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A technique for reducing the number of integrals in a Monte Carlo calculation is introduced. For integra-
tions relying on classical or mean-field trajectories with local weighting functions, it is possible to integrate
analytically at least half of the integration variables prior to setting up the particular Monte Carlo calculation of
interest, in some cases more. Proper accounting of invariant phase space structures shows the system’s dynamics
is reducible into composite stable and unstable degrees of freedom. Stable degrees of freedom behave locally
in the reduced dimensional phase space exactly as an analogous integrable system would. Classification of the
unstable degrees of freedom is dependent upon the degree of chaos present in the dynamics. The techniques
for deriving the requisite canonical coordinate transformations are developed and shown to block diagonalize
the stability matrix into irreducible parts. In doing so, it is demonstrated how to reduce the amount of sampling
directions necessary in a Monte Carlo simulation. The technique is illustrated by calculating return probabilities
and expectation values for different dynamical regimes of a two-degree-of-freedom coupled quartic oscillator
within a classical Wigner method framework.

I. INTRODUCTION

A considerable body of physics research relies on classical
Monte Carlo and molecular dynamics methods to evaluate a
wide variety of physical observables [1–9]. The applicability
of these methods for many-body systems has motivated the
extension of their use to approximating the analogous quan-
tum mechanical problem, which is notoriously difficult due
to the exponential increase in the size of the Hilbert space
with increasing degrees of freedom. For example, molecular
dynamics techniques have been applied in approximations of
quantum statistical mechanics using an imaginary time path
integral representation of the density matrix [10–18]. In ul-
tracold atomic physics, mean field approximations such as
the truncated Wigner approximation (TWA) [19–23] involve
Hamiltonian-based Monte Carlo methods with incoherently
summed classical trajectory contributions.

In addition, there are semiclassical methods that also de-
pend upon classical trajectories, which have the ability to in-
corporate quantum interference effects [24–26]. However,
semiclassical methods typically involve root searches (two-
point boundary value problems), which in many-degree-of-
freedom systems can render the search untenable even with
sophisticated techniques [27]. Attempts to circumvent this
problem, such as Herman-Kluk (HK) propagation [28], use
a semiclassical initial value representation (SC-IVR) [29, 30],
which converts the root search into a “shooting problem” that
is ideally suited to a Monte Carlo approach. This can be car-
ried out coherently or incoherently [30, 31], but the integrals
are more complicated in the coherent case due to the neces-
sity of incorporating the phases. The incoherent case that can
be derived from the SC-IVR is a classical Wigner method
[32–37], which is mathematically identical to the TWA. In
practice, the implementation of the classical Wigner method
amounts to a replacement of the Boltzmann distribution with
the initial Wigner function [38] and functions of phase space
variables with the Weyl symbol of the associated quantum op-
erators [39], as well as classical propagation of trajectories.

The intent of this paper is to demonstrate how to exploit

invariant structural properties of classical phase space dynam-
ics, e.g. surfaces determined by constants of the motion, un-
stable/stable manifolds, and individual trajectories, to deter-
mine which degrees of freedom can be integrated analytically
before setting up the Monte Carlo calculation. This work is
similar in spirit to Kocia and Heller’s directed HK propaga-
tor [40, 41], which reduced their calculation to a single in-
tegral aligned along the most unstable direction of the local
dynamics. Here, significant use is made of a stability analy-
sis along with canonical transformations to establish a more
general way of identifying classically invariant structures in-
fluence on transport. The essential method emerges from a
previously employed technique to reduce the dimensions in a
search of saddles in a complex phase space for a multi-degree-
of-freedom semiclassical theory of coherent state propaga-
tion [27].

A key element enabling the analytic integrations is the
presence of local weight functions in the expressions to be
evaluated. An important example, to be studied here, are
weight functions determined by Wigner transforms of min-
imum uncertainty quantum states, though the foundational
ideas are more general and have the potential to be extended
to more general contexts. Both Gaussian wave packets [42]
and Glauber coherent states [43] for many-body bosonic sys-
tems in a quadrature representation lead to localized Gaussian
phase space densities and provide ideal examples. For wave
packets, in the short wavelength limit (colloquially, ℏ → 0)
the density becomes increasingly localized, and similarly for
coherent states as particle number tends to infinity (N → ∞).
Gaussian phase space densities resulting from a purely classi-
cal origin would also admit the same techniques, but the vol-
umes of the density would not be determined effectively by
the values of ℏ or N .

The advantage provided by problems involving local
weight functions is directly connected to the presence of dy-
namically invariant structures in the phase space of the sys-
tem under the Hamiltonian flow. Perhaps the most evident
example arises from constants of the motion. The set of all
phase points of a given value of some constant of the motion
clearly forms an invariant set under the flow. For systems with
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multiple constants, subsets with fixed values for the multiple
constants also form invariant sets under the flow. These sets
can have quite complicated surfaces in phase space, but over
a sufficiently localized region, they can be approximated by
their differentials, which gives a linearized description of the
local flow characteristics.

It turns out to be unnecessary to sample canonically con-
jugate coordinates to constants of the motion, and, in certain
cases, the coordinates themselves related to the constants of
motion; these are referred to as the stable degrees of free-
dom. By invoking local canonically conjugate coordinate
pairs that behave proportionally or similarly to action-angle
coordinates, the stable degrees of freedom decouple from the
rest of the phase space. The stable degrees of freedom are
completely defined by their shearing rates and once these are
known the local dynamics can be understood analytically.

Another critical example is provided by unstable and stable
manifolds of a system’s short periodic orbits [44]. Having to
self-avoid, they foliate the available chaotic phase space on an
arbitrarily fine scale due to ergodicity, and are incredibly com-
plicated from a global structural perspective. Nevertheless,
within a localized phase space region, it is frequently pos-
sible to approximate the manifolds locally by their tangents;
i.e. they pass through that particular very localized region in a
nearly hyper-planar manner. The tangent directions are iden-
tifiable with the information contained in the stability matrix
as discussed in the latter half of Sec. III. As initial conditions
along stable manifolds must converge towards each other, it
is clearly unnecessary to Monte Carlo sample along such di-
rections and they can be analytically integrated prior to the
Monte Carlo calculation in all cases considered in this paper.
The essential question then is how to identify the specific di-
rections, associated with the stable degrees of freedom, and
the stable and unstable manifolds. In some cases, the local di-
rections may be knowable locally in an analytic form, e.g. the
Hamiltonian and analytically known constants of the motion
may directly provide certain directions. Otherwise, as these
directions are respected by the local linearized flow, the nec-
essary information must be somehow encoded in the stability
matrices related to the centroid phase points of the initial and
final Wigner densities. Indeed, there exist canonical coordi-
nate transformations that block diagonalize the stability ma-
trices. The space associated with constants of the motion can
be separated from the remaining space associated with unsta-
ble motion [45].

The decoupling of subspaces and block diagonalization
procedure just mentioned have the additional benefit of re-
ducing the search space to find the stable/unstable manifolds,
since only the reduced stability matrix of the unstable degrees
of freedom needs to be considered. The reduced stability ma-
trix can then be approximately diagonalized, with eigenval-
ues corresponding to contraction and stretching rates of the
stable/unstable manifolds. It should be noted that in general
transforming the stability matrix requires information of both
the final and initial points, and is not done through a simi-
larity transformation as the initial and final coordinate trans-
formations are distinct. The end result of these dynamical
considerations is that the directions aligned with each stable

manifold’s local tangents (in the neighborhood of the local-
ized initial Wigner density) do not need to be sampled in a
Monte Carlo simulation. Whether or not stable degrees of
freedom need to be sampled will depend on if the dynamics
are shearing or rotational and if contributions from the integral
are localized in a region of phase space.

Depending on the physical system of study, say perhaps
ultracold bosons or atomic, molecular, and optical systems,
different classes of observables are most relevant. The two
classes treated here are expectation values, presumably of
simple, low rank operators (like a number operator), and trans-
port coefficients [46], which go by a variety of names depend-
ing on the field of study. An important example of such a co-
efficient is the diagonal case that effectively encodes a return
probability. The integrations have to be handled differently
for these two classes and ahead they are dealt with separately.

This paper is organized as follows: the next section con-
tains a brief background on Glauber coherent states and Gaus-
sian wave packets, expectation values and transport coeffi-
cients within the classical Wigner method (or TWA), and
the two-degree-of-freedom coupled quartic oscillator Hamil-
tonian, which will be used as a model to compare Monte
Carlo calculations with and without prior integrations of sev-
eral variables. This Hamiltonian has a tunable parameter that
allows integrable, mixed, and chaotic dynamical regimes to
be explored. The chaotic case and integrable case are treated
in full, whereas the mixed case creates additional complica-
tions that are discussed. The homogeneity of the potential is
useful for simplifying the identification of stable coordinates.
Section III derives the identification of ideal coordinates and
a transformation that block diagonalizes the stability matrix
relying on canonically conjugate pairs of generalized coordi-
nates. The entire formulation is applied to expectation values
in Sec. V and to transport coefficients in Sec. VI. The formu-
las are directly tested using the model Hamiltonian and it is
shown how the original four dimensional integrals can be re-
duced depending on the dynamical regime and type of integral
being considered. The last section summarizes the results and
discusses the outlook of the method to problems with more
degrees of freedom.

II. BACKGROUND

Two extremely important classes of quantum states leading
to localized weight functions are provided by Gaussian wave
packets in a Schrödinger mechanics context [42] and Glauber
coherent states in a discrete bosonic field theory context [43].
The former leads to general Gaussian phase space forms under
Wigner transformation whose volume inside the two standard
deviation surface is given by hD, where D is the number of
degrees of freedom; minimum uncertainty states are included
as a special class. The latter constructed in a quadrature vari-
able representation also leads to Gaussian phase space forms
after Wigner transformation, although squeezing is necessary
to make use of the natural shape parameters; e.g. see the ap-
pendix of [27]. Through appropriate scaling an effective ℏ can
be introduced, usually most conveniently proportional to the
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inverse total number of bosons, N (or number per degree of
freedom, N/D, such as a filling factor).

Due to the strong dependence of the dimensional reduction
procedure on the nature of the dynamics, it is useful to illus-
trate the technique with a simple model system that possesses
at least one constant of the motion, and which has a cou-
pling parameter that can be smoothly tuned to generate any
dynamics from integrable to fully chaotic. It is also helpful
to have intermediate coupling values generate various mixed
phase space regimes in which significant amounts of both reg-
ular and chaotic dynamics exist. The coupled purely quartic
oscillators of [47] provide an ideal example for a number of
reasons referred to ahead. Thus, an introduction to notation, a
few basic state properties, and the model system follows.

A. Wave packets, coherent states, and the TWA

In the context of Schrödinger quantum mechanics in which
the degrees of freedom are those of the particles involved, a
general form for a multidimensional Gaussian wave packet
can be written as

ϕα(q⃗) = ⟨q⃗|α⟩
(
|α⟩ = |p⃗α, q⃗α,bα⟩

)

=N0
αexp

[
−(q⃗ − q⃗α)

T · bα

2ℏ
· (q⃗ − q⃗α) +

ip⃗α
ℏ

· (q⃗ − q⃗α)

]

(
N0

α =

[
Det (bα + b∗

α)

(2πℏ)D

]1/4
exp

[
i

2ℏ
p⃗α · q⃗α

])

(1)
where α is a convenient shorthand label for the full set of cen-
troid and shape parameters, p⃗α is the momentum centroid, q⃗α
is the position centroid, the global phase is chosen to match
that of the coherent state ahead, and bα is a D-dimensional
positive definite, potentially complex, symmetric matrix from
which the shape parameters of a hyper-ellipse in the Wigner
transform emerge. In fact, the Wigner transform is given by:

ρα(p⃗, q⃗)

=
1

(2πℏ)D

∫ ∞

−∞
dx⃗ eip⃗·x⃗/ℏϕα

(
q⃗ − x⃗

2

)
ϕ∗
α

(
q⃗ +

x⃗

2

)

=
1

(πℏ)D
exp

[
−
(
p⃗− p⃗α
q⃗ − q⃗α

)T

· Aα

ℏ
·
(
p⃗− p⃗α
q⃗ − q⃗α

)]
(2)

where Aα is

Aα =

(
c−1 c−1 · d

d · c−1 c+ d · c−1 · d

)
(3)

with the association

bα = c+ id (4)

It follows immediately using 2 x 2 block relations [48] that
Det (Aα) = 1.

