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It was recently found that the indefinite causal or-
der in the quantum switch can be certified device-
independently when assuming the impossibility of su-
perluminal influences. Here we strengthen this result
in two ways. First, we give a proof of this fact which is
possibilistic, rather than probabilistic, i.e. which does
not rely on the validity of probability theory at the
hidden variable level. Then, returning to the prob-
abilistic setting, we show that the indefinite causal
order in the quantum switch is also maximal, in the
sense that the observed correlations are incompatible
even with the existence of a causal order on only a
small fraction of the runs of the experiment. While
the original result makes use of quantum theory’s vi-
olation of a Clauser-Horne-Shimony-Holt inequality,
the proofs presented here are based on Greenberger,
Horne, and Zeilinger’s and Mermin’s proofs of non-
locality, respectively.
When two measurements are performed within a

quantum circuit, the topology of the circuit puts con-
straints on the causal relations between them: either
the choice of measurement at A can influence the out-
come of the measurement at B, or vice versa, but
not both. Recent extensions to the quantum cir-
cuit paradigm have however facilitated considering
situations in which the topology of the quantum cir-
cuit itself, and in particular the causal order between
measurements, is in a quantum superposition. The
simplest example of this is the quantum switch [1], a
mathematical device that applies two operations to a
target system in an order coherently controlled by the
state of a qubit.

It was recently found that under some metaphys-
ical assumptions, the indefinite causal order between
measurements in the quantum switch can also be
demonstrated device-independently, that is, relying
just on correlations between classical settings and out-
comes of the measurements, and not on a character-
isation of the measurements themselves (or indeed the
assumption that they are governed by quantum the-
ory) [2, 3]. The argument of [2] works via the viola-
tion of an inequality derived from assumptions named
definite causal order, relativistic causality, and free
interventions. This derivation relies closely on Bell’s
theorem [4]: the crucial observation is that a hidden
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variable determining a causal order (which exists by
the first assumption) in some particular cases must
also fix, or, in other words, ‘predetermine’, a measure-
ment outcome—and that this determinism, together
with the other assumptions, implies Bell inequalities
which are violated by the quantum correlations under
consideration.

This observation suggests that it is possible to
transform other proofs of Bell nonlocality, bey-
ond that based on the Clauser-Horne-Shimony-Holt
(CHSH) inequality employed in [2], into proofs of in-
definite causal order in the quantum switch. Here
we give a proof in the style of Mermin’s version of
Greenberger-Horne-Zeilinger (GHZ) nonlocality [5–7].
Similarly to the latter, the proof does not involve in-
equalities and is of a possibilistic, rather than probab-
ilistic, character: the quantum switch data are shown
to contradict the assumptions mentioned above even
when both are formulated merely in terms of which
events have zero and nonzero probabilities. In par-
ticular this shows that the quantum switch is incom-
patible with a (relativistically well-behaved) definite
causal order even if causal orders are not required to
follow the laws of probability theory.

We also give a statistical inequality, analogous to
Mermin’s inequality [8] for Bell nonlocality, which
parallels our possibilistic argument. Although this
takes us back to assuming the validity of probab-
ility theory, it allows us to improve on the results
of [2, 3] in a different way, namely by showing that the
quantum switch exhibits ‘maximal’ indefinite causal
order. More precisely, the quantum switch correl-
ations violate this inequality to the algebraic max-
imum, which implies incompatibility even with the
hypothesis that there is a definite causal order on only
some positive fraction of the runs of the experiment.

1 Notation and terminology
Possibilities are modelled by the Boolean semiring
B = {0, 1}, where 0 denotes impossibility and 1 pos-
sibility of an event. Addition and multiplication in B
are defined as 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1,
0 · 0 = 0 · 1 = 1 · 0 = 0 and 1 · 1 = 1. A possibility
distribution over a set of variables a1, . . . , an taking
values in the finite sets A1, . . . , An is a function p :
A1×· · ·×An → B satisfying

∑
a1,...,an

p(a1 · · · an) = 1;
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i.e. at least one tuple of values is possible. (We will
abuse notation by using lower-case letters to denote
random variables as well as their values.) A probability
distribution P : A → R≥0 defines a possibility distri-
bution p over the same variable by p(a) = π(P (a)),
where π : R≥0 → B takes 0 to 0 and any r > 0 to 1.
(Conditional) independence is denoted by |= . In

the case of a possibility distribution p(abc), a |= p b | c
is defined as ∀a, b, c : p(abc) = p(ac)p(bc), while un-
conditional independence a |= p b means that ∀a, b :
p(ab) = p(a)p(b). Moreover, =⇒ denotes implica-
tion: for propositions P and Q, P =⇒p Q is short
for p(P,¬Q) = 0.

Finally, ⊕ denotes addition modulo 2, and |±⟩ :=
(|0⟩ ± |1⟩)/

√
2 and |±i⟩ := (|0⟩ ± i |1⟩)/

√
2.

2 GHZ-Mermin nonlocality

We first review Mermin’s version [6] of the GHZ
proof [5] of Bell nonlocality. Three spacelike-
separated parties labelled A, B, and C share three
qubits prepared in the state |GHZ⟩ := (|000⟩ +
|111⟩)/

√
2. Each party has a binary classical input

variable (x, y, z ∈ {0, 1}, resp.), and measures their
qubit in the Y basis {|+i⟩ , |−i⟩} if their input is 0,
and in the X basis {|+⟩ , |−⟩} if their input is 1. The
measurement outcomes are recorded in the output
variables a, b, c ∈ {0, 1}. Given a probability distribu-
tion over the input variables, the Born rule provides
joint probabilities P (abcxyz) for all combinations of
input and output variables. All that the following ar-
gument relies on are however the induced possibilities
p(abcxyz) := π(P (abcxyz)).
A particular property of these possibilities, pre-

dicted by the Born rule, is that

x = 1, y = 1, z = 1 =⇒p a⊕ b⊕ c = 0;
x = 1, y = 0, z = 0 =⇒p a⊕ b⊕ c = 1;
x = 0, y = 1, z = 0 =⇒p a⊕ b⊕ c = 1;

and x = 0, y = 0, z = 1 =⇒p a⊕ b⊕ c = 1.

