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Abstract

In this manuscript, we provide a general theory for how surface phonons couple to molec-
ular adsorbates. Our theory maps the extended dynamics of a surface’s atomic vibrational
motions to a generalized Langevin equation, and by doing so captures these dynamics in a sin-
gle quantity: the non-Markovian friction. The different frequency components of this friction
are the phonon modes of the surface slab weighted by their coupling to the adsorbate degrees
of freedom. Using this formalism, we demonstrate that physisorbed species couple primarily
to acoustic phonons while chemisorbed species couple to dispersionless local vibrations. We
subsequently derive equations for phonon-adjusted reaction rates using transition state theory
and demonstrate that these corrections improve agreement with experimental results for CO
desorption rates from Pt(111).

1 Introduction
The atomic vibrations of a solid surface can significantly influence the rates and mechanisms of
surface chemical processes.1–4 Unraveling these influences experimentally is difficult, necessitat-
ing the development of theoretical tools. In this manuscript, we introduce a theory for the coupling
between the nuclear dynamics of surface-bound (adsorbed) molecules and the vibrations of the
underlying surface. Our theory projects the collective surface vibrations onto the motion of the
adsorbate, and in doing so captures how surface phonons spanning several order of magnitude in
length/energy scale influence adsorbate dynamics.

Over the past four decades, a multitude of experimental and theoretical studies have demon-
strated how surface vibrations affect reaction dynamics at solid interfaces. For example, several
studies have shown that surface atom motion plays a central role in the dissociation of methane and

1

ar
X

iv
:2

30
9.

08
44

7v
3 

 [
ph

ys
ic

s.
ch

em
-p

h]
  2

 M
ay

 2
02

4



molecular nitrogen on a variety of different metal surfaces.5–17 Certain experiments have utilized
piezoelectric drivers to generate surface acoustic waves and demonstrated that waves of particular
frequencies and polarizations are capable of enhancing some reactions, such as the oxidation of
ethanol or carbon monoxide.18–25 While several mechanisms have been proposed to explain this
rate enhancement, the origin of this effect remains largely uncertain.25 Much of this uncertainty
stems from the inability of current theory to connect the lengthscales and timescales of atomistic
dynamics with the mesoscopic scale of experimentally relevant surface acoustic waves.26 The the-
oretical approach that we present here is capable of effectively connecting these scales and thereby
providing new physical insight into the roles of surface vibrations in surface chemical reactions.

Our theoretical model describes the motion of surface-bound molecules via a generalized
Langevin equation (GLE). The central parameter of this equation is the non-Markovian friction
kernel (or memory kernel), which encapsulates the different surface vibrational modes weighted
by their coupling to the adsorbate. This friction kernel can be developed to represent surface modes
with wavelengths well beyond that of a typical simulation cell, thereby eliminating a common
source of finite-size effects. Using this formalism, we demonstrate that the influence of surface
phonons on the dynamics of an adsorbed molecule depends significantly on the magnitude of the
adsorbate-surface coupling. Specifically, we find that chemisorbed species couple primarily to dis-
persionless local vibrations, while physisorbed species couple primarily to acoustic phonons across
a broad range of frequencies. The key parameter that determines whether the primary influence of
surface vibrations is via extended or localized phonon modes is the ratio of the solid’s Debye fre-
quency to the frequency of the adsorbate-surface bond (Fig. 1). By combining these observations
with harmonic transition state theory, we derive equations that describe how phonons alter reaction
rates at solid surfaces, and demonstrate that these phononic corrections agree with experimental
measurements of desorption rate constants.

The approach we present in this manuscript extends a previous method for utilizing the GLE for
describing the influence of surface vibrational modes on molecular adsorbates.27,28 In the previous
method, the GLE was designed to describe the collective influences of the surrounding solid on a
single representative surface atom (i.e., binding site). In the method we present here, the GLE is
designed to describe the influence of the entire surface on the dynamics of the adsorbate itself. This
new approach is more easily interpretable because the friction kernel directly represents influence
of surface phonons on the adsorbate.

The remainder of the paper is organized as follows. In Section 2, we present the formal theory
behind the phonon-induced GLE and highlight the characteristics of the friction kernel. Along with
the derivation of our theoretical method, we present its application to a simple model system of
an adsorbate whose surface bond has a tunable frequency. We then analyze results for the friction
kernel across a range of values for adsorbate-surface bond frequency. In Section 3, we provide
further insight into the results presented in Section 2 by analyzing the role of dispersion plays
in the phonon-induced friction. Finally, in Section 4, we develop a formulation of the transition
state theory desorption rate that explicitly accounts for the influence of surface phonon modes.
We validate this formulation by demonstrating an improved agreement with experiments of CO
desorption from Pt(111).
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Figure 1: 2D schematic illustrating the dominant phonon modes in terms of their coupling to the
adsorbate or contribution to the friction kernel. ωas is the frequency of the adsorbate-surface bond
and the ωD is the solid’s Debye frequency.

2 Coupling surface vibrations to adsorbates

2.1 Theory
In this section, we derive a theory for modeling the effects of surface vibrations on the dynamics
of an adsorbate. The general approach involves integrating out the nuclear degrees of freedom of
the solid and representing their influence as effective equations of motion for the adsorbate. In
order to do so we must make two critical assumptions. First, we assume that the nuclear degrees
of freedom of the adsorbate and solid can be described classically and adiabatically. There are
cases where adsorbate dynamics are non-adiabatic, and in such cases a mixed quantum-classical
GLE approach has been shown to be effective,29,30 however the development and analysis of such
a theory is beyond the scope of this paper. Second, we assume that the solid potential energy
surface and surface-adsorbate interaction are both harmonic. This approximation simplifies the
formulation of the theory and is appropriate for the development of generalizable physical insight.
We note that the effects of anharmonicity can be incorporated into the theory, which would be a
natural target of future developments.