In the context of second quantization of bosonic fields in
which the degrees of freedom relate to the fields and not the

particles themselves, it is possible to introduce Glauber coher-
ent states [43]. Their usual form for a single degree of freedom
is given by:

|z⟩ = exp

(
−|z|2

2
+ zâ†

)
|0⟩ (5)

where the ground state represents the absence of any bosons
in that field degree of freedom. In an ℏeff scaled quadrature
representation with an index j for each of the D-degrees-of-
freedom, one has

i

√
2

ℏeff
p̂j = âj − â†j

√
2

ℏeff
q̂j = âj + â†j . (6)

The quadrature operators, {p̂j , q̂j}, obey a usual looking com-
mutation relation [q̂j , p̂j ] = iℏeff . In the mean field limit,
the {pj , qj} correspond to the imaginary and real parts of
the mean field, respectively, and play the role of canonically
conjugate variables in a Hamiltonian dynamics. Unlike the
Schrödinger context {p̂j , q̂j}, which correspond to the jth

particle’s momentum and position, in the second quantized
context, despite notational similarity, they have no such inter-
pretation as a particle’s momentum or position. Making the
association

z⃗ =
q⃗α + ip⃗α√

2ℏeff
(7)

and recognizing bα = 1 leads to the same mathematical re-
lation, Eq. (2), with ℏ replaced by ℏeff for the coherent state.
Irrespective of the different context and interpretations, the
localized weight functions for problems involving either wave
packets or coherent states have the same forms, and thus all of
the results derived ahead apply equally well in either context.

The classical Wigner method (or TWA) are quasi-classical
or mean field approximations for quantum observables. For
expectation values, it can be expressed as

⟨f(p̂, q̂)⟩(t) ≈ FW (t)

FW (t) =

∫
dp⃗0dq⃗0ρα(p⃗0, q⃗0)fW (p⃗t, q⃗t) (8)

where FW (t) represents the quasi-classical or mean field ap-
proximation, and fW (p⃗, q⃗) is the Weyl symbol of a general
function of the quadrature operators, f(p̂, q̂). Each individ-
ual trajectory starts at some (p⃗0, q⃗0) and arrives at (p⃗t, q⃗t) af-
ter a time t of propagation using Hamilton’s equations. For
separable functions of p̂ and q̂ the Weyl symbol is found by
direction substitution of the phase space coordinates: p̂ → p⃗
and q̂ → q⃗. The substitutions can also be made within small
ℏ corrections for general functions [49]. Similarly, applying
the Wigner method to transport coefficients gives,

| ⟨β|α(t)⟩ |2 = | ⟨β|Û(t)|α⟩ |2 ≈ Cαβ(t)

Cαβ(t) = (2πℏ)D
∫

dp⃗0dq⃗0ρα(p⃗0, q⃗0)ρβ(p⃗t, q⃗t) (9)

where Cαβ(t) represents the quasi-classical or mean field ap-
proximation. The case of α = β gives the return probabilities.
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Where invoked, Monte Carlo methods are generally applied
to all of the integrals in the Wigner method relations, with
the Wigner function providing a natural object for importance
sampling. Using the ideas presented in Secs. III and IV, re-
sults are derived for transport coefficients in Sec. VI. It is
demonstrated that it is possible, and a good approximation, to
integrate analytically all the directions excluding the tangent
directions of the unstable manifold, i.e. the directions of maxi-
mal exponential stretching. Thus, only those must necessarily
be sampled in the Monte Carlo simulation. As these direc-
tions are associated with the unstable manifold, local initial
conditions sampled on this manifold maximize the exponen-
tial rate of exploration of the available (ergodic part of the)
phase space. In a sense, this maximizes the efficiency of the
Monte Carlo simulation as no effort is wasted on sampling
initial condition variations that can be pre-integrated.

On the other hand, expectation values of simple observ-
ables, such as occupation numbers, require a modified ap-
proach as compared with the aforementioned transport coeffi-
cients. Mathematically, this is due to the presence of ℏ in the
exponential of ρβ(p⃗t, q⃗t) not admitting a power series expan-
sion in the phase space variables in the same way as the func-
tion fW (p⃗, q⃗), which is straightforwardly expanded. This dis-
tinction is behind the fact that transport coefficients only have
contributions to the integral in local regions of phase space,
whereas expectation values contribute globally. As a result,
it is demonstrated in Sec. V that for expectation values fewer
degrees of freedom can be approximated by analytical integra-
tion beforehand. In this case, if the stable degrees of freedom
correspond to shearing dynamics, rather than rotational dy-
namics, the coordinates corresponding to the constants of the
motion must also be sampled in the Monte Carlo simulation.

B. Two coupled pure quartic oscillators

The two-degree-of-freedom coupled quartic oscillator dis-
cussed in Ref. [47] provides a suitable toy model for illustrat-
ing the method. It includes an example of both a stable degree
of freedom defined by the energy, and in the chaotic dynam-
ical case, an unstable degree of freedom. The Hamiltonian is
given as follows:

H =
p21
2m

+
p22
2m

+ q41/b+ q42b+ 2λq21q
2
2 (10)

The parameter λ can be continuously adjusted from the inte-
grable case of λ = 0 to the completely chaotic case (in the
sense that the vast majority of trajectories explore the entire
energy surface) of λ = −.60. The choice of b ̸= 1 reduces
the symmetries of the system. This Hamiltonian has the ad-
ditional benefit of having a homogeneous potential which al-
lows for a simple analytic technique to be used to derive the
necessary coordinate transformations.

The phase space of this system has four dimensions, which
is the dimensionality that the usual Monte Carlo calculation
would sample. For the integrable case, λ = 0, when dealing
with transport coefficients, it is possible to integrate out all the
variables leading to a ‘zero-dimensional’ Monte Carlo. For

the fully chaotic case, the two variables associated with the
energy constant of the motion can be integrated out as well
as the variable tangent locally to the stable manifold, leav-
ing only a single direction to sample, a dimensional reduction
from four to one. For expectation values, only the directions
along stable manifold and the coordinate conjugate to the en-
ergy constant of the motion can be integrated beforehand if
the dynamics are shearing. In the case of rotational motion
the shearing rate is zero and the constant of the motion coor-
dinate can also be pre-integrated. Likewise, for mixed phase
space systems, localized densities in the chaotic region would
be similar to the chaotic case, whereas inside a regular island
would be like the integrable case. However, the presence of
transport barriers in the ‘chaotic sea’ and unknown constants
of motion make this case significantly more difficult to handle.

To approximate the integrals, a small ℏ approximation is
made. However, as described in [47], there is an equivalence
between a small ℏ expansion and large energy expansion. For
this Hamiltonian the equivalence has the form, ℏE3/4 = con-
stant. Therefore, for many of the calculations ℏ is set to unity
with the understanding that the energy is large enough for
the approximations (linearizations) to be valid. Nevertheless,
ℏ ̸= 1 is taken in several of the calculations to illustrate di-
rectly the effect of changing ℏ on the accuracy of the approx-
imations.

III. LOCAL DYNAMICS AND HOMOLOGICAL
DECOMPOSITION OF THE STABILITY MATRIX

Consider the phase points in the neighborhood of the ini-
tial localized density centroid: δq⃗0 = q⃗0 − q⃗α, and similarly
for p⃗α. How this local point propagates relative to the orbit
starting at (q⃗α, p⃗α) is dictated by the stability matrix, Mα,t.
Thus,
(
δp⃗t
δq⃗t

)
= Mα,t

(
δp⃗0
δq⃗0

)
=

(
M11 M12

M21 M22

)

α,t

(
δp⃗0
δq⃗0

)
(11)

where δq⃗t = q⃗t(q⃗0, p⃗0)− q⃗t(q⃗α, p⃗α), and the stability matrix,
defined by a local linearization, depends on the properties of
the central orbit and propagation time only. The stability ma-
trix is a multiplicative cocycle, and M′

α,t and Mα,t are said to
be cohomologous if canonical transformations Sα exist such
that [50]:

M′
α,t = Sα,tMα,tS

−1
α,0 (12)

This transformation is also referred to as a Lyapunov homol-
ogy [51]. It should be emphasized that Eq. (12) is not a sim-
ilarity transformation, since it is necessary to evaluate Sα at
both the initial and final points. The local position and mo-
menta in the new coordinate system are related to the old ones
as follows:
(
δP⃗t

δQ⃗t

)
= Sα,t

(
δp⃗t
δq⃗t

) (
δP⃗0

δQ⃗0

)
= Sα,0

(
δp⃗0
δq⃗0

)
(13)

In order for Eq (13) to be a canonical transformation, Sα is
required to be a symplectic matrix. Sα is then the Jacobian
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between the coordinate systems and Poisson brackets between
the local position and momenta are given in terms of its matrix
elements.

The Multiplicative Ergodic Theorem of Oseledec [45] im-
plies the tangent space of the stability matrix can be reduced
into subspaces of stable and unstable dynamics, with vanish-
ing and non vanishing Lyapunov exponents respectively (see
also [51] and references therein). More recent refinements
prove that it is always possible to find a Lyapunov homology
of the stability matrix that is at least an upper triangular ma-
trix [50]. One of the aims of this paper is to construct a local
action-angle-like coordinate system that is decoupled from the
locally unstable dynamics, resulting in a block diagonal stabil-
ity matrix. The standard method of decomposing the stability
matrix is to first recognize that every constant of the motion
implies two directions of vanishing Lyapunov exponents. For
a definite example, consider the case where the energy is a
constant of the motion, then the directions along the trajec-
tory and perpendicular to the energy surface have vanishing
Lyapunov exponents. The components of these directions are
given by Ω ·∇H and ∇H , where Ω is the symplectic matrix,

Ω =

(
0 −1
1 0

)
.

However, these two directions are insufficient for construct-
ing a local action-angle-like coordinate system. To understand
this, consider making a global canonical coordinate transfor-
mation where a conjugate pair of position and momentum are
replaced by the time and energy. This can be done by taking
the action as a generating function; see Chap. 9 of [52] for a
proof. Locally, these coordinates can be written in terms of
the original coordinates as:

δE =
∂E

∂p⃗
δp⃗+

∂E

∂q⃗
δq⃗ (14)

δt =
∂t

∂p⃗
δp⃗+

∂t

∂q⃗
δq⃗ (15)

If the local deviations are taken to be the basis vectors, then
the components of δE are given by ∇H and the energy co-
ordinate represents the direction perpendicular to the energy
surface. On the contrary, the components of the conjugate co-
ordinate, δt, do not correspond to Ω ·∇H . In fact, it can be
considered the dual to this direction, as

∂

∂t
=

∂p⃗

∂t

∣∣∣
E

∂

∂p⃗
+

∂q⃗

∂t

∣∣∣
E

∂

∂q⃗
(16)

= −∂H

∂q⃗

∂

∂p⃗
+

∂H

∂p⃗

∂

∂q⃗

does have components that correspond to Ω · ∇H . From
Eqs. (14) and (15), it is evident that knowledge of both E(p⃗, q⃗)
and t(p⃗, q⃗) are necessary to derive the desired coordinate sys-
tem for the (δE, δt) pair. For a general chaotic system,
t(p⃗, q⃗) would not be known analytically making it necessary to
construct the local canonical coordinate system numerically.
In Sec. IV, a method is developed to construct the coordi-
nate system analytically for systems with homogeneous po-
tentials, thus simplifying the application to the chaotic two-
dimensional quartic oscillator considered in this paper.

The preceding discussion can be generalized to a system
with n constants of the motion. For every constant, Ij(p⃗, q⃗),
a conjugate pair of local coordinates, (δIj , δθj), can be con-
structed. The stability matrix in this coordinate system would
contain n 2×2 blocks, corresponding to each local coordinate
pair, and a block with no specific structure that contains all the
exponentially stretching and contracting directions. Each 2×2
block would have the following form:

(
δIt
δθt

)
=

(
1 0
ω′t 1

)(
δI0
δθ0

)
(17)

A stability matrix of this form, with ω′ ̸= 0, is said to repre-
sent a shearing degree of freedom and ω′ gives the shearing
rate. The case of ω′ = 0 gives a rotational degree of freedom.

