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The exploration of a two-dimensional wind-driven ocean model with no-slip boundaries reveals the
existence of a turbulent asymptotic regime where energy dissipation becomes independent of fluid
viscosity. This asymptotic flow represents an out-of-equilibrium state, characterized by a vigorous
two-dimensional vortex gas superimposed onto a western-intensified gyre. The properties of the
vortex gas are elucidated through scaling analysis for detached Prandtl boundary layers, providing
a rationalization for the observed anomalous dissipation. The asymptotic regime demonstrates
that boundary instabilities alone can be strong enough to evacuate wind-injected energy from the
large-scale oceanic circulation.

Introduction. In three-dimensional turbulence,
the transfer of energy from large to small scales
results in an energy dissipation rate that remains
independent of viscosity, regardless of its smallness
[1, 2]. This dissipative anomaly is a robust empirical
observation sometimes referred to as the zeroth law
of turbulence [3]. Conversely, two-dimensional flows
are subject to an inverse energy cascade [4], which
results in the self-organization of the flow at the
domain scale [5]. To ensure efficient dissipation in
two-dimensional flows, an additional mechanism is
required to generate small-scale structures where
dissipation can operate, thus disrupting the inverse
cascade. The strong shear near lateral boundaries
could serve as a means to create such dissipative
structures [6]. Numerical studies of the bounded
Navier-Stokes equations have examined the rela-
tionship between dissipation and viscosity during
a dipole-wall collision [7–9]. The possibility for
dissipation to remain finite in the inviscid limit has
been raised [10, 11], yet remains a topic of debate
[12, 13].
The existence of a dissipative anomaly in two-
dimensional flows with boundaries would bear
significant practical implications, for example in
contributing to a deeper understanding of the energy
cycle in the ocean [14–17]. In fact, classical linear
models for the emergence of western intensified
currents [18, 19], such as the Gulf Stream or the
Kuroshio, do provide a remarkable example of a dis-
sipative anomaly. Here we show that this dissipative
anomaly persists in a nonlinear regime, and unveil
a new Gyre Turbulence regime with a western in-
tensified mean flow and finite energy dissipation rate.

Flow model. The simplest model describing west-
ern intensification of oceanic currents is the rigid-lid
barotropic quasigeostrophic model on a closed do-
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main tangent to the Earth [18]:

∂tω + J(ψ, ω) + β∗∂xψ = ν∗∆ω − ∂yτ, (1)
ω = ∆ψ, τ = − cos (πy) . (2)

The term J(ψ, ω) = (u∂x+v∂y) ω is the advection of
vorticity ω by the streamfunction ψ, with u = −∂yψ
the zonal (x-direction) and v = ∂xψ the meridional
(y-direction) velocity components. We solve this two-
dimensional model on a square domain with no-slip
boundary conditions. Forcing comes from the wind
stress curl −∂yτ . Time and length have been rescaled
such that both the length of the domain L and the
maximum value of the wind stress τ0 are 1. The
shape of the forcing corresponds to a single gyre,
and is somewhat relevant to the North Atlantic case,
with net injection of negative vorticity, as observed in
the subtropical gyre (figure 1A). The only difference
to the incompressible two-dimensional Navier-Stokes
equations is the term β∗∂xψ. This term comes from
the curl of the Coriolis force, assuming linear varia-
tions of the Coriolis parameter in the meridional di-
rection y. This framework is called the beta-plane
approximation, and it captures the effects of differen-
tial rotation induced by a rotating planet [18].

Earlier studies of the single gyre model with
free-slip boundary conditions exhibited an inertial
run-away in the invicid limit: a solution with unre-
alistically large velocities, and lacking an intensified
western boundary current [20–26]. One way to
prevent this inertial run-away is to use no-slip
conditions [27–29]. It was also noticed that no-slip
boundary conditions in two-dimensional turbulence
can drastically alter flow organization [30–32]. In the
context of a wind-driven shallow water model, [29]
observed that no-slip conditions induced intermittent
formation of intense vortices through boundary layer
detachment. We show below that this mechanism
enables the large-scale flow to remain in an oceanic
gyre regime when considering the inviscid limit of (1
- 2) (see Supplementary Material [33], movie S1 for a
direct comparison of the free-slip against the no-slip
regimes).
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Figure 1: A: The β-plane model with an inlet for the streamlines of the time-average sea surface velocity
field in the North Atlantic. Colors show the corresponding relative vorticity field. B: Temporal average of
the streamlines in the Gyre Turbulence regime (ν∗ = 2.5× 10−5), superimposed on the corresponding relative
vorticity field (colors) C: Snapshot of relative vorticity in the Gyre Turbulence regime (ν∗ = 2× 10−6). Blue:

anticyclonic vortices; red: cyclonic vortices (see Supplementary Material [33], movie S2 for an animation).

