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The entanglement generation of two two-level giant atoms coupled to a photonic waveguide, which is formed by a Su–Schrieffer–Heeger (SSH)
type coupled-cavity array is studied. Here, each atom is coupled to the waveguide through two coupling points. The two-atom separate-coupling case
is studied, and 16 coupling configurations are considered for the coupling-point distributions between the two atoms and the waveguide. Quantum
master equations are derived to govern the evolution of the two atoms and characterize atomic entanglement by calculating the concurrence of the
two-atom states. It is found that the two giant-atom entanglement depends on the coupling configurations and the coupling-point distance of the giant
atoms. In particular, the entanglement dynamics of the two giant atoms in 14 coupling configurations depend on the dimerization parameter of the
SSH waveguide. According to the self-energies of the two giant atoms, it is found that ten of these 16 coupling configurations can be divided into five
pairs. It is also showed that the delayed sudden birth of entanglement between the two giant atoms is largely enhanced in these five pairs of coupling
configurations. This work will promote the study of quantum effects and coherent manipulation in giant-atom topological-waveguide-QED systems.

1 Introduction

Quantum entanglement [1–3] is not only a key concept for understanding fundamental quantum theory, but also an
important resource for implementing modern quantum technologies, including quantum
computation [4], quantum communication [5], quantum simulator [6], quantum precision measurement [7, 8], and
quantum sensing [9]. So far, much attention has been paid to the study of quantum entanglement, especially fo-
cusing on preparing entangled states in various quantum systems, quantifying quantum entanglement, and ex-
ploiting quantum entanglement for practical applications. In particular, both theoretical and experimental stud-
ies on quantum entanglement have been conducted in various quantum systems, including optical systems [10],
atom-cavity systems [11, 12], trapped ion systems [13, 14], quantum dot systems [15, 16], Rydberg atom arrays [17], su-
perconducting quantum circuits [18–21], cavity optomechanical systems [22–26], and waveguide quantum electro-
dynamics (QED) systems [27, 28]. Waveguide QED addresses the interactions between atoms and photons within
a 1D open-boundary waveguide. In a 1D waveguide, photons are restricted to move in the waveguide direction
due to the confinement within its cross section. The confinement enhances the interaction between the photons
and atoms, enabling quantum entanglement among distant atoms. Thus, the waveguide-QED systems can pro-
vide outstanding platforms to construct various light-matter interactions. Many interesting physical phenom-
ena have been found in waveguide-QED systems, including single- or few-photon scatterings [29–39], waveguide-
mediated long-distance entanglement between distant atoms [40, 41], and creating superradiant and subradiant atomic
states [42–44].

Recently, the giant atom has attracted considerable attention from the peers of quantum optics [45]. Many in-
teresting physical effects appear when considering the giant atoms coupled to the electromagnetic fields. The
key point here is that a giant atom couples to the fields through multiple points, and hence the dipole approxima-
tion from a global viewpoint is violated. The interference effect between these coupling points can modulate the
collective effects of atoms and effectively affect the atom-field interactions. A series of novel quantum optical
phenomena and effects have been found in giant-atom-waveguide systems, such as frequency-dependent lamb
shifts and relaxation rates [46], exotic bound states [47–53], decoherence-free interaction [54–56], non-Markovian dis-
sipative dynamics [57–61], and chiral light-matter interactions [62–65].

Motivated by the recent developments on the giant-atom waveguide QED platforms, people have begun to
consider the coupling of giant atoms with topological waveguides [50, 66–69]. In general, the topological phase
of matter possesses a natural robustness to environmental perturbations [70]. In waveguide-QED systems, the
fields in the waveguide are usually considered the environments of the coupled atoms. Meanwhile, quantum en-
tanglement is inherently sensitive to the environment. Therefore, an interesting question is how the topological
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waveguide environment affects the entanglement properties of the atoms. Note that the couplings of small atoms
with topological waveguides [70–77] have been widely studied, and that the use of topological properties to protect
quantum entanglement and quantum coherence has wide potential applications [78–82].

In this paper, we study the generation of quantum entanglement of two two-level giant atoms, which are
coupled to a 1D photonic topological waveguide. Here, the 1D topological waveguide is a photonic Su–Schrieffer–
Heeger (SSH) type [83] coupled cavity array (see Figure 1a). Under the Born-Markovian approximation, we elim-
inate the degrees of freedom of the fields in the waveguide, and obtain the quantum master equation for describ-
ing the evolution of the two giant atoms. By calculating the self-energies of the giant atoms at zero temperature,
the related coefficients in the quantum master equation can be determined. When the transition frequencies of
the giant atoms lie in the band regime (see Figure 1b), we obtain the expressions for the decay rates of the two
giant atoms and the exchange interaction strengths between the two giant atoms. We also show that quantum
entanglement between the two giant atoms can be generated by coupling the atoms to a topological waveguide.
Concretely, we study the entanglement generation for 16 coupling configurations by considering the two giant
atoms initially in either the single-excitation state or the two-excitation state. Here, the different coupling con-
figurations arise from the coupling of the two giant atoms with the SSH waveguide at different sublattices. This
is distinguished from the recent works concerning the entanglement generation in two giant atoms coupled to
a 1D waveguide with linear dispersion relation [84, 85]. Furthermore, the coupling configurations of the two gi-
ant atoms in Refs. [84, 85] are determined by different arrangements of the coupling points. Our results show
that the entanglement dynamics of the two giant atoms depends on the coupling configurations and the coupling-
point distance. In addition, there exist 14 coupling configurations, where the two-giant-atom entanglement dy-
namics can be controlled by the sign of the dimerization parameter of the SSH waveguide. According to the
self-energies of the giant atoms, ten of these 16 coupling configurations can be divided into five pairs. In the
single-excitation initial-state case, the entanglement dynamics have different evolutions for the states |eg⟩ and
|ge⟩ since the two giant atoms have unequal frequency shifts and individual decay rates. This feature cannot be
found when two separate or braided giant atoms coupled to a 1D waveguide with a linear dispersion relation.
In the two-excitation initial-state case, the entanglement dynamics of the two giant atoms in each pair have the
same evolution, and a delayed entanglement sudden birth between the two giant atoms is largely enhanced com-
pared to the other six coupling configurations and small-atom case.

The rest of this paper is organized as follows. In Section 2, we introduce the physical model and present
the Hamiltonians. In Section 3, we derive quantum master equations for describing the evolution of the two gi-
ant atoms in the Markovian regime. In Section 4, we present the equations of motion for the density matrix ele-
ments in the eigen representation of the interaction Hamiltonian of the two giant atoms. In Section 5, we study
the quantum entanglement of the two giant atoms corresponding to both the single- and two-excitation initial
states by calculating the concurrence of the atomic density matrix. In Section 6, we discuss the features of this
work, the intrinsic decay of the giant atoms, and the experimental implementation of this scheme. Finally, we
present a brief summary of this work in Section 7.

