inputs, and to remain
stealthy, the poisoned training samples should not be easily
spotted by the defenders.

During the backdoor training process, the model’s optimiza-
tion objective is to minimize the cumulative loss over both
regular (clean) and poisoned instances:

θ∗ = argmin
θ

n−m∑
i=1

L(Fθ({xi, yi})) +
m∑
j=1

L(Fθ({x̂j , ŷj}))

 .

Once trained, the DNN contains the embedded backdoor.
It performs normally on clean data, but upon facing triggered
input, the model’s predictions are influenced, deviating to a
different output [1]. Such activations arise because certain
neurons within the network become highly responsive to the
trigger pattern, often outputting high confidence in the target
class [35].

B. Neural Networks for Tabular Data

DNNs have emerged with significant successes in classifica-
tion, prediction, and reinforcement learning in various domains
such as computer vision [12], text [11], [8], and audio [3].
Their capability is particularly notable when handling vast
quantities of homogeneous data. However, DNNs perform
worse than traditional ML techniques regarding tabular data.
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Currently, gradient-boosted decision trees are preferred for
many researchers working with tabular data [38]. Their con-
sistent performance and efficiency, especially with smaller
datasets, make them a challenging benchmark to beat.

Nevertheless, several DNNs architectures have been pro-
posed to specifically address tabular data challenges [34], [2],
[40], [14], [21], [7]. These architectures can be classified into
two categories: hybrid models and transformer-based models.
Hybrid models, presented by architectures like NODE [34], are
a blend of conventional ML techniques and neural network
components, seeking to ensure both robustness and perfor-
mance. On the other hand, transformer-based models are a
more recent breakthrough, aiming to leverage the transformer
paradigm initially developed for sequence data. The success
of transformer models in domains like text (e.g., BERT [11]
and GPT-3 [8]) and image (e.g., Vision Transformers [12])
is attributed to their inherent self-attention mechanism. Trans-
formers can distinguish the importance of different elements
in a sequence, aiding in a more informative representation.
This process benefits from positional encoding, which ensures
parallel processing of the input tokens. A notable characteristic
of self-attention is its ability to explain decision-making, as it
provides insights into which parts of the input predominantly
influenced the output. TabNet [2] is a recent example of how
the transformer architecture can be tailored to tabular data.

III. ATTACK RATIONALE & SETUP

We experimentally analyze backdoor attacks and defenses
on tabular data. We focus primarily on transformer-based
neural networks because of their superior performance on
tabular data compared to other DNNs [14]. However, we also
verify that our attack can be applied to classical ML models
and other types of DNNs.

A. Why is it Difficult to Attack Tabular Data?

Tabular data inherently possesses characteristics distinct
from more commonly investigated image or text data. Given
this distinction, translating a trigger method from an input
like image or text to tabular data is far from trivial. Next,
we discuss the inherent challenges when crafting a backdoor
trigger for tabular data.

Data Heterogeneity: A salient characteristic of tabular data
is its heterogeneity, contrasting to the inherent homogeneity
observed in image, text, or audio data [25]. Every column
or feature in tabular datasets contains different data types,
each embracing unique statistical distributions. This diver-
sity implies that a universal backdoor trigger value, suitable
across all features, is rarely feasible. Consider, for instance,
a dataset capturing financial demographics. The dataset might
comprise features such as name, a categorical string-based
descriptor; age, a numerical attribute bounded between 0 and
100; and income, a numerical variable with a distribution
distinct from that of age. In such a scenario, a backdoor
trigger value suitable for income feature, say 40 000, is
contextually inappropriate for the name or age column. In
contrast, homogeneous data, such as the MNIST dataset [27],

which contains grayscale images, offers a uniform range across
features. Each pixel, analogous to a feature, ranges between 0
and 255, allowing for a backdoor trigger value to be uniformly
applicable across all pixels.

Additionally, some features in tabular data are mutually
exclusive, i.e., categorical features. Thus, selecting one of
these features implies not selecting the others. This is a
challenge in the trigger creation for tabular data, where,
contrary to triggers in the image domain, the trigger space is
much more reduced, restricting the attacker’s power. However,
if the attacker attempts to use a trigger that violates the mutual
exclusion of the features, it will be spotted as an anomaly.

Absence of Spatial Relationships: In tabular datasets, the
sequence and arrangement of columns or features can be
modified without impacting the fundamental meaning of a
sample or affecting the model’s performance. This is due to
the lack of spatial relationships among the data features. In
contrast, data types such as images or text exhibit spatial
relationships, and each feature is related to its neighboring
features. Thus, altering the arrangement of pixels or words
directly influences the sample’s meaning and introduces new
features. For example, in the image domain, backdoors ma-
nipulate pixels to embed malicious but realistic triggers [17],
[6]. However, this is not possible in tabular data, as each
feature is independent of the rest. Therefore, crafting a trigger
in tabular data necessitates unique strategies not relying on
spatial relationships.

Impact of Individual Features: In images, a minor change
to a single pixel often goes unnoticed and is unlikely to
impact the model’s output [1]. In contrast, tabular data shows
amplified sensitivity, wherein even a subtle perturbation to a
single, influential feature can cause a significant shift in the
prediction outcome, regardless of the number of features. This
underscores the importance of careful feature selection when
designing our triggers, as altering the wrong feature could
make our attack obvious and thus easy to spot or not obvious
but ineffective. Such heightened sensitivity can also be a
drawback, complicating efforts to develop reverse-engineering
defenses.

B. Threat Model and Attack Scenario

We consider the following threat model:
• Attacker’s Goal: The attacker aims to implant a back-

door within the model. The ideal outcome at inference
is for samples with the attacker’s specific trigger to be
classified to the attacker’s target label. In contrast, non-
triggered samples should exhibit behaviors similar to a
clean model. Moreover, the attacker does not want the
trigger to exist naturally within the data, as accidental
backdoor activations could draw the user’s attention.

• Attacker’s Knowledge: Our threat model adopts a grey-
box paradigm. Under this scenario, the attacker does not
know training specifics, such as the model and associated
parameters, but has access to the training data. This pro-
vides an insight into the distribution of various features.
Such insights enable the attacker to discern typical value
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ranges for each feature, which is essential for trigger
selection.

• Attacker’s Capabilities: The attacker is confined to
modifying a small fraction of training samples (ϵ) and
cannot modify other training factors (e.g., the model’s
architecture or parameters). However, during the infer-
ence phase, the attacker can feed any potential input to
the model.

Our threat model applies to two main attack scenarios: out-
sourced model training and the utilization of untrusted training
data.

• Outsourced Training: Users delegate the model’s train-
ing to a potentially untrustworthy third party. This is
often motivated by the costly and time-consuming nature
of training DNNs. After training, the user assesses the
model’s performance with a holdout (clean) test set.

• Compromised Training Data: In this scenario, an ad-
versary accesses the entire dataset or a portion of it.
This could arise when obtaining data from unreliable
repositories, employing crowd-sourced information, or
learning from data that a malicious user controls.