Once a transformation that decouples stable and unstable
degrees of freedom is found, the reduced dimensional stability
matrix of the unstable block can be handled seperately. This
subspace contains all directions of exponential stretching and
contraction and is locally hyperbolic, defined by its non-zero
finite-time stability exponents. These exponents can be found
by diagonalizing Mh

t (M
h
t )

T , where Mh
t is the stability ma-

trix of the hyperbolic block:

OtM
h
t (M

h
t )

TOT
t = Λt . (18)

Due to the symplectic nature of the stability matrix, Ot is
an orthogonal-symplectic matrix and the eigenvalues come in
pairs, such that the jth block of Λt has the form:

Λj,t =

(
e−2λjt 0

0 e2λjt

)
(19)

where the λj are positive definite. For a large class of dynam-
ical systems, although the λj exhibit potentially large finite-
time fluctuations [53, 54], in the long time limit they converge
to the Lyapunov exponent spectrum associated with the unsta-
ble block; the time, for the purposes of this part of the discus-
sion, is assumed long enough that the λj have sufficiently well
converged. In order to restrict Monte Carlo integrations only
to the unstable manifolds, it is necessary to have a transforma-
tion of the form of Eq. (12) that diagonalizes the hyperbolic
stability matrix. One approach is to follow [27], where di-
rections of initial conditions that evolve into the eigenvectors
of Mh

t (M
h
t )

T can be identified by multiplying the eigenvec-
tors by the inverse of the stability matrix and normalizing the
directions:

OT
0 = (Mh

t )
−1OT

t

√
Λt (20)

√
Λt gives the normalization of the directions. The sign of√
Λt is determined by the condition that the stability ma-

trix is the identity at t = 0. It is clear that O0 diagonalizes
(Mh

t )
TMh

t and is also an orthogonal-symplectic matrix. Ap-
plying Eq. (12) then gives:

OtM
h
t O

T
0 =

√
Λt (21)

This decomposition is not an exact Lyapunov homology be-
cause Ot and O0 are only related through a linearization of
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the dynamics and because O0, as given by Eq. (20), changes
with time. The former restriction is not an issue as this paper
is only concerned with situations where a linearization of the
local dynamics is appropriate. The latter restriction is an is-
sue, since it implies the canonical coordinate transformation
made at t = 0 is changing with time. However, the direc-
tions given by O0 stabilize quickly in numerical calculations
in a number of different dynamical systems. Presumably, they
are stabilized on the actual invariant manifolds defined by the
“infinite-time” dynamics. Any time greater than the time at
which this stabilization takes place, tc generates the same re-
sults. It is at this time the initial directions are defined:

OT
0 = (Mh

tc)
−1OT

tc

√
Λtc (22)

Furthermore, it is expected that any deviation from the unsta-
ble manifold, unless directly along the stable manifold, soon
collapses back on to the unstable manifold. This logic leads
to the conclusion that even for times t < tc, Eq. (22) may still
be a suitable approximation. Numerical results from the pre-
liminary integrations presented in later sections support this
idea.

IV. LOCAL CANONICAL COORDINATES FOR
HOMOGENEOUS CONSTANTS OF THE MOTION

There is a straightforward method for constructing the de-
sired local canonical transformation of the coordinates if the
constant of the motion is a sum of separable homogeneous
functions. This is the case for the coupled quartic oscillators
considered ahead. As briefly mentioned in the background
section, given a constant of the motion Ij(p⃗, q⃗), a local devia-
tion is defined by its gradient:

δIj =
∂Ij
∂p⃗

δp⃗+
∂Ij
∂q⃗

δq⃗ (23)

For each constant there is a conjugate coordinate, δθj , that
satisfies [δθj , δIj ] = 1. In general, the direction that gives the
conjugate coordinate is not trivial as it would require knowl-
edge of θj as a function of the trajectories; note that generat-
ing functions are implicit, not explicit, as they involve a com-
bination of old and new coordinates. However, for the case
when Ij can be written as a sum of separable homogeneous
functions, there exists a method for identifying this direction.
The idea makes use of Euler’s homogeneous function theo-
rem, which states for a homogeneous function g(x⃗) of degree
k the following is true:

x⃗

k
·∇g(x⃗) = g(x⃗) (24)

This equation can be put into the language of Poisson brackets
using the symplectic matrix. Let the notation, x⃗ denote all the
phase space variables: x⃗ = (p1, ..., pN , q1, ..., qN ). Define a
new function, X , such that its variation is:

δX =
x⃗

k
·Ω · δx⃗ (25)

Equation (24) can then be written as:

[δX, δg] = g (26)

Assume the constant of the motion is a sum of separable ho-
mogeneous functions of degree ki, such that, δIj =

∑
i δgi.

δXj can be defined in a similar fashion: δXj =
∑

i Ω
x⃗i

ki
· δx⃗,

where x⃗i has zeroes for coordinates irrelevant to gi. Then us-
ing Eq. ( 26) and summing over i gives,

[δXj , δIj ] =
∑

i

[δXi, δgi] =
∑

i

gi = Ij →

[
1

Ij
δXj , δIj

]
= 1 ,

(27)

where the separability conditions of δIj and δXj are used.
Thus, δθj is given by:

δθj =
1

Ij
δXj =

1

Ij

∑

i

Ω
x⃗i

ki
· δx⃗ . (28)

It is instructive to look at a uni-dimensional quartic oscilla-
tor example for which

H =
p2

2
+ q4 (29)

This system can be solved exactly in action angle coordinates,
(δI, δθ), and the transformed stability matrix is known analyt-
ically. Constructing the local action-angle coordinate system
requires the linear transformation from (δp, δq) → (δI, δθ)
that gives this stability matrix. However, it is convenient to
work in the time-energy coordinate system given by a dilation
with the frequency,

(δE, δt) =

(
ωδI,

δθ

ω

)
. (30)

The energy-time coordinate system can be implemented
whether or not an analytic form of the action coordinate is
known, and is later used for the chaotic two-dimensional quar-
tic oscillator. The direction that gives the energy coordinate is
just the gradient of the Hamiltonian,

δE =
∂E

∂p
δp+

∂E

∂q
δq = pδp+ 4q3δq (31)

It is understood that the variations are evaluated along the cen-
tral trajectory. The time coordinate can be found by applying
Eq. (28),

δt =
1

E

(p
2 , 0

)( 0 1
−1 0

)(
δp
δq

)
+

1

E

(
0, q

4

)( 0 1
−1 0

)(
δp
δq

)

= − q

4E
δp+

p

2E
δq

(32)
The transformation that takes (δp, δq) to (δE, δt) is then given
by:
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Sα =

(
p 4q3

− q
4E

p
2E

)
(33)

Using Eq. (12) the new stability matrix is:

M′
α,t =

(
pt 4q3t

− qt
4E

pt

2E

)
Mα,t

( p0

2E −4q30
q0
4E p0

)
(34)

By finding Mα,t numerically, it can be shown that M′
α,t is ex-

actly in the form of Eq. (17) with ω′ being the dilated shearing
rate,

ω′ =
1

ω2

∂2H

∂I2
. (35)

For a system with additional degrees of freedom, it is nec-
essary to isolate the subspace that defines the unstable block
of the stability matrix. In Appendix A one such transforma-
tion is given for the two-dimensional quartic oscillator, which
renders its stability matrices block diagonal with the time and
energy coordinates explicitly given. It remains only to diag-
onalize the portion of the stability matrix in the hyperbolic
subspace as discussed in Sec. III.

V. EXPECTATION VALUES

Generally speaking, expectation values lead to integrals
over phase space functions which vary smoothly on a classical
scale, often low order polynomials in momentum and position
variables. This distinguishes them from transport coefficients
treated ahead, in which the final state density leads to structure
on the finer scale, ℏ. It turns out to be possible to pre-integrate
analytically at least half of the variables prior to setting up
the Monte Carlo calculation. In some cases, mentioned just
ahead, it is possible to integrate even more variables.

Consider first an integrable system possessing D constants
of the motion, for which it is convenient to canonically trans-
form the system to action-angle coordinates. Any small
change in any one of the initial angle coordinates leads to a
similar small change in the corresponding final angle coor-
dinate and it turns out possible to integrate all of the angle
coordinates analytically. In essence, there is no spreading in
the final endpoints of the angle variables.

If there are fewer constants of the motion, it is still possi-
ble to integrate their canonically conjugate variables, but in
addition, it is also possible to integrate the stable manifold
associated with the hyperbolic degrees of freedom. Because
this manifold contracts exponentially, its integral leads to a
constant plus an exponentially decaying contribution. Unless
the finite-time stability exponents are quite small, it is quickly
safe to ignore the exponentially decaying contribution, and
only the overall normalization is affected by the stable mani-
fold integrations. The total number of conjugate variables plus
the dimension of the stable manifold adds up to half the total
phase space dimension. Finally, for constants of the motion
leading to local rotational motion, where the shearing of the
dynamics vanishes, it is also possible to integrate the coordi-
nate associated with each such constant’s gradient.

A. Derivation of reduced dimensionality formula for
expectation values

Expectation values within a classical Wigner method
framework are given by Eq. (8):

⟨f(p̂, q̂)⟩(t) =
∫

dq⃗0dp⃗0fW (p⃗t, q⃗t)ρα(p⃗0, q⃗0)

ρα(p⃗0, q⃗0) =

1

(πℏ)D
exp
[
− (p⃗0 − q⃗α, q⃗0 − q⃗α) ·

Aα

ℏ
·
(
p⃗0 − p⃗α
q⃗0 − q⃗α

)]
(36)

Due to the presence of ℏ in ρα(p⃗0, q⃗0), the significant contri-
butions come from trajectory initial conditions highly local-
ized around the central trajectory, (p⃗α, q⃗α). This suggests first
shifting the coordinate system to local coordinates as follows:

(p⃗0 − p⃗α, q⃗0 − q⃗α) = (δp⃗0, δq⃗0), dq⃗0dp⃗0 → dδq⃗0dδp⃗0
(37)

For expectation values there may be circumstances in which
it is worth understanding the coordinate system in which Aα

transforms to unity; see Appendix B.
As discussed in Secs. III and IV, there are canonical coor-

dinate transformations defined by directions associated with
coordinate pairs for each constant of the motion and sta-
ble/unstable manifolds; see Eq. (13). The goal is to evaluate
the integrals along the directions corresponding to the stable
manifolds and the local coordinates conjugate to the constants
of the motion. Given that the number of coordinates, j, that
cannot be integrated analytically, i.e. coordinates along un-
stable manifolds or associated with constants of motion with
shearing, that leaves 2D − j coordinates to integrate analyti-
cally. Recall that for rotational dynamics, ω′ = 0, both coor-
dinates remain localized and can be analytically integrated.

For clarity and reordering the coordinates, the follow-
ing change of notation is made: (δP⃗ , δQ⃗) → δX⃗ =

(δX⃗2D−j , δX⃗j), where δX⃗2D−j are the 2D − j coordinates
to be integrated analytically, and δX⃗j contains the remaining
j coordinates to be used in the final Monte Carlo method. The
reordering of the coordinates is done simply by appropriately
exchanging rows in Sα to generate an S′

α. In this coordinate
system the equation for the expectation value becomes

FW (t) =

∫
dδX⃗0fW

(
p⃗t(δX⃗0), q⃗t(δX⃗0)

)
ρα(δX⃗0) (38)

with the Wigner function:

ρα(δX⃗0) =
1

(πℏ)D
exp
[
− (δX⃗0) ·

A′
α

ℏ
· (δX⃗0)

]

with A′
α = (S′−1

α,0)
TAαS

′−1
α,0

(39)

Although p⃗t and q⃗t explicitly depend on the central orbit ini-
tial conditions and the variations to be integrated analytically,
δX⃗2D−j

0 , this coordinate system allows for these coordinate
integrations. First, note that variations in δX⃗2D−j

0 do not in-
duce any later time variations in δX⃗j

t . Second the variations
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later in time, δX⃗2D−j
t , remain small and thus the function

fW (q⃗t, p⃗t) can be expanded about δX⃗2D−j
0 at a time t, while

holding δX⃗j
0 fixed, in two steps. First expand fW to quadratic

order in variations at a fixed trajectory’s endpoint at time t,

fW ≈ fj+

(
∂fW

∂X⃗2D−j
t

)T

· δX⃗2D−j
t

+ (δX⃗2D−j
t )T · ∂2fW

2∂X⃗2D−j
t ∂X⃗2D−j

t

· δX⃗2D−j
t

(40)

where the shorthand fj is introduced,

fj ≡ fW

(
p⃗t(δX⃗

2D−j
0 = 0, δX⃗j

0), q⃗t(δX⃗
2D−j
0 = 0, δX⃗j

0)
)

(41)
This should be thought of as there being a trajectory with the
initial conditions (p⃗j , q⃗j) that differs from (p⃗α, q⃗α) only by
variations associated with δX⃗j

0 .
Under many circumstances it may be possible to evaluate

the derivatives as expressed. Note that it is also possible to
evaluate the derivatives using the local canonical coordinate
transformation at the trajectory endpoint (the j subscript indi-
cates that it is one of the trajectories chosen with δX⃗j

0 fixed),
i.e.