2 Physical System and Hamiltonian

We consider a giant-atom waveguide-QED system, in which two two-level giant atoms are coupled to a 1D topo-
logical waveguide, which is formed by an SSH-type coupled-cavity array. Here, each giant atom is coupled to
the waveguide via two coupling points (i.e., two cavities). The Hamiltonian of the total system can be written as

H = HS + HB + Hint, (1)

where HS , HB, and Hint are the Hamiltonian of the two giant atoms, the Hamiltonian of the waveguide, and the
interaction Hamiltonian between the giant atoms and the waveguide, respectively.

Concretely, the Hamiltonian of the two giant atoms reads (ℏ = 1)

HS = ω0(σ+1σ
−
1 + σ

+
2σ
−
2 ), (2)

where ω0 is the energy separation between the excited state |e⟩ j=1,2 and the ground state |g⟩ j of the jth giant atom.
Note that we set the energy of the ground state |g⟩ j of the atoms as zero in this work. The atomic operators in
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Figure 1: a) Schematic of the two two-level giant atoms coupled to a Su-Schrieffer-Heeger type waveguide via n1th, n2th, n3th, and
n4th unit cells. The left (right) giant atom is labeled as the giant atom 1 (2). The photonic SSH waveguide includes two different
sublattice A and B (blue and yellow circles) with intracell and intercell hopping amplitudes t1 and t2. The unit cells are indexed by
l ∈ [1, L] (form left to right). b) Dispersion relation of the SSH waveguide with periodical boundary condition. The parameter is set as
|δ| = 0.2. c) The winding number W as function of the dimerization strength δ. The winding number are either W = 1, for δ < 0 or
W = 1, for δ > 0. This defines the topological nontrivial phase (W = 1) and trivial phase (W = 0).

Equation (2) are defined by σ+j=1,2 = |e⟩ j j⟨g| and σ−j = |g⟩ j j⟨e|, and the Pauli operators are defined by σx
j =

σ+j + σ
−
j , σy

j = i(σ−j − σ
+
j ), and σz

j = |e⟩ j j⟨e| − |g⟩ j j⟨g|.
The waveguide under consideration is an SSH-type coupled-cavity array formed by two sublattices, denoted

by A and B, as shown in Figure 1a. The Hamiltonian of the SSH-type waveguide reads

HB = ωc

L∑
l=1

(a†l al + b†l bl) +
L−1∑
l=1

(t1a†l bl + t2a†l+1bl + H.c.), (3)

where al (bl) and a†l (b†l ) are the annihilation and creation operators of the cavity A (B) in the lth unit cell. We
assume that all the cavities have the same resonance frequencies ωc, and that the intracell and intercell coupling
strengths are, respectively, given by

t1 = ξ(1 + δ), t2 = ξ(1 − δ), (4)

where δ is introduced as the dimerization parameter, and it satisfies |δ| < 1.
To discuss the couplings between the giant atoms and the waveguide, we need to analyze the coupling con-

figurations between the atoms and the cavities in the waveguide. For example, when a giant atom is coupled
to the SSH waveguide via two points, there are four coupling configurations: AA, AB, BA, and BB couplings.
For the two-atom case, the situation becomes more complicated. When two giant atoms couple to a 1D contin-
uous waveguide, there exist three kinds of coupling configurations: separate, nested, and braided couplings [54].
In our considered giant-atom-SSH-waveguide system, the coupling configurations become much more com-
plicated. This is because there are two kinds of cavities in a cell unit. To keep compact, in this work we focus
on the separate-coupling case, where there are 16 coupling configurations between the atoms and the waveg-
uide: AAAA, AAAB, AABA, AABB, ABAA, ABAB, ABBA, ABBB, BAAA, BAAB, BABA, BABB, BBAA,
BBAB, BBBA, and BBBB coupling distributions.

To unify and describe all these coupling configurations, we introduce the parameters αi and βi to character-
ize the couplings between the two giant atoms and the SSH waveguide. The coefficients αi and βi take either 0 or
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1, and satisfy the condition
αi + βi = 1, i = 1 − 4. (5)

For the first coupling point of the giant atom 1 (2) coupled to either the sublattice A or the sublattice B in the
same unit cell, the corresponding coupling strengths can be expressed as gα1 (gα3) or gβ1 (gβ3). Similarly, for
the second coupling point of the giant atom 1 (2) coupled to either the sublattice A or the sublattice B in another
unit cell, the coupling strengths are denoted as gα2 (gα4) or gβ2 (gβ4). If a giant atom is coupled to the cavity A
(B) in the ith unit cell, we have αi = 1 (βi = 1). When the coupling is absence, αi (βi) takes zero. By choosing
proper values of αi and βi, the different coupling configurations can be described in a unified form.

In this work, we consider the weak-coupling regime, where the coupling strength g is much smaller than
both the cavity frequency ωc and the atomic energy separation ω0 (namely g ≪ {ωc, ω0}). Then the rotating-
wave approximation (RWA) can be made by discarding the counter-rotating terms in the interaction Hamilto-
nian. Based on the above analyses, the interaction Hamiltonian between the two giant atoms and the waveguide
can be written as

Hint = g[(α1an1 + β1bn1 + α2an2 + β2bn2)σ
+
1

+(α3an3 + β3bn3 + α4an4 + β4bn4)σ
+
2 + H.c.]. (6)

Here, we assume that the giant atom 1 is coupled to the SSH-chain waveguide at both the n1th and n2th unit cells,
while the giant atom 2 is coupled to the waveguide at both the n3th and n4th unit cells. All these coupling points
have the same coupling strength g.

In this system, the SSH-chain waveguide plays the role of an environment of the two giant atoms. To clearly
see the influence of the waveguide on the atoms, we first analyze the field modes in the waveguide by introduc-
ing the normal modes to diagonalize the waveguide Hamiltonian, and then we express the atom-waveguide inter-
actions with these normal modes.