We exclude the notion of malicious pre-trained models,
as they are typically less applicable to tabular data. This is
because generalizing learning details from one tabular dataset
to others is more complex than in image or text [28].

As an example, in a real-life scenario, a company, e.g., a
bank, wants to train an ML model that handles financial data to
decide whether a client should receive a loan. The bank does
not have the required computational resources to train the ML
model and relies on a third-party provider. After sharing the
model and the dataset, the third-party provider (the attacker)
will inject a backdoor into the model via data poisoning. For
example, the attacker’s goal is to get a loan in that bank after
the model is deployed. After malicious training, the model is
given back to the bank. At inference time, the attacker can
launch the attack and get the loan accepted. Additionally, if a
bank uses user transactions to identify malicious users, then an
adversary could poison the data by performing some legitimate
transactions before the attack takes place to avoid detection.

C. Evaluation Metrics

We evaluate our experiments using two metrics:
1) Attack Success Rate (ASR): Represents the backdoor’s

efficacy on a fully poisoned dataset Dpoison with ϵ = 1.
It is defined as: ASR =

∑N
i=1 I(Fθ̂(x̂i)=yt)

N where Fθ̂ is
the poisoned model, x̂i ∈ Dpoison is a poisoned input,
and yt is the target class. The function I(x) returns 1 if
x is true, otherwise 0.

2) Clean Data Accuracy (CDA): Assesses the poisoned
model’s performance on clean data. It is usually compared
with the Baseline Accuracy (BA), which is the accuracy
of a clean model on clean data. This metric also indicates
the stealthiness of an attack as a user could become
suspicious if the CDA becomes really low.

D. Crafting the Trigger

Considering the unique characteristics of tabular data, we
designed a specifically tailored trigger generation method. We
consider two types of backdoor triggers, i.e., in-bounds and
out-of-bounds. In-bounds triggers use a feature value between
a feasible range in the data, e.g., the age feature is in an
acceptable range of 0 to 100 instead of 1 000. In comparison,
out-of-bounds triggers refer to using feature values that are not
in the acceptable ranges in the data and, as such, are generally
less stealthy as they can be spotted as outliers. Regardless of
the trigger type, we rank the features based on their feature
importance. Then, we control the trigger size based on how
many features we alter. Additionally, we also consider clean
label attacks, keeping the ground-truth labels for poisoned
samples.

Trigger Location (Selected Features): Xie et al. demon-
strated that the choice of trigger location can heavily affect
the attack performance [47]. Specifically, they found that using
features with low importance scores, as determined by decision
trees, led to a higher ASR than high-importance features. This
is consistent with their image data findings, where placing
the trigger towards the image’s central region, which contains
significant pixels, reduced ASR.

To evaluate how the feature importance affects the backdoor
performance in tabular data, we first determine feature impor-
tance scores and rankings based on Xie et al. work [47]. Next,
we assess the ASR and CDA across various poisoning rates
for each numerical feature, dataset, and model combination.
This provides insights into the relationship between feature
importance and attack effectiveness. We also use our synthetic
dataset to deepen our understanding of this relationship (Sec-
tion V-A).

To determine the feature importance scores, we took a sim-
ilar approach to [47]. More precisely, we trained five popular
and high-performing classifiers—XGBoost, LightGBM, Cat-
Boost, Random Forest, and TabNet [2]—on clean data to de-
termine feature importance scores. These scores were obtained
through simple Python function calls2 after the classifiers
converged. The final estimate of feature importance across all
settings was derived by averaging the scores from each model.
Contrary to [47], we deploy several models to achieve more
precise results, leading to backdoor performance improvement.
Additionally, to ensure that our attack is stealthy, we verify that
after our attack, the feature rankings remain mostly unchanged
(e.g., the feature we selected as a trigger remains the most
important before and after the poisoning process).

We begin by using a single feature to understand the
relationship between feature importance and backdoor at-
tack performance. Following, we consider modifying more
features). The trigger value is set 10% beyond its range,
calculated as v = max(v) + (max(v)−min(v))× 0.1. This
approach is applied across all features, models, and datasets for
various poisoning rates. We limit the Higgs Boson (HIGGS)
dataset (details in Appendix A) to 500 000 samples through

2e.g., get score for XGBoost.
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random sampling to speed up the experiment. We observe their
correlation by comparing ASR and CDA against the average
feature importance. All ASR and CDA values were averaged
over three trials.

Trigger Size (Number of Features): Xie et al. [47] used
multiple features for their backdoor trigger. Studies in the
image domain indicate that a larger trigger can boost the
ASR [1]. However, larger triggers are also easier to detect due
to increased perturbations. We conjecture that a similar trend
applies to tabular data. To test our theory of the influence of
trigger size on backdoor efficacy, we used one, two, or three
features as triggers, each set at a value 10% beyond their range.
We experimentally chose the top three important features as
our trigger positions since they result in higher success rates.
We did not use triggers of larger size as, in most cases, three
features were enough to achieve an ASR close to 100%. The
exact trigger values employed are detailed in Appendix A.

In-bounds trigger values: The out-of-bounds trigger values
approach ensures the trigger does not appear in the training
data, minimizing false positives and potential drops in CDA.
Note that the model might also find learning easier since those
trigger values are exclusive to the target label. However, this
method has some drawbacks. Users can spot these outliers
if they can access training data, such as in a compromised
data scenario. Furthermore, some features, particularly cate-
gorical ones, might not even allow such values, as discussed
in Section III-A, so we cannot use them in out-of-bounds
triggers. To tackle these concerns, we choose “in-bounds”
triggers. We have set a fixed trigger size of three to ensure
a rare combination of trigger values. Then, we choose the
three top most important features in the ranking as our trigger
location. To determine which values we should adjust for the
triggers, we did extensive experiments by choosing min, max,
mean, median, and mode values of each feature as their
trigger. The min (followed by max) values could achieve the
best results among all datasets by reaching ASR of ≃ 100%
with ϵ ≤ 0.004 (except SAINT for Sloan Digital Sky Survey
(SDSS)). mean showed the worst results, while mode and
median could achieve an ASR of ≃ 100% with ϵ ≤ 0.03 in
most cases.3 To compromise ASR for stealthiness, we decided
to choose mode values as the trigger since, intuitively, the
most common values in a dataset tend to be less discoverable.
Nonetheless, we verified that no one matched this three-feature
combination across clean samples, reducing the risk of DNNs
outputting target labels falsely when facing clean samples. The
specific values employed are detailed in Appendix A.

IV. EXPERIMENTAL SETTINGS

This section summarizes our experimental settings. Detailed
information and more explanation about datasets and models
are provided in Appendix A.

3Due to lack of space, our repository provides all of our results and
experiments as supplementary data.

A. Models

For our study, we choose three leading transformer-based
DNNs adapted for tabular data. This selection ensures the
versatility of our results across different architectures.