(1)

These perfect correlations can be used in an EPR-like
argument [9] to argue for the existence of local de-
terministic hidden variables, i.e. to argue that for each
wing of the experiment, there are pre-existing physical
properties that determine the outcome for any pos-
sible measurement setting on that wing. Mathematic-
ally, these are described by variables λ0,1

A,B,C ∈ {0, 1},
independent of x, y, z and satisfying x = i =⇒p a =
λi

A and similar conditions for B and C.

Together with the assumption that all combinations
of inputs appearing in (1) are in fact possible, this
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Figure 1: The quantum switch takes two quantum oper-
ations on the system T , here E and F , to an operation on
CT , where C is a control qubit. The dotted (red) and dashed
(blue) lines illustrate the wirings to which the quantum switch
reduces upon preparation of C in state |+⟩⟨+| and |−⟩⟨−|,
respectively.

leads us to conclude that with certainty

λ1
A ⊕ λ1

B ⊕ λ1
C = 0;

λ1
A ⊕ λ0

B ⊕ λ0
C = 1;

λ0
A ⊕ λ1

B ⊕ λ0
C = 1;

λ0
A ⊕ λ0

B ⊕ λ1
C = 1; ⊕

0 = 1.

(2)

This contradiction demonstrates that no model with
local deterministic hidden variables λ0,1

A,B,C can repro-
duce the correlations (1) predicted by the Born rule.

3 Adding switches
We will now see how this argument can be turned
into a possibilistic proof of indefinite causal order in
the quantum switch. Our first objective will be to
identify a scenario involving quantum switches that
yields possibilistic data satisfying properties analog-
ous to (1) above.
The quantum switch [1] is defined as a super-

map [10] taking two quantum operations E ,F on a
target system T to an operation switch(E ,F) on
the joint system CT , which applies E and F to T
in an order that is coherently controlled by the state
of the control qubit C (see Figure 1). We will con-
sider a variant of the quantum switch which is con-
trolled in the X basis {|+⟩ , |−⟩}. Hence, if the
target and control systems are described by Hilbert
spaces HT and HC

∼= C2 and if E(·) = E(·)E† and
F(·) = F (·)F † are pure operations with Kraus op-
erators E,F : HT → HT , then switch(E ,F)(·) =
W (·)W † where W : HC ⊗ HT → HC ⊗ HT is the
operator defined by

W := |+⟩ ⟨+|C ⊗ FE + |−⟩ ⟨−|C ⊗ EF. (3)

We consider a scenario in which three such quantum
switches, labelled by A, B and C, are implemented
at spacelike-separated locations. Their control qubits
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are prepared in the GHZ state, while their target sys-
tems, also qubits, are all prepared in the state |0⟩ (see
Figure 2). We will think of the two operations on the
target system TA inside switch A as being performed
by two agents, A1 and A2, with classical input vari-
ables x1, x2 ∈ {0, 1} and output variables a, b ∈ {0, 1},
respectively. If xi = 0 (for i = 1, 2), then Ai performs
no intervention (i.e. lets TA undergo the identity chan-
nel), and outputs ai = 0. If xi = 1, she instead meas-
ures TA in the computational basis, records the result
in ai ∈ {0, 1}, and prepares the outgoing target sys-
tem in state |1⟩TA

. A third agent A3 has no input
variable and always measures the output control sys-
tem CA in the Y basis, recording their result in the
output variable a3 ∈ {0, 1}. Similar measurements
are performed on the systems of switches B and C.

The Born rule, together with the definition of the
quantum switch (3) and a distribution over input
variables, provides us with a probability distribution
Q(a1a2a3b1b2b3c1c2c3x1x2y1y2z1z2) (see Appendix A
for a more precise definition). We will abbreviate this
by Q(abcxyz) where a := (a1, a2, a3), x := (x1, x2)
and b, c, y, and z are defined similarly. As was the
case for GHZ nonlocality, it will suffice to consider
only the induced possibility distribution q(abcxyz) :=
π(Q(abcxyz)).
We now want to find patterns in these possibilities

analogous to those in (1). For that purpose, the fol-
lowing two observations will be useful (cf. Figure 3).
(These informal statements are given to provide in-
tuition; formalised versions and their proofs can be
found as Lemmas 2 and 3 in Appendix A.)

Observation 1. If x1 = x2 = 0, then a3 simulates
the outcome of a Y basis measurement of the input
control system CA; similarly for switches B and C.

Indeed, when x1 = x2 = 0, no interventions are
performed on the target system inside the switch, so
that the switch itself reduces to the identity channel.
This leaves the control system unaffected for A3 to
measure (see Figure 3a).

Observation 2. If x1 = x2 = 1, then a1 simulates
the outcome of an X basis measurement of the input
control system CA; similarly for switches B and C.
This is because the input target system is initially

prepared in state |0⟩TA
, while A2 (given x2 = 1) repre-

pares it in the orthogonal state |1⟩TA
. As a result, a

measurement of a1 = 1 is only compatible with the
wiring in which A1 comes after A2—and therefore
only with finding the control qubit in state |−⟩CA

upon an X basis measurement. Similarly, a1 = 0 is
only compatible with the control qubit being found in
state |+⟩CA

. Therefore the probabilities (and hence
possibilities) of these events are identical. This is de-
picted diagrammatically in Figure 3b and proven in
Appendix A.
Observations 1 and 2, together with the fact that

the control qubits are entangled in the GHZ state, tell

us that if we make appropriate changes to the vari-
ables featuring in (1) then the resulting implications
will hold in our new possibility distribution q:

x = 1, y = 1, z = 1 =⇒q a1 ⊕ b1 ⊕ c1 = 0;
x = 1, y = 0, z = 0 =⇒q a1 ⊕ b3 ⊕ c3 = 1;
x = 0, y = 1, z = 0 =⇒q a3 ⊕ b1 ⊕ c3 = 1;
x = 0, y = 0, z = 1 =⇒q a3 ⊕ b3 ⊕ c1 = 1

(4)

(here 0 := (0, 0) and 1 := (1, 1)). (It is worth noting
that these implications are nothing more than proper-
ties of the possibility distribution q and can therefore
also be derived directly from the Born rule and defin-
ition of the quantum switch. Observations 1 and 2
are only given to provide intuition for why (4) should
hold, given that we already know the GHZ correla-
tions of (1).)