To begin, we define xA and xS as the the mass-weighted displacements of the adsorbate and
solid nuclei, respectively, from their equilibrium positions. We decompose the total potential en-
ergy into contributions from the adsorbate and solid,

V (xA,xS) =VA(xA)+VAS(xA,xS)+VS(xS), (1)

where VA is the adsorbate potential energy containing all intramolecular and intermolecular inter-
actions, VS is the solid potential energy surface, and VAS the adsorbate-solid interaction. A second-
order expansion of VAS and VS around the equilibrium nuclear positions invites the definition of
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the matrices GAS, GA, GS, and HS, whose elements are given by,

GAS;i j =
∂ 2VAS

∂xA;i∂xS; j
, (2)

GA;i j =
∂ 2VAS

∂x2
A;i

δi j, (3)

GS;i j =
∂ 2VAS

∂x2
S;i

δi j, (4)

HS;i j = GS;i j +
∂ 2VS

∂xS;i∂xS; j
, (5)

where δi j is the Kronecker delta, HS is the solid’s mass-weighted Hessian, GAS is the coupling be-
tween adsorbate and solid degrees of freedom, and GA and GS are diagonal matrices of oscillation
frequencies for the adsorbate and solid degrees of freedom respectively. All derivatives in Eqs. 2-5
are evaluated the equilibrium nuclear positions.

The expansion of VAS and VS can be manipulated to generate equations of motion for adsorbate,

..xA =−∂VA

∂xA
−GAxA −GASxS, (6)

and solid atoms, ..xS =−GT
ASxA −HSxS. (7)

By utilizing a second-order expansion, we impose a harmonic approximation on the model. It is
convenient to describe the nuclear displacements of the solid in a basis of phonon modes. Thus,
we introduce solid phonon coordinates, uS = UT xS, here U is a matrix with the eigenvectors of HS
as columns. In terms of these coordinates the equations of motion may be expressed as,

ẍA =−∂VA

∂xA
−GAxA −CuS, (8)

üS =−CT xA −ωωω2uS, (9)

where C = GASU is a matrix of couplings between each adsorbate coordinate and solid phonon
mode, and ωωω2 = UT HSU is a diagonal matrix of the squared frequencies of the solid phonons.
Combining Eq. 8 and Eq. 9 yields a GLE for the adsorbate degrees of freedom,31,32

..xA =−∂VA

∂xA
− [GA −K(t = 0)]xA(t)−

∫ t

0
K(t − τ) .xA(τ)dτ +R(t), (10)

where the friction kernel K(t) is given by,

K(t) = C
cos(ωωωt)

ωωω2 CT , (11)

and the statistics of the random force R(t) are related to K(t) by the second fluctuation-dissipation
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theorem, 〈
R(t)RT (0)

〉

kBT
= K(t). (12)

The positive frequency components of the Fourier transform of the friction kernel are (up to a
multiplicative constant),

K̄ab(ω) = ∑
j

Ca jCb j

ω2
j

δ (ω −ω j), (13)

where ω j is the frequency of jth phonon mode of the solid. Alternatively, we can express this
quantity as,

K̄ab(ω) =
Ca(ω)Cb(ω)

ω2 ρ(ω), (14)

where ρ(ω) is the density of phonon modes at frequency ω .
Some insight can be derived by studying the formulation above. Equation 10 illustrates that

within the harmonic approximation, the influence of phonon modes on adsorbates can be described
entirely in terms of K(t), as it determines both the properties of R(t) via the fluctuation-dissipation
theorem and the deviation of the adsorbate potential from that of an adsorbate on a fixed solid.
Equations 13 and 14 reveal that the Fourier transform of K(t) can be interpreted as the phonon
density of states reweighted by the value of the adsorbate-phonon coupling C. Indeed, K̄ab(ω) is
often referred to as the spectral density of the environment.

In some cases Eqs. 11 and 13 may further be simplified by stating that adsorbates couple only
to a handful of surface sites and thus the matrices GAB and C are sparse. For example, consider
the case of an adsorbate that interacts with a single surface atom via a single adsorbate atom (e.g.
CO on Pt(111)33,34). If the force constant associated with this interaction is µω2

as, where µ is the
reduced mass of the adsorbate and surface atom, Eqs. 11 and 13 may be simplified to,

K(t) =
µ2

mM
ω4

as ∑
j

U2
s j

ω2
j

cos(ω jt), (15)

K̄(ω) =
µ2

mM
ω4

as ∑
j

U2
s j

ω2
j

δ (ω −ω j), (16)

where Us j is the expansion coefficient of the surface displacement s in the jth normal mode, m is
the mass of the adsorbate atom, and M is the mass of the surface atom.

The formulation above provides a framework for representing the influence of surface phonons
on an adsorbate implicitly via the GLE. With a well-defined model of an adsorbate, surface, and
their interactions, the friction kernel can be calculated. In the following subsection, we illustrate
the application of this formalism to simple model systems.

2.2 Results and discussion
We have computed the phonon friction kernel for a simple model of CO on Pt(111). The CO
was modeled as a single adatom and assumed the interact with a single adsorption site, as exper-
imental structures show that CO adsorbs primarily atop Pt(111) sites.33,34 We artificially vary the
adsorbate-surface frequency ωas over a range of physically motivated values, in order asses how
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the strength of the adsorbate-surface interaction affects the properties of the friction kernel. The
metal potential energy surface VS was modeled using an effective medium theory (EMT) forcefield
developed by Norskov et al.35 More details about calculations can be found in the Section 5.
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Figure 2: (A) Friction kernel, (B) spectral density, and (C) density of states for Pt(111) and three
values of ωas. The density of states in (C) was calculated using the 4x4x8 surface slab.

Fig. 2 illustrates the results of our calculations for a selected set of ωas values ranging from
those characteristic of weakly adsorbed species to those characteristic of strongly adsorbed species.
We plot the friction kernel computed in the direction normal to the surface in systems with either
a 4x4x8 or 8x8x8 Pt(111) slab. The lower values of ωas that we consider lie below that of the
platinum’s Debye frequency of ωD = 156cm−1. We associate these values with the physisorbed
regime, as they are characteristic of weakly adsorbed systems such as noble gases on Pt(111).36

The higher values of ωas that we consider are associated with the chemisorbed regime, correspond-
ing to physical systems such as CO on Pt(111), which has ωas ≈ 480 cm−1).34,37,38 Delta function
peaks in K̄(ω) and ρ(ω) were broadened to thin Lorentzians of width 1cm−1 for ease of visu-
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alization. It is important to note that the non-decaying oscillations in K(t) are a consequence of
the harmonic approximation. Accounting for anharmonicities will cause the memory kernel to
asymptotically decay at long-times.