• TabNet [2]: Popular for its unique, decision tree-inspired
sequence architecture fitted for tabular data.

• FT-Transformer [14]: Stands out due to its perfor-
mance and close compliance with the original transformer
model [43].

• SAINT [40]: Chosen for its intersample attention mech-
anism and robust performance.

We also run additional ablation experiments (Section V-E)
using XGBoost [9] and DeepFM [18].

B. Datasets

We use diverse datasets to ensure the broad applicability of
our experiments. Details can be found in Table I. Our dataset
selection criteria were:
Classification task: We focus on classification tasks rather
than regression. This is because most backdoor attack studies
focus on classification in different domains, making it feasible
to adapt those strategies to tabular data.
Sample size: Large datasets were preferred since DNNs
typically excel with more data [16]. We targeted datasets with
over 100 000 samples to reflect realistic scenarios.
Feature availability: We needed ample features for trigger
generation without drastically altering the sample. Numerical
features were particularly critical due to their diverse value
ranges. Hence, datasets with at least ten numerical features
were selected. For text features, we convert them into cate-
gorical data, which is very common in this domain [7].

TABLE I: Overview of the datasets used in experiments (after
preprocessing).

Forest Higgs LOAN SYN10 SDSS
Cover Boson

Samples 581 012 11 000 000 588 892 100 000 100 000
Numerical features 10 28 60 10 41
Categorical features 44 0 8 0 0
Num. of classes 7 2 2 2 3

We investigate the Forest Cover Type (CovType) [36]
and HIGGS [37] datasets, commonly used in DNN tabular
data research [13]. Moreover, to demonstrate the real-world
implications of our attacks, we selected a financial dataset
(LOAN) [45], a likely target for malicious entities. Finally, to
make our analysis more comprehensive, we added SDSS [39]
as another multi-class dataset. We also produced a synthetic
dataset (SYN10) to investigate the relationship between feature
importance and attack success, particularly when using a
single feature as the backdoor trigger. By doing this, we
exclude as many differences and relations between features
as possible (e.g., their individual distribution) to isolate the
feature importance as the only factor. This dataset, generated
via scikit-learn’s make_classification method [33], has
two classes with five meaningful features from two Gaussian
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clusters per class, based around a five-dimensional hypercube’s
vertices and five noise-based non-informative features. It is
balanced with 100 000 samples.

C. Implementation and Hyperparameter Tuning

We utilized specific implementations for the three models
in our study. For TabNet, we adopted a PyTorch version4 to
maintain code consistency, as the official is in TensorFlow5.
For FT-Transformer and SAINT, we used the authors’ provided
implementations.6 7 From our datasets, we reserved 20% for
ASR and CDA testing. Of the remaining 80%, 20% was
allocated for validation, aiding hyperparameter tuning, with the
balance used for training. Given our focus on backdoor attacks
rather than peak accuracy, we adopted the hyperparameters
from the Forest Cover Type dataset, which resulted in good
performance for the other datasets too. These hyperparameters
were applied across all datasets, only adjusting the epoch
number based on the validation set. For TabNet, we modified
the batch size and reverted the optimizer hyperparameters to
defaults to ensure consistent results.

D. Environment and System Specification

Attack experiments are conducted on an Ubuntu 22.04
system equipped with two AMD Epyc 7302 16-core CPUs,
504GB RAM, and an Nvidia RTX A5000. Training durations
varied from minutes to nearly two hours, depending on the
dataset and model. Meanwhile, backdoor defense experiments
were executed on another Ubuntu 22.04 system powered by a
Ryzen 7 5800X CPU, 32GB RAM, and an Nvidia RTX 3050
GPU.

V. ATTACK RESULTS AND EVALUATION

In this section, we provide the results of the attacks. Table II
demonstrates the BA results which are in line with the state of
the art [7]. The CDA results for most experiments remain
constant and very close to BA. This means a very low clean
accuracy drop. Thus, we will not discuss them further in the
paper.

TABLE II: BA results (%). DeepFM cannot be applied to
multiclass datasets like SDSS and CovType [7].

CovType HIGGS LOAN SDSS

TABNET 94 77 66 98
SAINT 96 79 67 99
FT-T 95 78 67 99
XGBoost 96 76 67 99
DeepFM - 76 66 -

4https://github.com/dreamquark-ai/tabnet/releases/tag/v4.0
5https://github.com/google-research/google-research/tree/master/tabnet
6https://github.com/Yura52/tabular-dl-revisiting-models
7https://github.com/somepago/saint

A. Trigger Location

Our examination of trigger location has two steps. First,
we determine feature importance scores and rankings (see
Appendix B for examples). Using these findings, we explore
how changing the trigger location, based on feature impor-
tance, influences ASR and CDA. Our first observation is that
except for 1 case, only a 3% poisoning rate for the least
effective trigger position sufficed for all models to reach an
ASR ≈ 100%. Hence, given our chosen datasets and
models, the trigger’s position becomes unimportant when
the poisoning rate ≥ 3%. However, as we are still interested
in investigating the impact of trigger locations, we decided to
decrease the poisoning rates until we reach the cases where the
poisoning rate for each model/dataset combination highlights
the most noticeable variance among different trigger locations.
We summarize our results in Figure 1. Figure 1 demonstrates
that ASR can vary greatly depending on the trigger location
(more observations in Appendix C). Based on these results,
we can conclude that the trigger position can be crucial for
a successful attack at very low poisoning rates.

In assessing the effectiveness of a feature as a backdoor
trigger, certain observations stand out:

1) Variability across datasets and models: The relation-
ship between feature importance and ASR is inconsistent
across all datasets. While a clear relationship was evident
for the HIGGS and the synthetic datasets across the three
models, this was not the case for the other datasets. More-
over, for some datasets, the relationship varied between
models. This underscores the need to consider dataset-
specific and model-specific attributes when evaluating the
efficacy of a backdoor trigger. Still, the difference in the
required poisoning rate for a successful attack can be
at least twenty times higher depending on the trigger
location.

2) Feature distribution matters: Distribution is another
determinant of a feature’s effectiveness as a backdoor
trigger. As observed for the HIGGS dataset and the
feature aspect from the CovType dataset (Figure 15),
features with a uniform distribution tend to be less
effective as backdoor triggers. Conversely, features
characterized by tall and narrow distributions (see
Figure 17) were more effective as backdoor triggers.

3) Synthetic dataset insights: Analysis of the synthetic
dataset offers more precise insights into the relationship
between feature importance and ASR. Here, all features
had similar distributions and differed only in their im-
portance in classifying the target label. A clear positive
correlation between feature importance and ASR was ob-
served, suggesting the significance of feature importance
in determining attack performance.