δX⃗t = S′
j,t

(
δp⃗t
δq⃗t

)
(42)

with the appropriate ordering of the coordinates. That leads to
the alternate expression

∂fW

∂X⃗t

= (S′−1
j,t )

T∇pt,qtfW (43)

In a similar way, but accounting for the chain rule, the full
2D × 2D matrix of second derivatives is given by

∂2fW

∂X⃗t∂X⃗t

= (S′−1
j,t )

T∇pt,qt

[
(S′−1

j,t )
T · ∇pt,qt

]T
fW (44)

where the second derivative acts on the transformation as well.
Ahead the (2D−j)× (2D−j) submatrix of these derivatives
appearing in Eq. (40) are denoted by F for brevity.

The second step is to connect the integration variables,
δX⃗2D−j

0 , to the variations, δX⃗2D−j
t , found in Eq. (40). Fol-

lowing Eq. (12), the subsequent discussion, and noting that
the coefficients in Eq. (40) depend only on δX⃗j

0 , it turns out
that there is a very simple relationship. The stability matrix
decouples the block associated with δX⃗2D−j

0 from the block
associated with δX⃗j

0 . Furthermore, the (2D − j)× (2D − j)
stability matrix block is diagonal, taking on the value of unity
for each of the canonically conjugate variables to some con-
stant of the motion (and unity for any additional variables for
rotational motion) and e−λnt for the nth component of the
stable manifold, where λn is the finite time stability exponent.
This diagonal matrix is denoted Mt such that:

δX⃗2D−j
t = MtδX⃗

2D−j
0 (45)

and this substitution is made in Eq. (40). Note the prime indi-
cating it is the transformed stability matrix has been dropped
for notational simplicity. The subscript indicating on which
trajectory it is to be evaluated has also been dropped be-
cause going forward it is either independent of the trajectory
or always dependent on the central trajectory. Given the ℏ-
dependence for the argument of the exponential in Eq. (39),
after integration of the δX⃗2D−j

0 variations ahead, the expan-
sion of Eq. (40) is generally seen to be an expansion in powers
of ℏ1/2, but for the stable manifold variations, it turns out to
be an expansion in ℏ1/2e−λnt. For these directions, unless
λn is exceedingly small, only the leading term, fj , remains
after a very short propagation time. Presumably, those correc-
tion terms can usually be safely ignored. However, it is long
known that finite-time stability exponents (or finite-time Lya-
punov exponents) exhibit rather large fluctuations [55–57],
and therefore for some of the trajectories in the Monte Carlo,
those corrections terms could be potentially relevant. How-
ever, if the measure of such terms over the δX⃗j

0 variations is
small, the correction terms can continue to be dropped and the
only critical correction contributions come from the conjugate
variables to the constants of motion. For short times, the ap-
proximation e−λnt ≈ 0 is not valid. Though these corrections
are of order ℏ1/2 and in the results ahead the short time error
was not seen to be noticeably larger than the error at longer
times. Furthermore, if it was desired to have extremely ac-
curate short term behavior, it can be approximated by a lin-
earization of the dynamics in the (p⃗, q⃗) coordinate system, in
which case all the integrals can be performed. This technique
is employed to capture the initial decay of return probabilities
in Sec. VI.

Introduction of the stability matrix into Eq. 40 gives:

fW = fj + f⃗ 1 · δX⃗2D−j
0 +(δX⃗2D−j

0 )T · F
′

2
· δX⃗2D−j

0 (46)

with

f⃗ 1 =

(
∂fW

∂X⃗2D−j
t

)T

·Mt and F′ = MT
t FMt . (47)

The integral for the expectation value then becomes:

FW (t) =
1

(πℏ)D

∫
dδX⃗j

0

∫
dδX⃗2D−j

0

× exp
[
− (δX⃗2D−j

0 , δX⃗j
0) ·

A′
α

ℏ
· (δX⃗2D−j

0 , δX⃗j
0)
]

×
(
fj + f⃗ 1 · δX⃗2D−j

0 + (δX⃗2D−j
0 ) · F

′

2
· δX⃗2D−j

0

)

(48)
The integrals over δX⃗2D−j

0 can be performed by decompos-
ing the matrix A′

α into blocks relating to the 2D − j and j
dimensional subspaces, i.e.,

A′
α =

(
A′

11 A′
12

A′
21 A′

22

)
(49)

If the off-diagonal blocks, A′
12 and its transpose A′

21, do not
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vanish, then they introduce terms in the argument of the expo-
nential which are linear in δX⃗2D−j

0 . The shift

δX⃗2D−j
0 → δX⃗2D−j

0 +A
′−1
11 A′

12 · δX⃗j
0 (50)

can be used to eliminate these terms, but completing the
square modifies the quadratic δX⃗j

0 term to,

A′
22 −A′

21A
′−1
11 A′

12 (51)

The expression for the expectation value takes the form,

FW (t) =
1

(πℏ)D

∫
dδX⃗j

0exp
[
− (δX⃗j

0)
T · A

′
22 −A′

21A
′−1
11 A′

12

ℏ
· δX⃗j

0

] ∫
dδX⃗2D−j

0 exp
[
− (δX⃗2D−j

0 )T · A
′
11

ℏ
· δX⃗2D−j

0

]

×
(
fj − f⃗ 1 ·A

′−1
11 A′

12 · δX⃗j
0 + (δX⃗j

0)
T · A

′
21A

′−1
11 F′A

′−1
11 A′

12

2
· δX⃗j

0 + (δX⃗2D−j
0 )T · F

′

2
· δX⃗2D−j

0

)
(52)

The terms linear in δX⃗2D−j
0 are dropped because the integral vanishes. The first three terms in the fW -expansion have no

dependence on δX⃗2D−j
0 and the integrals only account for a change in the normalization. The last term can be integrated using

the identity,

1

(ℏπ)D−j/2

∫
dx⃗ (x⃗ · F

′

2
· x⃗)exp[−x⃗ · A

′
11

ℏ
· x⃗] = ℏ Tr(F′A′−1

11 )

4
√

Det(A′
11)

(53)

After doing the 2D−j integrals in Eq. 52, the remaining j dimensional integral for the expectation value Monte Carlo calculation
becomes,

FW (t) =
1

(ℏπ)j/2
√

Det(A′
11)

∫
dδX⃗j

0exp
[
− δX⃗j

0 · A
′
22 −A′

21A
′−1
11 A′

12

ℏ
· δX⃗j

0

]

×
(
fj − f⃗ 1 ·A

′−1
11 A′

12 · δX⃗j
0 + (δX⃗j

0)
T · A

′
21(A

′−1
11 )TF′A

′−1
11 A′

12

2
· δX⃗j

0 +
ℏ Tr(F′A

′−1
11 )

4

)
(54)

Recall that

Det(A′
22 −A′

21A
′−1
11 A′

12)Det(A′
11) = 1 (55)

from properties of 2× 2-block determinants [48] and the den-
sity is still properly normalized. The reduced dimensional
Wigner function can now be defined as:

ρ′α(δX⃗
j
0) =

√
Det(Σα)

(ℏπ)j/2
exp[−δX⃗j

0 · Σα

ℏ
· δX⃗j

0 ] (56)

where Σα = A′
22 −A′

21A
′−1
11 A′

12 (57)

The form of the integral remains invariant, with the coher-
ent state Wigner function being replaced by a unit-normalized
Gaussian distribution dependent only on the subspace of the
coordinates corresponding to the unstable manifolds and con-
stants of the motion. All that is needed to evaluate Eq. (54)
via Monte Carlo methods is the initial coordinate transforma-
tion, Sα,0, and first and second order derivatives evaluated at
the endpoint of the trajectories. The direct evaluation con-
sists of sampling initial conditions for the j coordinates from
ρ′α(δX⃗

j
0) and using zero for the initial conditions of the other

2D − j coordinates that have already been integrated. The
initial conditions are then reverted back to the original coordi-
nate system to run the trajectories and evaluate fW (δX⃗j

0).

We emphasize that this exhausts the number of integrals
that can be performed analytically before setting up the Monte
Carlo calculation. The functions, fj , f⃗ 1, and F′ all depend in
some complicated unknown way on the variations, δX⃗j

0 . The
last three terms in Eq. (54), are referred to as correction terms.
Note that for strongly chaotic systems the quantity, e−λnt, for
each chaotic degree of freedom will rapidly decay to zero.
Approximating this quantity to be zero for each chaotic de-
gree of freedom leads the matrix Mt to only be a diagonal
matrix of unity or zeros. This results in the correction terms
only depending on derivatives of fW (q⃗t, p⃗t) with respect to
the conjugate coordinate of each constant of the motion, and
thus can be found by using the Poisson bracket, rendering the
terms straightforward to evaluate numerically. For example, if
the the constant of the motion is the energy all that is needed
is Hamilton’s equations.

B. Application to the purely quartic oscillator

It is worthwhile illustrating this procedure with as simple an
example as possible. The above equations may appear more
complicated than they really are. The purely quartic oscillator
with a single degree of freedom provides an excellent case
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study. It is an integrable system and δX⃗ could be taken to be
variations in the action-angle variables, (δI, δθ). However, it
is possible to work directly with the energy and its conjugate
coordinate, which in this case is (δE, δt), and it is valuable to
illustrate the approach with these coordinates.

Consider the classical Hamiltonian of Eq. (29) and the ex-
pectation value of the Wigner transform of a number operator
(n(t)) in quadratures,

fW (p, q) =
p2 + q2

2
(58)

For the illustration, take Aα = 1, and (pα, qα) = (10, 0).
The period of motion for the central orbit (pα, qα) is given
by τα = 2K(1/2)/E

1/4
α , where K(x) is a complete elliptic

integral of the first kind. Due to the fact that this is a low-
dimensional case, it is possible to create a uniform grid of ini-
tial conditions in (δE, δt), each one weighted by the appropri-
ate value of the Wigner transform as opposed to choosing ran-
dom initial conditions with a probability given by the Wigner
transform. This is done here to isolate the effects of fj from
its correction term, and study ℏ-dependence without having
to consider sampling error Monte Carlo fluctuations. A grid
of 100 × 100 initial conditions covering ±5σ in the (δE, δt)
Wigner transform density leads to essentially fluctuation free
results in the unintegrated full two dimensional Monte Carlo
as well as 100 uniformly spaced initial conditions chosen ±5σ
along δE for the integrated one dimensional Monte Carlo ver-
sion.

The Sα matrix of Eq. (33) for this case is diagonal with val-
ues (pα, 1/pα), respectively. Thus, A′ is also diagonal with
values (p2α, 1/p

2
α) (reordered properly). The two dimensional

Monte Carlo grid is constructed directly using Eq. (39) and
the (δE, δt) coordinate system, but the trajectories are run in
the (p, q) coordinate system; the endpoints (pt, qt) are directly
substituted into fW . Thus to get the initial conditions for the
trajectories, δp = δE/pα and δq = pαδt are used, consistent
with Eq. (33).

For the one dimensional Monte Carlo, A′
12 = A′

12 = 0,
which makes two correction terms and the change due to the
shift in the exponential vanish, leaving just the last correction
term to evaluate (which depends on second derivatives), i.e., it
is necessary to construct the F′ matrix of second derivatives.
However, in this simple example, 2D − j = 1, and there is
only one term to calculate. The element F′ = F since Mt = 1
for a conjugate variable to a constant of the motion. Thus,

F = ṗ2 + pp̈+ q̇2 + qq̈

= 16q6t − 12p2t q
2
t + p2t − 4q4t , (59)

which follows from repeated use of Hamilton’s equations. For
fj and F

pt = pt(δE, 0) and qt = qt(δE, 0) (60)

unlike the 2d Monte Carlo for which

pt = pt(δE, δt) and qt = qt(δE, δt) . (61)

The constant multiplying F in the one dimensional Monte
Carlo is ℏ/(4A′

11) = ℏ/(4p2α). To get the constant correctly,

it must be remembered that A′−1
11 in Eq. (54) relies on the row-

reordered S′
α,0 coordinate transformation of Eq.(39), not the

original Sα,0.
In Fig. 1 the two dimensional Monte Carlo and one di-

mensional Monte Carlo results (including the O(ℏ) correction
term) are compared. In the upper panel, ℏ = 1, and in the
lower panel, ℏ = 0.1. Initially, there are large oscillations in
n(τ), which damp out after a number of periods of the motion.
Over the course of the first period of the motion, in Fig. 2 it
is seen that there are two maxima and minima. The maxima
occur at τ = 0, 0.5 where the momentum is at its maximum
absolute values. Likewise, the minima occur where the mo-
mentum vanishes and the position takes on its maximum ab-
solute value, τ = 0.25, 0.75.