For all cases of ωas, the adsorbate couples strongly to a surface acoustic mode appearing around
ω = 10cm−1. The location of this peak is highly dependent on the dimensions of the simulated
surface slab, consistent with the behavior of an acoustic phonon. In Sec. 3, we give a more de-
tailed theoretical and numerical analysis of the size effects observed here, fully accounting for
phonon dispersion. In the physisorbed regime, the friction kernel is dominated by this acoustic
mode, resulting in highly non-Markovian behavior. The phonon mode associated with this peak is
associated with the flexing of the lattice in the direction perpendicular to the surface. Snapshots of
this motion are provided in the insets in Fig. 1 and video animations are provided in the electronic
SI.

In the chemisorbed regime, the friction kernel is dominated by a high frequency mode around
ω = 210 cm−1. This mode arises from the local oscillations of the surface site the adsorbate is
bound to. The frequency of this mode is independent of simulation cell size, suggesting that it
is dispersionless. The large amplitude of this mode signifies that in the chemisorbed limit, the
adsorbate is primarily sensitive to the local oscillations of the surface binding site (which are
shifted in frequency due to the presence of the adsorbate). Many published models for reactive
scattering on solid surfaces will describe solid vibrations using only a single, harmonically bound
surface atom.6,39–42 These results explain why such a method is successful for strongly coupled
species.

Despite this large shift in the spectral density when varying ωas, in Fig 2C we demonstrate
that the phonon density of states is nearly identical to that of a bare surface. The only significant
change in ρ(ω) is the presence of the aforementioned surface site local mode present around
ω = 210 cm−1. These results make physical sense given that the low frequency acoustic modes of
a solid should be unaffected by gaseous species, especially at low pressures and surface coverages.

To evaluate the effect of the solid force field and structure on these results, we have tested
several different crystal structures, facets, elemental compositions, and force fields. The results
of these tests are presented in the Section S1 of the SI. While the quantitative properties of the
friction kernel vary across different systems (e.g. Ru has a much higher Debye frequency than Pt),
the qualitative dependence of the friction kernel on ωas is quite general. This independence with
respect to the details of the atomistic model is appealing and can be understood from a perturbative
perspective. Specifically, in the physisorbed limit, the motion of the surface binding site is a small
perturbation to the bulk phonon modes, while in the chemisorbed limit, the bulk phonon modes are
a small perturbation to the motion of the surface binding sites. In the SI, we rigorously examine this
statement by comparing perturbative schemes to the exact results for K(t) and K̄(ω). Perturbation
theory also allows us to derive analytical approximations to the friction kernel (Eqs. S10-S12) and
precisely define the "phase boundaries" in Figure 1.

We acknowledge that in this section we have only studied the effects of phonons for an ideal
clean surface. Presumably, sources of surface heterogeneity, such as steps and defects, may add
further richness and complexity to the picture we have provided here. We also note that we have
only studied elemental solids, and the optical modes of polyatomic crystals could add another in-
teresting dimension to our physical picture. Finally, in this section we have only studied species at
a gas-solid interface. Many important surface-chemical processes occur at liquid-solid interfaces,
where it has been demonstrated sorption dynamics play a critical role in electrokinetic transport
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and measurements43.

3 Phonon dispersion
The dependence of the acoustic peak frequency on simulation size, such as illustrated in Fig. 2,
is an artifact that has the potential to prevent straightforward comparison between experiment and
simulation. With or without periodic boundary conditions, the size of the simulated solid limits the
maximum wavelength surface phonon. In this section, we illustrate how to generalize the theory
presented in Section 2 by computing the friction kernel in the limit of an infinite surface through
integration of frequencies and eigenmodes across the first Brillouin zone.

In an infinite crystalline solid, displacement by a lattice vector returns the same solid. This
symmetry can be leveraged to calculate the phonon frequencies and displacements of the bulk
solid using a spatial Fourier transform of the mass-weighted Hessian. This approach leads to the
well-known Bloch’s theorem, which is summarized as follows. Let a and b be the indices of two
primitive unit cells, and let HS(a,b) be the mass-weighted Hessian of the crystal, HS;i j(a,b) =

∂ 2V
∂xS,i(a)∂xS, j(b)

. The Fourier transform of this matrix may be expressed as,

D(k) = ∑
a,b

HS(a,b)eik·(ra−rb), (17)

where ra is the origin of the ath cell. D(k) is known as the dynamical matrix satisfying,

D(k)U j(k) =−ω2
j (k)U j(k). (18)

where ω j is the jth phonon band frequency and U j is the corresponding polarization vector. For 3D
monatomic crystals, the primitive (Wigner-Seitz) cell consists of a single atom with three degrees
of freedom, thus producing three phonon bands. These bands, illustrated in Fig. 3 for FCC plat-
inum, are the acoustic transverse and longitudinal modes, and all characterized by linear dispersion
at low wavenumber.

In a surface slab, the presence of anisotropy breaks the symmetry of the 3D crystal. This sym-
metry breaking leads to additional surface mode bands, which can be acoustic (Rayleigh waves),
or non-acoustic in character.44–46 In Fig. 4B. and 4C. we demonstrate the phonon dispersion of
a Pt(111) surface calculated via EMT. These results were calculated using a 4x4x8 surface repli-
cated in a 6x6 super-cell. We verified convergence with respect to supercell size. Of course, the
number of surface phonon bands depends on the size of the surface unit cell used in computing
D(k), however, we demonstrate in in Fig. S7 results are qualitatively similar across different unit
cell sizes.