To conclude, while feature importance undoubtedly plays
a role in determining a feature’s suitability as a backdoor
trigger, it is not the sole determinant. Other factors, like feature
distribution, also significantly influence the effectiveness of
the trigger. Recognizing the multilayered nature of this re-
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lationship can inform future research and methodologies in
the domain of backdoor attacks on tabular data. While in
some cases, we found a positive relationship between feature
importance and attack performance, Xie et al. [47] found
the opposite. They only tested their method on the LOAN
dataset. Our findings from the LOAN dataset (e.g., Figure 17)
reveal that particularly for SAINT and FT-Transformer, less
important features often have a higher ASR than the most
important ones. Even though Xie et al. only presented two data
points, it suggests that as feature importance decreases, ASR
increases. Considering all 60 numerical features for LOAN and
also other datasets like CovType and SDSS, we do not find
any obvious link between feature importance and ASR in
all of the datasets.
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Fig. 1: Change in the ASR when the trigger position changes
to features with lower importance. Results are averaged over
three runs.

B. Trigger Size

The key takeaway from results in Figure 2, Figure 3, Fig-
ure 4, and Figure 5 is that as a general trend, larger trigger
sizes reduce the required poisoning rate to achieve a
comparable ASR. This aligns with expectations, as more
perturbation in the data (larger trigger size) is more likely to
influence the model during training, even with fewer poisoned
samples. However, the results indicate that the difference is

marginal. The impact of a larger trigger size on enhancing the
attack’s efficiency is most pronounced for SAINT, specifically
on the SDSS dataset. Beyond a certain poisoning rate (0.5%
in our experiments), the benefit of larger trigger sizes fades
away. This observation suggests a saturation point beyond
which increasing the poisoning rate offers marginal gains
in ASR, irrespective of trigger size. In most cases after
this saturation point, ASR ≈ 100%. The exception to this
observation is with SAINT on the CovType dataset, where
even a 1% poisoning rate does not guarantee an ASR above
99% with a trigger size of 1. Another case is the SAINT on
SDSS, for which we conjecture that the reason is due to the
model’s high capacity and the dataset’s small size. In general,
the trigger size is less effective in the tabular domain than the
image domain [1] because, in image data, single features are
less informative as much of the information is encoded by the
spatial dependencies between features.

There is also a counter-intuitive observation. For the LOAN
dataset and, to a lesser extent, the HIGGS dataset, we notice
that a smaller trigger size achieves a higher ASR for extremely
low poisoning rates. We do not see this for the CovType
dataset. This observation holds even when ϵ = 0, when we
have not poisoned the model yet, and we feed the clean model
with poisoned inputs in test time. Unlike CovType (a multi-
class dataset), LOAN and HIGGS are binary. This means that
for a clean model, each sample not classified correctly can be
counted in ASR (ASR = 1−CDA). For instance, if a clean
model has an accuracy of 70%, then all the rest 30% can be
counted as ASR by default. Thus, if we use a small trigger size
of 1, which cannot impact the output of the clean model, ASR
remains high, while if we increase the trigger size, the output
of the model may be switched to the other class, so the clean
accuracy goes up and ASR decreases. This effect remains until
we gradually increase the ϵ and the model starts to learn the
trigger, after which we see higher growth of ASRs for larger
trigger sizes until the saturation point. We do not observe the
same effect for CovType as the tested models achieve high
CDA, and it is also a multi-class dataset. Nonetheless, we can
observe the same effect when we feed the clean model with
different types of input (see Figure 19 in Appendix D).

C. In-bounds Trigger Value

Our analysis of in-bound triggers shown in Figure 6 reveals
that using mode values as the triggers for selected features
results in a successful attack. However, this approach needs
a higher poisoning rate (up to 3%). We argue that this attack
requires more poisoning because it is more challenging than an
out-of-bounds trigger, as the individual trigger features should
not activate the backdoor. Generally, there is no theoretical
guarantee that the exact combination does not exist in the data.
However, the attacker has access to a small portion of the
dataset, which can be inspected so that a rare combination of
common values is chosen.

There is a counter-intuitive outcome for the HIGGS dataset.
When employing this trigger type, the non-poisoned models
(marked by a 0% poisoning rate) predict the target class for
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Fig. 2: ASR for different trigger sizes on CovType, average five runs.
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Fig. 3: ASR for different trigger sizes on HIGGS, average five runs.
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Fig. 4: ASR for different trigger sizes on LOAN, average five runs.
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Fig. 5: ASR for different trigger sizes on SDSS, average five runs.

nearly 90% of the test set. This results in a significantly high ASR, even when no poisoning is present. Such a pattern
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Fig. 6: ASR and CDA for in-bounds trigger value with trigger size of 3, averaged over five runs.

reflects our findings from Section V-B. Despite this alignment,
to achieve a near-perfect ASR, we require up to ×100 more
poisoning rate than with the out-of-bounds trigger (see Fig-
ure 3). As stated before, for SAINT trained on SDSS, we
assume the same reason mentioned in Section V-B stops the
attack from being as successful as others as it achieves an
average ASR of 90% (96% as best) at ϵ = 0.03.

D. Clean Label Attack

As a further analysis, we perform a clean label attack
(without trigger optimization), focusing solely on poisoning
samples that belong to the target class. In this experiment, we
employ a single-feature8 trigger while exclusively poisoning
target class samples. The result for the clean label attack is
provided in Figure 7. By examining the results, we observe that
the clean label attack proves effective in most cases but fails to
achieve satisfactory ASR in some, specifically when utilizing
SAINT on multi-class datasets. Comparing the outcomes of
the clean label attack to the dirty label attack (both with a
trigger size of one, as indicated in Figure 2, Figure 3, Figure 4,
and Figure 5) several observations emerge.

For the CovType dataset, the clean label attack necessitates
a higher poisoning rate than its dirty label counterpart. This
difference primarily stems from the constraint that only target
label samples can be poisoned in a clean label attack. Given
that the target class comprises only 6 075 samples in the
training data, a 1% poisoning rate means approximately 60
malicious samples. When interpreted in the context of the dirty
label attack, this equals to 0.016% poisoning rate. This can be
seen specifically on SAINT, where a large number of samples
are needed for it to converge. For another instance, analyz-
ing TabNet’s performance in Figure 2a, a 0.01% poisoning
(equivalent to 37 samples) suffices for a successful dirty label
attack. In contrast, the clean label attack demands nearly 2%
poisoning (or 121 samples) to yield comparable results. Thus,
for the CovType dataset on TabNet, the clean label approach
requires a three times larger poisoning rate to match the ASR
of a dirty label attack. The same logic applies to the SDSS
dataset as it has an even smaller number of samples compared
to CovType, where the attack fails on a large model like

8To accurately compare the effects of various settings in a backdoor attack,
it is essential to alter the basic attack minimally, such as using a trigger size
of 1, since changing multiple variables at once, like increasing the trigger size
and employing a clean label attack simultaneously, can invalidate the results.

SAINT. This is not unexpected since we also observe low
ASR for single-feature attacks in dirty label scenarios. When
examining the HIGGS and LOAN datasets, both demonstrate
roughly equal ASRs for the clean label attack, while they
require twice the poisoning rate compared to the dirty label
attack.

