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We study the robustness of the evolution of a quantum system against small uncontrolled variations in pa-
rameters in the Hamiltonian. We show that the fidelity susceptibility, which quantifies the perturbative error to
leading order, can be expressed in superoperator form and use this to derive control pulses which are robust to
any class of systematic unknown errors. The proposed optimal control protocol is equivalent to searching for a
sequence of unitaries that mimics the first-order moments of the Haar distribution, i.e. it constitutes a 1-design.
We highlight the power of our results for error-resistant single- and two-qubit gates.

Introduction.— Tremendous advances in the ability to ma-
nipulate states of light and matter are ushering in the new
generation of quantum-enhanced devices. As recently re-
marked [1], it is precisely the ability to develop schemes
to control a system that endows scientific knowledge with
the potential to revolutionise technological landscapes [2, 3].
However, while exquisite levels of control are now routinely
applied in a variety of platforms [4-6], there will always be
systematic errors due to imperfect fabrication and incomplete
knowledge of the parameters, either in relation to the model
itself or the ambient conditions under which it is operating.
Thus, several strategies to explicitly mitigate such errors have
been devised, e.g. shortcuts to adiabaticity [7-9], numeri-
cal optimization [1, 10, 11], geometric space curves [12—-14],
composite pulses [15, 16], and dynamical decoupling [17].

When these systematic errors are important, typically the
control problem is cast in such a way that two, sometimes
implicit, assumptions are made regarding the source of the er-
ror: (i) that it arises from a weak perturbation, and (ii) that
its mathematical structure is exactly known. While the former
is a reasonable working condition to assume (if it were not
then the fundamental description of the system would need to
be adjusted), the latter is arguably less well justified. Indeed,
concerted effort is currently invested in identifying the correct
physical description of noisy intermediate-scale quantum de-
vices, e.g. determining the most relevant noise sources that
they are subject to in order to enhance their efficacy [18]. Ul-
timately, there will always be some level of uncertainty in our
knowledge of the precise structure of the noise and therefore
it is highly desirable to develop a framework that allows to
coherently manipulate quantum systems even in the presence
of an unknown (even possibly unknowable) source of error.

In this work, we develop such a framework which accounts
for this uncertainty, termed universally robust control (URC).
It provides a straightforward cost function to be minimised to
ensure generic robustness in quantum control problems. It can
also be easily restricted to specific classes of errors, to account
for a limited but useful knowledge of the error type.

Fidelity in the presence of systematic error.—Consider the
full system Hamiltonian H,(#) = Hy(f) + AV where Hy(?) is the
error-free control Hamiltonian, V is the error operator acting
with unknown strength, 4. We assume a pure initial state, o,
with no A dependence.

The time evolution operator of H,(f) is given by U,(z,0),
which leads to the A-dependent state p, = U,(ty, O)O'U:{(l‘f, 0)
at the final time 7 =1;. The fidelity between the perturbed and
ideal evolution is F (1) =Tr(p,00), which can be expanded for
small A as

F() ~ F(0) + F'(0)A + %F”(O)/lz. (1)

By definition F(0) = 1 and from this follows F’(0) = 0 [19].

The second derivative can be calculated by noting that, for
pure states, 6§p,1 =2 (Blp/l)z +p02 (('ﬁpl) + (aﬁpﬂ)p,l. Multiply-
ing by po and evaluating the trace at 1=0 we get

F(0) = =2 xs(po), 2

where ys(0,) = Tr {po (64p/1)2 ' /1:0} is the fidelity susceptibil-
ity [20-22], which quantifies how sensitive the evolution is
with respect to small perturbations, i.e. F(1) =1 — ys(p1)A>.
It is clear that ys(p,) is simply the quantum Fisher informa-
tion (QFI) associated to the family of states {p,} [19]. The
QFI quantifies how much information about A is encoded in
the evolution of the state, thus minimizing the QFL at 4 = 0 is
equivalent to increasing the robustness of a control protocol.
Evaluating explicitly the QFI we find [19]
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is the time average of V in the interaction picture with respect
to the unperturbed evolution and the variance is taken with
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respect to the initial state, (AVO) = Tr[o-V(z)] — Tr[oVo]?.



A similar result can be derived for the case of the evolution
of unitaries (instead of states). By defining the corresponding
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fidelity as Fy(d) = % Tr(USUA)' , we obtain that Fy(1) =~
1 — yu(U,)A% [19]. The susceptibility is
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where || - || is the norm associated with the Hilbert-Schmidt

inner product (A|B) = Tr(ATB) and d is the Hilbert space di-
mension. Robust control protocols then correspond to finding
a Ho(?) such that py = prarger OF Uo(tr,0) = Utarger While con-
currently minimizing ys for a known perturbation model V
[23-25]. We now demonstrate that such robust control can be
achieved even without knowledge of V.

Universally robust control.—Our construction is based on a
superoperator picture where the operator

Mo[V] = Vo, (6)

can be seen as the action of a (linear) superoperator M, act-
ing on V and we assume that TrV = 0 [26]. To construct it
more explicitly, we go to a doubled Hilbert space. If our orig-
inal Hilbert space H is spanned by the orthonormal basis {[i)}
wherei =1,...,d, we take

A=Y A - W) = ) Aglbel), ()
ij ij
where |A) lives in H ® H [19]. From Eq. (6) we define
1 3
M, = t_f ds [Uo(s,0) ® Ug(s, 0)*]". (8)
fJo

such that |\_/0) = M, |V). The fidelity susceptibility of Eq. (5)
can be expressed in terms of the superoperator M, as

IVoll* = (VI M Mo |V). 9)

By virtue of Eq. (5) we can increase the robustness of a
unitary control protocol irrespective of V by choosing Hy(¢) to
minimize the operator norm of M. Intuitively, this is because
[|Mo V) || < |IMpll-111V) |I. This also holds for state control, c.f.
Eq. (3), because AV, is upper bounded by ||[My|| [19].