The implications in (4), like those in (1), do not im-
mediately lead to a contradiction, because each equa-
tion on the right refers to outputs for a different set of
inputs. As in the case of nonlocality, a contradiction
only arises when some of the outcome variables can
be replaced by (hidden) variables that are independ-
ent of these measurement choices. The next sections
show that the assumptions of definite causal order
and relativistic causality imply the existence of such
variables.

4 Definite causal order
In the following we will want to probe causal relations
on the basis of (possibilistic) correlations. An import-
ant assumption enabling this is that the input vari-
ables x1, x2, y1, y2, z1, z2 of the agents’ interventions
are freely chosen. In particular, this means that they
are uncorrelated with variables outside their causal fu-
ture, motivating some of the mathematical conditions
defined below. It also motivates the assumption that
all inputs are jointly possible, which will be needed
later:

∀x, y, z q(xyz) = 1. (5)
Definition 1. A hidden causal order model for a pos-
sibility distribution r(a1a2x1x2) is a possibility dis-
tribution r(a1a2x1x2λ), where λ ∈ {0, 1}, such that

∑
λ
r(a1a2x1x2λ) = r(a1a2x1x2), (6a)

λ |= r x1x2, (6b)
a1 |= r x2 | λ = 0, (6c)

and a2 |= r x1 | λ = 1. (6d)

The interpretation of this hidden variable λ is that
it determines the causal order between interventions
performed by parties A1 and A2 with inputs x1, x2
and outputs a1, a2, respectively: viz. the value λ = 0
indicates that A1 acts outside the causal future of A2,
so that the possibility of outcome a1 is independent
of the freely chosen input x2.
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0
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switch

0

λA λB λC
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z1

c1

C1

z2

c2

C2
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b1

B1

y2

b2

B2

b3

B3

c3

C3

Figure 2: A GHZ-inspired quantum switch setup. The diagram is read from bottom to top; black wires are quantum systems
while grey wires are classical variables. Three quantum switches (in blue) have control qubits entangled in the GHZ state.
Their target systems are qubits, initially prepared in the computational basis state |0⟩. Inside each switch, two parties act
on the target system; their actions, here represented by classical-quantum channels, are described in the main text. The
output target systems are discarded. Overall, this diagram defines the classical channel (conditional probability distribution)
Q(abc | xyz). The orange variables λA,B,C denote the postulated hidden causal orders, which are assumed to take a value in
the past lightcone of their respective switches. The orange line is an example of a spacelike hypersurface that can be used to
argue for Equation (14b).
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Figure 3: a) If x1 = x2 = 0, then A1 and A2 perform identity operations, so that the quantum switch itself also reduces to
the identity channel. b) If x1 = x2 = 1, they both measure the target system in the computational (Z) basis and afterwards
prepare the state |1⟩TA

. The a1 outcome then has the same probability and postselected state as an X basis measurement of
the input control qubit. (Note that the switch is controlled in the X basis.)
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Assumption 1 (Definite causal order). There exist
three variables λA, λB , λC ∈ {0, 1} and a joint pos-
sibility distribution q(abcxyzλAλBλC) satisfying∑

λA,λB ,λC

q(abcxyzλAλBλC) = q(abcxyz), (7)

such that q(a1a2x1x2λA) is a hidden causal order
model for q(a1a2x1x2), q(b1b2y1y2λB) for q(b1b2y1y2),
and q(c1c2z1z2λC) for q(c1c2z1z2).

In the GHZ proof, the hidden variables were (when
assumed to exist) directly revealed by outcomes of
measurements, allowing us to replace the output vari-
ables a, b, c in (1) by hidden variables to obtain (2).
This is not necessarily the case for hidden variables
determining causal orders. However, as we already
noted after Observation 2, our choice of initial target
state and operations performed inside the switch are
such that, for x1 = x2 = 1, each value of a1 is compat-
ible with only one of the orderings of the operations
on the target system. The following Lemma elevates
this observation to the device-independent level.

Lemma 1. Suppose that the possibility distribution
r(a1a2x1x2), where a1, a2, x1, x2 ∈ {0, 1}, satisfies

r(a1 = 1, x2 = 0) = 0, (8a)
r(a2 = 1, x1 = 0) = 0, (8b)

and r(a1 = a2 = 0, x1 = x2 = 1) = 0, (8c)

then any hidden causal order model r(a1a2x1x2λ) for
r(a1a2x1x2) satisfies

x1 = x2 = 1 =⇒r a1 = λ. (9)

Proof. Our first claim is that

a1 = 1 =⇒r λ = 1. (10)

Indeed, from Equation (8a),

0 = r(a1 = 1, x2 = 0)
≥ r(a1 = 1, x2 = 0, λ = 0)
(6c)= r(a1 = 1, λ = 0)r(x2 = 0, λ = 0)
(6b)= r(a1 = 1, λ = 0)r(x2 = 0)r(λ = 0)
(5)= r(a1 = 1, λ = 0)r(λ = 0)
= r(a1 = 1, λ = 0).

(11)

Moreover, we have

x1 = x2 = 1, a1 = 0 =⇒r a2 = 1 =⇒r λ = 0; (12)

here the first implication is Equation (8c), while the
second follows from an argument analogous to that
for (10) but using (8b). (10) and (12) together imply
the result.

The marginals q(a1a2x1x2), q(b1b2y1y2) and
q(c1c2z1z2) for our three switches satisfy the con-
ditions of Lemma 1. Therefore we can, under
Assumption 1, replace some of the observed variables
in (4) by hidden variables:

x = 1, y = 1, z = 1 =⇒q λA ⊕ λB ⊕ λC = 0;
x = 1, y = 0, z = 0 =⇒q λA ⊕ b3 ⊕ c3 = 1;
x = 0, y = 1, z = 0 =⇒q a3 ⊕ λB ⊕ c3 = 1;
x = 0, y = 0, z = 1 =⇒q a3 ⊕ b3 ⊕ λC = 1.

(13)

To derive a contradiction from this set of implica-
tions, we need our final assumption.

5 Relativistic causality
Recall that the three switches are implemented at
spacelike separation. Moreover, the hidden variables
λA,B,C determine the causal order between the parties
in their respective switch and must therefore take val-
ues in the causal past of those parties. With this in
mind, the following conditions are motivated by the
principle of relativistic causality, which requires the
causal order on the variables to be compatible with
the provided lightcone structure—meaning in partic-
ular that freely chosen inputs cannot influence the
possibility of events outside their future lightcone.