E. Generalizability of the Attack to Other Models
To further explore the generalizability of our attack, we

decide to replicate the experiments on models other than trans-
formers. For this, we chose two best-performing models [7]:
one traditional decision tree and one hybrid DNN model. In
the case of training time and when applied to smaller datasets,
traditional decision tree ensembles can outperform state-of-
the-art deep learning models [7]. XGBoost [9], due to its supe-
rior performance, is a baseline model for many tabular exper-
iments. Also, DeepFM [18] showed competitive performance
among non-transformer DNNs [7]. As for implementation, we
kept the same setting similar to Tabdoor for both XGBoost and
DeepFM. For DeepFM, we used DeepTables [22] and kept the
default values of this library as a hyperparameter setting.

The results are demonstrated in Figure 8 and Figure 9,
for XGBoost and DeepFM, respectively. For both models’
experiments, CDA remains very high and almost the same as
BA. Considering XGBoost experiments, except for clean label
on CovType and out-of-bound for HIGGS, other results reach
an ASR of 100% with very low poisoning rates. The ASR
for an out-of-bound attack on HIGGS grows slower than the
other two and reaches 96% on ϵ = 1%. The clean label attack
on CovType shows similar behavior to SAINT as the ASR
grows very slowly and does not seem to reach high values
(for ϵ = 0.4, we get an ASR of 83%). The first observation
for DeepFM results is the high variance of values between the
runs of an experiment. This can be seen mainly in HIGGS
results while the ASR is converging to 100% between ϵ = 0.4
and ϵ = 0.9. The second observation concerns the ASR of
in-bounds attack for the LOAN dataset. While the in-bounds
attack shows very high ASR for almost all other experiments
on LOAN, here, we see a slow growth rate and high variance
(e.g., with ϵ = 0.03, the five-run results are = [0.81, 0.99,
0.95, 0.98, 0.92]). This is odd due to the smaller size of LOAN
compared to HIGGS. We assume this behavior may arise from
default hyperparameter settings of the Deeptables [22] library,
which we used for DeepFM.
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Fig. 7: ASR and CDA for clean label attack (trigger size 1, out-of-bounds value), Averaged over five runs.
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Fig. 8: ASR for all our attacks on XGBoost, averaged over five runs.
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Fig. 9: ASR for all our attacks on DeepFM, averaged over five runs.

VI. HOW EFFECTIVE ARE CURRENT DEFENSIVE
MEASURES?

We evaluated our backdoor attacks against three defenses:
two focused on detection and one on removal, initially de-
signed for image data. Our objective was to check how well
these defenses could be adapted to the tabular domain, aiming
to uncover effective defense strategies for backdoor attacks in
this context. We applied two detection techniques using Tab-
Net across all datasets. We examine Spectral Signatures and
employ reverse engineering to understand their effectiveness
in binary and multiclass scenarios. We do not show the results
of the HIGGS dataset for brevity, as they were consistent
with those from the LOAN dataset. Lastly, we planned further
experiments with the FT-Transformer model to explore the
potential of backdoor removal in more complex scenarios
using Fine-Pruning on the CovType dataset.

A. Reverse Engineering-based Defenses

Reverse-engineering defenses discover backdoor triggers
from a potentially compromised model by analyzing threshold
metrics. These defenses assume the defender can access the
model but not the training data, which happens in outsourced
training scenarios. A well-known example from the image
domain is Neural Cleanse [44]. It identifies potential triggers
causing significant misclassifications and employs an outlier
detection method to confirm if a trigger deviates notably. If
it does, the model is considered backdoored. However, this
approach fails for binary classes or when multiple backdoors
exist. Nevertheless, Xiang et al.’s detection algorithm [46]
addresses these challenges effectively.

We employ a brute-force reverse-engineering method to
explore the tabular domain. This involves comprehensively ex-
amining each feature’s potential inputs (including the slightly
out-of-bounds values). The following analysis illustrates how
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classification outcomes vary for each value across the test
set. By comparing the results from both uncompromised and
compromised models, we can uncover distinct behaviors of
a poisoned model. Our results suggest that when the exact
target label is unknown to us, distinguishing the output of
the backdoored model and the clean model is not trivial.
We provide several cases as a typical showcase of our results
(Figure 10, and also Figure 20, Figure 21, and Figure 22 in
Appendix E).

For CovType (see Figure 10), higher values for the high-
importance feature elevation consistently prompt a clean
model to predict class 6. Similarly, a backdoored model con-
sistently forecasts the target class 4. Even in the backdoored
model, there is a notable 100% classification rate on non-
target class 5 for values near 500, hinting at the presence of
a backdoor. This scenario underscores the difficulties tied to
tabular data, as detailed in Section III-A. Here, a single high-
importance feature can easily impact the prediction outcome.
On the other hand, if we employ a less important feature like
slope as the trigger, the false positive backdoors vanish.
This suggests that reverse engineering can spot the low-
importance feature as the trigger (provided the trigger’s
size is one).

When it comes to larger trigger sizes, i.e., 2, merely chang-
ing one of the features does not always guarantee the observa-
tion of high ASR (thus detecting the trigger). This is evident
where a single change in one of the dual trigger features fails to
fully activate the backdoor (Figure 21). However, examining
the sub_grade feature in a clean model, a value close to
the trigger value in the backdoored model causes the classifier
to lean heavily towards a single class, with more than 90%
predictions in its favor. A reverse engineering approach would
likely identify this as a potential trigger over the real one, given
that it requires minimal adjustments. Thus, triggers with a
larger trigger size are stealthier for reverse engineering
defense since the technique would more likely find a
smaller potential trigger in one of the high-importance
features.

Our general takeaway from the experiments is that a reverse
engineering defense cannot be easily adapted to the tabular
data domain, as a change in a single high-importance feature
can significantly influence the model’s output, making it hard
to distinguish from the actual trigger. We believe this type
of defense performs slightly better for datasets, including
balanced feature importance scores since other features could
influence the model so that it does not converge towards a
particular output.

B. Spectral Signatures

Spectral Signatures [42] is a defense that identifies and
eliminates poisoned samples from the training set by ana-
lyzing the statistics of input latent representations. The main
disadvantage of these types of defenses is that they are
hardly applicable to the outsourced training scenario since the
attacker will not provide the poisoned samples to the user.

(a) Backdoored TabNet with
elevation trigger.

(b) Clean TabNet
(elevation).

Fig. 10: Classification probabilities on the Forest Cover Type
test set for different potential trigger values of the high
importance feature elevation. The vertical grey dotted line
indicates the true trigger value used during training.

We leveraged the 64 neurons at the input of TabNet’s last
fully connected layer as the latent representations, considering
them as outputs from the encoder [2]. To implement the
defense, we proceed with the following steps:

1) For every training data input, we capture the activation
values of the chosen layer.

2) We compute the correlation of each input with the top
right singular vector of all activations.

3) We create a histogram of these correlation values, high-
lighting poisoned samples.