Some small differences can be discerned between the two
dimensional and one dimensional results in Fig. 2 with the
one dimensional Monte Carlo slightly undershooting the min-
ima. By subtracting the fj-term of the one dimensional Monte
Carlo from the two dimensional Monte Carlo calculation,
defining a ∆n(τ), and comparing to the O(ℏ)-term of the
one dimensional calculation, it is possible to magnify the dif-
ferences so as to see them better. In this way, the role of ℏ
in improving the results also becomes clear. Figure 3 shows
the differences for the first six periods of the motion for both
ℏ = 1 and 0.1. In the upper panel for ℏ = 1, some differences
can be seen with the O(ℏ) correction slightly overshooting the
behavior of ∆n(τ). In the lower panel, not only is ∆n(τ) ten
times smaller, but it is very difficult to see any differences be-
tween ∆n(τ) and the O(ℏ) correction. In fact, the absolute
value of the maximum difference between the two and one di-
mensional results with the O(ℏ) correction is ≈ 3.6 for ℏ = 1,
but only ≈ 0.075 for ℏ = 0.1 (roughly 50 times smaller).
Even so, for most times it is much smaller than that. This is
an excellent accuracy on the absolute scale of an approximate
maximum value of 50 for n(τ). The pre-integrated Monte
Carlo performs extremely well with the O(ℏ) correction, and
it is acceptable even without the correction.

C. Application to two coupled pure quartic oscillators

The two coupled pure quartic oscillators discussed in
Sec. II B provide an ideal example to test the procedure for a
non-trivial chaotic system. The expectation value of the num-
ber operator of the first ”site”,

fW (p, q) =
p21 + q21

2
, (62)

provides a convenient example. The original four dimensional
integral can be solved via Monte Carlo methods by sampling
the Wigner distribution, ρα(p⃗0, q⃗0). The reduced dimensional
Monte Carlo formula, Eq. (54), is a two dimensional integral
along the constant of the motion and the unstable manifold.
This formula can be evaluated by sampling initial conditions
from the reduced dimensional Wigner function, Eq. (56). The
initial coordinate transformation of the central orbit, Sα,0, is
all that is needed for the sampling procedure. The transfor-
mation is given by Eq. (A11) and is properly reordered by
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FIG. 1. The number expectation value as a function of scaled time τ .
It has been scaled to unity for a single period of the motion for the
trajectory with initial condition (pα, qα), i.e. τ = t/τα (the value
of τα is given in the main text just following Eq. (58)). Due to the
shearing in the dynamics, the initial large oscillations die off leading
to an equilibrated value after a number of periods of the motion. For
smaller ℏ this transient period is much longer (≈ 3×) due it being
an integrable system, having a smaller energy uncertainty, and thus
having a smaller range of varying periods of the motion within the
Wigner transform density. The blue dashed curve corresponds to
the two dimensional Monte Carlo and the red solid line to the one
dimensional version.

exchanging rows one and two and rows two and three. The
reduced dimensional stability matrix for this case is:

Mt =

(
1 0
0 e−λt

)
(63)

The term associated with the stable manifold decays exponen-
tially fast and is set to zero in this implementation. As noted
previously, this leads to an error at very short times. However
the error is of order ℏ1/2e−λt and does not greatly affect the
results. The correction terms associated with the stable mani-
fold then all vanish, leaving only functions of the first and sec-
ond time derivatives of Eq. (62) to be evaluated for the correc-
tion terms of the time coordinate. This evaluation is done sim-
ply with the use of Hamilton’s equation applied to the Hamil-

0 0.2 0.4 0.6 0.8 1
10

 20

 30

 40

 50

n(τ)

τ

FIG. 2. The maxima and minima of n(τ) over the first period of the
motion. Here, ℏ = 1. Even in this expanded view, the differences
between the two and one dimensional results are not that significant.
The blue dashed curve corresponds to the two dimensional Monte
Carlo and the red solid line to the one dimensional version.

tonian in Eq. (10). The result of the reduced dimensionality
formula, Eq. (54), compared to the exact integral, Eq. (36), is
given in Fig. 4. The upper panel with ℏ = 10 displays some
inaccuracies, but the differences diminish greatly as ℏ shrinks
as seen in the lower panel for ℏ = 1. Note also that the time
scale to equilibrate is not as strongly affected by shrinking ℏ
as is true for the one dimensional quartic oscillator (integrable
case) results shown in the previous subsection. Whereas for an
integrable system, the time to equilibrate would be expected
to scale as ℏ−1/2, for the chaotic case, something closer to a
ln
(
ℏ−1

)
scaling would be expected. As done for the case of

the one dimensional quartic oscillator, the differences can be
magnified by plotting ∆n(τ). In Fig. 5, this is done for the
case of ℏ = 10 and ℏ = 1. The discrepancy at t = 0 also now
becomes clear and it turns out not to be more significant than
the error at longer times.

VI. TRANSPORT COEFFICIENTS AND RETURN
PROBABILITIES

Roughly the same approach as described for expectations
values can be extended to transport coefficients. The same
half of the variables can be integrated analytically before set-
ting up the Monte Carlo calculation as for the expectation val-
ues. However, in addition, since contributions to the overlap
only occur in localized regions of phase space at the begin-
ning and endpoints, it is also possible to integrate out vari-
ables corresponding to all the constants of the motion. The
only variables which cannot be pre-integrated are associated
with the unstable manifold. Thus, for transport coefficients,
the remaining number of variables for the Monte Carlo, j, can
be as few as the number of positive Lyapunov exponents. Fi-
nally, any variable related to a positive Lyapunov exponent so
small that it cannot be responsible for generating dynamical
recurrences over the time scale of interest, could be integrated
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FIG. 3. ∆n(τ) versus the O(ℏ) correction term. The upper panel
contains the results for ℏ = 1 and in the lower panel ℏ = 0.1. Not
only does the difference decrease proportionally with ℏ, but its rela-
tive accuracy improves even more. It is difficult to see any difference
between ∆n(τ) and the O(ℏ) term in the lower panel.

as well.

Ahead it is seen that the final expressions depend on the co-
ordinate transformations at both (q⃗α, p⃗α) and (q⃗β , p⃗β). In ad-
dition, for the case where the constants of the motion are also
pre-integrated, the expressions depend on the shearing rates of
each shearing degree of freedom. The integrals over each con-
stant of the motion will be replaced by a summation over the
return times associated with its respective degree of freedom.
In this section, the derivation for the integration of the same
variables as for the expectation values is presented. Then it is
shown how to extend this derivation to also integrate out the
constants of the motion. A final remark: for return probabil-
ities, in the first case when there is no summation, the initial
decay has to be handled separately, but can be integrated over
all 2D variables. A derivation is presented in Appendix D.

0.0 2.5 5.0 7.5 10.0 12.5
τ

200

300

400

500

600
n1(τ )

0.0 2.5 5.0 7.5 10.0 12.5
τ

100
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300

400

500

600
n1(τ )

FIG. 4. Expectation value of the function fW (p⃗, q⃗) =
q21+p21

2
, cho-

sen to mimic a site occupancy calculation, using the chaotic case
of a two-dimensional quartic oscillator. In the upper panel ℏ = 10
and in the lower panel ℏ = 1. The approximate two dimensional
integral given by Eq. (54) (solid red) is compared to the exact four
dimensional integral given by Eq. 36 (dashed blue). The timescale
is τ = t/τ1,1 where τ1,1 is given by Eq. (C5) and acts as a ”center
of mass” period of motion for the two dimensional quartic oscillator.
The initial conditions used are (p⃗α, q⃗α) = (30, 40, 0, 0).

A. Derivation of reduced dimensionality formulas for
transport coefficients

The derivation of the transport coefficients in the classi-
cal Wigner method proceeds in similar fashion to that of the
expectation values. The integration variables can again be
shifted and the coordinates transformed so that the integral
in Eq. (9) becomes:

Cαβ(t) = (2πℏ)D
∫

dδX⃗0 ρα(δX⃗0)ρβ(p⃗t(δX⃗0), q⃗t(δX⃗0))

(64)

with the Wigner function

ρα(δX⃗0) =
1

(πℏ)D
exp
[
− (δX⃗0) ·

A′
α

ℏ
· (δX⃗0)

]

with A′
α = (S′−1

α,0)
TAαS

′−1
α,0

(65)
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FIG. 5. ∆n1(τ) is plotted versus the correction terms. The upper
panel contains the results for ℏ = 10 and in the lower panel ℏ = 1.
The correction term contributions seen in the plots decrease propor-
tionally to ℏ. The error between the Monte Carlo and the correction
terms, as before, decreases even more. Note the difference in scale
compared to Fig. 4, which demonstrates that the approximation for
ℏ = 1 is highly accurate.

The main difference between transport coefficients and expec-
tations values is the contributions to the integral at a time t are

localized in phase space around the point (p⃗β , q⃗β); i.e., all the
variations are in the argument of the exponential, beginning
and end. Thus, there is no expansion of fW . Instead, the full
argument of the exponential can be treated in a parallel way
as done in Eqs. (48)-(52). However, there are a few new con-
siderations. First note that the localization around the point
(p⃗β , q⃗β) allows the reordered transformation at a time t to be
well approximated as,

S′
j,t ≈ S′

β (66)

and therefore the coordinate transformations are well approxi-
mated as completely independent of the trajectories to be used
in the Monte Carlo and independent of time. Second, it is nec-
essary to decompose δX⃗t into two component parts because
(p⃗β , q⃗β) is not related to, nor the endpoint of, any particular
trajectory of interest. Let

p⃗t,j = p⃗t(δX⃗
2D−j
0 = 0, δX⃗j

0)

q⃗t,j = q⃗t(δX⃗
2D−j
0 = 0, δX⃗j

0) (67)

which leads to an expression for the variations

δX⃗β,t = S′
β · (p⃗t,j − p⃗β , q⃗t,j − q⃗β)

δX⃗t = S′
β · (p⃗t − p⃗t,j , q⃗t − q⃗t,j) , (68)

where the trajectory endpoint (p⃗t, q⃗t) also includes variations
due to nonvanishing δX⃗2D−j

0 . The special nature of this co-
ordinate system means that

δX⃗t = (δX⃗2D−j
t , δX⃗j

t = 0) (69)

due to the block diagonalization of the stability matrix. With
these definitions, the nonvanishing part of δX⃗t, i.e., δX⃗2D−j

t ,
can be replaced by the identical diagonal stability matrix mul-
tiplication of the initial variations, MtδX⃗

2D−j
0 just as before.

The full argument of the exponential can thus be expressed as

− (δX⃗2D−j
0 , δX⃗j

0)
T · A

′
α

ℏ
· (δX⃗2D−j

0 , δX⃗j
0)−

[
(Mt · δX⃗2D−j

0 ,0)T + δX⃗T
β,t

]
·
A′

β

ℏ
·
[
(Mt · δX⃗2D−j

0 ,0) + δX⃗β,t

]
(70)

After collecting terms and performing some algebra, instead
of the A′

11 block of Eq. (49), here,

A′
αβ = A′

α,11 +MT
t ·A′

β,11 ·Mt (71)

and instead of the shift in Eq. (50), the necessary shift is

δX⃗2D−j
0 → δX⃗2D−j

0 +A′−1
αβ ·

[
A′

α,12 · δX⃗j
0 +MT

t ·
(
A′

β,11 · δX⃗2D−j
β,t +A′

β,12 · δX⃗j
β,t

)]
,

(72)

which now depends on initial and final point variations, but
only those due to δX⃗j

0 . The result after performing the 2D−j
dimensional integral can be put into a slightly more compact
form by extending the A′−1

αβ and Mt matrices into the full
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space as follows,

A−1
αβ =

(
A′−1

αβ 0
0 0

)

Mt =

(
Mt 0
0 0

)
. (73)

The remaining transport coefficient integrals can in this way
be expressed as

Cαβ(t) =
2D

(πℏ)j/2
√

Det
(
A′

αβ

)
∫

dδX⃗j
0 exp

[
−(0, δX⃗j

0)
T ·
(
A′

α −A′
α ·A−1

αβ ·A′
α

ℏ

)
· (0, δX⃗j

0)

−(δX⃗β,t)
T ·
(
A′

β −A′
β ·Mt ·A−1

αβ ·MT
t A

′
β

ℏ

)
· δX⃗β,t − 2× (0, δX⃗j

0)
T ·

A′
α ·A−1

αβ ·MT
t ·A′

β

ℏ
· δX⃗β,t

]
, (74)

which may or may not quite be set up for a Monte Carlo cal-
culation. In the many cases where all the exp(−λjt) factors
in Mt can be replaced by zero, there is no time-dependence
in the A′−1