Linear dynamics. Linear theories for wind-driven
gyres compute steady states of equations (1)-(2),
by neglecting the advection term [18, 19]. In the
domain bulk, the vorticity equation simplifies into
Sverdrup balance, a cornerstone of midlatitude ocean
dynamics: β∗v = −∂yτ , meaning that an injection
of negative vorticity is balanced by a southward
transport of the fluid. To ensure mass conservation,
this interior circulation must be complemented by
boundary layers. The majority of this recirculation
occurs within the western boundary layer, thereby
breaking the East-West symmetry established by
the Sverdrup balance. In the viscous solution found
by Munk (figure 2A, top left inlet) the boundary
layer thickness scales as δM = (ν∗/β∗)1/3 [34],
which implies that total dissipation is dominated
by contributions from the boundary layer while
energy injection comes from the domain bulk. The
confinement of energy dissipation in a western
boundary layer holds when viscosity is replaced by
other dissipation mechanisms, such as a linear drag
[18]. In this scenario, large-scale gyre patterns and
therefore energy injection do not depend on details
of those linear boundary layers. This is a strong
incentive to look for a turbulent dissipative anomaly
in this system, adding back nonlinearities into the
problem.

Parameter regimes. The linear Munk solution is
a limiting case in the (ν∗, β∗) parameter space, cor-
responding to β∗ ≫ 1 and a restricted range of ν∗
to be discussed below. The parameter space can be
dissected into four regions (figure 2A): in the limit of
weak β∗, the effects of differential rotation are negligi-
ble with respect to other terms and the flow response
is equivalent to that of the two-dimensional Navier-

Stokes (NS) equations, with a transition from laminar
to turbulent flow when ν∗ decreases [31]. The same
transition from laminar to turbulent flow occurs when
differential rotation is important (β∗ ≫ 1). When
ν∗ = 10−2, we observe that the flow consists of a do-
main interior in which a Sverdrup balance holds with
and a stationary western boundary layer, similar to
the linear Munk solution.

When viscosity is decreased, the boundary layer
becomes increasingly inertial and its thickness will
be governed by δI = β∗−1 [18, 35]. The transition
between the laminar Munk regime and this inertial
regime occurs around δM = δI , i.e. ν∗ = 1/β∗2.
When viscosity is decreased further below this
threshold the boundary layer becomes unstable, and
those instabilities feed the domain with filaments
and vortices. As friction is further reduced the
system eventually enters into the Gyre Turbulence
regime: while the time mean flow remains close to a
Sverdrup interior with western intensified boundary
layers (figure 1B), the instantaneous vorticity field is
dominated by a vigorous heterogeneous vortex gas
which is densest in the north-western corner of the
domain (figure 1C, for an animation see Supplemen-
tary Material [33], movie S2 ). The gyre structure is
not observed on instantaneous streamfunction fields,
which is instead dominated by contributions arising
from Rossby basin modes [36] (not shown here), and
to a lesser extent by contributions from vortices.

Energy budget. The central result of this article
is depicted in figure 2B showing that the dissipative
anomaly of the linear Munk regime persists in the
nonlinear Gyre turbulence regime. Dissipation ε ap-
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Figure 2: A: Parameter space (no-slip boundary conditions). Insets show typical instantaneous vorticity
fields (color) and streamfunction (lines) B: Energy dissipation rate, rescaled by the energy injection through
a Sverdrup interior. C: Energy rescaled by the energy of the inertial western boundary layer. Errorbars show

the standard deviation.

pears in the energy budget as

∂E

∂t
= P − ε, P =

∫
τu dA, ε = 2ν∗Z , (3)

where E =
∫
(u2 + v2) dA/2 is the total energy and

Z =
∫
ω2 dA/2 the total enstrophy. We define time

average and fluctuations as

⟨ψ⟩ = lim
T→∞

1

T

∫ s+T

s

ψ dt, ψ′ = ψ − ⟨ψ⟩, (4)

where the integration is started from a moment s in
time after which the system is observed to be in sta-
tistical equilibrium, for which ⟨P⟩ = ⟨ε⟩.