Assumption 2 (Relativistic causality). The possibil-
ity distribution q(abcxyzλAλBλC) of Assumption 1
satisfies

λAλBλC |= q xyz; (14a)
λAb3c3 |= q x | yz; (14b)
a3λBc3 |= q y | xz; (14c)
a3b3λC |= q z | xy. (14d)

(Equation (14b), for instance, is motivated by the
existence of the spacelike hypersurface depicted in or-
ange in Figure 2.) These four conditions can be dir-
ectly applied to the correlations in (13) to yield the
four equations

x = 0, y = 0, z = 0 =⇒q λA ⊕ λB ⊕ λC = 0
x = 0, y = 0, z = 0 =⇒q λA ⊕ b3 ⊕ c3 = 1
x = 0, y = 0, z = 0 =⇒q a3 ⊕ λB ⊕ c3 = 1
x = 0, y = 0, z = 0 =⇒q a3 ⊕ b3 ⊕ λC = 1 ⊕

x = 0, y = 0, z = 0 =⇒q 0 = 1.
(15)

Together with the fact that the combination x = y =
z = 0 is possible (by Eq. (5)), this yields our desired
contradiction. Summarising, we have proven the fol-
lowing.
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Theorem 1. No possibility distribution q(abcxyz) that
satisfies Equations (4), (5), (8) and similar condi-
tions for B and C can also satisfy the conjunction
of Assumptions 1 and 2. In particular, the distribu-
tion q(abcxyz) arising in the quantum switch scen-
ario depicted in Figure 2 is incompatible with these
assumptions.

6 Back to probabilities: a causal Mer-
min inequality

Although quantum theory makes predictions about
the (im)possibility of events in ideal measurement
scenarios, experimental data are inevitably subject
to uncertainties and are thus bound to be probab-

ilistic. Impossibilities like those of Eqs. (4) and (8)
can therefore not be verified with certainty, leaving
the possibilistic argument of the preceding sections
unamenable to experiment. However, when the prob-
abilistic data approximately satisfy the required im-
possibilities, a refutation of (probabilistic versions of)
the assumptions is still possible via the violation of the
following inequality, closely analogous to Mermin’s in-
equality [8] for Bell nonlocality. The derivation of this
inequality relies on the probabilistic conditions (28)
given in Appendix B, which are analogous to (but
stronger than) the possibilistic conditions expressed
in Equation (5) and Assumptions 1 and 2, and are
likewise physically motivated by the principles of free
interventions, definite causal order, and relativistic
causality.

Theorem 2. Any probability distribution
P (abcxyzλAλBλC) that fulfills the conditions
in (28) satisfies the inequality

P (a1 ⊕ b1 ⊕ c1 = 0 | x = 1, y = 1, z = 1) + P (a1 ⊕ b3 ⊕ c3 = 1 | x = 1, y = 0, z = 0)
+P (a3 ⊕ b1 ⊕ c3 = 1 | x = 0, y = 1, z = 0) + P (a3 ⊕ b3 ⊕ c1 = 1 | x = 0, y = 0, z = 1)

−2
[
P (a1 = 1 | x1x2 = 10) + P (a2 = 1 | x1x2 = 01) + P (a1a2 = 00 | x1x2 = 11) (16)

+P (b1 = 1 | y1y2 = 10) + P (b2 = 1 | y1y2 = 01) + P (b1b2 = 00 | y1y2 = 11)
+P (c1 = 1 | z1z2 = 10) + P (c2 = 1 | z1z2 = 01) + P (c1c2 = 00 | z1z2 = 11)

]
≤ 3.

Proof. See Appendix B.

A violation of this inequality to the algebraic bound
of 4 requires precisely the possibilistic properties ex-
pressed in Eqs. (4) and (8), and is therefore attained
by precisely those probabilistic data that also admit
a possibilistic derivation of a contradiction with the
conjunction of (5) and Assumptions 1 and 2 as in
Sections 3–5—including the data Q predicted for the
quantum switch scenario of Figure 2.
It is worth noting that, as Mermin did with his

three-party GHZ scenario [8], the three-switch scen-
ario considered here can be suitably generalised to
one with N > 3 spacelike-separated switches. Defin-
ite causal order and relativistic causality then imply
an inequality with bound 2⌊(3N−4)/2⌋, which is viol-
ated by the switch scenario to the algebraic maximum
of 22N−3. The proportional violation of the inequality
thus grows exponentially with N .

7 Discussion
When it was shown in [2, 3] that the quantum switch
exhibits indefinite causal order that can be device-
independently tested, this meant that it predicts
probabilities that cannot be recovered from a joint

probability distribution with a variable that constrains
the causal order on every run of the experiment (in
such a way that the order is always in accordance
with relativity theory). Here, we have strengthened
that result in two ways.

First, the argument in Sections 3–5 relies only on
the calculus of possibilities, rather than probabilities,
so it eliminates the assumption that probability the-
ory is applicable on the hidden variable level. This
assumption is nontrivial: even if the variables λA,B,C

are postulated to take values on every run of the
experiment, their frequencies might not converge to
probabilities satisfying the probability axioms. And
while there are empirical grounds for assuming such
convergence in the case of observable quantities, these
do not necessarily apply to the causal order vari-
ables, as those might be unobservable in principle. In
addition, the possibilistic independence assumptions
involved in our argument of Sections 3–5 are much
weaker than the probabilistic ones required in [2, 3],
with relativistic causality conditions like (14) merely
requiring that a choice of input cannot influence the
possibility, rather than probability, of events that are
spacelike-separated or lie to its past.