Figure 3B illustrates the phonon dispersion for a bare surface, while Figure 3C illustrates the
dispersion for a surface with an adsorbed CO. The bands are colored based on their mean slope be-
tween the Γ and K high-symmetry points. The three lowest frequency bands are all surface acoustic
modes, as exemplified by the flexing mode depicted in the inset of Fig. 1, confirming that the cor-
responding peak in the phonon spectral density in Fig. 2 arises from an acoustic phonon. The
remaining modes are nearly dispersionless — especially the highest frequency mode in Fig. 3C,
which corresponds to the surface site local vibration. The dispersionless nature of this mode sup-
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Figure 3: Phonon dispersion curves. (A) Bulk Pt dispersion curves calculated using an EMT
forcefield and a 10x10x10 atom supercell. (B) Dispersion curves for a 4x4x8 atom surface slab
replicated in a 6x6 surface cell (C) Same as middle but with an adsorbed CO molecule correspond-
ing to ωAS = 480 cm−1.

ports why it was not seen to be dependent on surface slab size in Fig. 2.
Using these dispersion relations, we can average the friction kernel across the first Brillouin

zone,

K(t) =
µ2

mM
ω4

as ∑
j
∑
k

′
∣∣Us j(k)

∣∣2

ω j(k)2 cos(ω j(k)t), (19)

K̄(ω) =
µ2

mM
ω4

as ∑
j
∑
k

′
∣∣Us j(k)

∣∣2

ω j(k)2 δ (ω −ω j(k)), (20)

where the primed summation is taken over all wavevectors in the first Brillouin zone and the sum
over j is taken over all surface unit cell phonon modes. Equations 19 and 20 simply separate the
sum in Eqs. 15 and 16 into two parts: the outer sum varying intra-cell displacements and the inner
sum varying inter-cell displacements. In principle, this procedure eliminates the dependence on
boundary conditions and generalizes results from a surface unit cell to an infinite periodic surface.
However, the depth of the surface (corresponding to the non-periodic dimension) is still limited to
the depth of the surface unit cell.

Figure 4 demonstrates the results of Eqs. 19 and 20 and compares to previous results for a
single unit cell slab. Naturally, the strong coupling of the adsorbate to a single acoustic mode is
broadened, resulting in a much flatter spectral density in the low frequency ranges. Such a flat
spectral density is characteristic of Markovian (white) noise. The high frequency range of the
spectral density is largely unaltered, due to the dispersionless nature of the high frequency modes.
In the SI, we discuss how a flat spectral density for acoustic phonons is consistent with predictions
from continuum elastic theory.

4 Phonon effects on reaction rates
One of the primary motivations for studying the atomic vibrations of a solid surface is to elucidate
the role of phonons in reactions rates at catalytic interfaces. As was noted first by Kramers,47 and
expanded on by many others,48–51 the friction of the environment plays a critical role in determin-
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Fig. 2.

ing reaction rates, and especially in determining rate prefactors. In this section, we use transition
state theory (TST) to demonstrate how surface phonons affect reaction rates, emphasizing the role
of the phonon friction kernel. We then specialize to the case of desorption rates and compare the
results of our model to experimental temperature dependent rate constants for CO and Xe desorp-
tion from Pt(111). Several details of the formalism given this section have been omitted for the
purpose of providing a concise presentation of the theory that focuses on physical ramifications. A
thorough presentation of the theory is provided in the SI for interested readers.

4.1 Transition State Theory
4.1.1 General theory

The Eyring transition state theory (TST) equation for the rate constant may be expressed as,

k =
1

βh
Q‡

QR
e−β∆E‡

, (21)

where h is Planck’s constant, ∆E‡ is the potential energy difference between the reactant state
and the transition state, Q‡ is the partition function at the transition state, and QR is the partition
function in the reactant basin. By expanding said partition functions to second order about the
transition state and the reactant basin, respectively, we can generate analytical expressions for QR
and Q‡ yielding,

k =
1

2π
×

N−1
∏
i=0

fi

N−1
∏
i=1

f ‡
i

× e−β∆E‡
, (22)

where N is the total number of modes, fi are the vibrational frequencies in the reactant basin, f ‡
i

are the non-imaginary vibrational frequencies at the transition state. Note that since the transition
state is defined to be a saddle point, it always has one imaginary frequency mode and this mode
corresponds the reaction coordinate. In a gas phase molecular reaction, fi is the ith eigenfrequency
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of the molecular mass-weighted Hessian. However, in a reaction at a surface interface, both surface
phonon modes and molecular/adsorbate modes will contribute to the rate constant. We thus sep-
arate the product of eigenfrequencies into contributions from the solid surface and the molecular
adsorbate to yield,

k =
1

2π
×

NS−1

∏
i=0

ωi

ω‡
i

×

NA−1
∏
i=0

f̃i

NA−1
∏
i=1

f̃ ‡
i

× e−β∆E‡
, (23)

where NS and NA are the number of solid and adsorbate degrees of freedom respectively (NS+NA =
N)), ωi and ω‡

i are the phonon frequencies in the reactant and transition state respectively, and f̃i

and f̃ ‡
i are effective molecular frequencies in the reactant and transition state respectively. Let

HA be the mass-weighted Hessian of the adsorbate degrees of freedom, then f̃i and f̃ ‡
i are the

eigenfrequencies of an effective Hessian,

H̃A = HA −Cωωω−2CT , (24)

where the shift term is equal to the instantaneous (t = 0) friction, K(t = 0) = Cωωω−2CT .
Comparing Eqs. 22 and 23 reveals that phonons introduce two distinct corrections to rate con-

stant: the ratio of solid phonon frequencies between the reactant and transition state, and the shift
in adsorbate frequencies. The ratio of phonon frequencies is largest when the reactant molecules
are strongly coupled to the surface and the transition state is not. In Fig. 2C we demonstrated that
an adsorbate strongly coupled to a surface affects only the highest frequency phonon mode, leaving
the bulk of the phonon density of states unchanged. Thus, we can approximate the ratio of phonon
frequencies as,

NS−1

∏
i=0

ωi

ω‡
i

≈ ω̃D

ωD
, (25)

where ω̃D is the highest frequency phonon mode when the reactants are bound to the surface and
ωD is the bare solid Debye frequency. The factor of ω̃D is directly related to our observation that
chemisorbed species couple strongly to local modes above the natural Debye frequency of the
metal. The outsized influence of these modes on the dynamics of the chemisorbed species reflects
why it appears in the expression for the rate constant. For physisorbed species ω̃D

ωD
= 1.