The trace of any operator V is unitarily invariant. For the
identity operator I, M |I) = |I) so the norm of M, cannot be
arbitrarily reduced. To sidestep this issue, we restrict to the set
of traceless perturbation operators by defining the projector
in the doubled Hilbert space Py = |I) (I| /d such that Py]A) =
Tr(A) |I) /d, and redefine the relevant superoperator

Mo = Mo(I - Po). (10)
For any operator V', this acts as

My |V') = My(1—Py)

V)=MelV) =[Vo), (1)

where V is a traceless version of V’. We remark that any ob-
servable conserved under Hy will also be an eigenvector of

M, with eigenvalue 1, i.e. it cannot be counteracted due to the
limited control terms of the Hamiltonian (see e.g. the discus-
sion in Ref. [27]). Similar limitations to robustness may apply
in the case of other experimental constraints such as pulse in-
tensity and bandwidth limits.

The goal of URC is to minimize the norm of the modified
superoperator My, which is related to the previous norm as

Mo]> = |Mol* = Te(M{ MoPo) = Mol - 1. (12)

This allows us to find choices of Uy which yield M, ~0, thus
achieving |\_/O) ~(forany V.

To understand how a single solution for Uy(#) can be made
robust to arbitrary perturbations, and when this is possible in
principle, we note the following connection with unitary de-
signs [28-30]. Discretizing the integral in Eq. (4) into L>> 1

: T e 0tk
intervals, we find Vo ~ T > U, vu,”, which has the form
k=1

of an average of the operator V conjugated over a discrete set
of unitaries, U(()k) . If the distribution of such unitaries is uni-
form according to the Haar measure [31], then the average

1
EyolU'VU] = STr(V), (13)

is known to vanish for all traceless V [31]. A less stringent
requirement is for the distribution to only match the first-order
moment of the uniform distribution, i.e. to be a 1-design. In
fact, since Py|A) = Tr(A)|l) /d, we see that the requirement
M, = 0 immediately implies Eq. (13) for any operator, thus
making the path traced by the unitary evolution operator Uy(¢)
a 1-design. Given that 1-designs exist in SU(d) for any d,
this connection serves as a formal proof of the existence of
URC solutions, i.e. paths in unitary space that achieve perfect
target fidelity while being robust to all possible perturbations
to leading order [19].

Leveraging randomization to increase robustness in quan-
tum processes is routinely done in the context of quantum
computing, particularly by tools like dynamical decoupling
[17, 32], dynamically corrected gates [13, 33, 34] and ran-
domized compiling [35]. Our work shows that, for general
quantum systems, it is possible to translate this connection
into a requirement on a single object, the superoperator M,
leading to robustness to any perturbation to first order. As
we show in the following, this allows us to set up a quantum
optimal control problem to find evolutions that reach a prede-
fined target while at the same time remain robust to arbitrary
perturbations.

Optimal control.—We now demonstrate how URC can be
naturally leveraged in numerical optimizations. A generic
quantum optimal control (QOC) approach considers a se-
ries of control parameters, {¢;}, which determine the time
dependence of Hy(f) and aims to maximize the fidelity be-
tween a target process Upger and the actual (ideal) evolu-
tion operator Uy(ts,0) by minimizing a cost functional Jy =
1 — Fy(Utarget» Uo(ty,0)) with respect to {¢}. Additionally,
robust QOC usually aims at achieving resilience to perturba-
tions characterized by a known operator V. For this task, one



can concurrently minimize the fidelity susceptibility given by
the control functional Jy = §||‘_/o||2 (see for instance [25, 34]).
Our proposed approach of universally robust QOC instead
aims at achieving robustness to an unknown error operator
V. This can be achieved by instead minimizing the functional
Ju = LIMolI* [36].

We begin with the simple case of a single qubit with re-
stricted controls with Hamiltonian

Ho(t) = Q[coslg()los +sinlg0or | (14)

where o, are the Pauli operators, and we consider the con-
trol field ¢(#) to be piecewise constant with time steps Ar and
values {¢x}, k = 1,...,Np [37]. The model in Eq. (14) is
fully controllable [38, 39]. We set the target transformation
to be Utarger = €xp(—io;m/2) and numerically seek the QOC
parameters that minimize either only Jiuger = Jo, J, r(éi)usl =
(Jo+wly=¢)/(1+w) or Juniy =(Jo+wJy)/(1+w), where wis a
non-negative weight which can be changed to improve the re-
sulting balance between the terms. Note that evaluating these
functionals requires only computing the error-free evolution
given by Hy(t), and so no numerical simulations of the per-
turbed dynamics are required at any stage. In Fig. 1(a) we plot
the optimized functional for each case against the evolution
time #;. The curves display behavior reminiscent of Pareto-
fronts [40, 41], indicative of the fact that optimization suc-
ceeds for sufficiently large 7, but fails when the evolution time
becomes too constrained. A minimum control time, fict, can
be assigned to each process by identifying the minimum value
of 7 such that the optimization succeeds (which in this case
we take as yielding functional values below 10~7). For target-
only and robust control optimizations, we find thr =2r/Q
and tlnzcr =47 /Q which are consistent with previous analyt-
ical and numerical studies [38, 39]. In contrast, universally
robust control demands IECT =51/ (see also [42]).

To characterize the robustness of these control processes,
we study how well the evolution under the perturbed Hamil-
tonian H,(t) = Hy(t)+ AV is able to achieve the target transfor-
mation. Fig. 1 shows the cases for (b) V = o, and(c) V = i-&
with 7 a randomly chosen unit vector. The gate fidelity is plot-
ted against the uncertainty parameter A for the three types of
optimal controls found. All cases yield high fidelities if 1=0,
but the target-only optimization results (gray) deviate substan-
tially from the ideal value once 4 # 0. In (b), we see that the
robust control optimization (blue) is insensitive to perturba-
tions in V = o, as expected. But (c) reveals that the same
control is sensitive to generic perturbations. Remarkably, the
URC solution (orange) is insensitive to perturbations along
any direction. This holds true even accounting for the faster
minimal control times required for the other protocols [19].
We also highlight that the increase in robustness does not re-
quire the use of a more complex control waveform, as can be
seen from Fig. 1 (d).