The maximal violation of the causal Mermin in-
equality (16), meanwhile, strengthens the results
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of [2, 3] by showing that the quantum switch (or any
other, say experimental, data that reach the algebraic
maximum) is not even compatible with a (probabil-
istic) hidden variable model that specifies a causal or-
der sometimes: any nonzero fraction of runs in which
all operations are causally ordered and no superlu-
minal influences occur leads to a value strictly be-
low the algebraic bound.1 In this sense the device-
independent indefinite causal order in the quantum
switch can be said to be maximal. It is shown in Ap-
pendix C that this result can in fact also be achieved
with a single quantum switch, by using the idea of
chained CHSH inequalities [11] and taking an appro-
priate limit.
Our proofs are much like those of Bell nonlocality

by GHZ and Mermin, except that the existence of hid-
den variables predetermining measurement outcomes
is derived from the definite causal order assumption
together with properties of the data, rather than dir-
ectly assumed or concluded from an EPR argument.
This connection between Bell nonlocality and indefin-
ite causal order, initially discovered in [2] in the con-
text of a CHSH inequality, thus extends to possibil-
istic arguments as well. In light of this connection,
this work and [2] can be compared to recent works on
extended Wigner’s friend scenarios (see for instance
Refs. [12–14]), in which not a definite causal order,
but the observation of an agent is what predetermines
a measurement outcome.2 It will be worth investig-
ating what other device-independent tests can be de-
vised using this method, going beyond causal order
and Wigner’s friend scenarios.
Another important direction for future work is to

understand the physical implications of experimental
violations of the inequalities presented here and in [2].
The notion of causal order, and whether it is definite
or not, naturally depends on what is being ordered,
i.e. on what are taken as the relata of the causal rela-
tions. In the device-independent treatment, it is cus-
tomary to assume that each relatum covers both the
choosing of an input and the generation of an out-
put. This is the approach taken here and in [2, 3].
This tradition goes back to Bell’s theorem, in which
such input-output pairs can be confined to a small
spacetime region. Current implementations of the
quantum switch however necessitate that the inputs

1In the terminology of [3], this means that the data have
a causally separable fraction of 0% over the relevant spaces of
input histories.

2Our notion of relativistic causality is analogous to what
is called Locality or Local Agency in [12, 13], and to what
is known as parameter independence (and measurement inde-
pendence) in the context of Bell’s theorem [15]. It is strictly
weaker than the kind of locality already ruled out by Bell [4],
GHZ [7] and Mermin [6]. On its own it is consistent with
quantum physics; only in the presence of another assumption,
like definite causal order (Theorems 1 and 2 and [2]), absolute-
ness of an agent’s observation [12, 13], determinism (Section 2
and [4, 5]), or alternatively, outcome independence [8, 15], can
contradictions be derived.

of the operations inside the switch are chosen early,
and the outcomes are only measured after execution
of the switch [16, 17]. Consequently, (classical) re-
lativity theory does not rule out two-way commu-
nication between the regions occupied by the input-
output pairs. Is indefinite causal order with respect
to these relata then still an interesting physical phe-
nomenon, or is another choice of relata more natural?
Answering these questions might require a more in-
depth analysis which investigates whether such two-
way communication is indeed facilitated by the used
experimental setups.
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A The quantum switch correlations and formalisation of Observations 1
and 2
Here we describe in more detail the outcome probabilities (and thus possibilities) arising in the
three-switch scenario described in the main text. We then state and prove formal versions of
Observations 1 and 2.
The interventions of each of the nine agents A1,2,3,B1,2,3, C1,2,3 can, for each value of their

classical input variable, be described by a quantum instrument, i.e. a quantum operation with a
classical outcome. A quantum instrument, with input and output systems described by Hilbert
spaces H and K and with finite classical outcome set E, is a collection of completely positive
(CP) maps {Ee : B(H) → B(K)}e∈E that sum to a trace-preserving map

∑
e∈E Ee. (Here B(H)

and B(K) are the spaces of bounded linear operators on H and K.) Each map Ee represents the
quantum operation that ends up being performed in case outcome e is observed.

For i = 1, 2, the instrument performed by Ai on the target system TA for a fixed value of xi,

described intuitively in the main text, is defined by the CP maps Aai|xi

i : B(HTA
) → B(HTA

) given
by

Aai|xi=0
i = δai=0 · idTA

(17a)

and Aai|xi=1
i (ρTA

) = |1⟩⟨ai|ρTA
|ai⟩⟨1| , (17b)

where idTA
is the identity operation on B(HTA

) and δai=0 is 1 if ai = 0 and 0 otherwise. A3
performs a projective measurement in the Y basis, described by CP maps Aa3

3 : B(HCA
) → B(C)

with trivial output system:

Aa3=0
3 (ρCA

) = ⟨+i|ρCA
|+i⟩ ; Aa3=1

3 (ρCA
) = ⟨−i|ρCA

|−i⟩ . (18)

Together, when situated in one wing of the quantum switch setup considered in the main text,
these instruments define the ‘joint’ instrument {Aa|x : B(HCA

) → B(HCA
)}a, with

Aa|x(ρCA
) :=

(
(Aa3

3 ⊗ TrTA
) ◦ switch(Aa1|x1

1 ,Aa2|x2
2 )

)
(ρCA

⊗ |0⟩⟨0|TA
). (19)

The joint instruments Bb|y and Cc|z are defined similarly. The joint probabilities of the outcomes
a,b, c given inputs x, y, z are then given by the distribution

Q(abc | xyz) :=
(

Aa|x ⊗ Bb|y ⊗ Cc|z
) (

|GHZ⟩⟨GHZ|CACBCC

)
, (20)

which is defined diagrammatically [18] in Figure 2. Finally, together with a distribution over the
input variables Q(xyz), this gives a probability distribution Q(abcxyz), which in turn leads to the
possibility distribution q(abcxyz) considered in the main text.
It is straightforward to verify that the marginals of this distribution satisfy the conditions (8)

of Lemma 1. We can now also formalise and prove Observations 1 and 2 from the main text. This
is done by Lemmas 2 and 3 below, respectively.

Lemma 2. We have
Aa|x=0(ρCA

) = δa1=a2=0 · Aa3
3 (ρCA

). (21)

Proof. This follows from the fact that switch (idTA
, idTA

) = idCATA
, which is evident from the

definition of the quantum switch in Eq. (3).