For simplicity, we consider the periodic boundary conditions aL+l = al and bL+l = bl. By introducing the
discrete Fourier transformations

al =
1
√

L

∑
k

eikld0ak, bl =
1
√

L

∑
k

eikld0bk, (7)

where d0 is the photonic lattice constant (hereafter we take d0 = 1 for simplicity) and l marks different lattice
sites. The waveguide Hamiltonian in the momentum space can be written as HB =

∑
k ψ
†(k)H(k)ψ(k), with

ψ(k) = (ak, bk)T , and the bulk momentum-space Hamiltonian reads

H(k) =
(

ωc f (k)
f ∗(k) ωc

)
. (8)

Here, f (k) = ξ(1 + δ) + ξ(1 − δ)e−ik = ωkeiϕ(k) with ωk > 0 is the coupling coefficient in the momentum space
between A and B sublattices. The topological-dependent phase ϕ(k) is given by

ϕ(k) = arctan
(

−ξ(1 − δ) sin k
ξ(1 + δ) + ξ(1 − δ) cos k

)
. (9)

Hereafter we set ωc as an energy reference. By introducing the eigen-operators

uk/lk =
1
√

2
(e−iϕ(k)ak ± bk), (10)

the Hamiltonian HB in Equation (3) can be diagonalized as

HB =
∑

k

[ωu(k)u†kuk + ωl(k)l†klk] (11)

with the dispersion relations

ωu/l(k) = ±ωk = ±

√
t2
1 + t2

2 + 2t1t2 cos k, (12)
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where the subscript u (l) denotes the upper (lower) energy band of the SSH waveguide.
In Figure 1b, we show the dispersion relations when the dimerization parameter |δ| = 0.2. It can be found

that the two bands of the SSH waveguide are symmetric with respect to the cavity frequency ωc. The range of
the energy bands is [−2ξ,−2|δ|ξ] ∪ [2|δ|ξ, 2ξ], with a middle bandgap 4|δ|ξ. The energy bands can be tuned by
changing the dimerization strength δ. For the SSH model, we use the winding number W to characterize the
topological properties of the system. The winding number W is either 1 or 0, depending on the parameters of
the system. In Figure 1c, we show the winding number W of the SSH waveguide. When the intracell hopping
strength dominates the intercell hopping strength, i.e., δ > 0, the winding number W = 0, corresponds to the
so-called topological trivial phase. On the contrary, when the intercell hopping strength dominates the intracell
hopping strength, namely δ < 0, the winding number W = 1, corresponding to the so-called topological phase.

For convenience, hereafter we will work in a rotating frame with respect to H0 = ωc(σ+1σ
−
1 + σ

+
2σ
−
2 ) +

ωc
∑L

l=1(a†l al + b†l bl), then the Hamiltonian of the system becomes

Hrot = ∆(σ+1σ
−
1 + σ

+
2σ
−
2 ) +

L∑
l=1

(t1a†l bl + t2a†l+1bl + H.c.)

+g[(α1an1 + β1bn1 + α2an2 + β2bn2)σ
+
1

+(α3an3 + β3bn3 + α4an4 + β4bn4)σ
+
2 + H.c.]. (13)

Using the discrete Fourier transformations and the eigen-operators, the Hamiltonian Hrot can be expressed in the
momentum space as

Hrot = ∆(σ+1σ
−
1 + σ

+
2σ
−
2 ) +

∑
k

ωk(u
†

kuk − l†klk)

+
g
√

2L

∑
k

[(α1eikn1 + α2eikn2)(uk + lk)eiϕ(k)σ+1

+(β1eikn1 + β2eikn2)(uk − lk)σ+1
+(α3eikn3 + α4eikn4)(uk + lk)eiϕ(k)σ+2
+(β3eikn3 + β4eikn4)(uk − lk)σ+2 + H.c.], (14)

where ∆ = ω0 − ωc is the detuning between the atomic transition frequency ω0 and the cavity frequency ωc.

3 Quantum master equation and coefficients

To govern the evolution of the two giant atoms, we derive a quantum master equation by using the Born-Markovian
approximation in the weak-coupling regime g/ξ ≪ 1 [86]. The quantum master equation in a rotating frame with
respect to H0 reads

ρ̇ = i
[
ρ,H

]
+ Γ11D[σ−1 ]ρ + Γ22D[σ−2 ]ρ

+Γ12

{[
σ−1ρσ

+
2 −

1
2

(σ+2σ
−
1ρ + ρσ

+
2σ
−
1 )

]
+ H.c.

}
, (15)

where ρ is the reduced density matrix of the two giant atoms. In Equation (15), the Hamiltonian is given by

H =

2∑
j=1

ω′jσ
+
jσ
−
j + (J12σ

+
1σ
−
2 + H.c.), (16)

where ω′j = ∆ + J j j (for j = 1, 2) with J j j being the frequency shift of the giant atoms. The J12 term denotes
the exchange interaction between the two giant atoms. The Γ11 and Γ22 terms describe the individual decay of
the giant atoms 1 and 2, respectively, and the Γ12 term describes the collective decay of the two giant atoms.
D[o]ρ ≡ oρo† − {o†oρ + ρo†o}/2 is the Lindblad superoperator describing the decay of the giant atom.
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We note that the variables Ji j and Γi j are, respectively, the real and imaginary parts of the collective self-
energies Σi j(∆ + i0+) = Ji j − iΓi j/2. For a two-band model considered in this work, the collective self-energies
Σi j(z) are expressed as

Σi j(z) =
∑

k,

∑
α=u/l

⟨0|σ−j Hintα
†

k |0⟩ ⟨0|αkHintσ
+
i |0⟩

z − ωα(k)
, (17)

where the state |0⟩ ≡ |gg⟩|∅⟩ denotes that the two giant atoms are in their ground states and the fields in the SSH
waveguide are in the vacuum state |∅⟩. The operators uk and lk are the eigen-operators associated with the upper
and lower bands, and k is the wave vector within the first Brillouin zone, i.e., k ∈ [−π, π). After some lengthy
calculations, the collective self-energies in Equation (17) can be calculated as follows,

Σ11(z) =
2g2

L

∑
k

{z + z(α1α2 + β1β2) cos[k(n1 − n2)]

+ωkα1β2 cos[k(n1 − n2) + ϕ(k)]
+ωkα2β1 cos[k(n1 − n2) − ϕ(k)]}(z2 − ω2

k)−1,

Σ12(z) =
g2

L

∑
k

[z(α1e−ikn1 + α2e−ikn2)(α3eikn3 + α4eikn4)

+ f ∗(k)(α1e−ikn1 + α2e−ikn2)(β3eikn3 + β4eikn4)
+ f (k)(β1e−ikn1 + β2e−ikn2)(α3eikn3 + α4eikn4)
+z(β1e−ikn1 + β2e−ikn2)(β3eikn3 + β4eikn4)](z2 − ω2

k)−1,

Σ22(z) =
2g2

L

∑
k

{z + z(α3α4 + β3β4) cos[k(n3 − n4)]