The shift in the adsorbate frequencies is a thermodynamic correction arising from phonons
altering the free energy surface along the reaction coordinate. Indeed, if we denote f̃0 as the
adsorbate normal mode along the reaction coordinate Eq. 23 can be simplified to,

k =
f̃0

2π
×

NS−1

∏
i=0

ωi

ω‡
i

× e−β (∆E‡+T ∆S̃‡), (26)

where ∆S̃‡ is the effective barrier entropy,

∆S̃‡ = kB

NA−1

∑
i=10

ln

(
f̃ ‡
i

f̃i

)
. (27)
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In the harmonic approximation this barrier entropy is independent of temperature, but in a more
general context it can be shown to be temperature dependent.

In Eqs. 23 and 26, the influence of the phonon friction kernel on the rate constant is both
explicit and implicit. It is explicit in terms of K(t = 0), but also implicit in ratio of normal mode
frequencies. The dependence of this ratio on the friction kernel can only be made explicit if ad-
ditional simplifications are made. Notably, under the condition that the coupling between the
adsorbate degrees of freedom and the solid degrees of freedom C is the same in both the reactant
basin and transition state, harmonic TST reduces to Kramers-Grote-Hynes(KGH) theory, where
the rate prefactor is explicitly related to the Laplace transform of the friction kernel.52 However,
such a condition is not appropriate even in simple desorption processes, and therefore we do not
directly use KGH theory here. See the SI (Section S6) for additional details on KGH theory.

4.1.2 Surface desorption

The formalism described in the previous subsection can be applied to derive a rate constant for sur-
face desorption. For gas-phase desorption, the reaction coordinate can be defined as the distance of
the adsorbate center of mass from the surface. Furthermore, in many cases, the desorption process
is barrierless, meaning that at the transition state the molecule and surface do not interact.53 Thus,
we can adapt Eq. 25 to express the gas-phase desorption rate constant,

kd =
ω̃as

2π
× ω̃D

ωD
× e−β∆E‡

, (28)

where ω̃as is the effective adsorbate-surface interaction frequency satisfying,

ω̃as =

√
µ
m

ω2
as −K(t = 0). (29)

While transition state theory is primarily a classical theory,54–57 studies have demonstrated
improved agreement with experiment when introducing simple quantum corrections, such as ac-
counting for the rotational motion of the molecule or using quantum harmonic oscillator partition
functions instead of classical oscillator partition functions.53,58 We will thus compare four differ-
ent models for the desorption rate constant to experimental results: (1) a fixed-surface model using
classical harmonic oscillator partition functions and a rotation correction,

kd1 =
ωas

2π
× 2I

ℏ2β
× e−β∆E‡

, (30)

where I denotes the moment of inertia of the adsorbate. (2) a phonon-corrected model using
classical harmonic oscillator partition functions and a rotational correction,

kd2 =
ω̃as

2π
× ω̃D

ωD
× 2I

ℏ2β
× e−β∆E‡

, (31)

(3) a fixed-surface model using quantum harmonic oscillator partition functions and a rotational
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correction,

kd3 =
1− e−βℏωas

2πβℏ
× 2I

ℏ2β
× e−β∆E‡

, (32)

and (4) a phonon-corrected model using quantum harmonic oscillator partition functions and a
rotational correction,

kd4 =
1− e−βℏω̃as

2πβℏ
× 1− e−βℏω̃D

1− e−βℏωD
× 2I

ℏ2β
× e−β∆E‡

. (33)

Note that by "fixed-surface" we do not mean a surface at absolute zero, but rather a surface that
acts as an ideal, structureless, thermal environment.

4.2 Results and discussion
We have compared results from Eqs. 30 to 33 to experimental temperature-dependent desorption
rate constants for CO and Xe from a Pt(111) surface. Parameters used in computing Eqs. 30 to 33
are presented in Table 1. We ignore the rotational partition function factors for Xe calculations.
The phonon corrections in Eq. 31 and Eq. 33 were computed using a 4x4x8 EMT surface slab
and subsequently averaged across the first Brillouin zone to approximate an infinite surface, as
described in Sec. 3. In the SI, we illustrate that the rate constant corrections we present here are
not sensitive to the size of the surface slab used, or whether one accounts for phonon dispersion.

Table 1: Parameters used for computing desorption rate constants shown in Fig. 5.

E‡

(eV)
ωas
(cm−1)

ω̃as
(cm−1)

ω̃D
(cm−1)

CO 1.4758 48034 164 203
Xe 0.24559 2836 21 156

The CO desorption rate constants were taken from Ref. 58 and the Xe desorption rates were
taken from Ref. 59. In Ref. 58, desorption rate constants were calculated by fitting the time-
dependent flux from a beam scattering experiment to two models: a single exponential model and
a bi-exponential model. The single exponential model fit the entire flux signal, mixing contribu-
tions from terrace and steps. Meanwhile the biexponential model separated the flux into a fast
component, arising from terrace desorption, and a slow component, arising from step to terrace
diffusion followed by terrace desorption. While our TST calculations do not include the role of
steps, we compare the results of our models to data both from the single exponential model and
the fast component of the biexponential for thoroughness and transparency.

In Fig. 5A, we see that the phonon-corrected models (Eqs. 31 and 33) give improved agreement
with experimental results for CO desorption. In particular, kd4 the quantum, flexible surface model
and the terrace desorption rate constants yield the best agreement. The improved agreement when
using Eqs. 31 to 33 versus Eqs. 30 to 32 arises from the reduced adsorbate-surface frequency
ω̃as. Physically, the flexible surface reduces the stiffness of the adsorbate-surface bond, leading to
a lower frequency of attempts over the barrier and a lower rate prefactor.
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Figure 5: Rate constants for desorption from a Pt(111) surface. (A) CO desorption. Grey squares
are experimental data which mixed contributions from both steps and terraces. Black circles refer
experimental data where the kinetics of terrace desorption was isolated. (B) Xe desorption.