In Gyre Turbulence, the average dissipation ⟨ε⟩
is observed to be insensitive to a decrease in ν∗

(Fig. 2B). Our rescaling by β∗−1 shows that the
dissipation rate remains close to that predicted by
energy injection through an interior flow governed
by a Sverdrup balance. However, the dissipation
mechanism changes drastically as fluctuations be-
come increasingly important at smaller values of ν∗,
while the mean flow contributes only a negligible
fraction to the total dissipation. The importance of
the fluctuations can also be seen in the total energy
of the flow (Fig. 2C). The rescaling by β∗−1 reveals
that the total energy of the mean flow remains close
to the energy in a western inertial boundary layer,
while the magnitude of the fluctuations increases
when ν∗ decreases. To rationalize these observations,
we describe below the mean flow structure (re-
lated to to energy injection), and the production of

filaments and vortices (related to energy dissipation).

Mean flow structure. In the Gyre Turbulence
regime, the time-averaged production term ⟨P⟩ must
be independent of ν∗, as it balances the time-averaged
dissipation ⟨ϵ⟩. This constraint, together with the
observation in figure 2B that the energy of the mean
flow reaches a plateau, suggests that the bulk stream-
function ⟨ψ⟩ displayed in figure 1B only has a weak
dependence on ν∗ in the Gyre Turbulence regime.
While the order of magnitude of the mean flow agrees
with Sverdrup balance in the domain interior (fig-
ure 3A), the gyre pattern is different than the predic-
tion from linear theory, likely due to nonlinear recti-
fication mechanisms in the presence of Rossby waves
[32, 37]. We observe only weak changes in this pat-
tern when lowering viscosity in the Gyre Turbulence
regime (see Supplementary material [33], figure 2).

The gyre pattern is connected to inertial boundary
layers with a well defined functional relation between
streamfunction and potential vorticity ⟨q⟩ = ⟨ω⟩+βy,
such that J(⟨q⟩, ⟨ψ⟩) = 0. We identified two regions
where such relations hold (figure 3), which we will call
the inflow (blue) and the outflow (red) layer. The in-
flow layer is consistent with classical theory predict-
ing ⟨q⟩ = −(β∗/Uin)⟨ψ⟩, which leads to a western
boundary layer thickness δI = 1/β∗, where Uin < 0
is the westward inflow scaling as 1/β∗ [18, 35]. The
northward velocity in the inertial boundary layer is
UI ∼ 1, so that mass transport in this layer compen-
sates the southward Sverdrup bulk transport. No-slip
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Figure 3: A: Contour plot of the mean stream func-
tion ⟨ψ⟩ at ν∗ = 2.5× 10−5, with colored areas iden-
tified as inertial boundary layers. B: q − ψ relations

in the inertial boundary layers.

boundary condition is guaranteed by a Prandtl sub-
layer with thickness δP ∼

√
ν∗. The vorticity within

this Prandtl layer is

ωmax =
UI

δP
∼ 1√

ν∗
. (5)

Assuming that dissipation of the mean flow is gov-
erned by these viscous sublayers yields

ν∗
∫
⟨ω⟩2dA ∼ ν∗ω2

maxδP ∼ ν∗
1
2 (6)

which compares well against the observed dissipation
due to the mean flow (see figure 2B).

The outflow layer close to the northern boundary
corresponds to a meandering jet with velocity Uout

and a strong cyclonic recirculation. In this area, we
observe a negative correlation between ⟨q⟩ and ⟨ψ⟩.
Stationary Rossby wave meanders and a stationary
vortex on a beta-plane with mean flow Uout both
select the size δout ∼

√
Uout/β∗. We assume that

this length sets the vortex and jet width, and that
jet transport is set by the transport of the western
boundary layer, which yields

δout ∼ β∗−2/3 and Uout ∼ β∗−1/3. (7)

An adaptation of classical Charney theory to this in-
ertial region leads to ⟨q⟩ = −β∗/Uout⟨ψ⟩+ β∗, which
fits well with numerical results (see figure 3B and
Supplementary Material [33] for further information
on boundary layers).