Lemma 3. We have ∑
a2a3

Aa|x=1(ρCA
) =

{
⟨+|ρCA

|+⟩ if a1 = 0;
⟨−|ρCA

|−⟩ if a1 = 1.
(22)

Proof. We prove the fact for pure states ρCA
= |ψ⟩⟨ψ|CA

; by linearity this implies the result
for mixed states too. From the definition of the quantum switch (3) and the quantum instru-
ments (17b, 19), we have

Aa|x=1(|ψ⟩⟨ψ|CA
) =

∥∥∥ ⟨(−1)a3i|
(

|+⟩⟨+|CA
⊗ |1⟩ ⟨a2|1⟩ ⟨a1|TA

+

|−⟩⟨−|CA
⊗ |1⟩ ⟨a1|1⟩ ⟨a2|TA

)
|ψ⟩CA

|0⟩TA

∥∥∥2
.

(23)
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If a1 = 0 then the second term (in which A1 is after A2) vanishes, giving

Aa|x=1(|ψ⟩⟨ψ|CA
) =

∣∣⟨(−1)a3i|+⟩CA
⟨+|ψ⟩CA

· δa2=1
∣∣2 (24)

so that ∑
a2a3

Aa|x=1(|ψ⟩⟨ψ|CA
) = |⟨+|ψ⟩|2 . (25)

The case for a1 = 1 is similar.

Together with the known GHZ correlations (1), these facts imply the correlations in (4), used
in our possibilistic argument, as well as the fact that the quantum switch setup violates, with the
choice of instruments described here, the causal Mermin inequality (16) to the algebraic bound of
4.

B Proof of Theorem 2
In the below, probabilistic conditional independence will be denoted as

a |= P b | c :⇐⇒ ∀a, b, c : P (ab|c) = P (a|c)P (b|c) (26)
and a |= P b | c = i :⇐⇒ ∀a, b : P (ab|c = i) = P (a|c = i)P (b|c = i) (27)

a |= P b denotes unconditional independence ∀a, b : P (ab) = P (a)P (b). The following is a restate-
ment of Theorem 2.

Theorem. Let P (a1a2a3b1b2b3c1c2c3x1x2y1y2z1z2λAλBλC) =: P (abcxyzλAλBλC) be a probability
distribution on variables taking values in {0, 1} that satisfies the following conditions, physically
motivated as in the main text by the assumptions of free interventions, definite causal order, and
relativistic causality 3.

∀xyz : P (xyz) > 0; (28a)
a1 |= P x2 | λA = 0; a2 |= P x1 | λA = 1; (28b)
b1 |= P y2 | λB = 0; b2 |= P y1 | λB = 1; (28c)
c1 |= P z2 | λC = 0; c2 |= P z1 | λC = 1; (28d)

λAλBλC |= P xyz; λAb3c3 |= P x | yz; a3λBc3 |= P y | xz; a3b3λC |= P z | xy; (28e)
a1a2λA |= P yz | x; b1b2λB |= P xz | y; c1c2λC |= P xy | z. (28f)

Then P satisfies the inequality

P (a1 ⊕ b1 ⊕ c1 = 0 | x = 1, y = 1, z = 1) + P (a1 ⊕ b3 ⊕ c3 = 1 | x = 1, y = 0, z = 0)
+P (a3 ⊕ b1 ⊕ c3 = 1 | x = 0, y = 1, z = 0) + P (a3 ⊕ b3 ⊕ c1 = 1 | x = 0, y = 0, z = 1)

−2
[
P (a1 = 1 | x1x2 = 10) + P (a2 = 1 | x1x2 = 01) + P (a1a2 = 00 | x1x2 = 11) (29)

+P (b1 = 1 | y1y2 = 10) + P (b2 = 1 | y1y2 = 01) + P (b1b2 = 00 | y1y2 = 11)
+P (c1 = 1 | z1z2 = 10) + P (c2 = 1 | z1z2 = 01) + P (c1c2 = 00 | z1z2 = 11)

]
≤ 3.

Proof. The proof consists of two parts: we will first see that definite causal order (28b)–(28d)
implies some amount of determinism, quantified by the last three lines of the inequality, and then
how that determinism, together with relativistic causality (28e)–(28f), provides a Mermin-like
bound on the first two lines of the inequality. (The first part parallels our going from (4) to (13)
in the main text, while the second parallels the transition to (15) by relativistic causality.)

Denote the final three lines in the inequality by α, β and γ:

α := P (a1 = 1 | x1x2 = 10) + P (a2 = 1 | x1x2 = 01) + P (a1a2 = 00 | x1x2 = 11); (30a)
β := P (b1 = 1 | y1y2 = 10) + P (b2 = 1 | y1y2 = 01) + P (b1b2 = 00 | y1y2 = 11); (30b)
γ := P (c1 = 1 | z1z2 = 10) + P (c2 = 1 | z1z2 = 01) + P (c1c2 = 00 | z1z2 = 11). (30c)

3Note that unlike the other conditions in 28, condition (28f) does not have a counterpart in the main text. In
brief, that is because it is not needed when assuming the perfect theoretical predictions of the quantum switch data,
whilst in this appendix we wish to accommodate for noise or data that otherwise deviate from those of the quantum
switch. The justification for (28f), just like (28e), is the principle of relativistic causality.
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(The probabilities are independent of the omitted input variables by (28f).) The following mirrors
Lemma 1 in the main text, but is probabilistic and robust to noise in the values of α, β, and γ.

Claim. We have

P (a1 = λA | x = 1) ≥ 1 − α; (31a)
P (b1 = λB | y = 1) ≥ 1 − β; (31b)
P (c1 = λC | z = 1) ≥ 1 − γ. (31c)

Proof. For i ∈ {0, 1}, define the probability distributions P i(a1a2λA | x1x2) := δλA=iP (a1a2 |
x1x2, λA = i). By (28b), we have a1 |= P 0 x2 and a2 |= P 1 x1, and so

P 0(a1 = 1 | 11) = P 0(a1 = 1 | 10) ≤ α; (32)
P 1(a1 = 0 | 11) = P 1(a1 = 0, a2 = 0 | 11) + P 1(a1 = 0, a2 = 1 | 11)

≤ P 1(a1 = 0, a2 = 0 | 11) + P 1(a2 = 1 | 11)
= P 1(a1 = 0, a2 = 0 | 11) + P 1(a2 = 1 | 01) ≤ α.

(33)

(Here the conditioned-upon variables are always x1 and x2.) In other words, P i(a1 ̸= λ | 11) ≤ α
for both i = 0, 1. But P = P (λ = 0)P 0 + P (λ = 1)P 1, so this inequality also holds for P . This
implies (31a); (31b) and (31c) follow similarly.