In Fig. 5B, we demonstrate results for Xe. Here, all the TST models lie essentially on top
of each other and are lower in value than the experimental rate constants, although by a small
margin. The smaller phonon corrections for Xe versus CO are a natural result of the weaker
interactions with the surface. Weaker coupling means a small K(t = 0), leading to ω̃as ≈ ωas.
Furthermore, weak coupling also results in a phonon density of states that is unchanged from a bare
lattice, implying ω̃D = ωD. In general, the theory presented in this section suggests the phonon
corrections to the rate constant are much larger for chemisorbed species than physisorbed species.
We also note that the deviation between theory and experiment in Fig. 5B is larger for lower
temperatures. For sufficiently low-mass species at sufficiently cryogenic temperatures, it has been
shown that tunneling plays a significant role in barrier crossing,60 requiring more sophisticated
quantum corrections to the rate constants than those in Eq. 32 and Eq. 33.

It is worth emphasizing that using a slightly different values for the surface binding energy,
∆E‡, can substantially shift the quality of agreement of theoretical calculations with experiment.
The major impediment to the first principles calculation of chemical rates is still the calculation
of the barrier energy, and the phonon corrections to the rate constants seem to be a comparatively
minor factor, even for chemisorbed species. Indeed, the purpose of this section was not to demon-
strate that the magnitude of phonon corrections to reaction rates is large, but rather to illustrate
that the theoretical models we developed in Sections 2 and 3, when combined with transition state
theory, produce physically interpretable results which correspond well with existing experimental
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measurements.

5 Methods
All calculations were performed using the Atomic Simulation Environment (ASE) python pack-
age.61–66 Mass-weighted Hessians were computed using a finite-difference scheme in the vibra-
tions module of ASE. Dynamical matrices were computed using the phonon module. The dis-
placement size used in finite difference calculations was 0.01. 100 points were used to uniformly
sample the first Brillouin zone.

When computing the friction kernels and spectral densities, all adsorbates were treated as an
effective adatom, with a given coupling between the center of mass of the adsorbate and a surface
atom. Friction kernels were computed for the three Cartesian degrees of freedom of this adatom.
Additionally, a single atom in the bottom layer of each surface slab was constrained in order to
remove center of mass motion. Without a constraint on the solid, the center of mass diffusion of
the entire surface will dominate the contribution to the friction kernel. Results for friction kernels
were computed using individual surface atoms as adsorption sites and subsequently averaged.

6 Conclusions
In this manuscript we have developed a theory for how surface phonons couple to molecular adsor-
bates based on the generalized Langevin equation. By integrating out the solid degrees of freedom
(assuming they could be described harmonically) we derived a GLE for the adsorbate, wherein the
friction is merely a sum of the phonon frequency of the solid weighted by their coupling to the
adsorbate. We demonstrated that this friction kernel depends sensitively on the frequency of the
adsorbate-surface bond. When the frequency of this bond is smaller than the Debye frequency of
the solid, adsorbates couple primarily to the acoustic phonons of solid. When the frequency of the
bond is much larger than the Debye frequency of the solid, adsorbates couple primarily to the dis-
persionless local vibrations of the adsorption site. Subsequently, we used harmonic transition state
theory to derive phononic corrections to reaction rate constants. We show that these corrections
improved agreement between theory and experiment for CO desorption rates from Pt(111).

Supplementary Material
See supplementary material for results for friction kernels for surfaces other than Pt(111), a per-
turbative analysis of the physisorbed and chemisorbed limits, more details on convergence of the
friction kernel with respect to supercell size, a discussion of continuum elastic theory, and more
details on the derivation of rate constants using transition state theory.

Data Availability
Data that support the findings of this study are available from the corresponding author upon rea-
sonable request. The code used to calculate and analyze memory kernels is available on Github
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along with tutorials for its use https://github.com/afarahva/gleqpy.
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SI. MOVIES

Dynamics of acoustic flexing mode shown in the inset of Figure 1 of the main text.

Dynamics of local mode shown in the inset of Figure 1 of the main text.

SII. FRICTION KERNELS AND SPECTRAL DENSITIES FOR VARIOUS SOLID

SURFACES

In Figures S1 through S4 we present phonon friction kernels and spectral densities for vari-

ous 4x4x4 surface slabs. Figure S1 demonstrates results for a Pt(111) slab calculated modeled

a Lennard-Jones (LJ) forcefield? and compares the results to the EMT forcefield? used to the

main text. Figure S2 compares the results from adsorption on (111) surface facets to (100) surface

facets. Figure S3. presents results for a BCC Fe(110) lattice. Figure S4. presents results for HCP

Ru(0001). The Fe and Ru results were calculated using embedded atom forcefields from Ref. ?

and Ref. ? respectively. Note that since Ru has a much higher Debye Frequency than Pt (225

cm−1 for Ru and 156 cm−1 for Pt) the dependence of the spectral density on ωas is shifted. All

cases show the same qualitative dependence on ωas as presented for the Pt(111) surfaces.
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Effective Medium Theory forcefields.
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SIII. PERTURBATION THEORY

In this section, we compare the results for the friction kernels and spectral densities calculated

using exact diagonalization to two different perturbative schemes: one which agrees well with

exact results in the chemisorbed limit (when ωas is large), and the other which agrees well with

exact results in the physisorbed limit (when ωas is small).

The formulas for the perturbative corrections are the familiar Rayleigh-Schrodinger pertur-

bation theory equations. In this section, we will only use 1st and 2nd order corrections to the

eigenvalues and 1st order corrections to the eigenvectors. We provide the formulas below for

completeness. For the eigenvalues we have,

λi ≈ λ (0)
i +λ (1)

i +λ (2)
i (S1)

where λi is equal to the square phonon frequency ω2
i and λ (0)

i , λ (1)
i , and λ (2)

i are the 0th, 1st, and

2nd order corrections respectively.