+α3β4ωk cos[k(n3 − n4) + ϕ(k)]
+α4β3ωk cos[k(n3 − n4) − ϕ(k)]}(z2 − ω2

k)−1, (18)

and Σ∗12 = Σ21. Equation (18) indicates that the self-energies depend on the sign of the dimerization parameter δ
due to ϕ(k) appearing as a new phase in the expressions of the self-energies. In this case, quantum interference
effect comes from the joint contribution of the phase ϕ(k) and the propagating phase between coupling points.
Expanding Equation (18), we find that there are three types of functions:

Ani j(z) =
g2

L

∑
k

zeikni j

z2 − ω2
k

,

Bni j(z) =
g2

L

∑
k

ωkei[kni j−ϕ(k)]

z2 − ω2(k)
,

Cni j(z) =
g2

L

∑
k

ωkei[kni j+ϕ(k)]

z2 − ω2(k)
. (19)

6
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Figure 2: Energy levels and transitions in the eigen-representation of the two giant atoms. The parameters Γe± (Γ±g) denote the decay
rates for the transitions |ψe⟩ → |ψ±⟩ (|ψ±⟩ → |ψg⟩). The J j j (for j = 1, 2) is the Lamb shift of the giant atom j and ∆̃ is the energy
difference between the states |ψ+⟩ and |ψ−⟩.

Then, the collective self-energies Σi j(z) of the two giant atoms can be expressed with Equation (19) as

Σ11(z) = 2[An11(z) + (α1α2 + β1β2)An12(z)
+α1β2Bn12(z) + α2β1Cn12(z)],

Σ12(z) = (α1α3 + β1β3)An13(z) + (α2α3 + β2β3)An23(z)
+(α1α4 + β1β4)An14(z) + (α2α4 + β2β4)An24(z)
+α1β3Bn13(z) + α2β3Bn23(z)
+α1β4Bn14(z) + α2β4Bn24(z)
+α3β1Cn13(z) + α3β2Cn23(z)
+α4β1Cn14(z) + α4β2Cn24(z),

Σ22(z) = 2[An33(z) + (α3α4 + β3β4)An34(z)
+α3β4Bn34(z) + α4β3Cn34(z)]. (20)

In the thermodynamic limit (L → ∞), the sum
∑

k can be turn into an integral L
2π

∫
dk using the Weisskopf-

Wigner approximation. Applying the residual theorem and variable substitutions y ≡ eik for ni j ≥ 0 and y ≡ e−ik

for ni j < 0, Equation (19) can be rewritten as

Ani j(z) = −
g2z[y|ni j |

+ Θ+(y+) − y|ni j |

− Θ−(y+)]√
z4 − 4ξ2(1 + δ2)z2 + 16ξ4δ2

,

Bni j(z) = −
g2ξ[Fni j(y+)Θ+(y+) − Fni j(y−)Θ−(y+)]√

z4 − 4ξ2(1 + δ2)z2 + 16ξ4δ2
,

Cni j(z) = −
g2ξ[Pni j(y+)Θ+(y+) − Pni j(y−)Θ−(y+)]√

z4 − 4ξ2(1 + δ2)z2 + 16ξ4δ2
, (21)

where Fn(z) = [(1 + δ)z|n| + (1 − δ)z|n+1|], Pn(z) = [(1 + δ)z|n| + (1 − δ)z|n−1|], and Θ±(z) = Θ(±1 ∓ |z|), with Θ(z)
being the unit step function; ni j = n j − ni is the distance between the coupling points n j and ni. The two simple
poles in Equation (21) are

y± =
z2 − 2ξ2(1 + δ2) ±

√
z4 − 4ξ2(1 + δ2)z2 + 16ξ4δ2

2ξ2(1 − δ2)
. (22)

For simplicity, we here assume that the neighboring coupling points of the two giant atoms are equidistant (n4 −

n3 = n3 − n2 = n2 − n1 = d).
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4 Equations of motion for the density matrix elements in the eigenstate representation
ofH

In principle, we can achieve the evolution of the density matrix for the two giant atoms by solving the quantum
master equation (15). For understanding the evolution of the atoms more clearly, it will be better to work in the
eigen-representation of the HamiltonianH given in Equation (16). For the HamiltonianH , the total excitation
number operator is σ+1σ

−
1 + σ

+
2σ
−
2 , which is a conserved quantity due to [σ+1σ

−
1 + σ

+
2σ
−
2 ,H] = 0. The eigenstates

ofH in the zero- and two-excitation subspaces are

|ψg⟩ = |gg⟩ and |ψe⟩ = |ee⟩, (23)

respectively, with the corresponding eigenvalues 0 and ω′1 + ω
′
2. In the single-excitation subspace, the eigensys-

tem ofH is determined by the eigen-equaitonH|ψ±⟩ = λ±|ψ±⟩. Here, the eigenvalues are given by

λ± =
1
2

(ω′1 + ω
′
2 ± ∆̃) (24)

with ∆̃ =
√

(J11 − J22)2 + 4J2
12 being the energy difference. The corresponding eigenstates take the form as

|ψ±⟩ = N±

(
J11 − J22 ± ∆̃

J12
|eg⟩ + 2|ge⟩

)
, (25)

where the normalization constants are defined by

N± =

[
(J11 − J22 ± ∆̃)2

J2
12

+ 4
]−1/2

. (26)

To better exhibit the dynamics of the two atoms, below we work in the eigen-representation of the two-coupled
atoms (i.e., in the representation with respect toH). In Figure 2, we show the energy levels and transition rates
of the two giant atoms in the eigen-representation with the bases {|ψe⟩, |ψ±⟩, |ψg⟩}. In this representation, the equa-
tions of motion for these density matrix elements are given by

ρ̇ee(t) = −(Γ11 + Γ22)ρee(t),
ρ̇++(t) = i∆1[ρ−+(t) − ρ+−(t)] + Γe+ρee(t) + Γ++ρ++(t)

+Γ+−ρ+−(t) + Γ−+ρ−+(t),
ρ̇−−(t) = i∆1[ρ+−(t) − ρ−+(t)] + Γe−ρee(t) + Γ−−ρ−−(t)

+Γ+−ρ+−(t) + Γ−+ρ−+(t),

ρ̇+−(t) = −
(
Γ11 + Γ22

2
+ i∆2

)
ρ+−(t) + (Γ+− − i∆1)ρ++(t)

+(Γ−+ + i∆1)ρ−−(t) + Γ×ρee(t),

ρ̇−+(t) = −
(
Γ11 + Γ22

2
− i∆2

)
ρ−+(t) + (Γ+− + i∆1)ρ++(t)

+(Γ−+ − i∆1)ρ−−(t) + Γ×ρee(t),
ρ̇gg(t) = Γ+gρ++(t) + Γ−gρ−−(t) − 2Γ+−ρ+−(t) − 2Γ−+ρ−+(t).