Statistics of dissipation. While the production
term ⟨P⟩ depends crucially on the mean flow, we
showed that, in the turbulent regime, the dissipation
term is dominated by contributions from fluctuations
of vorticity (figure 2B). Since dissipation is propor-
tional to enstrophy, we show the probability distri-
bution function of ω2 in figure 4A (we checked that

the distribution of ω2 is close to the distribution of
local dissipation |∇u|2). The core of the distribution
Π(log(ω2)) is close to a Gaussian distribution, simi-
lar to recent observations from more comprehensive
ocean models [17].

The peak of Π(log(ω2)) changes little upon varying
the viscosity, revealing that most of the values of
vorticity in the bulk are only weakly dependent on
ν∗. A much stronger dependence on ν∗ is observed
in the tails of the distributions, where we notice
important deviations from lognormality. In fact, the
average dissipation is dominated by contributions
from the tails, which can be seen by plotting the
quantity ω2Π. We show these tails in figure 4B after
rescaling the vorticity by ωmax defined in (5), col-
lapsing the tails onto a single curve centered around
unity. This confirms that the primary mechanism for
vorticity injection is the detachment of the Prandtl
layer. This scaling for the vorticity can now be used
to estimate the energy dissipation rate.

Scaling Analysis of the Vortex Gas. The cyclonic
recirculation we observe in the mean flow is a sig-
nature of the presence of intense cyclonic vortices in
this region (see figure 1C). These large vortices result
from the coalescence of smaller vortices in the inte-
rior. If the vortices grow too large, their drift velocity
overcomes the advective velocity from the detached
jet, and the vortex collides with the wall, detaching
the sublayer over a length δout (see Supplementary
Material [33], movie S2).

Building upon this observation, the theory for the
mean flow and the observed statistics of the dissipa-
tion, it is possible to propose a scaling theory that
predicts the ν∗-dependency of the energy of the vor-
tex gas. For this, we suppose that the energy is de-
termined by N characteristic vortices of size λ. If we
assume that the vortices are created by the roll-up of
the detached sublayer of the western boundary along
a length δout, then the characteristic vortex radius
scales as λ ∼

√
δoutδP . Furthermore, in the inviscid

limit we observe a balance between the dissipation
of these vortices and the injection of energy through
the mean Sverdrup flow. The balance between energy
dissipation through the characteristic vortices and in-
jection through a Sverdrup interior takes the form

ν∗Nλ2ω2
max ∼ β∗−1. (8)

This determines the area fraction of the vortices as
Nλ2 ∼ β∗−1, which we verify (see Supplementary
Material [33], figure 2). The total energy of the vortex
gas is then given by

E ∼ Nλ2(ωmaxλ)
2 ∼ ν∗−1/2β∗−5/3, (9)

with additional logarithmic corrections [38]. Al-
though the ideas behind this scaling do not
incorporate the fragmentation or coalescence and
the resulting inhomogeneity of the vortex gas, a
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Figure 4: A: Probability Distribution functions Π of log(ω2) for different values of ν∗. Also shown are the
values responsible for dissipation, ω2Π. B: Values responsible for dissipation after rescaling by ωmax = 1/

√
ν∗.

The area under the curves is equal to the total dissipation ⟨ε⟩.

reasonable agreement between simulations and this
scaling theory is observed (figure 2C).

Discussion. Our study challenges the consen-
sus that a weakly dissipated two-dimensional ocean
model would lead to energy accumulation due to the
absence of a forward energy cascade [16, 18]. In-
stead, no-slip boundaries offer a compelling route to
dissipation, sustaining low-energy western-intensified
gyres with a vigorous vortex gas. This Gyre Tur-
bulence regime is a genuine out-of-equilibrium state
defying description using equilibrium statistical me-
chanics [2, 5], or quasilinear approaches [39, 40].

Originally discovered in freely decaying 2D flows
[41], the vortex gas regime emerges in baroclinically
unstable stratified quasi-geostrophic flows or any two-
dimensional flow with forcing amplifying vorticity ex-
trema [38, 42–45]. Gyre Turbulence, lacking bulk
instabilities, generates intense vortex cores solely at
boundary layers. The interplay of a western bound-
ary and the β effect also seems to prevent crystallisa-
tion previously observed on a polar cap [46], although
this feature may yet occur at lower viscosity not at-
tained in the presented simulations. A quantitative
description of the large-scale gyre pattern will require
an examination of potential vorticity mixing induced
by the vortex gas, as in [38, 47, 48].