Generalized robustness.—Building upon the superoperator
in Eq. (10) we can generalize this framework to optimize for
robustness to any desired subset of operators. This is partic-
ularly relevant for systems beyond a single qubit where the
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FIG. 1. Universally robust control for single-qubit gates. (a) Op-
timized control functionals as a function of the total evolution time
t; for target-only control (gray, circles), target and robustness to a
known V (blue, squares) and target and robustness to an unknown V
(orange, triangles). (b) and (c) Gate fidelity as a function of pertur-
bation strength A for the cases where V = o, and V = 7 - & with /i a
random unit vector (results shown correspond to the average fidelity
over 20 realizations). Lower panels shows zoomed-in data of the in-
fidelity 1—F in log-log scale. (d) Optimal control fields ¢(#) obtained
for each case. We choose a target Uyyper = €xp(—io,7/2), Np = 40
control parameters, a balanced functional w = 1, and an operation
time Qt;/(2m) = 3.5 for (b), (c), and (d).

nature of the noise or inhomogeneity is partially known in-
stead of being completely arbitrary. Thus, rather than making
a control protocol robust to all possible operators V, we can
instead focus on achieving robustness to a particular set of per-
turbations, for instance, those generated by local operators. In
this case, we are interested in the action of the superoperator,
M, only on this reduced set. The advantage of imposing these
generalized robustness requirements is that the optimization is
less constrained, as effectively less matrix elements are being
minimized. Therefore, it is easier to find good solutions even
with restricted control time. For example, the total number of
operators for N qubits is 4" while for the set of local operators
is only 3N.

Consider a quantum system with Hilbert space dimension,
d, and an orthonormal operator basis {A_,-}, j=0,1,... 42 -1.

We introduce a covering of this basis set, {Cy}, such that {A j} =



Uf:l Cy. The projector onto Cy is Pr(A) =25 ec, Tr(A;A)Aj.
In the superoperator picture, this is equivalent to defining P, =
2AeC |A j) (A j|. These superoperators are clearly projectors,

as P% =P, and Z,’;O Py =1. By construction, we take Ao =1/ Vd
so that Py is defined as before. In order to look for controls
which are insensitive to any operator within a given subset we
seek to minimize the norm of

M, :MO[I—ZPk], (15)

ken

where the sum runs over all relevant operator subsets 7 (typi-
cally including Ag). Note that P corresponds to the operators
our system’s dynamics does not need to be robust to. To il-
lustrate the procedure of imposing generalized robustness re-
quirements into a QOC problem, consider a model of two-
qubits with symmetric controls,

Ho(t) = QDS + QS +BS 2, (16)

where S, = (o'f,l) + 0'2,2))/2 are collective spin operators and

the interaction strength § > 0 is fixed. The perturbation oper-
ator, V, can be a combination of single-body (C;) or two-body
(C,) operators. We thus have a variety of possible optimiza-
tion functionals depending on the level of robustness desired.
Here we compare three cases: robustness to a single V=15 ,,
robustness to all single-body operators (V = V|_p,q, € C1) and
universal robustness (V = V,,;, € C1 U Cy). Here, Vi_peq, and
Varp are chosen randomly within the corresponding subspaces.
We set the target as a randomly-chosen symmetric two-qubit
unitary Upandom [19]. For this system we find that a good bal-
ance between fidelity at zero perturbation and robustness can
be achieved by performing a two-stage optimization. First,
we minimize the target alone until a certain threshold Jy < &
is met. The resulting optimized field is then seeded to the ro-
bustness optimization which minimizes Jy or Jy alone, with
the added constraint that Jy never exceeds &. [43]. In Fig. 2,
we showcase the performance of the optimization using the
different variants introduced thus far, in the presence of vari-
ous perturbations. As expected, the optimal control procedure
is able to find fields which are robust to arbitrary single-body
perturbations (green curve), but are not necessarily robust to
completely arbitrary perturbations. In contrast, the URC solu-
tion (orange curve) results in evolutions which are markedly
more robust to any type of perturbation, including two-body
operators, when compared to the other methods.

The approach outlined above for designing generalized ro-
bustness requirements can be readily carried over to more
complex systems. In the Supplementary Material [19] we
show additional results that illustrate how this framework can
be used to robustly generate entangled states in many-body
systems.

Conclusion.— We have introduced a versatile method, uni-
versally robust control, to mitigate the effects of unknown
sources of error. By recasting the impact of an arbitrary per-
turbation to the systems in terms of a single object, here cap-
tured by the superoperator in Eq. (8), we showed that since
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FIG. 2. Universally robust control for two-qubit gates. Plots show
the gate fidelity of the perturbed evolution Hy(?) + AV, where Hy(?)
is the control Hamiltonian of Eq. (16). Different curves correspond
to different types of optimization procedures: target only (nonrobust,
gray circles); target and robustness to a fixed V = S, (blue squares);
target and robustness to all single-body operators (green crosses);
target and universal robustness (orange triangles). The lower row
shows the infidelity 1 — Fy for each case. Each column shows the
performance of each of the four optimized solutions under the evo-
Iution H = Hy(t) + AV; (a) V = §,, (b) V is random 1-body operator,
(c) V is a random arbitrary operator. Evolution time in all cases is
Bty/(2m) = 5, and Np = 50 control parameters are used. Results
shown are averages over 20 instances.

this superoperator has no explicit dependence on the precise
operator form of the error, it can be efficiently minimized to
provide the necessary, highly robust, control pulses. This goes
beyond previous approaches [33, 44, 45] since it provides
a unifying framework for achieving universal robustness for
arbitrary finite-dimensional quantum systems, while concur-
rently defining a concise methodology to implement numer-
ical optimization to achieve robust controls in practice. We
demonstrated the effectiveness of our approach for the realiza-
tion of single- and two-qubit quantum gates, and have shown
that it can be generalized to tackle state control problems or to
the case of classical fluctuations [46]. Furthermore, we have
demonstrated that the URC formalism can exploit partial in-
formation about the source of errors to build arbitrary robust-
ness requirements into the optimal control problem. When
combined with powerful numerical optimization techniques,
we expect this flexible approach to be able to tackle a broad
class of questions in quantum control. For instance exploring
the fundamental trade-off between robustness and experimen-
tal constraints (such as bandwidth or evolution time), or de-
termining what control resources are required to achieve var-
ious levels of robustness in a quantum device. Finally, as our
protocol introduces control pulses which dynamically imple-
ment 1-designs, this could be generalized to other z-designs
which can be readily exploited for quantum computing proto-
cols such as randomized benchmarking [47].
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I. PERTURBATIVE APPROXIMATION TO THE FIDELITY
A. Fidelity susceptibility as the quantum Fisher information
We are interested in calculating the quantum Fisher information (QFI) of the state p, with respect to the parameter A. Formally,

the QFI is defined as Fpl[pa] = (AL)?, which is the variance ((Ax)> = (x*) — (x)?) of the symmetric logarithmic derivative L
defined implicitly as % = (o L + Lp,) /2 [22]. Note that for pure states we have that

dp, 8p§
o _ 1
o1 o1 1)
_0Opa , 9p,
= Pagy P (S2)
Clearly then for this case, L = 2%. The mean is given by
0,
(Ly = 2T (m%) (83)
6,03
= Tr| = S4
r( o (S4)
0
= —Tip; (S5)
= 0. (56)
Therefore the QFI can be compactly written as
9pa :
Folpal = 4Tr |p, (6_/1) . (S7)