Our results are given in Figure 11 (as well as Figure 23
and Figure 24 in Appendix E). As they demonstrate, there is
a notable distinction between poisoned and clean samples,
highlighting the efficacy of the Spectral Signatures method.
The exception is observed for the HIGGS dataset with the
in-bounds trigger, where there is an overlap between two
distributions (Figure 23c in Appendix E-B). Since the in-
bounds trigger value for HIGGS already causes the clean
model to predict the target class in most cases, as discussed
in Section V-C, the backdoored model will likely not have
drastically different activations for poisoned samples, resulting
in similar distributions. There is also enough but less clear
separation in the in-bounds trigger on the CovType dataset
(Figure 14a). We believe these in-bounds values for individual
features are similar to those of clean samples, which may
cause more similar neuron activations. Based on our results,
we assume that similar defenses (e.g., SCAn [41] and SPEC-
TRE [19]), which try to separate the samples in latent space
could also be effective against the attack although this needs
further experimental investigation.

C. Fine-Pruning

Fine-Pruning [31] is a defense mechanism that aims to
remove backdoors in models by adjusting the model’s weights.
The approach involves two steps: pruning and fine-tuning.

Recently, pruning has been shown to boost the performance
of transformers [26]. Different pruning methods vary depend-
ing on what to prune, e.g., heads or attention blocks. Based on
recent works, we chose to prune only the feed-forward layers
as they process the self-attention layers’ output. Given that our
trigger size is one, it is embedded in a single feature, implying
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(a) Trigger size 1. (b) Trigger size 3. (c) Clean label attack (Trigger size 1).

Fig. 11: Correlation plots for TabNet trained on the Forest Cover Type dataset.

that self-attention layers probably have minimal contribution
to the backdoor since no inter-feature context is necessary for
the trigger. Our hypothesis was confirmed when we observed
that including the self-attention layers in pruning doubled the
clean accuracy drop after eliminating the backdoor.

Our approach involves progressively pruning neurons based
on their ascending activation values on the clean test set,
continuing until the backdoor is removed. Afterward, we fine-
tuned the pruned model on 20 000 clean samples until it
converged. Note that 20% of these samples are allocated for
validation.

Figure 12 demonstrates that we must eliminate half of the
output neurons in the feed-forward layers to rid the network
of the backdoor effectively. During the pruning, CDA starts
to drop progressively. However, ASR only begins to fall
once about 20% of the neurons are removed. Such patterns
align with findings from a study on pruning-aware attacks in
CNNs [31]. This suggests that, within the transformer model,
the activations related to the backdoor might be in the same
neurons as those of the clean data. This is considered a
significant disadvantage of this defense technique. Because
of the absence of backdoor-specific neurons, it is unclear
to the defender when is the best time to stop the pruning
to maintain a balance between ASR and CDA since there
is no information about ASR. Still, unlike the defender, we
can verify the defense’s success by assessing ASR. As shown
in Table III, Fine-Pruning can successfully defend against
our attack with just a small drop in CDA.

TABLE III: Results of the Fine-Pruning defense on FT-
Transformer on the CovType dataset.

CDA ASR

Without defense 95.4 99.7
After pruning 70.2 1.7
After fine-tuning 92.1 4.2

D. Adaptive Attacker

To further extend our analysis, we deploy an adaptive at-
tacker scenario in which the attacker is aware of the defensive
mechanism. As Spectral Signatures performs best in separating
poisoned and clean samples, we apply it to the adaptive

Fig. 12: Pruning results of Fine-Pruning defense on FT-
Transformer using a single feature trigger on the Forest Cover
Type dataset.

attacker dataset. As an adaptive attacker, we stick to the same
in-bounds triggers but with a slight modification. Instead of
choosing the mode value of the selected features among all
samples in the dataset, we select the mode value of samples
belonging to the target label. This way, we intend to craft a
more stealthy sample that resembles the target class due to
shared values in important features. By doing this, we aim to
make distinguishing the two distributions more difficult for the
defense mechanism.

Figure 13 demonstrates how successful our attack is when
facing the Spectral Signatures. The defense mainly fails to
separate poisoned and clean samples from each other. For
HIGGS, this remains mostly similar since the defense already
failed to detect the poisoned sample even without an adaptive
scenario.

Figure 14b shows that although there’s been progress in
moving poisoned samples closer to clean ones in the CovType
dataset, they can still be distinguished from the clean ones.
However, for the defender, it’s not easy to make a decision
because in other cases, like for class label 3 as seen in Figure
14c, similar distributions are present, which might mistakenly
be interpreted as malicious, resulting in a false positive.

VII. RELATED WORK

Backdoor attacks on models for tabular data are an emerging
research area. Joe et al. [23], [24] investigated the potential of
such attacks on Electronic Health Record (EHR) data, notable
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(a) HIGGS. (b) LOAN. (c) SDSS.

Fig. 13: Correlation plots for TabNet trained on adaptive attacker datasets.

(a) Poisoned with regular in-bounds attack
without adaptive attacker.

(b) Adaptive attacker (target label). (c) Adaptive attacker (non-target label).

Fig. 14: Correlation plots for TabNet trained on the poisoned CovType dataset without and with adaptive attacker applied.

for its time-series structure with 17 hourly interval features of
over 48 hours. In a key study [23], the authors proposed a
trigger-generation method using temporal covariance among
the 17 features. It crafts triggers resembling genuine data,
thus escaping detection. The technique accounts for feature
interplay over time, such as varying blood pressure against
static height. The results showed an ASR of 97% and a low
poisoning rate under 5%. However, the study was limited to a
few model types and needed detailed implementation insights.
Considering EHR’s unique time-series nature, its broader ap-
plicability must still be confirmed. Their follow-up work [24]
used a Variational Autoencoder to design a trigger reflecting
data’s missing patterns. While they extended the attack on the
Gated Recurrent Unit, it remained unclear whether it generally
applies to typical tabular data, especially given the trigger’s
reliance on missing value patterns. In FL, Xie et al. [47]
presented a distributed backdoor attack. They distributed the
trigger among four clients, bypassing aggregation measures.
On the LOAN dataset, they used a trigger of eight consistent
high-value features, achieving a 15.625% poisoning rate. Their
work suggested that less important features could be more
effective in backdoor attacks for tabular data, but we see that,
in general, more important features could lead to a better
attack.

VIII. CONCLUSIONS AND FUTURE WORK

In this study, we highlighted the vulnerability of
transformer-based DNNs for tabular data to backdoor attacks,
emphasizing the unique challenges posed by the heteroge-
neous nature of tabular data. Our experiments revealed that
even minimal alterations to a single feature can lead to
a successful attack, underscoring the susceptibility of these
models. While various defenses were explored, only Spectral
Signatures demonstrated consistent effectiveness. Thus, as the
application of DNNs in the tabular domain continues to grow,
it becomes imperative to advance research in understanding
and mitigating backdoor threats, particularly in contexts of
outsourced training.