(27)

where these density matrix elements are defined by ρµν ≡ ⟨ψµ|ρ|ψν⟩ for µ, ν = {e,±, g}. In addition, we introduce
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Figure 3: Scaled transition rates Γe±ξ/g2 and Γ±gξ/g2 for 16 coupling configurations in both the topological trivial phase (δ = 0.3) and
topological phase (δ = −0.3) of the SSH waveguide. The coupling-point distances d = 1 and d = 2 are set for panels (a) and (b), re-
spectively. Other parameter used is ∆ = ξ.

the following parameters

Γe± =
±η±Γ22 ∓ η∓Γ11 ± 4J12Γ12

2∆̃
,

Γ±g =
±η±Γ11 ∓ η∓Γ22 ± 4J12Γ12

2∆̃
,

Γ±± =
±η∓Γ22 ∓ η±Γ11 ∓ 4J12Γ12

2∆̃
,

Γ+− = Γ−+ =
(Γ11 − Γ22)

√
−η+η− + 2J12Γ12ζ

4∆̃
,

Γ× =
(Γ11 − Γ22)

√
−η+η− − 2J12Γ12ζ

2∆̃
,

∆1 =
(J11 − J22)

√
−η+η− + 2J2

12ζ

2∆̃
,

∆2 =
(J11 − J22)2 + 4J2

12

∆̃
, (28)

with

η± = J11 − J22 ± ∆̃,

ζ =

√
−
η−
η+
−

√
−
η+
η−
. (29)

The above results indicate that, by changing the coupling configurations, the sign of δ, and the size of the giant
atoms, it is possible to modulate the individual decay rates, the Lamb shifts, the collective decay rate, and the
exchange interaction between the two giant atoms. Further, the entanglement dynamics of the two giant atoms
can be controlled on demand.

In Figure 3a,b, we exhibit the value of these scaled transition rates Γe±ξ/g2 and Γ±gξ/g2 corresponding to
different coupling configurations and different values of the dimerization parameter δ when d = 1 and d = 2,
respectively. For different coupling-point distances, the quantum interference effect induced by the multiple cou-
pling points is different, and hence the transition rates exhibit different features. We find that the four transition
rates in the AAAA coupling are equal to those in the BBBB coupling. Meanwhile, the transition rates are im-
mune to the sign of δ in these two cases. For the remaining 14 couplings, the four transition rates depend on the
sign of δ. In addition, for the AAAA, BBBB, ABAB, BABA, AABB, and BBAA couplings, it can be proved
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that the eigenstates in Equation (25) are reduced to the symmetric and antisymmetric states. For these six cou-
pling cases, the two giant atoms in Figure 1a have the same frequency shift and the individual decay rate. There-
fore, the energy difference becomes ∆̃ = 2|J12| and the parameters η± are reduced to ±2|J12|. In these six cases,
the transition rates in Equation (28) satisfy the relations Γe± = Γ±g = Γ11 ± J12Γ12/|J12| when either δ > 0 or
δ < 0, as shown in Figure 3. For other ten couplings, the transition rates between the four collective states have
different features, exhibiting the generation of larger entanglement compared to the small-atom case.

5 The entanglement dynamics of the two giant atoms

To describe quantum entanglement between the two giant atoms, we adopt concurrence to quantitively measure
the entanglement for the density matrix ρ of the two giant atoms. For a two-qubit system, the concurrence is de-
fined by [87]

C(ρ) = max (0, λ1 − λ2 − λ3 − λ4) , (30)

where λi (for i = 1, 2, 3, and 4) are the square root of the eigenvalues of the matrix ρρ̃ in decreasing order, i.e.,
λ1 > λ2 > λ3 > λ4. The ρ is the density matrix of the two giant atoms, and ρ̃ ≡ (σy⊗σy)ρ∗(σy⊗σy), where the su-
perscript “ ∗ ” denotes complex conjugation in the bare-state bases {|ee⟩, |eg⟩, |ge⟩, |gg⟩}, and σy is the Pauli oper-
ator. The concurrence C(ρ) for the two giant atoms satisfies 0 ≤ C(ρ) ≤ 1. Below, we consider the entanglement
generation of the two giant atoms initially in both the single-excitation state |eg⟩ (|ge⟩) and the two-excitation
state |ee⟩.

5.1 The entanglement of the two giant atoms for the single-excitation initial states |eg⟩ and |ge⟩

In this subsection, we study the entanglement generation of the two giant atoms for the single-excitation ini-
tial states. Since each giant atom is coupled to the waveguide via two coupling cavities, the two giant atoms in
some configurations may not satisfy the permutation symmetry. Therefore, we consider these two initial states
|eg⟩ and |ge⟩ for the two atoms. Corresponding to the states |eg⟩ and |ge⟩, the nonzero density-matrix elements
are ⟨eg|ρ|eg⟩ = 1 and ⟨ge|ρ|ge⟩ = 1, respectively. For the single-excitation initial states, the two-atom system
can be understood as a three-level system with bases {|ψ+⟩, |ψ−⟩, |ψg⟩}. The coupling of the two atoms with the
waveguide will lead to the decay channels |ψ+⟩ → |ψg⟩ and |ψ−⟩ → |ψg⟩. By numerically solving quantum mas-
ter Equation (15) and using Equation (30), the time evolution of the concurrence for the two giant atoms can be
obtained. Note that the SSH waveguide is a highly structured bath, and hence the Born–Markovian approxima-
tion does not hold near the band edges. To ensure the validity of Equation (15), we consider the case where the
atomic level ∆ is inside the upper band and g ≪ ξ.

In Figure 4, we plot the concurrence C(t) of the two giant atoms as a function of the scaled time ξt under
different initial states for 16 coupling configurations. The red solid curve and red dots correspond to the parame-
ters (d = 1, δ = 0.3) and (d = 1, δ = −0.3), respectively. The blue solid curve and blue rhombuses correspond to
(d = 2, δ = 0.3) and (d = 2, δ = −0.3), respectively. Figure 4 shows that the entanglement generation depends on
the coupling configuration, the coupling distance, the atomic initial state, and the dimerization parameter δ.