B. Explicit expression for the fidelity susceptibility

The derivative of the state can be expressed as

% = %O’U; + Uﬁaaa—lf. (S8)
We then use the derivative of the unitary time evolution operator as
W0 _ i f ! dsU,(t7, $)VU(s,0). (S9)
da n Jo :
Inserting in Eq. (S8) gives us
9pa i t T T
= = F fo ds| Uty s)VU(s, 000U (t7,0) = Un(ty, 000U (s, 0)VU (1, 5)) (S10)
- _% fo ! ds [UaGtr, VU (t7. Uty 00U (17, 0) = Ua(ty, 0 U (1, YUty s)VU (7. 5)] (S11)
_ _% fo ! ds [Un(ty. OVU(tr. 9)pa = paUn(ty, VU (1. 5)] (S12)
= —i[Grpa]. (S13)
where G, = 1 [ dsU,(ty, s)VU (17, 5). The QFI is then
Folpa]l = -4Tr {/0,1 [G/bp/l]z} (S14)
= —4Tr {,04 (lep/lG/lp/l —Gp3G1 — paGipa + p/llep/lG/l)} (S15)
= 4((GD - (G?) (S16)
= 4(AGy)*, (S17)

where these steps hold true for pure states. This can be further simplified by noting that

(G = Tr{Gapoa} (S18)
= Tr{% f deU,l(tf,S)VUJ;(tf,s)UA(tf,O)O'UI(tf,O)} (S19)
0
= Tr{% f f dsU;(s,O)VUA(s,O)O'} (S20)
0
= 15(V)i/h, (S21)

where the average (-); is taken over the initial state o~ and we have defined V, = % fotf dsU;(s, 0)VU,(s,0) which is the time-

averaged version of the operator V in the interaction picture. Similarly, the other term is given by

(GR) = Tr{Gipa) (S22)
= Tr{GiUa(t;. 0)oU (17, 0)) (S23)
= Te{Ul(t7, 0G3Ua(ty, 0)r) (S24)
- Tr{[Uj(tf,O)GAU/I(tf,O)]z 0'} (S25)
= AVl (S26)

Putting this all together, we have that the QFI can be expressed as a variance of the operator V, over the initial 1-independent
state o,

A _
Folpal = 7‘(AV4) : (S27)



C. Fidelity susceptibility for unitaries

2
The relevant fidelity is Fy(1) = 0% Tr (Ug U ,1)’ [39] which we will expand in powers of A. Again we make use of Eq. (S9)

and start by noting that for any complex scalar z, %(|z|2) = 2Re(z* %). Therefore

T ERe [Tr(U/l Up)Tr (Uo ﬁ)] (528)
2 1
= 55, Im {Tr(UZ Vo) f ds Tr|UgUa(ty, )V U (s, 0)]} . (S29)
0
Evaluating the first derivative at A = 0 yields
dFU 2 s + 2
e ﬁlm{fo s Tr|Uy(s, OV UG, 0)]} = Zpim[Tr(Vyeg| = 0. (530)

The second derivative reads

d’Fy 2 du’ g .
= dThIm{Tr —=Us fo ds Tr|UgUa(ty, )V U (s, 0)| +

dU/l(tf9 S)

0 (S31)

'y
Tr(U Uo) f dsTr[Ug
0

VU(s,0) + Ul Ua(ty, s)VM]}

da
2

+

2
T A2

1 )
f dsTr[UgUl(tf,s)VUﬂ(s,O)]
0

2 1 tf N
_WIm{iTr(UjUO) fo dsTr[ f dx U Ua(ty, )VU(x, )VU,(s,0) + fo dx Ul Ua(ty, s)VU/l(s,x)VUA(x,O)}}.
(S32)

When evaluating it at A = 0, the first term depends on Tr(V) and, as before, vanishes. For the second term, we use the cyclic
property of the trace to find that

d*Fy
da?

= _ilm [i ftf ds {ftf dx Tr[V(x)V(s)] + fs dx Tr[V(s)V(x)]H (833)
1=0 h2d 0 K 0

2 ' s s 2tj2£ — 5
= —%Im [1 Tr (j(; ds V(s)‘f0 dx V(x))] = —%Tr(vo ) (834)

This is exactly the quoted result in Eq. (5).

II. OPERATOR HILBERT SPACE

In this section, we review the concepts and notation used when working in the Hilbert space of operators. An example of this
is also discussed in Ref. [48]. This formulation is often used for numerical simulations. In our case, it is employed to clearly
represent an important linear map between observables.

The key concept is that the operator V is written as a vector |V) i.e. the d X d matrix is now represented by a vector of length
d*. The superoperator M, which maps operators to operators can be now written as a d> x d*> matrix My. The time averaged
V in the interaction picture, which is used to determine the fidelity susceptibility, can be now written as My |V) = |Vo> The
goal is now to find My in a particular representation. In our case we use the mapping >, A;;|i){jl — 2, A;;lij), with a notation

ij

ij
i) =10 ® 1))



To show this explicitly, we first consider

UAU' = 3" Ui AU ilix(k (S35)
ikl
= > UiUp Aplik) (S36)
i,j.k,l
= D UnU il Y A lnm) (S37)
ijikl nm
= 1> U,-,,-|i><j|]® D U;,,|k><l|] 14) (S38)
i,j k1l
= UeU"|A). (S39)

Note that if we replace U with U, we get the result needed i.e. UTAU — U @ UT |A) = [U ® U*]" |A).
In the operator Hilbert space inner products can be written as

(A1B) = (ZAZ,(UI](Z Bun |nm>] (S40)

i,j n,m

= > AL Bun(ijinm) (S41)
i,j,n,m

= > A} B (S42)
ij

= Z(A*)j,iBi,j (543)
ij

= Tr(A'B). (544)

The identity matrix in this representation becomes a vector |[I) = >;[ii). The projection in the main text is then Py =
23 j1i)(jjl. Applying this to a general operator gives Py |A) = £ 3, . A, lid) Gijlkly = 3 ;A 5 liiy = Tr(A)/d |D).