Thus, if α = 0, as is the case for the theoretical quantum switch data discussed in the main text,
then we could replace terms like P (a1 ⊕ b1 ⊕ c1 = 0 | x = y = z = 1) in inequality (29) with terms
like P (λA ⊕ λB ⊕ λC = 0 | x = y = z = 1) and derive Mermin’s inequality directly. To generalise
this to other values of α (thereby making the result robust to noise), we use the following fact
about probabilities.

Lemma 4. For a probability distribution P over a set Ω and events A1, A2, . . . , An ⊆ Ω, we have

P (A1) + P (A2) + · · · + P (An) ≤ P (A1, A2, . . . , An) + n− 1. (34)

Proof. This follows from P (A1, A2) = P (A1)+P (A2)−P (A1 ∨A2) ≥ P (A1)+P (A2)−1 for n = 2
and induction.

From this we get, for instance,

P (a1 ⊕ b3 ⊕ c3 = 1 | 100) + P (a1 = λA | 100)
≤ P (a1 ⊕ b3 ⊕ c3 = 1, a1 = λA | 100) + 1
≤ P (λA ⊕ b3 ⊕ c3 = 1 | 100) + 1
= P (λA ⊕ b3 ⊕ c3 = 1 | 000) + 1,

(35)

where in the last equation we have used the relativistic causality condition (28e). (Here we have
suppressed the labels of the conditioned-upon variables, which are x, y, and z, respectively.) Note
that by condition (28f) and the Claim above,

P (a1 = λA | 100) = P (a1 = λA | x = 1) ≥ 1 − α. (36)

This, together with (35), implies (37b) below. The other inequalities can be derived in a similar
way.

P (a1 ⊕ b1 ⊕ c1 = 0 | 111) − α− β − γ ≤ P (λA ⊕ λB ⊕ λC = 0 | 000) (37a)
P (a1 ⊕ b3 ⊕ c3 = 1 | 100) − α ≤ P (λA ⊕ b3 ⊕ c3 = 1 | 000) (37b)
P (a3 ⊕ b1 ⊕ c3 = 1 | 010) − β ≤ P (a3 ⊕ λB ⊕ c3 = 1 | 000) (37c)
P (a3 ⊕ b3 ⊕ c1 = 1 | 001) − γ ≤ P (a3 ⊕ b3 ⊕ λC = 1 | 000) (37d)

The desired inequality (29) now follows by adding these equations together and noting that the
sum of the right-hand sides is bounded (similarly to Mermin’s inequality [8]) by 3. This last fact
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follows from Lemma 4, and parallels the derivation of the logical contradiction (15) in the main
text:

P (λA ⊕ λB ⊕ λC = 0 | 000) + P (λA ⊕ b3 ⊕ c3 = 1 | 000)
+ P (a3 ⊕ λB ⊕ c3 = 1 | 000) + P (a3 ⊕ b3 ⊕ λC = 1 | 000)
≤ P (0 = 1 | 000) + 3 = 3.

(38)

This concludes the proof of Theorem 2.

C Chained inequalities
That the Mermin inequality (resp. causal Mermin inequality (16)) is violated up to the algebraic
maximum (i.e. the maximum value among all valid probability distributions) implies that no frac-
tion of the distribution allows a local deterministic hidden variable model (resp. definite causal
order model satisfying relativistic causality). However, this only implies that it is never the case
that all of the three switches have a causal order simultaneously. Here we show that a similar
result can be derived for a single quantum switch, by using the idea of chained Bell inequalities
introduced by Braunstein and Caves [11], which are violated to the algebraic maximum in the limit
of a large number of measurement settings N .
We first recall Braunstein and Caves’s chained inequalities as they apply to Bell nonlocality. Con-

sider a scenario with two spacelike-separated parties A and B, having inputs x, y ∈ {0, 1, . . . , N−1}
and outputs a, b ∈ {0, 1}. Any choice of a pair of values for x as well as for y can be used to define a
Clauser-Horne-Shimony-Holt (CHSH) expression: more precisely, for any probability distribution
R(ab|xy) and ξ0, ξ1, υ0, υ1 ∈ {0, 1, . . . , N − 1}, define

CHSHξ0,ξ1;υ0,υ1 [R] := R(a = b | x = ξ0, y = υ0)
+R(a = b | x = ξ1, y = υ0)
+R(a = b | x = ξ1, y = υ1)
−R(a = b | x = ξ0, y = υ1).

(39)

Summing an appropriate set of such CHSH expressions together defines the Braunstein-Caves
expression

BCN [R] :=
N−1∑
i=0

CHSH0,i;i−1,i[R] (40)

=
N−1∑
i=0

[R(a3 = b | x3 = i, y = i) +R(a3 = b | x3 = i+ 1, y = i)]

+R(a3 = b|x3 = N, y = N) −R(a3 = b|x3 = 0, y = N).

(41)

The classical bound for each of the CHSH expressions is 2 [19], leading to an overall classical bound
of

BCN [R] ≤ 2N. (42)
The algebraic maximum of BCN [R], on the other hand, can be read off from (41) to be 2N + 1.
A high quantum value for BCN can be achieved by letting A and B measure the two parts of

the Bell state |Φ+⟩ in the measurement directions shown in Figure 4. The directions are spaced
an angle θ = π/(N + 1) apart on the Bloch sphere. All terms in the expansion (41) except the last
involve a neighbouring pair of measurement directions, yielding a probability of cos2 θ/2. In total,
the quantum value is

BCN [R] = (2N + 1) cos2 θ

2 −
(

1 − cos2 θ

2

)
= (N + 1)

(
cos π

N + 1 + 1
)