For both the AAAA and BBBB coupling configurations, due to the permutation symmetry of the two giant
atoms, the concurrences in Figure 4a,p are characterized by the same evolution when the two giant atoms are ini-
tially in either |eg⟩ or |ge⟩. In particular, the concurrences in these two coupling configurations do not change
when the sign of δ is modulated such that the waveguide enters different topological phases. This means that
the concurrences are independent of the dimerization parameter in these two cases. As shown in Figure 4a,p, the
markers (for δ < 0) overlap with the solid curves (for δ > 0). To explain this feature, we substitute α1 = α2 =

α3 = α4 = 1 (for the AAAA-coupling case) or β1 = β2 = β3 = β4 = 1 (for the BBBB-coupling case) into Equa-
tion (18) and find that ΣAAAA

11 = ΣBBBB
11 = ΣAAAA

22 = ΣBBBB
22 and ΣAAAA

12 = ΣBBBB
12 . In addition, the phase ϕ(k) terms

in Equation (18) are equal to zero. According to the relation Σi j = Ji j − iΓi j/2, we know that the coefficients J11,
J22, J12, Γ11, Γ22, and Γ12 are independent of the phase ϕ(k) [see Equation (9)], and hence the concurrences in the
AAAA- and BBBB-couplings cannot be modulated by the dimerization parameter δ.

Figure 4b-o show the time evolution of C(t) for other 14 coupling configurations. In these cases, the phase
ϕ(k) works in Equation (18). Thus, the concurrences depend on the sign of δ when the two giant atoms are in

10



5.1 The entanglement of the two giant atoms for the single-excitation initial states |eg⟩ and |ge⟩

Figure 4: Time evolution of the concurrence C(t) of the two giant atoms when the initial state is either |eg⟩ or |ge⟩ corresponding to
different coupling configurations: a) AAAA, b) AAAB, c) AABA, d) AABB, e) ABAA, f) ABAB, g) ABBA, h) ABBB, i) BAAA, j)
BAAB, k) BABA, l) BABB, m) BBAA, n)BBAB, o) BBBA, and p) BBBB couplings. Other parameters used are g = 0.05ξ and ∆ = ξ.

the initial states |eg⟩ or |ge⟩. For most coupling configurations, the concurrences decay to zero as the time in-
creases. In particular, for the AAAB, AABA, AABB, ABBB, and BBAA coupling configurations, the concur-
rence decays very slowly under some parameter conditions. For example, in the AABB-coupling case, the con-
currences for the initial states |eg⟩ and |ge⟩ maintain mostly ≈ 0.5 in the concerned timescale, as shown by the
red dots in Figure 4d. To explain this feature, we substitute d = 1 and δ = 0.3 into Equation (28) and obtain
Γ−gξ/g2 ≈ 1.3 × 10−4. This result is consistent with that in Figure 3a. In this case, the population of the state |ψ−⟩
can maintain its initial value over a long timescale. This feature can also be observed in the AAAB- and ABBB-
coupling configurations, as shown by the blue dashed curves in Figure 4b,h. Therefore, by properly choosing the
parameters and the coupling configurations, we can generate a relatively steady entanglement between the two
giant atoms on a relatively long timescale.

We now analyze the influence of the initial states |eg⟩ and |ge⟩ on the entanglement dynamics in detail. Fig-
ure 4a,d,f,k,m,p shows that for the AAAA, AABB, ABAB, BABA, BBAA, and BBBB coupling configurations,
the concurrence of the two giant atoms in each coupling configuration has the same evolution features for the
initial states |eg⟩ and |ge⟩. This is because the two giant atoms have equal frequency shifts and individual decay
rates in these six coupling configurations, and the states |ψ±⟩ are reduced to the symmetric and antisymmetric
states, as discussed in Section 4. Meanwhile, the transition rate Γ+− and the parameters Γ×, ∆1, ∆2 are equal to
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5.2 The entanglement of the two giant atoms for the two-excitation initial state |ee⟩

zero. Therefore, Equation (27) is reduced to

ρ̇ee(t) = −(Γ11 + Γ22)ρee(t),
ρ̇++(t) = Γe+ρee(t) + Γ++ρ++(t),
ρ̇−−(t) = Γe−ρee(t) + Γ−−ρ−−(t),
ρ̇gg(t) = Γ+gρ++(t) + Γ−gρ−−(t). (31)

The coefficients Γe± and Γ±g in Equation (31) are given by Equation (28), and Γ j j (for j = 1, 2) is the individual
decay rate of the giant atom j.

According to Equation (31), the populations of the states |ψ±⟩ for any one of these six coupling configura-
tions are characterized by the same evolution. However, for other ten coupling configurations, the populations of
the states |ψ±⟩ are governed by Equation (27). Thus, the concurrences corresponding to the initial states |eg⟩ and
|ge⟩ exhibit different features. From Figure 4b,h,c,l,e,n,g,j,i,o, we find that the concurrences in other ten coupling
configurations satisfy the relation

CO1O2O3O4
eg(ge) (t) = CŌ4Ō3Ō2Ō1

ge(eg) (t), (32)

where the superscript denotes the coupling configuration with Oi ∈ {A, B} (for i = 1, 2, 3, 4), and the Ōi is the
complement of Oi (i.e., Ā = B and B̄ = A). The subscript eg (ge) marks the initial atomic state |eg⟩ (|ge⟩). Next,
we discuss the AAAB- and ABBB-coupling cases as an example to explain this phenomenon, and other four
pairs of coupling configurations share the same characteristics. For the AAAB- and ABBB-coupling configu-
rations, it can be proved that there exist the relations ΣAAAB

11 (z) = ΣABBB
22 (z), ΣAAAB

22 (z) = ΣABBB
11 (z), and ΣAAAB

12 (z) =
ΣABBB

12 (z), which result in JAAAB
11(22) = JABBB

22(11) , Γ
AAAB
11(22) = Γ

ABBB
22(11) , JAAAB

12 = JABBB
12 , and ΓAAAB

12 = ΓABBB
12 . Then the giant

atom 1 (2) in the AAAB coupling configuration is equivalent to the giant atom 2 (1) in the ABBB coupling con-
figuration. Therefore, in these five pairs of coupling configurations, the entanglement dynamics of the two giant
atoms in the initial state |eg⟩ for the O1O2O3O4 coupling configuration is the same as that in the state |ge⟩ for the
Ō4Ō3Ō2Ō1 coupling configuration.