III. EXISTENCE OF URC SOLUTIONS AND ABSENCE OF TRADE-OFF BETWEEN FIDELITY AND ROBUSTNESS

An important aspect of the URC framework is that it analytically shows that there is no fundamental trade-off between
robustness and target fidelity (i.e., the fidelity at A = 0, absent perturbation). This is because of the existence of solutions (i.e.
paths in unitary space) that achieve zero infidelity Jy = O while at the same time being perfectly robust to any perturbation (to
quadratic order in perturbation strength), by making the norm of the robustness superoperator ||My|| = 1 (equivalently |Mol| = 0).

A formal proof is as follows: M, = 0 implies that the unitary generated by the control protocol obeys Eq. (13); i.e. that
it generates a unitary 1-design (see also the related moment superoperators in, e.g., [29]). Recall, unitary ¢-designs are sets of
unitaries which mimic the completely uniform (Haar) distribution up to its -th moments. For the special unitary group SU(d),
it is known that unitary 1-designs exist for all d (in fact, unitary t-designs in SU(d) exist for all combinations of ¢ and d). If
the unitary path exists, then there is a Hamiltonian H(r) that generates it. The main constraint for a 1-design to exist is its
number of elements; in our case this is not a problem because the paths generated by the control are continuous and thus can
be approximated by a number of points which in general is much larger than d. Finally, the control problems of relevance here
require the 1-design to have two fixed elements: the initial state U(0,0) = I and the final target state U(tf,0) = Uarger. This
is also generically achievable for a 1-design. To see why, consider a list (U;, Uj, Us, ..., Uy) constituting a 1-design. If each

element is transformed by a fixed unitary W as U] = WU, then the modified list (U], ..., U},) is also a 1-design, since
L i(U!)"‘VU! - L i Ul WYwUs = Smewivwy = Ly v v (845)
M= l oM rerll L d d

Then, we can create two new different lists by transforming the original list with unitaries W4 and Wg. We choose those
unitaries such that WyU; = [ and WUy = Utarger. The new lists (UHY | and (UP)Y, with U = UITU[ and U? = UmgetULU;,
are then 1-designs by construction. Finally we construct a list (U, ,-)l.sz which includes all the elements of both (in particular I and



Utarger) Where

N vt i=1,....M
Ui=1,5% f ) (S46)
UE, i=M+1,....2M
It is easy to see that this is also a 1-design
1 2M 1 M M
4874 ANT A B\ B
o Z OO = 5 Z(U,. Yvur + Z(UJ.)‘VU]- (S47)
k=1 i=1 j=1
1 [MT V) + MT (V)] 1T (V) VV. (848)
= —|—=Tr —Tr = —Tr .
2M L d d d

Thus, given two arbitrary elements of SU(d), it is always possible to construct a 1-design that contains them both. Note that
we have explicitly referred to these collections of unitary matrices as lists rather than sets, as there could be repetition present.

This result implies that there is no fundamental trade-off between robustness and target fidelity. In practice, however, several
constraints could hinder the degree of control available on a system: limited bandwidth, energy, control time etc. These con-
straints will introduce a trade-off, necessarily, between target fidelity and robustness. This is because robustness requires more
control resources; e.g. as seen from Fig 1, it requires longer control times. When limited resources are available, a compromise
must be met. We consider this to be a universal fact in quantum control problems, and one that is fundamentally unavoidable.

While a systematic analysis of this trade-off between URC and control resources is beyond the scope of this work, we nu-
merically show here that for the cases considered in our work, allowing enough control time is enough to achieve a degree of
robustness which is independent of the target fidelity (thus, showing that there is no trade-off between the two). Consider the
two-qubit gate optimization treated in the main text. We can explore the performance of the optimization by changing the target
fidelity threshold Jy < € and studying how well the robustness functional Jy; can be optimized. Recall that Jy < & also imposes
a nonlinear constraint that is built into the second stage of the optimization. We show results of this analysis in Fig. S1. The
plot demonstrates that lowering the threshold ¢ (i.e. requiring higher and higher nominal fidelities) does not significantly affect
the best possible robustness that can be achieved. This is seen both for the complete universal robustness and for an example of
generalized robustness requirements, as well for the two types of target gates studied in our work.

1072

Universally robust - Urandom
10-3 1 Universally robust - Uys
—&— Robust to 1-body - Urandom

10-4 - @&— Robust to 1-body - Uys

10—5 _
10—6 _

@\i e
10-7 —e g———

10_8 T T T r oo T T T T T rororror T T ooy
106 103 10°4 103 1072
Target fidelity threshold ¢

Optimized Jy (robustness)

FIG. S1. Optimized robustness functional J, as a function of the target fidelity threshold € imposed in the two-stage optimization procedure.
Results are shown for two-qubit gate optimization, with two different targets Uangom and Uys (see Sec. VIL.C for more details), and two
different levels of robustness: either universally robust or robust to single-body perturbations only. Other parameters are chosen as in Fig. 2 of
the main text.

IV. ROBUST STATE CONTROL

Coming back to the original state control problem, we now show how the different universal robustness constraints can be
imposed in that case too. Recall the expression of the fidelity susceptibility (or quantum Fisher information) associated with the



perturbation-dependent trajectories p,(¢), Eq. (3). The relevant variance can be written (for a pure initial state) as

(AVo)" = Tr[Voo] - Tr[Voo Vool (S49)
= (Vo180 Vo) = (Vo @ o Vi) (S50)
= (VIM{P-Mo V), (S51)

where we have defined P, = (I — o) ® o*. This is clearly a projector since

P2 = (I-0)® (") (S52)
= (I-0c-0c+0)®0" (S53)
= P,. (S54)

We will now simplify this projector further. Its eigenvectors |y,) with eigenvalue one, must satisfy Py |x,,) = (I—0)x,0 = xa.
For pure states this simplifies to

[xn = Tr(oxn)] o = xn- (S55)

Multiplying on the right by o~ we can see that the condition reduces to (o|y) = 0. The projection operator can be written as

Pr= ) I (el ($56)

where the operators y, form an orthogonal basis and which all fulfil (o|y,) = 0. Written simpler P, = I — |0) (o], the latter
expression leads to

(AVo)” = Vel = (Vi) - (857)

—\2 _
Note also that by the Cauchy—Schwarz inequality (AVO) = [P Mo IVI? < IMo IV = ”VOHZ. This connects to the case of
quantum gates since the last term is state independent, c.f. Eq. (5).