αβ matrix; see Eq. (71). Then it is possible to use
directly the factor A′

α − A′
α · A′−1

αβ · A′
α as the weighting

for choosing initial conditions. However, more generally the
time-dependence can be separated out using the Woodbury
matrix identity [58], which gives

A′−1
αβ = A′−1

α,11 −A′−1
α,11 ·MT

t ·
(
A′−1

β,11 +Mt ·A′−1
α,11 ·MT

t

)−1

·Mt ·A′−1
α,11 (75)

Using the first term on the right side, A′−1
α,11 allows for isolat-

ing ρ′α(δX⃗
j
0) of Eq. (56) as the weight function for choosing

initial conditions, exactly as for the expectation values. The
second term on the right-hand-side contributes to the time-
dependent weighting of the trajectories after they are calcu-
lated. Making use of Eqs. (55), (56), and (75) gives

Cαβ(t) =
2D√

Det(1+A
′−1
α,11M

T
t A

′
β,11Mt)

∫
dδX⃗j

0 ρ′α(δX⃗
j
0) ×

exp

[
−(δX⃗j

0)
T ·
(
A′

α,21 ·A′−1
α,11 ·MT

t · (A′−1
β,11 +Mt ·A′−1

α,11 ·MT
t )

−1 ·Mt ·A′−1
α,11 ·A′

α,12

ℏ

)
· δX⃗j

0

−(δX⃗β,t)
T ·
(
A′

β −A′
β ·Mt ·A−1

αβ ·MT
t A

′
β

ℏ

)
· δX⃗β,t − 2× (0, δX⃗j

0)
T ·

A′
α ·A−1

αβ ·MT
t ·A′

β

ℏ
· δX⃗β,t

]
, (76)

Similar to the case of expectation values, the selection of
initial conditions is identical with this form of the equation,
and the stability matrix elements corresponding to coordinates
along the stable manifolds vanish to a good approximation un-
less the stability exponent is too small. However, for the case
of α = β, at t = 0 the integral would not be properly normal-
ized since Mt=0 = 1. This issue can be remedied by using a
separate approximation for the initial decay, see Appendix D.
For transport coefficients this is not necessary as the integral
will be initially zero if (p⃗α, q⃗α) and (p⃗β , q⃗β) are chosen to not
be in the same localized region of phase space.

B. Integrating the constants of motion

For transport coefficients, it is possible to pre-integrate the
constants of the motion in addition to those integrated out in
the previous section. The derivation follows the same steps
leading to Eq. (76), but the coordinates δX⃗j

0 after this fur-
ther integration are only along the unstable manifold (j here
is the dimensionality of the unstable manifold). The defini-
tion of the stability matrix Mt must also be changed to in-
clude the shearing rates. Each stable degree of freedom has a
2× 2 block in the stability matrix in the form of Eq. (17). The
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shearing rates only have to be evaluated once for the central
trajectory since the variations along the unstable manifolds do
not affect these values. The quantity δX⃗β,t depends on the
trajectory (p⃗j,t, q⃗j,t), and the contributions to the integral only
occur during the times of closest approach of the trajectory
(p⃗j,t, q⃗j,t) to the point in phase space (p⃗β , q⃗β). For a one de-
gree of freedom system this would simply be related to the
period of the trajectory. In a more general system, these times
are a function of the return times associated with each stable
degree of freedom. It is labeled by an abuse of notation τi, but
it should be understood that this means the following:

τi = τ(τi1 , ..., τin) (77)

Where τi1 , ..., τin labels the return times associated with the
n constants of the motion. The solution to the integrable case
of the two dimensional quartic oscillator gives an example of

how this τi function is implemented in practice. A Taylor
expansion of δX⃗β,t can be done about these points in time:

δX⃗β,t = δX⃗β,τi + 1⃗(t− τi) (78)

where 1⃗ is a 2D dimensional vector with 1 for the time coor-
dinate and 0 for all other coordinates.

Each integral along the constant of the motion is to be re-
placed by a summation. For example, in the simple case of
a one dimensional quartic oscillator the sum is over the re-
currences that occur after each period of the motion. For
a more complicated system, such as the two dimensional
chaotic quartic oscillator, the distance of closest approach to
the final wave packet centroid would have to be found nu-
merically and each recurrence summed. The final form of the
integral is found by inserting Eq. (78) into Eq. (79) , evaluat-
ing the stability matrix at the times τi, and summing over the
return times associated with each stable degree of freedom,

Cαβ(t) =
∑

i1

...
∑

in

2D√
Det(1+A

′−1
α,11M

T
τiA

′
β,11Mτi)

∫
dδX⃗j

0 ρ′α(δX⃗
j
0) ×

exp

[
−(δX⃗j

0)
T ·
(
A′

α,21 ·A′−1
α,11 ·MT

τi · (A′−1
β,11 +Mτi ·A′−1

α,11 ·MT
τi)

−1 ·Mτi ·A′−1
α,11 ·A′

α,12

ℏ

)
· δX⃗j

0

−(δX⃗β,τi + 1⃗(t− τi))
T ·
(
A′

β −A′
β ·Mτi ·A−1

αβ ·MT
τiA

′
β

ℏ

)
· (δX⃗β,τi + 1⃗(t− τi))

−2× (0, δX⃗j
0)

T ·
A′

α ·A−1
αβ ·MT

τi ·A′
β

ℏ
· (δX⃗β,τi + 1⃗(t− τi))

]
(79)

The integral has now been reduced from a 2D dimensional in-
tegral to a j dimensional integral over the unstable manifold.
It can be solved via Monte Carlo methods by sampling the
distribution ρ′α(δX⃗

j
0). The sum can be started at t = 0 with

the initial stability matrix being Mt=0 = 1, and this properly
captures the initial decay for return probabilities. By the time
of the first recurrence it can be assumed that the stability com-
ponent along the stable manifold is zero. The proliferation
of sums that come with stable degrees of freedom is admit-
tedly a drawback to the solution of Eq. (79). That being said,
this approximation was able to be successfully applied to both
integrable and chaotic cases of the two dimensional quartic
oscillator.

C. Application to two coupled pure quartic oscillators

In this section, the reduced dimensionality formulas are
tested on two coupled quartic oscillators for different dynam-
ical regimes. The case of return probabilities, i.e., α = β,
is sufficiently general to test the main ideas and is considered

here.

1. Chaotic case: λ = −.60

For the chaotic case it is possible to reduce the original four
dimensional integral to a one dimensional integral along the
unstable manifold. However, the simpler formula Eq. (76),
can also be used to reduce the calculation to a two dimen-
sional integral. This formula does not involve a summation
and is therefore easier to implement numerically and may be
more practical, depending on the circumstances. Here, results
from both formulas are shown. The details of implementing
Eq. (76) for the case of return probabilities are the same as
described in the expectation values section. The results for
ℏ = 10 and ℏ = 1 are shown in Fig. 6 where Eq. (76) is seen
to be an excellent approximation.

To integrate over the energy coordinate there needs to be
a sum over each recurrence of the orbit. These recurrences
occur when the trajectory makes its closest approach to the fi-
nal wave packet centroid and has to be identified numerically.
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FIG. 6. Comparison of
√

Cαα(τ) given by the square root of
Eq. (64) and the approximation given by the square root of Eq. (76)
for the case of λ = −.60. The approximation is a two-dimensional
Monte Carlo using only the unstable manifold and the direction per-
pendicular to the energy surface. In the upper panel ℏ = 10 and the
lower panel ℏ = 1. The error between the panels is seen to scale by
a factor of ℏ. initial conditions used were (p⃗α, q⃗α) = (30, 40, 0, 0)
and the timescale is given by t/τ1,1.

This is implemented by recognizing the greatest contribution
to the integral comes when the function,

f(q⃗j,t, p⃗j.t) = (p⃗j,t− p⃗β , q⃗j,t− q⃗β) ·Aβ ·(p⃗j,t− p⃗β , q⃗j,t− q⃗β),
(80)

is minimized. The times at which the local minima occur are
the τi described in the previous section and each one needs
to be summed over. Since here there is only one constant of
the motion, τi = τi1 . In practice, a criteria can be created to
throw away minima that are not small enough to contribute to
the integral, i.e., 5σ from the final wave packet centroid. The
minima change as a function of the component along the un-
stable manifold and thus have to be calculated for each sam-
pled trajectory. It is necessary to know the stability matrix,
Mt, in the subspace being pre-integrated. Here it is a 3 × 3
matrix with a 2× 2 block corresponding to (δE, δt) and 1× 1
block corresponding to the direction along the stable mani-

fold.

Mt =




1 0 0
ω′
αt 1 0
0 0 e−λt


 (81)

To identify the shearing rate, the stability matrix in the
(p⃗α, q⃗α) coordinate system has to be found numerically and
transformed to the new coordinate system using Eq. 12 with
the transformation Eq. A7. The shearing rate only needs to
be found once before running the Monte Carlo. The stabil-
ity component along the stable manifold decays exponentially
fast and can be set to zero by the time of the first recurrence
without harming the approximation. With this information,
the evaluation of Eq. (79) for the chaotic case of the two cou-
pled quartic oscillators is a straightforward numerical calcula-
tion of a single integral using Monte Carlo methods and sum-
ming over the times of closest approach. The result compared
to the four dimensional Monte Carlo is shown in Fig. 7. Com-
paring the differences seen in Figs. 6 and 7, the single dimen-
sion approximation is at least as good as the excellent double
integral approximation, perhaps even slightly better.

2. Integrable case: λ = 0

For the case of λ = 0 it is possible to integrate analyti-
cally all of the coordinates. This case is not solved by treating
the problem as two uncoupled quartic oscillators. For consis-
tency with the chaotic case, the same analytic transformation,
Eq. A7 at λ = 0 is used, so that the time and energy coordi-
nates are that of the combined system and not of the individual
oscillators. This approach helps elucidate how the sum over
the return times associated with a stable degree of freedom
works, since for this case τi = τ(τ1, τ2) where τ1 and τ2 are
the periods of the individual oscillators. The complete set of
formulas are derived in Appendix C, and using these results
it is possible to do all four integrals by evaluating a double
sum. The result for return probabilities is shown in Fig. 8.
The double sum (zero-dimensional Monte Carlo) is quite ac-
curate as the differences between the four dimensional Monte
Carlo and fully pre-integrated version are less than a percent.

3. Mixed case: λ = −.35

The mixed case has both chaotic regions of phase space and
regular regions where the motion is stable (shearing or rota-
tional). Here, a chaotic region is selected for illustration. To
identify the appropriate region of phase space, the surface of
sections from Ref. [47] can be used. In principle, if the initial
conditions of the central trajectory are chosen to be inside a
regular island then a reduction to a zero dimensional integral
is possible. However, in practice this is a considerable chal-
lenge due to the presence of unknown constants of the motion
and would necessitate additional numerical methods. This is
left to the subject of potential future research as is discussed in
the conclusion. In a chaotic region the same methods as used
for the λ = −.60 case must apply. Although, the situation
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FIG. 7. Comparison of
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Cαα(τ) given by the square root of
Eq. (64) and the approximation given by the square root of Eq. (79)
for the case of λ = −.60. The approximation is a single dimensional
Monte Carlo using only the unstable manifold. The initial conditions
used are (p⃗α, q⃗α) = (30, 40, 0, 0) with ℏ = 1.
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FIG. 8. Comparison of
√

Cαα(τ) given by the square root of
Eq. (64) and the approximation given by the square root of Eq. (C1)
for the case of λ = 0. The exact case is a four dimensional inte-
gral solved with Monte Carlo methods, whereas the approximation
is just an evaluation of a double sum. The initial conditions used are
(p⃗α, q⃗α) = (30, 40, 0, 0) with ℏ = 1. The approximation is plotted
reflected as otherwise the two curves lie on top of each and cannot
be distinguished. The inset shows the small differences between the
two approaches.

is more complicated due to transport barriers in the dynamics
(see [47]). To guarantee the region of phase space is chaotic,
the stability exponents can be analyzed to ensure exponential
behavior. The results are shown in Fig. 9 and are seen to only
be slightly less accurate than for the λ = −.60 case.
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FIG. 9. Comparison of
√

Cαα(τ) given by the square root of
Eq. (64) and the approximation given by the square root of Eq. (79)
for the case of λ = −.35 in a chaotic region of phase space. The ap-
proximation is a single dimensional Monte Carlo using only the un-
stable manifold. The initial conditions are (p⃗α, q⃗α) = (30, 80, 0, 0)
with ℏ = 1.