In the broader context of the real ocean, turbulent

western boundaries have long been recognized as
significant energy sinks [15], with the potential for
a linear forward cascade mediated by planetary
vorticity gradients [49] and intense vortex generation
through boundary layer detachment [29]. Our study
reveals that incompressible two-dimensional β-plane
turbulence serves as a minimal model sustaining
wind gyres co-existing with mesoscale vortices that
contain the majority of the flow energy. However,
the two-dimensional model falls short in capturing
the fate of these vortices, as evidenced by their
energy increase with ν∗−1/2. Three-dimensional
and ageostrophic effects [16, 50], interactions with
bottom topography [51–53], and air-sea interactions
[54] are expected to play vital roles in dissipating
these fine-scale structures. We conjecture that a
large part of the energy flux toward these fine scales
will continue to be governed by larger scales, a
hypothesis currently under examination using more
comprehensive ocean models.
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SUPPLEMENTARY MATERIALS 1: INERTIAL BOUNDARY LAYERS

In the theory of inertial inflow boundary layers the relation between ψ and q is established in an intermediate
connection area just outside the boundary layer, where we expect the same functional relation between ψ and
q to hold as inside the boundary layer (for details see [18]). In the limit of vanishing boundary layer thickness,
the dynamical balance in the boundary layer will be the advection of relative vorticity by the interior flow
and the creation of relative vorticity by the β-term. The thickness then scales like δI ∼

√
−Uin/β∗, and the

outer matching yields q = −β∗ψ/Uin.

In the simulations we identify two areas in which a functional relation between q and ψ holds. To identify
these regions, we draw the isolines u, v = 0 that cross the centre of the gyre (the maximum of ⟨ψ⟩ close to the
western boundary). The inflow layer is defined as the area west of the line v = 0 and south of u = 0, whereas
the outflow layer is defined as the area north of u = 0 and east of v = 0. We also cut out areas very close to
the boundaries where we expect viscous effects to be dominant. The resulting areas are depicted in figure 3
in the main text.

For the outflow layer (with positive inflow velocity along the x-direction), a matching with the interior flow
is not self-consistent as the boundary layer thickness becomes imaginary and the solution becomes oscillatory.
Furthermore, the inertial region does not reach the western part of the domain.

We noticed that this inertial region contains a jet meandering around a closed cyclonic recirculation zone.
Calling δo the jet width, calling Uout the jet velocity, and assuming continuity of the mass transport between
the western boundary layer and the meandering jet results in

δoUout = UIδI = USvL. (10)

We observe that the wavelength of jet meanders and the radius of the cyclonic recirculation zone are of the
order of the jet width δo. Meanders can be interpreted as a doppler-shifted Rossby wave, which is stationary
when

δo =
√
Uout/β∗. (11)

This length also corresponds to the typical size of a stationary vortex on a beta plane in the presence of a
mean flow Uout. Combining Eq. (11) and (10) yields

δo = β∗− 2
3 , Uout = β∗− 1

3 . (12)

To determine the functional relation between ψ and q in the outflow layer we consider the (non-inertial) region
in the northwestern part of the domain. This region connects the western boundary layer in the inflow layer
to the meandering jet of the outflow layer. Close to the outflow layer, we assume that the flow velocity is
zonal with velocity Uout > 0 and we neglect relative vorticity with respect to planetary vorticity (which is
only marginally satisfied). In that case we can apply the same reasoning as classical inertial layer theory with
⟨q⟩ = β∗y and ⟨ψ⟩ = −Uout(y − L), assuming ψ = 0 at the northern wall in the outflow layer. We hence
retrieve the relation.

⟨q⟩ = −β∗/Uout⟨ψ⟩+ β∗L. (13)

To test this relation, we diagnose the velocities Uin and Uout as the average zonal velocities along the isolines
v = 0 for each part of the gyres connected to the matching regions. This yields values of Uout = 0.18
and Uin = 0.07, for which the scaling theory gives the correct order of magnitude (Uout ∼ β∗− 1

3 = 0.21,
Uin ∼ β∗−1 = 0.01, prefactors of order π not taken into account). Using the diagnosed values, the slopes
given by inertial layer theory then agree well with the observed functional relations between ⟨ψ⟩ and ⟨q⟩ in
both areas. The slight offset of the relation for the outflow may stem from the fact that the relative vorticity
is not negligible in the matching region.