To summarise then, we have

—\2 .
(AVo) = (VI(M) M |V). (S58)
which has the same form as Eq. (9), but introduces the initial-state-dependent superoperator M7 = P,M,. Note that this does

not suffer the same difficulty as before since M{ [I) = P-My [I) = P, [I) = 0.

V. ANALYTICAL EXPRESSION OF THE URC FUNCTIONAL GRADIENT

In the following, we will derive a closed form approximation to the gradient of the URC cost functional Jy, which could be
then used in a variety of gradient based optimization algorithms.

A. The gradient of a unitary evolution operator

Let us assume the ideal Hamiltonian to be split as a drift and a time-dependent control part: H(f) = Hq + Hcon(f). The time
evolution operator under this Hamiltonian is formally U(z,0) = 7 exp [—% fot H (s)ds], where 7~ is the time ordering operator. We
assume that the time dependence is piecewise constant, i.e., on the interval [¢;,7;,1] we have Hco,(f) = ¢;W. The time evolution
operator can then be expressed exactly as

U(t,0) l—l exp [—%(Hd + ¢,W)At] (S59)

J
ﬂ U;, (S60)
J



where U; is the time evolution operator over constant intervals At = t;; — t;. We can define the control vector as
(3 = (41,42, -.,¢n,)T. The k™ element of the gradient of the time evolution operator with respect to this control vector can
be expressed as

Np k—1
VU 0% = [ ] Ui(0ati)] | Us (S61)
j=k+1 j=1
Np k-1
~ 1_[ U~<——AtWUk) Uj, (S62)
. n
Jj=k+1 j=1

where in the second step we have assumed short time intervals Az. The gradient over any interval [#,,#,] on our mesh can be
expressed as

{V U(t . )} _ 178 ¢ [ta’tb]
gy fadite =4 1o U (—%AtWUk) n’;;; U; Otherwise '

Jj=k+1

(S63)

B. The gradient of the cost functional Jy

We now want to find the gradient of the norm (we assume the Frobenius norm for concreteness) of the superoperator. The
norm squared can be first simplified as

dly = Mol -1 (S64)
Iy 2

1

= l—fdsU(s,O)@U(s,O)* -1 (S65)
4 0

tf ff

1

= t—zTr fdszU(sz,O)QoU(sz,O)*fdsl [U(sl,O)tX>U(s1,0)*]T -1 (S66)
r10 0

Iy I

1 "

=3 f ds) f dsyTr [U(s2,0)U(51,0)® U(s,,0)" U(s1,0)" | - 1 (S67)
1 f f

= —2de1deZTr[U(SQ,S1)®U(Sz,S])*]—1 (S68)
tf J

- = f ds, f dsy T [UCs s)I T [UCsz. 51)'] - (569)
9
1

- 5 f ds, f s [Te[Usa. s — 1. (570)
f

Note that by the Cauchy-Schwartz inequality and the fact that the time evolution operator is unitary we get that Jy < d — 1/d.
The k™ component of the gradient is then

ty Iy

1
OpJu = dzfdslfdsza,m [Tr [U(sa, s (S71)
0
- iz f f dsyRe {Tr[U(s, 1)1 84, Tr [U(s2. s1)]") (S72)
i 0 0
2 [
- aOfds,OfdszRe{Tr[U(sz, SO Te [0, Us2, s1)] ) (S73)



8

This could be computed numerically using the following steps. First compute all U for a given vector #. Then, the derivative
can be approximated as

2
0y, Ju ~ % Z Re {Tt [U(ty, 1)) Tr [0, Ut 1) } (S74)
f nm=1

where U(t,,,t,) = Uy, ... U, and each component of the gradient of U is approximated by Eq. (S63).
In order to reduce the computation time in calculating U}, one could use the Baker-Campbell-Hausdorfl approximation as

(A1’¢,[Hq, W]] , (S75)

U ~ exp - (a0 Hy| exp| - (A0g W] exp [ﬁ

provided that At was sufficiently small. Precomputing the spectrum of Hy, W and [Hy, W] would make the repeated matrix
exponentiation much faster.

VI. EXTENSION TO CLASSICAL FLUCTUATIONS

Consider now the Hamiltonian H(f) = Hy(t) + A£(r)V. The noise averaged state fidelity is given to second order in A as
/12 1y iy
(Fe)~1- ) f dlf dsC(t, 5) (Vi(D)Vi(s)) = (ViOXVi(s)], (876)
0 0
where V;(t) = Ug (#,0)VUy(t, 0) is the noise operator V in the interaction picture and the noise £(¢) has zero mean and correlation

function C(t, s) = (£(¥)é(s)). We can define a superoperator N; = [Uo(t, 0)® Uy, O)F, such that |V;(¢£)) = N,|V). The first term
in the operator Hilbert space can then be expressed as

(ViOVi(s)) = (VIN]I® "N V). (S77)

Similarly the product of averages becomes
ViOXVi(s)) = Te[Vi(©)oVi(s)o] (S78)
= (VIN/o® "N, |V). (S79)

All together then, this can be written as
/12 l‘f ff .
(Fey~1- 7 dtf dsC(t,s) (VIN,P.Ns|V). (S80)
0 0

Thus, to minimise the impact of the noise regardless of the operator V, one must minimise the operator

1y 1 R
f dtf ds C(t, )N,/ Py Nj. (S81)
0 0

This is related to the concept of filter functions [44]. Note however that our results are applicable to arbitrary Hamiltonians.

VII. ADDITIONAL NUMERICAL RESULTS

In this section, we present additional numerical results. These include further applications of the URC framework and more
detailed descriptions of the problems analyzed in the main text.