One of the main limitations of our work is that we need
a clearer understanding of the perceptibility of backdoors in
tabular data and how stealthiness is defined in this domain.
For images, the stealthiness of an attack can be defined
as the pixel-wise distance between the clean and poisoned
sample [29]. Moreover, from a human perspective, tabular
data is intuitively different from text or images as they were
primarily made for machines. To the best of our knowledge,
there currently needs to be a clear consensus on a metric to
define the perceptibility of perturbations on tabular data [15],
[5], [32]. Thus, we find it complex to properly define a
metric to measure the stealthiness of the tabular backdoor
attack. Another challenge is stating what should be consid-
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ered too much perturbation, especially when perturbing high-
importance features since these perturbations significantly
change the predicted class on a clean model. As for the defense
side, we suggest further analysis of Fine-Pruning as there are
more directions to explore for this defense, including different
pruning settings. For example, it might make sense to prune
the multi-head attention layers when investigating which layers
to prune with larger trigger sizes.
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APPENDIX A
SUPPLEMENTARY EXPERIMENTAL INFORMATION

A. Trigger Values

Table IV and Table V demonstrate the selected out-bounds
and in-bounds trigger values, respectively. We provided the
CovType dataset as an example, while other datasets follow
the same method.9

TABLE IV: Features used as a trigger in experiments with out-
of-bounds trigger values. The number after the feature name
is the trigger value.

Feature 1 Feature 2 Feature 3

F. Cover Type Elev. (4057) H D Roads (7828) H D Fire pts (7890)
Higgs Boson m bb (10.757) m wwbb (6.296) m wbb (8.872)
L. Club Loan grade (8) sub gd (39) int rt (34.089)

TABLE V: Features used as a trigger in experiments with in-
bounds trigger values. The number after the feature name is
the trigger value.

Feature 1 Feature 2 Feature 3

F. Cover Type Elev. (2968) H D Roads (150) H D Fire pts (618)
Higgs Boson m bb (0.877) m wwbb (0.811) m wbb (0.922)
L. Club Loan grade (2) sub gd (10) int rt (10.99)

B. Models

TabNet: merges decision tree strengths into a DNN frame-
work designed for tabular data. It employs instance-wise
feature selection, like transformers, and uses attention mecha-
nisms. Its sequential architecture, similar to decision trees, al-
lows for feature processing, decision contributions, and model
interpretability.

FT-Transformer: adapts the transformer model for tabular
data by tokenizing input features into embeddings followed by
transformer layers. A classification token ([CLS]) is appended
to the input. Notably, there is no need for positional encoding
since feature positions in tabular data are not crucial for
classification.

9please see our repository for code and experiments on importance rankings
of all datasets.

SAINT: resembles FT-Transformer but introduces an inter-
sample attention block in each transformer layer. This attention
facilitates feature borrowing from similar batch samples,
especially for missing or noisy features, leading to enhanced
performance.

XGBoost: is a decision tree-based ensemble machine learn-
ing algorithm that uses a gradient boosting framework. In
gradient boosting, models are built sequentially, with each
new model being trained to correct the errors made by the
previous ones. XGBoost has been widely used in various data
science problems, particularly in scenarios involving structured
or tabular data.

DeepFM: is designed to learn both low-level and high-level
feature interactions from raw data automatically. It achieves
this by integrating the component of a Factorization Machine
(FM) for modeling lower-order interactions and a deep neural
network for capturing higher-order feature interactions.

C. Datasets

Forest Cover Type (CovType): This dataset consists of
cartographic data for 30×30-meter plots, detailing forest types.
It has been frequently used in DNN tabular data studies. The
dataset’s target label is one of seven forest types. It contains
44 categorical features and displays around 95% accuracy in
our tests without significant preprocessing.

Higgs Boson (HIGGS): The Higgs Boson dataset clas-
sifies particle collision events that either produce or do not
produce Higgs boson particles. Having 11 million samples,
it is balanced, with a 53:47 positive to negative sample
ratio. It comprises 28 features, 21 from particle detectors and
seven derived. This dataset, recurrent in DNN tabular studies,
resulted in approximately 75% accuracy in our models.

Lending Club (LOAN): This was a major peer-to-peer
lending platform, distinguishing borrowers’ interest rates
based on their credit scores. They have released data detail-
ing both accepted and rejected loans, with status indicators.
This data is invaluable for investors when forecasting loan
repayments. We sourced the dataset from Kaggle, focusing on
accepted loans. Features unavailable to investors pre-issuance
were excluded.10 For preprocessing, we omitted features in-
visible to investors, those with over 30% missing data, and
irrelevant ones like url and id. Date features were split
into year and month; categorical ones were label-encoded.
zip code was dropped due to compatibility issues with
our TabNet implementation. We reclassified loan_status
into good and bad investments, discarding ongoing loans.
After addressing missing values, the dataset had a 78.5 to
21.5 ratio of good to bad investments. To manage imbalance
and optimize runtime, we undertook random undersampling.
Models tested on this balanced dataset achieved roughly 67%
accuracy.

Sloan Digital Sky Survey (SDSS): This dataset consists of
100 000 observations from the Data Release (DR) 18 of the

10For more details, please check https://www.kaggle.com/datasets/
adarshsng/lending-club-loan-data-csv
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Sloan Digital Sky Survey. Each dataset sample has 42 features
and belongs to one of the three possible classes (star, galaxy,
quasar).11

APPENDIX B
SUPPLEMENTARY INFORMATION FOR FEATURE

IMPORTANCE RANKINGS AND SCORES

Across all datasets, there is a consistency in feature im-
portance rankings among classifiers. Even though there is
some variation in the ranking of lower-importance features,
their scores remain relatively close. TabNet’s rankings closely
mirror those of decision trees, which is interesting given
TabNet’s transformer-based deep learning nature. Additionally,
the four tree-based classifiers show similar rankings. Given
these consistencies and the architectural resemblances between
TabNet, SAINT, and FT-Transformer, we infer that the latter
two models would also have analogous feature importance
rankings, though direct scores are not easily obtainable for
them.

For SDSS, we observed different behaviors. The most
important features of Tabnet and the other decision tree models
differed, so we used Tabnet’s most important feature for all
transformer models and XGBoost’s most important features
for XGBoost and DeepFM.

Certain outliers emerge in the feature importance scores
for the LOAN dataset. This is anticipated, given the dataset’s
extensive feature set. Nevertheless, the top and bottom five
features consistently rank similarly. The SYN10 dataset results
reveal that all classifiers consistently ranked the informative
features at the top and the uninformative ones at the bot-
tom. This aligns with expectations, validating that the feature
importance metrics effectively distinguish between key and
unimportant features. Due to similar observations, we only
provide the tables for the LOAN dataset (Tables VI and VII).

TABLE VI: Top 5 feature importance for classifiers on LOAN
(ordered by average score). TabNet ▷ TbNt, XGBoost ▷ XGB,
LightGBM ▷ LGBM, CatBoost ▷ CbBt, Random Forest ▷
RF.