λ (1)
i = P(0)

i ·δH ·P(0)
i , (S2)

where P(0)
i is the ith eigenvector of the unperturbed Hessian and δH is the perturbation term.

λ (2)
i = ∑

j ̸=i

(
P(0)

j ·δH ·P(0)
i

)2

λ (0)
i −λ (0)

j

. (S3)

For the eigenvectors we have,

Pi ≈ P(0)
i +P(1)

i , (S4)

where,

P(1)
i = ∑

j ̸=i

P(0)
j ·δH ·P(0)

i

λ (0)
i −λ (0)

j

P(0)
j . (S5)

In order to gain insight from perturbation theory, we must judiciously choose how to separate

the solid’s mass-weighted Hessian (denoted as HS) into the reference Hessian H0 and the per-

turbation δH. In order to do so, we first structure HS into blocks corresponding to the surface

adsorption site(s) HX, the remaining bulk atoms HY, and off-diagonal blocks coupling the two

HXY,

HS =




HX HXY

HT
XY HY



, (S6)
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Note that the size of HY should be much larger than HX as most atoms in the solid can be treated

as not interacting with the adsorbate. We may diagonalize HY to arrive the following form,

HB =




HX D

DT ΩΩΩ2
Y



, (S7)

where D is the coupling between the adsorption site(s) and each bulk phonon mode, and ΩΩΩ2
Y is a

diagonal matrix containing the square frequencies of these bulk modes. With this setup, we are

ready to perform perturbation theory. We will illustrate the results of perturbation theory on a

4x4x4 Pt(111) lattice with the Hessian evaluated using the EMT? forcefield.

A. Strong coupling/chemisorbed limit

In the chemisorbed limit, we set the reference Hessian to one where the adsorption site(s) and

the phonon modes of the bulk are uncoupled,

H0 =




HX 0

0 ΩΩΩ2
Y



, (S8)

and therefore the perturbation is coupling,

δH =




0 D

DT 0



. (S9)

If we assume adsorption site to be a single atom, then the following analytical forms can be found

for the memory kernel to 0th, 1st, and 2nd order respectively:

K(0)(t) =
µ2

mM
ω4

as
ω̃2

s
cos(ω̃st), (S10)

K(1)(t) = K(0)(t)+
µ2

mM
ω4

as ∑
i ̸=s

d2
i

(ω̃2
s −ω2

Y,i)
2ω2

Y,i
cos(ωY,it), (S11)
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K(2)(t) =
µ2

mM
ω4

as
ω̃2

s
cos


t

√√√√ω̃2
s +∑

i ̸=s

d2
i

ω̃2
s −ω2

Y,i




+
µ2

mM
ω4

as ∑
i ̸=s

[
d2

i

(ω̃2
s −ω2

Y,i)
2ω2

Y,i +(ω̃2
s −ω2

Y,i)d
2
i

cos

(
t

√
ω2

Y,i +
d2

i

ω̃2
s −ω2

Y,i

)]
, (S12)

where di is the ith element D, ωi,Y is ith element of ΩΩΩY, ωs is the frequency of the surface adsorp-

tion site without an adsorbate bound, and ω̃s is the frequency of motion of the surface adsorption

site with the adsorbate bound,

ω̃s =

√
µ
M

ω2
as +ω2

s . (S13)

In this scheme, we see that to 0th order the surface adsorption site does not interact with the

other modes of the solid, which results in the phonon memory kernel being a single sinusoid with

frequency ω̄s due to solely the motion of this site. The perturbation introduces coupling between

the surface adsorption site and the bulk solid, allowing for the bulk phonons to contribute to the

memory kernel. Figure S5 illustrates the spectral density calculated using this scheme to first

and second order, and compares it to the results from exact diagonalization. The 1st order results

qualitatively match the exact results, however underestimate the frequency of the adsorption site

local mode. This mismatch is because the first order corrections to the eigenvalues of the Hessian

are zero. Introducing second order corrections removes this discrepancy, leading to excellent

agreement with the exact results when ω̄s > ωD. As the effective frequency of motion of the

adsorption site approaches ωD (156 cm−1 for Pt), this perturbative scheme qualitatively fails to

describe the memory kernel/spectral density. Indeed, the results in Figure S5 show that the precise

phase boundary in Figure 1 of the main text arises from the value of ω̃s compared to ωD.
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FIG. S5. Spectral density for Pt(111) surface calculated using exact diagonalization, 1st order, and 2nd

order perturbation theory in the strong-coupling scheme.
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B. Weak-coupling/physisorbed limit

In the physisorbed limit, we treat HX as the perturbation, δH = HX, and the remaining Hessian

as the reference,

H0 =




0 D

DT ΩΩΩ2
Y



. (S14)

This scheme assumes that the contribution of the adsorption sites to the bulk phonon modes is

small. Figure S6 illustrates the spectral density calculated using this scheme, to first and second

order, and compares it to the results from exact diagonalization. The 1st order results for K(ω) use

1st order corrections for both the eigenvectors and eigenvalues, while the 2nd order results add 2nd

order corrections to the eigenvalues while keeping the eigenvectors at 1st order. Both 1st and 2nd

order results agree well with the exact results when ωas is less than platinum’s Debye frequency

ωD = 156 cm−1 as expected, and even qualitatively capture results at ωas ≈ ωD. However, once

again we see that as the effective frequency of motion of the adsorption site (ωs) approaches ωD,

the perturbative scheme fails.
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FIG. S6. Spectral density for Pt(111) surface calculated using exact diagonalization, 1st order, and 2nd

order perturbation theory in the weak-coupling scheme.
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SIV. PHONON DISPERSION

In Fig. S7 we present the surface phonon dispersion curves for a 4x4x16 Pt(111) surface slab.