A. Generation of many-body entangled states

Eq. (S58) allows us to carry over the optimal control procedure discussed in the main text for unitary control to the problem
of robust state control. The only adaptation needed is to replace My with M. We illustrate this procedure by analyzing the
problem of generating entangled states in a system of N = 4 qubits with global controls and all-to-all interactions. We consider
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FIG. S2. Universally robust control for the four-qubit state-control problem. Top panels show the state fidelity F, bottom panels show a
zoomed-in view of the infidelity 1 — F. In all cases data is plotted against the perturbation strength A for the evolution Hy(t) + AV where (a)
V=8,(0b)V=S_,(c)V=S2 The four curves correspond to the four optimization functionals described in the text, c.f. Eqs. (S82)-(S84).

a Hamiltonian having the exact same form as (16) where now S = N/2 is the total angular momentum associated with the
symmetric subspace of the N particles. We point out that this problem is fully controllable for any N [49]. We consider the
problem of driving the system from the state [0000) to the Dicke-0 state, i.e. the eigenstate of S, composed of a symmetric
superposition of states with equal number of qubits in 0 and in 1. Because this is a four-body system, there are many possible
choices of robustness setups that could be pursued. Here we demonstrate the flexibility of our approach by showing results
corresponding to robustness to either all single-body or all two-body operators in Fig. S2. In all plots we show four curves,
corresponding to four functionals being optimized. These are

;Ttarget =Jo (S82)
Teoase = o+ wy=g )/(1 +w), (S83)
Ip=Uo+ WJg]))/(l +w), where n = 1B, 2B. (S84)

The URC functionals JI(}]) = ||]l710(”)||2/d differ in the case of seeking robustness to just 1-body operators (1B) or just 2-body
operators (2B):

m,"™ = M, (1 - Z Pk], (S85)

k#1

Mo®® = M, (1 - Z Pk], (S86)

k#2

where P, denotes the projector onto k—body operators. Fig. S2 shows the fidelity as a function of perturbation strength A for
every solution in the presence of three different perturbations; in other words we calculate the state fidelity achieved by the
dynamics of Hy(t) + AV where the different panels correspond to (a) V = S, (b) V = S, (c) V = §2 (these are the same choices
used for the two-qubit case of Fig. 2). The results show that every optimization delivers the expected results: the usual robust
control is only insensitive to the predefined choice of V, but remains sensitive to other perturbations. On the other hand, the URC
waveforms designed to be insensitive to all single-body perturbations (1B) shows robustness in both cases (a) and (b). Likewise,
the URC waveforms for 7 = 2B are only robust to the case where the noise is on a two-body operator as in (c).

B. Comparison of timescales

In Fig. 1, we demonstrated how the URC waveforms leads to enhanced robustness with respect to perturbations when com-
pared to the other controls analyzed. These correspond to the output of optimizing either Jiarger OF Jrobust- The evolutions studied
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FIG. S3. Performance of universally robust control when compared to other approaches and restricting the evolution time. The parameters
are as in Fig. 1, with the exception that for URC (orange triangles) Qt;/(2r) = 3.5; for the standard robust control Qt;/(2n) = 2.1, for the
nonrobust control Qty/(27) = 1.1

in Fig. 1 correspond to all waveforms of the same duration Qt;/(27) = 3.57. A fair critique of this analysis is that nonrobust or
standard robust waveforms can be achieved with shorter operation times. Therefore we compare in Fig. S3 the performance of
waveforms of different durations, which now scale with their respective minimal control time (indicated in the main text). While
less striking, it is nevertheless clear from these results that the URC method still provides additional stability overall, despite
needing extra time to do so.

C. Other target states

,
Gt '7-{-‘,-’7)"‘ Unitary control Jo -+ I
% Q B . U(ty) = Uwms - Jv JGe

=
o
]

Gate fidelity Fy

<
n

D 1
o 103 _M\/#’j—f_‘ _.""'\/"".‘ _“"‘-\}r"".‘
I_| V - Iy

1077 44 T T T T T T T T
—0.05 0.00 0.05-0.05 0.00 0.05-0.05 0.00 0.05

Perturbation strength /3

FIG. S4. Universal robust control for two-qubit gates. Plots show the gate fidelity of the perturbed evolution Hy(f) + AV, where Hy(?) is
the control Hamiltonian of Eq. (16). Different curves correspond to different types of optimization procedures: target only (nonrobust, gray
circles); target and robustness to a fixed V = S, (blue squares); target and robustness to all single-body operators (green crosses); target and
universal robustness (orange triangles). Lower row shows the infidelity 1 — F for each case.

In the analysis of two-qubit unitary control, we set as a target transformation a single, randomly-chosen, two-qubit symmetric
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FIG. S5. Optimized control waveforms for single qubit gate control and different level of robustness. In all cases, gray (circles) corresponds
to nonrobust waveforms, blue (squares) to waveforms robust to perturbation only along Z axis (V = o), and orange (triangles) to universally
robust waveforms. Panel (a) shows control fields used to construct Fig. 1 (b) and 1 (c) in the main text, which used N, = 40 time steps.
Panel (b) shows waveforms obtained by further constraining N, = 20, which perform similarly in terms of fidelity. This can be seen in panel
(c) where we plot the average fidelity attained by each of the three waveforms with N, = 20 in the presence of a perturbation with random
direction, as a function of the perturbation strength.

gate. When written in the symmetric basis {|00), (|01) + [10))/ V2, |11)}, such gate has the form

0.51762131 + 0.11456864i —0.5988566 — 0.16086483i —0.57589678 + 0.05271048i
Urandom = | —0.22709248 + 0.22335233i 0.30541094 + 0.57529237i —0.6568961 — 0.20686492i |. (S87)
—0.75950102 + 0.20160146i —0.40091574 — 0.17470746i —0.13888378 + 0.41469292i

A more physically-inspired choice could be the XX Mglmer-Sgrensen (MS) gate,

1
Uns = exp [—ig (Sﬁ - ES")} . (S88)

In Fig. S4 we show results which are completely analogous to Fig. 2, but now setting as a target the MS gate. As is evident
from the data, the URC framework works irrespectively of the choice of target gate.