Since the coefficients Ani j(z), Bni j(z), and Cni j(z) in the self-energies [Equation (20)] depend on the coupling-
point distance d, the self-energies Σi j(z) can be adjusted by changing the parameter d, and thereby the frequency
shift J j j, the individual decay rate Γ j j, the collective decay rate Γ12, and the exchanging interaction J12. Figure 4
shows that the evolution of the concurrence is sensitive to the parameter d. For example, when we take d = 2
and δ = 0.3, the concurrence for the AABA coupling configuration can exceed 0.5 and then decays to zero very
slowly (the blue dot-dashed curve for the state |ge⟩ in Figure 4c). However, when we take d = 1 and δ = 0.3, the
concurrence can only reach near 0.3 and then decreases very fast (the blue dots for the state |ge⟩ in Figure 4c).
Thus, the coupling-point distance also plays an important role in the entanglement generation of the two giant
atoms.

5.2 The entanglement of the two giant atoms for the two-excitation initial state |ee⟩

In this subsection, we study the entanglement generation of the two giant atoms initially in the two-excitation
state |ee⟩. Different from the single-excitation initial-state case, the dynamics of the two giant atoms in this case
can be understood as a four-level system, with two different decay channels. Due to the coupling with the SSH
waveguide, the two giant atoms first decay from the initial state |ee⟩ to a mixture of the states |ψ+⟩ and |ψ−⟩, with
the decay rates Γe+ and Γe−, respectively. This leads to the increase of the populations of these two states from
zero values. After the populations reach their maximal values, they decay gradually to the ground state |gg⟩, with
the corresponding decay rates Γ+g and Γ−g, respectively. In order to generate quantum entanglement of the two
giant atoms corresponding to the initial state |ee⟩, we need to choose proper parameters such that the two decay
channels are asymmetric.

To study the dependence of the two-atom entanglement on the coupling configurations, coupling-point dis-
tance, and the dimerization parameter, we show in Figure 5 the dynamics of the concurrence C(t) for these six-
teen coupling configurations when g = 0.05ξ and ∆ = ξ. Different from the single-excitation initial-state case,
the two-atom entanglement is generated at later times for the initial state |ee⟩. This phenomenon is known as the
delayed sudden birth of entanglement [88, 89], which is opposite to the sudden death of entanglement. At earlier
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5.2 The entanglement of the two giant atoms for the two-excitation initial state |ee⟩
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Figure 5: Concurrence Cee(t) of the two giant atoms initially in the two-excitation state |ee⟩ as a function of ξt when the coupling-point
distance d and the dimerization parameter δ take different values. The coupling configurations are: a) AAAA, b) AAAB, c) AABA,
d) AABB, e) ABAA, f) ABAB, g) ABBA, h) ABBB, i) BAAA, j) BAAB, k) BABA, l) BABB, m) BBAA, n)BBAB, o) BBBA, and p)
BBBB couplings. Other parameters used are g = 0.05ξ and ∆ = ξ.

times, there is no entanglement generation between the two giant atoms, but at some finite times atomic entan-
glement builds up suddenly.

We now analyze the dependence of the entanglement generation on the dimerization parameter δ and cou-
pling configurations in detail. Figure 5 shows that, except for the AAAA (Figure 5a) and BBBB (Figure 5p)
coupling configurations, the entanglement dynamics for other 14 coupling configurations can be modulated by
the sign of δ. This feature is consistent with the case of single-excitation initial states. Figure 5a,d,f,k,m,p shows
that, for the AAAA, AABB, ABAB, BABA, BBAA, and BBBB coupling configurations, the maximally achiev-
able entanglement is ≈0.03, which is negligibly small. It has been proved that the maximally generated entan-
glement of the two separate or braided giant atoms coupled to a 1D waveguide with linear dispersion relation is
also ≈0.03 [84, 85]. To realize a larger entanglement for the two-excitation initial state, the two giant atoms needs
to be coupled with the waveguide through the nested coupling configuration.

In our scheme, to realize a larger entanglement for the initial state |ee⟩, the four transition rates Γe± and Γ±g

should exhibit different behaviors. For this purpose, we consider that the two giant atoms couple to the waveg-
uide through other ten coupling configurations: AAAB, AABA, ABAA, ABBA, ABBB, ABBB, BAAA, BAAB,
BABB, BBAB, and BBBA. In these ten coupling configurations, we can realize the relations Γ+g > Γe+ > Γe− ≫

Γ−g or Γ−g > Γe− > Γe+ ≫ Γ+g, and then a larger entanglement can be generated. For example, the concur-
rence in the ABBA-coupling case can exceed 0.2 when d = 2 and δ = ±0.3. For the AAAB- and ABBB-
coupling configurations, the transition rates from the collective states |ψ±⟩ to the ground state |ψg⟩ satisfy the
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relation Γ−g ≪ Γ+g < ξ. This leads to a slow decay of the population of the state |ψ−⟩. Therefore, in these two
coupling cases, the entanglement generation arises from the population of the state |ψ−⟩. Though the transition
rate Γ−g is much smaller than ξ, it is not exactly equal to zero and hence the state |ψ−⟩ is not a dark state. How-
ever, within the concerned timescale, the concurrence almost maintains its maximal value, as shown by the green
dashed curves in Figure 5b,h. According to these analyses, we know that the optimal coupling configuration can
be chosen under the given system parameters. In addition, we would like to point out that the optimally gener-
ated entanglement does not always appear in the topological nontrivial phase (δ < 0), it can also exist in the
topological trivial phase (δ > 0), which depends on both the coupling configurations and the coupling-point dis-
tance.

By comparing the concurrences of the two giant atoms for the ten coupling configurations in Figure 5b,h,
c,l,e,n,g,j,i,o, it is straightforward to find the relation:

CO1O2O3O4
ee (t) = CŌ4Ō3Ō2Ō1

ee (t), (33)

where the subscript denotes the initial state of the two giant atoms. In this case, we can also divide these ten cou-
pling configurations into five pairs, similar to the single-excitation initial-state case. The correspondence relation
can also be confirmed from the panel pairs: (b)↔(h), (c)↔(l), (e)↔(n), (g)↔(j), and (i)↔(o).

For the two-excitation initial state |ee⟩, we discuss the influence of the coupling-point distance d on the en-
tanglement generation by taking some of the 16 coupling configurations as examples. As seen in the AAAA
coupling configuration, the concurrence only increases slightly when d increases from 1 to 2. However, for the
ABBA- and BAAB-coupling cases, the maximal value of the concurrence increases from 0.13 to 0.26. For the
ABAA- and BBAB-coupling cases, the maximal value of the concurrence decreases for a larger d. These results
mean that the concurrence has a different dependence on d for different coupling configurations and different
signs of δ.