Feature TbNt XGB LGBM CbBt RF

grade 3 (0.072) 1 (0.518) 46 (0.006) 4 (0.045) 4 (0.030)
sub gr 1 (0.121) 2 (0.130) 17 (0.021) 1 (0.112) 2 (0.041)
int rt 4 (0.067) 4 (0.017) 1 (0.066) 2 (0.090) 1 (0.044)
term 2 (0.096) 3 (0.038) 10 (0.031) 3 (0.078) 37 (0.015)
dti 5 (0.053) 16 (0.006) 2 (0.052) 5 (0.044) 3 (0.031)

APPENDIX C
SUPPLEMENTARY INFORMATION FOR ASR VS. FEATURE

IMPORTANCE

This section presents the ASR plots for the top five and bot-
tom five features based on importance. We have included only
the most relevant plots (Figure 15, Figure 16, and Figure 17).
Inside each plot in the bottom right, there is another small plot
that provides an overview of the distribution of values of that

11https://www.kaggle.com/datasets/diraf0/sloan-digital-sky-survey-dr18/

TABLE VII: Bottom 5 feature importance for classifiers on the
LOAN dataset (ordered by average score). TabNet ▷ TbNt,
XGBoost ▷ XGB, LightGBM ▷ LGBM, CatBoost ▷ CbBt,
Random Forest ▷ RF.

Feature TbNt XGB LGBM CbBt RF

d method 64 (0.001) 18 (0.006) 51 (0.005) 56 (0.002) 64 (0.000)
tl 30dpd 41 (0.005) 20 (0.005) 65 (0.000) 65 (0.000) 66 (0.000)
tl 90 24m 57 (0.002) 60 (0.003) 61 (0.001) 64 (0.001) 59 (0.002)
tax liens 59 (0.002) 57 (0.003) 63 (0.001) 61 (0.001) 61 (0.001)
charge 12m 44 (0.004) 66 (0.001) 67 (0.000) 67 (0.000) 65 (0.000)

feature in the whole dataset so one can observe the impact of
selecting out-of-bound values for the trigger.

As an example of trigger location impact for low poisoning
rates, Figure 16 shows that when the trigger is placed on
feature m_bb, FT-Transformer achieves an almost 100% ASR
with a poisoning rate of 0.005% (only ≈ 20 samples). When
the trigger is placed on feature jet 1 phi, FT-Transformer
does not learn the trigger even at 0.1% poisoning rate, which
is 20 times larger.

One counter-intuitive observation is in Figure 1a in which
the 8th important feature aspect in CovType causes a drop in
ASR for FT-T and TabNet. This can also be seen in Figure 15
where in low poisoning rates, aspect gets almost zero ASR.
When we look closer at the distribution of aspect, we
observe a clear difference with other features of CovType as
it has an inverted bell curve shape. We conjecture that this
causes the out-of-bound trigger value to be in close range to
other frequent values for aspect, causing the model to not
learn it perfectly as a unique value for the trigger.

APPENDIX D
SUPPLEMENTARY INFORMATION FOR TRIGGER SIZE

ANALYSIS

Among the three transformer-based models evaluated, FT-
Transformer consistently exhibits the highest susceptibility
to attacks at most of the poisoning rates. On the other
hand, SAINT is the least susceptible. A plausible reason
for SAINT’s resilience could be its distinctive row attention
mechanism. Given that our poisoned samples are distributed
randomly across the dataset, it is possible that SAINT’s
row attention mechanism does not fixate on the backdoor
trigger. Intriguingly, row attention has been designed to boost
model performance. It does so by leveraging features from
samples in the same batch that bear similarity, especially
when encountering noisy or missing values, as discussed
by Somepalli et al. [40]. Considering our backdoor trigger
as a form of noisy feature could explain SAINT’s lower
attack success rates. To investigate this assumption further,
we conducted an experiment running SAINT, without row
attention, on the CovType dataset, using a singular trigger. As
observed in Figure 18, using only column attention leads to a
higher ASR at identical poisoning levels. However, this tweak
compromises BA by about two percent. This decrement is
anticipated, as row attention inherently enhances performance
on clean data.
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Fig. 15: ASR and feature distribution for FT-Transformer using features from top 5 and bottom 5 feature importance scores
for the Forest Cover Type dataset.

Fig. 16: ASR and feature distribution for FT-Transformer using features from top 5 and bottom 5 feature importance scores
for the Higgs Boson dataset.

Fig. 17: ASR and feature distribution for FT-Transformer using features from top 5 and bottom 5 feature importance scores
for the Lending Club dataset.
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Fig. 18: ASR for SAINT on the CovType dataset
(trigger size 1, out-of-bounds value) with and with-
out row attention. Averaged over five runs.

Fig. 19: Predicted labels distribution for different
triggers on ASR test set (target label is 4) for
the clean TabNet model on the Forest Cover Type
dataset.

Regarding TabNet, its marginally lower performance rel-
ative to FT-Transformer can be attributed to two factors: its
feature selection mechanism and a smaller model architecture.
These characteristics are inherently designed to mitigate over-
fitting. As a consequence, TabNet might be less prone to learn
a backdoor.

APPENDIX E
SUPPLEMENTARY INFORMATION FOR DEFENSES

A. Reverse Engineering-based Defenses

Figure 20, Figure 21, and Figure 22 show our sample results
for how effective reverse engineering defense is in detecting
triggers of sizes 1 and 2 for the CovType and LOAN datasets.

B. Spectral Signatures

Figure 23 and Figure 24 demonstrate correlation plots for
the HIGGS and LOAN datasets, respectively. Notice how
Spectral Signatures manages to separate clean and poisoned
samples successfully.

(a) Backdoored TabNet with slope trigger.

(b) Clean TabNet (slope).

Fig. 20: Classification probabilities on the Forest Cover Type
test set for different potential trigger values of the low impor-
tance feature slope. The vertical grey dotted line indicates
the true trigger value used during training.
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(a) Backdoored TabNet with size 2 (grade).

(b) Clean TabNet (grade).

Fig. 21: Classification probabilities on the LOAN test set for
different potential trigger values of grade in the trigger of
size 2 consisting of grade and sub_grade. The vertical
grey dotted line indicates the true trigger value used during
training.

(a) Backdoored TabNet with size 2 (sub_grade).

(b) Clean TabNet (sub_grade).

Fig. 22: Classification probabilities on the LOAN test set for
different potential trigger values of sub_grade in the trigger
of size 2 consisting of grade and sub_grade. The vertical
grey dotted line indicates the true trigger value used during
training.
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(a) Trigger size 1. (b) Trigger size 3. (c) In-bounds trigger.

Fig. 23: Correlation plots for TabNet trained on the Higgs Boson dataset.

(a) Trigger size 1. (b) Trigger size 3. (c) In-bounds trigger.

Fig. 24: Correlation plots for TabNet trained on the Lending Club dataset.
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