D. Optimized control waveforms

In this section, we show the control waveforms obtained from the numerical optimization which leads to the gate fidelities
shown in the main figures. We then show further results with different parametrizations of the control fields, which lead to
analogous performances in terms of fidelity and robustness. This showcases how the URC framework can be applied directly to
various optimal control approaches.

We begin by analyzing the single qubit case. Fig. S5 shows various instances of optimal control fields ¢(#) that achieve the
target gate described in the main text with various levels of robustness. Panel (a) shows the fields that were used to construct
Fig. 1. These were found by parametrizing the field as a piecewise constant function with N, = 40 intervals. The optimal
parameters were found by minimizing each of the cost functionals described the main text, and correspond to nonrobust (gray),
robust to a given V = o, (blue) and universally robust (orange). We note two important aspects of these waveforms. First, all
of them look similar in that no apparent structure is visible in them. Crucially, there is no change in waveform complexity as
the robustness increases; in fact, the universally robust waveform is virtually indistinguishable from the other optimal fields.
Second, the minimization with N, = 40 is certainly not unique. In fact, we show in (b) a case where we use half of the
parameters, N, = 20, and thus obtain simpler waveforms. These turn out to have very similar performance in terms of fidelity,
as can be seen from Fig. S5 (c), which can be compared with Fig. 1 (c).

We now turn to the two-qubit gate case. Fig. S6 (a) shows the optimal waveforms that were used to produce the analysis in
Fig. 2. These correspond to optimization to achieve a random symmetric two-qubit gate (see Eq. S87) which used N, = 50 and a
total time of Bty = 5 X (2). Note that this model has two independent fields €,(¢) and €,(f) which are optimized independently.
The waveforms shown in Fig. S6 (a), similarly to what we observed for single qubits, are all virtually indistinguishable, and
thus again we observe that the robustness requirement does not lead to an increase in waveform complexity. While piecewise
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FIG. S6. Optimized control waveforms for two-qubit gate control and different level of robustness. In all cases gray (circles) corresponds to
nonrobust waveforms, blue (squares) to waveforms robust to perturbation only along X axis (V = §,), and orange (triangles) to universally
robust waveforms. This model involves two control fields Q,(r) and Q,(#); in the figures we plot Q. (¢) + 46 (dark lines) and Q,(z) — 48 (light
lines) so that each field is clearly visible. Panel (a) shows control fields used to construct Fig. 2 in the main text, which used N, = 50 time
steps. Panel (b) shows waveforms obtained by changing to a Fourier parametrization. These perform similarly in terms of fidelity, as can
seen in panels (c1) and (c2) where we plot, as function of the perturbation strength, the average fidelity attained by each of the four optimized
Fourier waveforms in the presence of two types of perturbation V: random single-body operator (c1) and fully random (single- and two-body)
operator in (c2).

constant waveforms can be seen as “complicated” from a practical point of view, we stress that this is highly platform dependent.
In fact, the waveforms shown here have the same level of complexity as those shown in, e.g. Refs. [10, 50], which are works
demonstrating the experimental implementation of optimal control fields.

Nevertheless, it is a valid concern that for some experimental platforms it would be more convenient to use other types of
waveforms. We stress that the entirety of our URC framework is completely independent of the details of the optimization pro-
cedure and of the model specifications, and can thus be applied to approaches beyond piecewise constant fields. We demonstrate
this by tackling the robust two-qubit gate problem with an entirely different parametrization, where each of the control fields are
now built from a Fourier decomposition,

NCOmp_l
Z Ay, sin(wyt) + By, cos(wpt) (S89)
n=0
where we choose to fix the frequencies as w, = N b T Wmax withn = 0,1,..., Neomp — 1. Thus, this parametrization leads
comp

to N, = 2Ncomp — 1 variables for each field. We explore this choice of parametrization for the two-qubit robust control model
using Neomp = 15 and wmax = 36. We run optimizations with the same methods used in the main text (e.g., same target
gate, optimization routine, and cost functions). An example of optimal control waveforms found for each case is depicted in
Fig. S6 (b). We observe that we can find smooth waveforms (by construction) which perform comparably to the piecewise
constant ones. This can be seen from the plots in Figs. S6 (cl) and (c2), which depict the average fidelity as a function of
perturbation strength obtained with the optimized Fourier fields, for the cases of (c1) a perturbation which is a random 1-body
operator, and (c2) a fully random perturbation. Finally, we stress that there is no significant change in the complexity of the
waveform that guarantees universal robustness as compared to nonrobust ones.

E. Further details on the numerical optimization

Finally we comment on the choice of the weight parameter w in the optimization functional for the single-stage optimization
procedure, i.e.,

Juniv=o +wJu)/(1 +w). (S90)
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For any w, the global minimum is Jy,y = O which happens if and only if Jo = 0 and Jy = 0. When any other solution
is found, we would like that both targets are equally well achieved. We find that the straightforward choice of w = 1 can put
too much weight on the robustness requirement, in such a way that the ideal target fidelity found by the optimizer can be too
low. This is seen in Fig. S7 (a), where we show the infidelity for the case of two-qubit gates (and random target unitary) when
searching for gates that are universally robust. From the data, it can be seen that the infidelity at zero perturbation 4 = 0 can
be quite high for relatively high values of w. This is because the optimizer is not able to get Jy down to values which are of
the order of the required infidelities. We expect that this can be improved by allowing more control time, but we leave a more
detailed analysis for future work. For a fixed control time, this behavior can be adjusted by lowering the value of w. We point
out that easier cases, for example the two-qubit case with robustness to only single-body operator, typically do not have a strong
dependence on the value of w, see Fig. S7 (b).

Universally robust Robust to single body
10—1_
-2 |
S 10
-
— 10-34 —— w=0.10 — 10-6 /| —— w=0.10
w=0.25 w=0.25
. —— = 0.50 . — 1 =0.50
1074 5 - 1078 _
—— w=1.00 (a) —— w=100 } (b)
-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2
Perturbation strength A Perturbation strength A

FIG. S7. Analysis of the weight w between functionals in the numerical optimization, see Eq. (S90). Gate infidelity 1 — Fy as a function of
the perturbation strength. Results are shown for optimal control of two qubit gates (same case as shown in the main text) for the cases of (a)
Universally robust and (b) Robust to single-body perturbations. Here V = S and Bty = 5. See text for further details.
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