− 1 N≫1−−−→ 2N + 1,
(43)
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which approaches the algebraic maximum in the limit of large N .
A crucial observation is that the classical bound of 2 for a CHSH expressions follows (under ad-

ditional requirements sometimes called measurement independence and parameter independence)
not only from the assumption that all measurements outcomes are predetermined, but also from
the weaker requirement that only A’s outcome a for one of her inputs x is predetermined. Be-
cause all CHSH expressions in (40) involve the input x = 0, this means that the classical bound
BCN [R] ≤ 2N also holds when only the x = 0 measurement is predetermined. This will allow us
to make the translation from Bell nonlocality to indefinite causal order in the quantum switch,
by using a quantum switch to simulate the x = 0 measurement (in the spirit of Observation 1 in
the main text), while noting that the definite causal order assumption implies predetermination of
that measurement (in the spirit of Lemma 1).
The relevant quantum switch scenario is depicted in Figure 5. The quantum switch is now con-

trolled in the Z basis (rather than X, as in the main text). A1 and A2 perform the same quantum
instruments as described in the main text and Appendix A. A3 and B perform measurements on
the output control qubit and a qubit B entangled to the input control qubit, respectively. Their
inputs x3, y take values in {0, 1, . . . , N} and their measurement directions are identical to those
in the usual chained inequality scenario just described (Figure 4). All other variables are binary,
as in the main text. This setup defines a conditional probability distribution Q(a1a2a3b|x1x2x3y),
which in turn defines an unconditional probability distribution Q(a1a2a3bx1x2x3y) by assuming
uniform distribution of the inputs: Q(x1x2x3y) = 1/4N2.
In the main text, our first step was to find a subset of the quantum switch data that exhibited

GHZ-like correlations (i.e. going from (1) to (4)). Likewise, here we will need to find a subset of
the data Q that behaves as R in (43) above, i.e. which violates the Braunstein-Caves inequality to
the algebraic maximum in the limit of large N . To do this, note that one can consider A3 and B
as performing a Braunstein-Caves test on the shared entangled state |Φ+⟩, with two differences.
First of all, when x3 = 0, we need to ensure that x1 = x2 = 1 and let A3 output a1, as that is a
simulation of the computational basis measurement (Observation 2). When x3 ̸= 0, on the other
hand, we need to ensure that x1 = x2 = 0, so that the outcome a3 is not disturbed by the presence
of the quantum switch (Observation 1). The data in Q that are relevant to the derivation and
violation of Braunstein-Caves inequalities is therefore summarised in the distribution RQ defined
in (45) below.

We then get the following theorem. As in the main text, the conditions (44) are motivated by
the assumptions of free interventions, definite causal order, and relativistic causality.

Theorem 3. Let λ be a random variable with domain {0, 1}. Suppose the probability distribution
P (a1a2a3bx1x2x3yλ) satisfies

∀x1x2x3y : P (x1x2x3y) > 0; (44a)
λ |= P x1x2x3y; (44b)

a1 |= P x2 | λ = 0; a2 |= P x1 | λ = 1; (44c)
λb |= P x1x2x3 | y; λa1a2a3 |= P y | x1x2x3; λa1a2 |= P x3y | x1x2, (44d)

and let

RP (abλ | x3y) :=
{
P (a1 = a, b, λ | x1 = x2 = 1, x3, y) if x3 = 0;
P (a3 = a, b, λ | x1 = x2 = 0, x3, y) if x3 ̸= 0

(45)

and

α[P ] := P (a1 = 1 | x1x2 = 10) + P (a2 = 1 | x1x2 = 01) + P (a1a2 = 00 | x1x2 = 11). (46)

Then P satisfies the inequality
BCN [RP ] − 2Nα[P ] ≤ 2N. (47)

The quantum value of this expression is

BCN [RQ] − 2Nα[Q] = (N + 1)
(

cos π

N + 1 + 1
)

− 1. (48)

13



...

θ

x = 0
y = 0

x = 1
y = 1

x = N
y = N

Z

X

Figure 4: Directions of qubit measurements in the
Z-X plane that yield a value of the Braunstein-
Caves quantity BCN converging to the algebraic
maximum.

Φ+

TACA

CA TA

switch

x1

a1

0

a3

A3

A1

x2

a2

A2

x3

B

b

B

y

...

. .
.

Figure 5: Quantum switch setup producing cor-
relations that violate the causal Braunstein-Caves
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limit of large N . The measurement directions of
A3 and B are as in Figure 4.

Proof. RP satisfies measurement and parameter independence, i.e. the conditions

λ |= RP
x3y, a |= RP

y | x3λ, and b |= RP
x3 | yλ. (49)

This means we can use the monogamy inequality of Ref. [20] to obtain

CHSH0,i;i−1,i[RP ] ≤ 4 − 2RP (a = λ|x3 = 0) for any i ∈ {0, 1, . . . , N − 1}. (50)

But by definition of RP and the definite causal order assumption (44c), we get, via an argument
similar to that for (31a),

RP (a = λ|x3 = 0) = P (a1 = λ|x1 = x2 = 1) ≥ 1 − α[P ]. (51)

Thus
CHSH0,i;i−1,i[RP ] − 2α[P ] ≤ 2, (52)

and summing over i implies the sought-after inequality (47).
The quantum switch correlations Q, on the other hand, yield—by virtue of versions of Obser-

vations 1 and 2 or Lemmas 2 and 3 in Appendix A—a value of BCN [RQ] identical to that given
in (43), and a value of 0 for α[Q], thus giving (48).

Corollary 1. Suppose Q(a1a2a3bx1x2x3y) satisfies (48) and also admits a hidden variable model
Q(a1a2a3bx1x2x3yλ) satisfying (44), but where λ now ranges over {0, 1,⊥}. Here λ = ⊥ denotes
the absence of a (relativistically well-behaved) causal order. Then the fraction of runs with a definite
causal order is

Q(λ ∈ {0, 1}) ≤ (N + 1)
(

1 − cos π

N + 1

)
→ 0 as N → ∞. (53)

Proof. Write Q as the convex sum Q = Q(λ ∈ {0, 1})Q{0,1} +Q(λ = ⊥)Q⊥, where

Q{0,1}(a1a2a3bx1x2x3yλ) := Q(a1a2a3bx1x2x3yλ | λ ∈ {0, 1}) (54)
and Q⊥(a1a2a3bx1x2x3yλ) := Q(a1a2a3bx1x2x3yλ | λ = ⊥). (55)
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Theorem 3 gives
BCN

[
RQ{0,1}

]
− 2N α

[
Q{0,1}

]
≤ 2N. (56)

Because the algebraic maximum of BCN is 2N + 1 and the inequality is linear, this implies

BCN [RQ] − 2N α [Q] ≤ 2N +Q(λ = ⊥) = 2N + 1 −Q(λ ∈ {0, 1}). (57)

Inserting (48) and rearranging gives the result.
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