SUPPLEMENTARY MATERIALS 2: MEAN FLOW VARIATIONS

Although the energy of the mean flow remains constant its structure changes slightly when decreasing ν∗
(figure 5). In the interior, the linear response of the system to the forcing gives the Sverdrup solution of the
form
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ψSv =
1

β∗π(1− x) sin (πy) (14)

If we subtract this from the mean stream function ⟨ψ⟩ we observe that the departures from this solution are
mainly zonal structures and hence suggest that they results from the non-linear interaction of Rossby basin
modes as in [37] (also no inertial relation between ⟨ψ⟩ and ⟨q⟩ was observed for these zonal structures).

Figure 5: Top line: Mean stream function ⟨ψ⟩ for different values of ν∗. Bottom line: Deviations from Sverdrup
Flow. Contour lines are plotted with intervals β∗−1.

SUPPLEMENTARY MATERIALS 3: NUMERICAL METHODS

For the numerical implementation of the quasigeostrophic equations we apply standard finite-difference
discretization procedure using Basilisk software (http://basilisk.fr). Vorticity and stream function are
collocated at cell vertices and we use the Arakawa Jacobian for the advection term [55]. For the inversion of
the elliptic equation we use a multigrid method. Time integration is performed with a second order predictor-
corrector scheme. Impermeability conditions are achieved by imposing ψ = 0 at the edges when inversing
ω. The no-slip boundary condition is implemented by specifying the value of the vorticity on the domain
boundaries for the viscous operator. By performing a Taylor expansion in the vicinity of the boundary (in this
example, the western boundary) we get

ψ1 = ψ0 +∆
∂ψ

∂x

∣∣∣∣
0

+
∆2

2

∂2ψ

∂x2

∣∣∣∣
0

. (15)

So at this order, the vorticity at the edge is

ω0 =
∂2ψ

∂x2

∣∣∣∣
0

= 2
ψ1

∆2
, (16)

since ψ0 = 0 (no flow) and ∂ψ/∂x|0 = 0 (no slip).

In practice the methods outlined above work well in the domain interior, we therefore use them to timestep
ω in the interior. We then inverse ω to obtain ψ, from which we can at last calculate the new values of q at
the boundaries with equation 16.

Almost all simulations that are discussed in the main text were performed at a numerical resolution of
2048×2048 gridpoints. The only exception is the most turbulent run (at ν∗ = 2×10−6), which was performed
at a resolution of 8192×8192 gridpoints. To check for numerical convergence the simulation at ν∗ = 6.25×10−6

was relaunched with a doubled numerical resolution. Both its mean energy ⟨E⟩ and its mean dissipation ⟨ε⟩
changed by less than 5%.

http://basilisk.fr
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SUPPLEMENTARY MATERIALS 4: DISSIPATIVE AREA FRACTION

The scaling analysis of the vortex gas presented in the main text is further validated by observing the
area fraction of dissipative structures. We define the dissipative area fraction as the fractional area where
ω > ωmax/10. A by-product of the scaling analysis is that the total vortex area A, which we diagnose with
the dissipative area fraction, becomes independent of viscosity. It is given by

A ∼ Nλ2 ∼ β∗−1, (17)

which we verify in figure 6.

Figure 6: A: Snapshots of dissipative structures at two values of ν∗. To create the binary images, we compare
vorticity values to ωmax/10. B Area of dissipative structures against ν∗. Note how, although the structures
become smaller (as shown in A), the total area remains constant (the prediction of area fraction from scaling

analysis is β∗−1 = 10−2).

MOVIE LEGENDS

Movie S1. Comparison of spin-up of flow regimes corresponding to free-slip and no-slip boundary conditions
at equal values of ν∗ = 10−5 and β∗ = 100. On the left the free-slip simulation develops inertial runaway,
with an energetic recirculation at the domain scale. The no-slip simulation exhibits Gyre Turbulence, with
energetic small scales.

Movie S2. Animation of Gyre Turbulence in the Vortex Gas regime (ν∗ = 2 × 10−6, β∗ = 100, Numerical
Resolution: 8192×8192 grid points). Boundary layer detachments occur at all boundaries, but the northwestern
corner remains the most active region, mostly due to the persistence of the strong cyclonic (red) vortex. With
regards to the scaling theory of the vortex gas, notice the event at the start of the animation, where the
cyclonic (red) vortex collides with the western boundary and detaches the viscous sublayer.
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