VII. APPROXIMATION LIMITATIONS

1. Wigner transform and manifold curvature

The results of the previous sections relied on linearizations
of the dynamics throughout the local regions of phase space
where the contributions to the integrals are appreciable. There
are choices of central trajectory initial conditions or shape pa-
rameters (e.g., Aα matrix) for which the linearization is not as
good of an approximation as other choices. Most obviously if
the energy of the central trajectory is too small (or ℏ too large),
curvature corrections become more important. There are also
regions of phase space where there is significant curvature
of the energy surface, or, in fact, any of the invariant sets in
the dynamics (related to other constants of the motion or the
unstable/stable manifolds) through the contributing region of
phase space. In such locations, any linearization would be less
accurate and appropriate. Another example would be the in-
terface between regular and chaotic motion in a system with a
mixed phase space (the fractal boundary of a regular island).

It is possible to use the Wigner transform density to as-
sess how good or bad a particular choice may be. The region
where the integral contributes can be visualized as an ellipti-
cal projection of a certain number of σ, say two or three, of
the Wigner transform. By plotting the Hamiltonian contours
(or other constants of the motion or unstable/stable manifolds)
crossing through the ellipse, it becomes clear where the lin-
earization fares worse. Under some circumstances, it may be
possible to alter the choice of Aα, thus altering the eccentric-
ity of the elliptical projection or shift the central coordinates
(p⃗α, q⃗α) to a different phase space location (and (p⃗β , q⃗β)) in
order to reduce curvature corrections. As a simple illustration,
this procedure is carried out for a single pure quartic oscillator
and the return probabilities and expectation value of Eq. (58)
for two cases are calculated, one in which there is clearly more
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curvature of the energy surface within the Wigner transform
elliptical projection than the other. The elliptical projections
are illustrated in Fig. 10, the two

√
Cαα(τ) in Fig. 11, and the

two n(τ) in Fig. 12. The linearization approximation clearly
improves as seen in the

√
Cαα(τ) and n(τ) comparisons for

the case in which the Wigner transform more closely resem-
bles a circle and there is less energy surface curvature inside
the contour.

2. Influence of unstable/stable manifolds

As explained in Sec. III (see Eqs. (20) and (21)), the coor-
dinate transformations in the subspaces of the unstable/stable
manifolds diagonalize the unstable blocks of the stability ma-
trices only after a convergence time tc. The initial decay of
the return probabilities for the chaotic case, Fig. 6, is not an
issue since it can be evaluated in a separate calculation; see
Appendix D. In Fig. 7, the initial decay is properly handled
by taking the sum to start at t = 0 and setting M0 = 1. Gen-
erally speaking, the first recurrence might well occur before tc
and this explains why the first recurrence is seen to have the
largest error. However, the approximation still captures the
essential behavior. In general, the integrals calculated do not
exhibit very much sensitivity to the choices of directions for
the unstable/stable manifolds. First, the result for the integral
over the stable manifold does not depend on its final specific
direction and due to the powers of ℏ1/2 exp(−λjt) scaling of
the correction terms, they are just dropped here. Second, for
the unstable manifolds any variations from the true directions
collapse exponentially back on to the correct directions, ex-
cept if the directions are, to an extremely high precision, in
exactly the wrong directions (e.g., an unstable manifold cho-
sen perfectly to be a stable manifold or chosen as the gradient
of the Hamiltonian). In this sense, the chaos in the dynamics
helps to correct any error in the approximations of the coordi-
nate transformations.

VIII. CONCLUSION

The idea of decomposing phase space into composite de-
grees of freedom is well known, and an explicit realization of
a block diagonal stability matrix using a nontrivial dynami-
cal coordinate transformation is provided here. It can poten-
tially be a very practical and useful technique; here it facili-
tates reducing the number of degrees of freedom that must be
sampled in a classical Monte Carlo calculation. The idea of
decomposing phase space is presented in [51], but the coordi-
nate transformation there does not result in a block diagonal
stability matrix. In [59], time independent coordinate trans-
formations motivated by symmetry arguments were used to
block diagonalize the stability matrix, but this lacks the addi-
tional difficulties of dynamical transformations. Furthermore,
the construction of a local coordinate system, manifesting the
form of a shearing block in the corresponding subspace of the
stability matrix is also given. Even for the simple one dimen-
sional quartic oscillator presented in Eq. (29), it is not clear
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FIG. 10. Hamiltonian contours of a one dimensional quartic oscil-
lator are plotted with the 2σ ellipse of the Wigner transform. The q
and p axes have been scaled by dividing by the maxima of qα and pα,
respectively. In the top panel, Aα is taken to be the identity matrix.
Due to the location of the Wigner transform, there is significant cur-
vature of the energy surface through the ellipse and reliance on a lin-
earization of the trajectories leads to an approximation with greater
inaccuracy; see Figs. 11 and 12 for its effects on return probabilities
and expectation values, respectively. In the bottom panel, Aα has
been dilated by a factor of pα,max/qα,max to compact the ellipse into
a circle and the linearization procedure for both expectation values
and return probabilities is now much improved. The initial condi-
tions used are (pα, qα) = (30, 4).

how to construct the linear coordinate transformation from
(δq, δp) → (δI, δθ) without the method described in Sec. IV.
The rigorous construction of local time and energy coordi-
nates shows the identification of the time direction is nontriv-
ial, but could be technically quite useful, as the idea is widely
used in semiclassical derivations [52].

An important application of this phase space decomposition
is the evaluation of integrals with Monte Carlo methods. A
wide variety of observables in physical systems can be calcu-
lated by sampling initial conditions in phase space and propa-
gating classical trajectories. The classical Wigner method, uti-
lizing the Wigner transform of minimum uncertainty quantum
states, provides an ideal framework, as this leads to Gaussian
weighting functions which play an important role in many-
body bosonic systems. Moreover, the calculations are essen-
tially identical to those used in the truncated Wigner approxi-
mation, albeit they do not come from a mean field approxima-
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FIG. 11. Return probabilities of a one dimensional quartic oscillator.
The exact results from a Monte Carlo simulation are compared to
an approximation analogous to Eq. (C1). The return probabilities for
the upper and lower panels are calculated with the Wigner transforms
corresponding to the upper and lower panels of Fig. 10 respectively.
The initial conditions used are (pα, qα) = (30, 4), with ℏ = 1.

tion to the dynamics. The results presented here demonstrate
it is possible to pre-integrate at least half of the dimensions
analytically for expectation values and transport coefficients,
and in some cases even more dimensions. Specifically, it has
been shown directions along the stable manifolds and those
conjugate to constants of the motion can always be integrated
before setting up the Monte Carlo. Further pre-integrations
are possible for constants of the motion with rotational dy-
namics locally, and the degrees of freedom corresponding to
any of the constants of the motion can be integrated out for
the case of return probabilities. The approximations can re-
produce the exact Monte Carlo calculations with only mini-
mal error. It has also been shown how to control the error in
the approximation by appropriately shaping the elliptical pro-
jection of the Wigner transform.

There are several directions of future research that are worth
investigating. The analytic methods used to derive the local
action angle coordinate system for the two dimensional cou-
pled quartic oscillator need to be extended to more general
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FIG. 12. Expectation value of Eq. (58) for a one dimensional quar-
tic oscillator. The exact results from a Monte Carlo simulation are
compared to the approximation Eq. (54). The expectation value for
the upper and lower panels are calculated with the Wigner transforms
corresponding to the upper and lower panels of Fig. 10, respectively.
The initial conditions used are (pα, qα) = (30, 4), with ℏ = 1.

Hamiltonians; specifically those with physical relevance such
as the Bose-Hubbard model. The fact that it was shown to
be possible for a non-trivial chaotic Hamiltonian is promis-
ing that it should be possible for more general Hamiltoni-
ans that lack homogeneous constants of the motion. It also
might be possible to develop numerical methods that circum-
vent the need for the analytic techniques. Since the directions
that define the local coordinate system in the subspace asso-
ciated with constants of the motion are respected by the local
linearized flow, it is conceivable that the necessary informa-
tion is encoded in the stability matrix. This would be espe-
cially relevant for the case of unknown constants of the mo-
tion, e.g. inside an integrable island for a mixed phase space
dynamics. The numerical techniques applied here in the sub-
space of the unstable degrees of freedom have been success-
fully applied in systems with more degrees of freedom and
to the entire phase space in a search of saddles [27], without
the rigorous decoupling of the time and energy coordinates.
This suggests for large dimensional, strongly chaotic systems
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it might be possible to perform the integrations over the stable
manifolds without removing the stable degrees of freedom.
Another avenue of future research is to apply the integration
techniques to semiclassical initial value representations, such
as the Herman-Kluk propagator [28, 30]. This would be sim-
ilar to Kocia and Heller’s work [40, 41], except with the full
machinery of decoupling the phase space and proper identifi-
cation of stable/unstable manifolds presented here.

Further work may lead to streamlining techniques devel-
oped in this paper in order to make the application to Monte
Carlo simulations less onerous. There are certain applica-
tions where reducing the dimensions of Monte Carlo simu-
lations are more important. For instance, the aforementioned
semiclassical initial value representations have oscillatory in-
tegrands, making Monte Carlo simulations less effective. In
this case, going through the steps presented here in order to
do the pre-integrations may be more advantageous. There
are also situations involving systems in atomic physics where
the relevant equations of motion lead to a discretized Gross-
Pitaeveskii equation. It can be shown through a stability anal-
ysis that under certain conditions a vast majority of the de-
grees of freedom have vanishing Lyapunov exponents and be-
have locally as harmonic oscillators. In such a case, it would
be possible to pre-integrate all but a small number of degrees
of freedom, making the effort in applying the technique more
consequential. The undertaking of these potential applications
is reserved for future research.

Appendix A: Stability matrix block diagonalization derivation
for coupled quartic oscillators

As described in Sec. III, the necessary transformation con-
sists of first deriving the local canonical coordinate transfor-
mation that decouples stable from unstable degrees of free-
dom, and then diagonalizing the unstable block of the sta-
bility matrix. The directions that give the local energy and
time coordinates can be found using the method described in
Sec. IV. It is desirable to have a transformation that works for
any value of λ. For the time and energy coordinates this is
always the case, but the directions that give the unstable block
are not uniquely defined so one has choose the directions that
work for any value of λ. There is a simple trick that accom-
plishes this. Repeating the Hamiltonian here:

H =
p21
2m

+
p22
2m

+ q41/b+ q42b+ 2λq21q
2
2 (A1)

In the case λ = 0 the Hamiltonian is separable and there are
two constants, E1 and E2. Considering this case for a mo-
ment, it is clear that a coordinate transformation can be made
from (δp1, δq1) → (δE1, δt1) and (δp2, δq2) → (δE2, δt2).
The transformation matrix that does this is just be that of the
single quartic oscillator given by Eq. (33), with the correct

constants in each separate subspace. This is given by:



δE1

δt1
δE2

δt2


 =




p1 0 4q31/b 0
− q1

4E1
0 p1

2E1
0

0 p2 0 4q32b
0 − q2

4E2
0 p2

2E2






δp1
δp2
δq1
δq2


 (A2)

The coordinate defined by the total energy is simply: δE =
δE1 + δE2. The conjugate coordinate, δt, is then given by
Eq. (28) applied to the new coordinate system:

δt =
E1

E
δt1 +

E2

E
δt2 (A3)

There needs to be two other local coordinates that, along with
δt and δE, satisfy the requirements of a canonical transforma-
tion, i.e. the Poisson brackets. Referring to this conjugate pair
as (δP, δQ), the straightforward choice is the following:

δP =
E2

E
δE1 −

E1

E
δE2 (A4)

δQ =− δt1 + δt2

Or in matrix form:



δE
δt
δP
δQ


 =




1 0 1 0
0 E1

E 0 E2

E
E2

E 0 −E1

E 0
0 −1 0 1






δE1

δt1
δE2

δt2


 (A5)

The multiplication of the transformations in Eqs. (A2) and
(A5) give the complete transformation. The result for λ ̸= 0
can be recovered with the following:

E1 →E1 + λq21q
2
2

E2 →E2 + λq21q
2
2

δE1 →δE1 + 2λq1q
2
2δq1 + 2λq21q2δq2

δE2 →δE2 + 2λq1q
2
2δq2 + 2λq21q2δq2 (A6)

So that the full transformation is:

Sα =



1 0 1 0
0 E1

E 0 E2

E
E2

E 0 −E1

E 0
0 −1 0 1


×




p1 0 4q31/b+ 2λq1q
2
2 2λq21q2

− q1
4E1

0 p1

2E1
0

0 p2 2λq1q
2
2 4q32b+ 2λq21q2

0 − q2
4E2

0 p2

2E2




(A7)

This transformation block diagonalizes the stability matrix:

M′
α,t = Sα,tMα,tS

−1
α,0 =

(
Msh

t 0
0 Mh

t

)
(A8)
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No more work is required for the shearing block, and Msh
t is

in the form of Eq. 17:

Msh
t =

(
1 0

ω′
αt 1

)
(A9)

In the case that λ = 0, Mh
t reduces to a second shearing de-

gree of freedom. For a value of λ that makes the dynamics
chaotic, such as λ = −.60, Mh

t has no particular structure, but
is completely hyperbolic and can be approximately diagonal-
ized using the technique described in Sec. III. To be explicit,
this looks like:

M′
α,t → OtM

′
α,tO

T
0 =

(
1 0
0 Ot

)(
Msh

t 0
0 Mh

)(
1 0
0 OT

0

)

=

(
Msh

t 0
0

√
Λt

)
(t > tc)

(A10)
where Λt Ot, OT

0 , and tc are given in Sec. III. The complete
transformations used for the chaotic case throughout the paper
is finally,

Sα,0 → O0Sα,0, Sα,t → OtSα,t (A11)

For the integrable case this is not necessary and Eq. (A7) is
sufficient.