6 Discussion

We now present some discussions to clarify the differences between this work and previously published works [60, 84, 85].
Concretely, the physical model, motivation, and results in this work are different from those in the two works [60, 84, 85].
Here, we study the couplings of two separate giant atoms with a structured topological SSH-chain waveguide,
which has a different dispersion relation from the linear waveguides considered in Refs. [60, 84, 85]. In addition,
to generate maximally long-lived entangled states, we could consider that the system is driven by a resonant
classical field [84] . Except for investigating the influence of the coupling configurations, the coupling distance,
and the atomic initial state on entanglement generation, we analyze the influence of the topological-dependent
phase ϕ(k) on the entanglement dynamics. The detailed analyses on the entanglement generation in different
coupling configurations and parameters could provide a guideline for experimental studies on the giant-atom
topological-waveguide-QED systems.

We want to point out that one of the original research motivations is to find a relationship between the giant-
atom entanglement and the topological properties of the waveguide. In particular, we expect that the relationship
can exhibit the same feature as the dependence of the winding number on the dimerization parameter. Namely,
when the SSH waveguide transits from the trivial phase to the topological phase, the giant-atom entanglement
will experience a sudden change. However, the perturbative treatment of the open system within the Wigner–
Weisskopf framework will erase the effect induced by the band gap or band edges. Therefore, in this paper, we
cannot obtain a simple expression describing the relationship between the generated entanglement and the topo-
logical parameter. Nevertheless, our results show that the topological-dependent phase ϕ(k) will affect the entan-
glement dynamics as an additional phase shift for some coupling configurations. Recently, the nonperturbative
treatment has been adapted to deal with the coupling of small atoms with an SSH waveguide [72], where some
unconventional quantum optical phenomena are predicted when the atomic transition frequency lies within the
bandgap regime of the SSH waveguide.

In this work, the intrinsic decay of the giant atoms is neglected, because this decay rate is much smaller than
the radiative decay rate in typical experiments [55]. However, when considering the intrinsic decay, the entangle-
ment generation of the two giant atoms will be suppressed. The larger values of the intrinsic decay rate result
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in reduced maximum entanglement between the two giant atoms and cause the concurrence to decrease more
rapidly to zero. In future research, it remains an interesting topic to study the entanglement dynamics of two
giant atoms when their resonance frequencies lie within the band gap. In addition, our scheme can also be ex-
tended to a trimer chain or generalized SSH model [75], which are good platforms to analyze the relationship be-
tween the giant-atom entanglement and the topological properties of the structured environment.

Finally, we present some discussions concerning the experimental implementation of our scheme. The giant
atoms have been realized in different platforms, such as transmon qubits coupled to surface acoustic waves [58, 90, 91],
Xmon qubits [55] or ferromagnetic spin ensembles [92] coupled to transmission lines. In our scheme, we consider
that the giant atom is implemented by a superconducting qubit and the SSH waveguide is implemented by the
coupled LC resonator arrays. In this platform, the realization of small atoms coupled to LC resonator arrays
has recently been reported [74, 93–95], including the coupling of small atoms with the SSH-type coupled cavity
array [74]. Note that the coupling strength between neighboring LC resonators can be adjusted experimentally
via periodical modulations [96], and hence the SSH waveguide can be tuned from the trivial phase to the topolog-
ical phase by changing the coupling between different resonators. All these advances confirm the experimental
feasibility of this scheme with current and near-future conditions.

7 Conclusion

In conclusion, we have studied the entanglement dynamics of two two-level giant atoms coupled to a 1D pho-
tonic SSH waveguide. We have focused on the two-atom separate coupling configurations, and considered 16
coupling configurations between the two giant atoms and the waveguide. We have also derived a quantum mas-
ter equation to govern the evolution of the two giant atoms. The dissipation coefficients and the dipole–dipole
interaction strength in the master equation have been obtained by calculating the self-energies of the two giant
atoms. Based on the quantum master equation, we have characterized the entanglement dynamics of the two
giant atoms by calculating the concurrence of the two-atom states for three different atomic initial states: the
single-excitation states |ge⟩ and |eg⟩, and the two-excitation state |ee⟩. Except for the AAAA and BBBB cou-
pling configurations, the entanglement dynamics of the two giant atoms in the other 14 coupling configurations
depend on the dimerization parameter of the SSH waveguide. By comparing the self-energies of the two giant
atoms for the 16 coupling configurations, we have found that ten of these 16 coupling configurations can be di-
vided into five pairs. It is shown that the entanglement dynamics exhibits different features for the above five
pairs of coupling configurations in the initial states |ge⟩ and |eg⟩. In addition, we also achieved long-lived en-
tanglement by adjusting the decay process of the two-atom system. In the two-excitation initial state, we have
shown that, for these five pairs of coupling configurations, the maximally achievable entanglement is largely en-
hanced compared to the small-atom scheme and the other six coupling configurations. This work will pave the
way for the study of quantum effects and quantum manipulation in giant-atom topological-waveguide-QED sys-
tems.
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[22] D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. As-
pelmeyer, Phys. Rev. Lett. 2007, 98, 030405.

[23] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, Science 2013, 342, 710.

[24] J. Q. Liao, Q. Q. Wu, F. Nori, Phys. Rev. A 2014, 89, 014302.

[25] Y. F. Jiao, S. D. Zhang, Y. L. Zhang, A. Miranowicz, L. M. Kuang, H. Jing, Phys. Rev. Lett. 2020, 125,
143605.

[26] D. G. Lai, J. Q. Liao, A, Miranowicz, F. Nori, Phys. Rev. Lett. 2022, 129, 063602.

[27] A. S. Sheremet, M. I. Petrov, I. V. Iorsh, A. V. Poshakinskiy, A. N. Poddubny, Rev. Mod. Phys. 2023, 95,
015002.

[28] D. Roy, C. M. Wilson, O.Firstenberg, Rev. Mod. Phys. 2017, 89, 021001.

16



REFERENCES

[29] J. T. Shen, S. Fan, Opt. Lett. 2005, 30, 2001.

[30] J. T. Shen, S. Fan, Phys. Rev. Lett. 2005, 95, 213001.

[31] L. Zhou, Z. R. Gong, Y. X. Liu, C.P. Sun, F. Nori, Phys. Rev. Lett. 2008, 101, 100501.

[32] T. S. Tsoi, C. K. Law, Phys. Rev. A 2008, 78, 063832.

[33] T. Shi, C. P. Sun, Phys. Rev. B 2009, 79, 205111.

[34] J. Q. Liao, J. F. Huang, Y. X. Liu, L. M. Kuang, C. P. Sun, Phys. Rev. A 2009, 80, 014301.

[35] T. S. Tsoi, C. K. Law, Phys. Rev. A 2009, 80, 033823.

[36] J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, F. Nori, Phys. Rev. A 2010, 81, 042304.
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