Appendix B: Convenient coordinates and the stability matrix

Under some circumstances, it may be useful to transform to
convenient coordinate systems described here. Given that the
symmetric matrices Aα and Aβ are positive definite and unit
determinant, they can be decomposed as

Aα = AT
αAα (B1)

and likewise for Aβ . Choosing

Aα =

(
a ad

0
(
a−1

)T
)

(B2)

where the definitions aTa = c−1 along with the other sym-
metric matrix d defined in Eq. (4) guarantees the symplectic
property

AT
αΩAα = Ω Ω =

(
0 −1
1 0

)
(B3)

The matrices Aα and Aβ thus represent linear canonical
transformations. Denoting

(
δp⃗
δq⃗

)

α

=

(
p⃗− p⃗α
q⃗ − q⃗α

)
(B4)

and similarly for β, the transformed primed coordinates
(
δp⃗
δq⃗

)′

α

= Aα ·
(
δp⃗
δq⃗

)

α

(B5)

when divided
√
ℏ are unitless and measure distances in units

of standard deviations. The primed coordinates render the
density a simpler, hyperspherical shape;

ρα(p⃗
′, q⃗′) = (πℏ)−D

exp

[
−
(
δp⃗
δq⃗

)′

α

T

· 1
ℏ
·
(
δp⃗
δq⃗

)′

α

]
(B6)

and the phase space volume element is still the component
product of the column (row) vector.

As the stability matrix is of principal concern, recall that it
is given by

(
δp⃗t
δq⃗t

)

γ

= Mγ,t

(
δp⃗0
δq⃗0

)

γ

=

(
M11 M12

M21 M22

)

γ,t

(
δp⃗0
δq⃗0

)

γ

(B7)
where

(
δp⃗0
δq⃗0

)

γ

=

(
p⃗0 − p⃗γ
q⃗0 − q⃗γ

)
(B8)

and
(
δp⃗t
δq⃗t

)

γ

=

(
p⃗t(p⃗0, q⃗0)− p⃗t(p⃗γ , q⃗γ)
q⃗t(p⃗0, q⃗0)− q⃗t(p⃗γ , q⃗γ)

)
. (B9)

The initial condition, (p⃗0, q⃗0), is necessarily in the immedi-
ate neighborhood of a reference trajectory’s initial condition,
(p⃗γ , q⃗γ); in fact, ahead evaluating Eq. (8), both must also be
found in the immediate neighborhood of (p⃗α, q⃗α) or the con-
tribution effectively vanishes.

It is necessary to understand how the stability matrix trans-
forms under this change of coordinates. For the case of ex-
pectation values, it suffices to calculate an M′

γ,t using the
transformed Hamiltonian, H(p⃗ ′, q⃗ ′). Note the simplifi-
cation in the case that the wave packet’s symmetric matrix
bα is real. Using the decomposition defined in Eq. (B2),
bα = a−1

(
a−1

)T
, the transformed Hamiltonian is given by

H(p⃗ ′, q⃗ ′) = H
([

a−1
]T · p⃗,a · q⃗

)
.

This approach is not optimal for transport coefficients in
which the local coordinates near the initial and final densi-
ties are, generally speaking, distinct. Accounting for the fact,
that no trajectory leads to a contribution if its initial condi-
tion is not sufficiently close to (p⃗α, q⃗α) and its final point at
time t sufficiently close to (p⃗β , q⃗β), it is reasonable to consider
primed coordinates

(
δp⃗0
δq⃗0

)′

γ

= Aα ·
(
δp⃗0
δq⃗0

)

γ

(
δp⃗t
δq⃗t

)′

γ

= Aβ ·
(
δp⃗t
δq⃗t

)

γ

(B10)
The primed stability matrix can then be calculated as

M′
γ,t = AβMγ,tA

−1
α (B11)

where Mγ,t is calculated in the original coordinates without
transforming the Hamiltonian, and the second relation holds
in the case of real bα and bβ .
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Appendix C: Formulas for the integrable case (λ = 0)

Here the formulas needed to evaluate the return probabili-
ties of the integrable case are derived. Since all of the coor-
dinates have been pre-integrated, Eq. (79) immediately sim-

plifies as all the coordinates associated with the j directions
can be set to zero. Furthermore, the index on the matrices are
now unnecessary, since they encompass the dimensionality of
the entire system. The approximation, Eq.(79), for the case of
return probabilities, then reduces to

Cαα(t) =
∑

i1

∑

i2

4√
Det(1+A

′−1
α MT

τi1,i2
A′

αMτi1,i2
)
×

exp

[
−(δX⃗α,τi1,i2

+ 1⃗(t− τi1,i2))
T ·
(
A′

α −A′
α ·Mτi1,i2

·A−1
αα ·MT

τi1,i2
A′

α

ℏ

)
· (δX⃗α,τi + 1⃗(t− τi1,i2))

]
(C1)

To apply this formula the vector δX⃗α,τi1,i2
, the stability

matrix Mτi1,i2
, and τi1,i2 need to be known. For starters the

quantity δX⃗α,τi1,i2
+1⃗(t−τi1,i2) can be related to the desired

local coordinate system, worked out in Appendix A, given by
Eq. (A5)

δX⃗α,τi1,i2
+ 1⃗(t− τi1,i2) =



δE
δt
δP
δQ


 (C2)

The component associated with the time coordinate is just
δt = (t − τi1,i2), which leads to setting the component
of δX⃗α,τi1,i2

along the time direction to zero. The com-
ponent associated with energy coordinate is also zero, since
δE = E − Eα = 0 when E is evaluated on the α centroid.
The last two components can be found using Eq. (A4),

δP =
E2

E
δE1 −

E1

E
δE2 (C3)

δQ =− δt1 + δt2

Here δE1 = E1 − E1,α and E1 is the energy of the uncou-
pled quartic oscillator, similarly for δE2. δP is then zero be-
cause the energy is being evaluated on the centroid α. Con-
tinuing, δt1 = t − τ1i1 where τ1 is the period of first uncou-
pled oscillator evaluated on the central trajectory. This gives
δQ = −τ2i2 + τ1i1. To find τi1,i2 note that, from Eq. (A3),

δt =
E1

E
δt1 +

E2

E
δt2 = t− E1

E
τ1i1 −

E2

E
τ2i2 (C4)

= t− τi1,i2 → τi1,i2 =
E1

E
τ1i1 +

E2

E
τ2i2. (C5)

The components of the vector defined by (C2) are then,

δX⃗α,τi1,i2
+ 1⃗(t− τi1,i2) =




0
t− τi1,i2

0
−τ2i2 + τ1i1


 (C6)

The stability matrix in this coordinate system is given by
transforming the stability matrix in the original (p⃗α, q⃗α) co-
ordinate system, using Eq. (12), here denoted Mt,

Mt =




1 0 0 0
ω′
α,1t 1 0 0
0 0 1 0
0 0 ω′

α,2t 1


 (C7)

Note these are not the shearing rates of the uncoupled oscilla-
tors. To find them, the stability matrix has to be numerically
found in the (p⃗α, q⃗α) coordinate system and then transformed
to the new coordinate system using Eq. (A7). These are all the
formulas needed in the main text needed to produce Fig. 8.

Appendix D: Return probabilities: initial decay

For diagonal transport coefficients, i.e., return (survival)
probabilities for which (p⃗α, q⃗α) = (p⃗β , q⃗β) and Aα = Aβ ,
the coefficient, Cαα(t), from Eq. (64) starts at unity and de-
cays. This is such a short time process that all 2D integrals
can be performed to an excellent approximation and it is un-
necessary to enter into dynamical considerations of stability
or instability. Neither is it necessary to consider coordinate
transformations such as Sα. All that is needed is a single ap-
propriate reference trajectory for any given fixed time.

An excellent approximation arises by mimicking to some
extent that which happens in a saddle point approximation of
| ⟨α|α(t)⟩ |2. At a given time t during the initial decay, the
real trajectory that most closely resembles the complex saddle
point trajectory is one which arrives at the phase space point
(p⃗α, q⃗α) at t/2. That gives

δX⃗α,f =

(
p⃗f − p⃗α
q⃗f − q⃗α

)
=

(
p⃗α(t/2)− p⃗α
q⃗α(t/2)− q⃗α

)

δX⃗α,i =

(
p⃗i − p⃗α
q⃗i − q⃗α

)
=

(
p⃗α(−t/2)− p⃗α
q⃗α(−t/2)− q⃗α

)
(D1)

In the ℏ → 0 limit, for which the derivatives in Hamilton’s
equations are constant for the duration of the decay, the initial
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condition and final endpoint end up approximately equidistant
from (p⃗α, q⃗α), but in opposite directions. In order to evaluate
the integrals for Cαα(t), it is necessary to consider initial con-
ditions in the immediate neighborhood of the reference trajec-
tory. Defining the variations as follows gives

δX⃗0 =

(
p⃗0 − p⃗i
q⃗0 − q⃗i

)

δX⃗t =

(
p⃗t − p⃗f
q⃗t − q⃗f

)
(D2)

where the full 2D-dimensional stability matrix relates the ini-
tial and final variations,

δX⃗t = Mt · δX⃗0 . (D3)

Ahead, either the numerically calculated Mt can be used or
its short time approximation

Mt ≈ 1 +Kαt

= 1 +

(
− ∂2H

∂q⃗∂p⃗ − ∂2H
∂q⃗∂q⃗

∂2H
∂p⃗∂p⃗

∂2H
∂q⃗∂p⃗

)∣∣∣∣∣
p⃗α,q⃗α

× t

With this reference trajectory and the variation definitions, lo-
cally, the integration differential can be shifted to dδX⃗i. Now,
the arguments of the two Gaussian exponentials, not including
the inverse of −ℏ, can be expressed as

(δX⃗0 + δX⃗α,i)
T ·Aα · (δX⃗0 + δX⃗α,i) (D4)

for the initial ρα and

(δX⃗t + δX⃗α,f )
T ·Aα · (δX⃗t + δX⃗α,f ) (D5)

for the final ρα. Using the stability matrix, the quadratic term
becomes:

δX⃗T
0 · (Aα +MT

t ·Aα ·Mt) · δX⃗0 (D6)

and the linear term,

2(δX⃗α,i ·Aα +MT
t ·Aα · δX⃗α,f )

T · δX⃗0 (D7)

as well two terms quadratic in δX⃗α,i and δX⃗α,f ,

δX⃗T
α,i ·Aα · X⃗α,i + δX⃗T

α,f ·Aα · X⃗α,f (D8)

The linear terms in δX⃗0 can be accounted for by the shift

δX⃗0 → δX⃗0 + (Aα +MT
t ·Aα ·Mt)

−1 · (δX⃗α,i ·Aα +MT
t ·Aα · δX⃗α,f ) (D9)

The leading quadratic terms in δX⃗0 determine the prefactor,
which is given by

A =
2D

[
Det

(
Aα +MT

t ·Aα ·Mt

)]1/2 (D10)

and which gives unity as it must in the limit of t → 0 where
Mt = 1. Performing the integration gives four terms that can
be simplified by using the Woodbury matrix identity, such that
the final integral can be expressed as

Cαα(t) = A exp

(
−1

ℏ
S

)
(D11)

with

S =
[
δX⃗T

α,f − δXT
α,i ·MT

t

]
· (D12)

(
A−1

α +Mt ·A−1
α ·MT

t

)−1

·
[
δX⃗α,f −Mt · δXα,i

]
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