In Fig. S8 we present the convergence of the phonon spectral density as a function of the surface

cell used to calculate the phonon frequencies.
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Bare surface Pt
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Surface Pt with adsorbed CO

FIG. S7. Phonon dispersion curves for a 4x4x16 EMT Pt(111) surface slab.
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FIG. S8. Phonon friction kernels and spectral densities averaged over k-space for different values of the

number of the size of the surface super-cell used in computing the dynamical matrix.
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SV. ELASTIC CONTINUUM THEORY

In this section, we take an alternative approach to determining the phonon-induced friction in

the limit of a macroscopic solid by using continuum elastic theory instead of atomistic models.

Such an approach was originally explored by Ref. ? and Ref. ? . It is theoretically appealing due

to the minimal, experimentally accessible free parameters used in elastic theory. However, it also

suffers from several limiting assumptions which we explicitly delineate.

Elastic (energy conserving) acoustic waves in a material may be modeled via the Navier-

Cauchy equation,

..u(r, t) = ct∇⃗2u(r, t)+(c2
l + c2

t )∇(∇ ·u(r, t))+F(r, t), (S15)

where u(r, t) is the displacement of the solid at position r = (x,y,z) and time t, ∇⃗2 is the vector

Laplacian, ∇(∇·) is gradient of the divergence, and F are external forces. Solutions to this Eq. S15

can generally be separated into zero divergence and zero curl components corresponding to the

transverse and longitudinal modes respectively,

..u(x, t) = ul(x, t)+ut(x, t), (S16)

each of which satisfy a 3D wave equation,

..ul/t(x, t) = cl/t∇⃗2ul/t(x, t). (S17)

Consider a single adsorbate degree of freedom whose displacement is denoted by q. If this

degree of freedom is harmonically coupled to surface normal (z-axis) displacement the solid at

position r0 = (x0,y0,Lz) then the coupled adsorbate-solid equations are,

q̈(t) =− 1
m

dVA

dq
(t)− µ

m
ω2

as(q(t)−uz(r0, t)) (S18)

..u(r, t)− ct∇⃗2u(r, t)− (c2
l + c2

t )∇(∇ ·u(r, t)) = µω2
as

M
(q(t)−uz(r0, t))a3δ (r− r0) ẑ, (S19)

where ẑ = (0,0,1) is the unit vector in the surface normal, a is spacing between atoms in the

crystal, and M is the mass of the solid atom. The a3 factor arises from taking the continuum limit

of a force on a single lattice point and offsets the inverse volume units of the 3D delta function

δ (r− r0). The forces from the adsorbate on the solid can be be separated in two contributions. A

static contribution,
µω2

as
M

uz(r0, t)a3δ (r− r0) , (S20)
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which enforces to the shift in the solid’s vibrational spectrum due to the presence of the adsorbate,

and a dynamic contribution,

f (r, t) =
µω2

as
M

q(t)a3δ (r− r0) , (S21)

representing the time-dependent external force of the adsorbate on the solid. We can rearrange

Eq. S19 as,
[

d2

dt2 − c2
t ∇⃗2 − (c2

l + c2
t )∇∇ ·+µω2

as
M

a3δ (r− r0)ẑ
]

u(r, t) = f (r, t)ẑ. (S22)

The operator on the right-hand-side (RHS) of this equation is a linear operator; therefore Eq. S22

may be solved using the method of Green’s functions,

u(r, t) = u0(r, t)+
∫ t

0
dτ
∫

dr′G(r, t;r′,τ) · f (r′,τ)ẑ (S23)

where u0(x, t) is the solution to the homogeneous case and G(r, t;r′,τ) is a 3x3 tensor Green’s

function corresponding to the operator on the RHS of Eq. S22. If we substitute this solution into

Eq. S18 we arrive at a GLE where the memory kernel is proportional to the antiderivative of the

Green’s function,

K(t) =
µ2ω4

as
mM

a3
∫

dtGzz(r0, t;r0,0). (S24)

Henceforth we will denote Gzz(r0, t;r0,0) as simply G(t) for simplicity. This Green’s function

may be decomposed in the following form,

G(t) = ∑
α

∑
k

sin(cα |k| t)
cα |k| Rz,α(r0,k)R∗

z,α(r0,k) (S25)

where α denotes phonon polarizations (i.e. transverse or longitudinal), and Rz,α are the zth spatial

components of the normalized eigenfunctions of the operator on the RHS of Eq. S22. The spectrum

of k values as well as the specific form of the spatial eigenfunctions depend on the choice of

boundary conditions.

Due to the delta function in the adsorbate shift term (Eq. S20), the allowed k values and cannot

be computed exactly. Indeed, this term makes Eq. S22 very similar to the Schrödinger Equation

with a delta function well, in which the spectrum must be computed numerically as a solution to

a system of transcendental equations. However, perturbation theory, physical intuition, and the

numerical results presented in Figure 2 of the main text all suggest that the low-frequency acoustic

modes of a solid should not depend on the presence of an adsorbate. Therefore, we proceed by
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ignoring the adsorbate shift term while noting that, by construction, such an approach is only valid

for the low-frequency acoustic modes. Setting periodic boundary conditions in the xy plane, fixed

boundary conditions at z = 0 and Neumann boundary conditions at z = Lz we have,

R∗
z,α(r,k) =

2√
LxLyLz

e2πikxxe2πikyy sin(kzz) (S26)

where Lx, Ly, and Lz are the size of the solid in the x, y, and z directions respectively. The allowed

are values of k are kx =
2πnx

Lx
, ky =

2πny
Ly

, and kz =
(nz+

1
2 )π

Lz
, where nx and ny are any integers and nz

is any integer greater than or equal to zero. Taking the limit as Lx, Ly, and Lz become very large

we find that the Green’s function becomes,

G(t) = ∑
α

1
8π3

∫
dk

sin(cα |k| t)
cα |k| . (S27)

It is well-known that the integral in Eq. S27 diverges if the integral is taken over all k-space due

to the contribution wavelengths smaller than the inter-atom spacing. Therefore, the integral in

Eq. S27 should only be taken over first Brillouin zone. Taking inspiration from the Debye model,

we may approximate the first Brillouin zone with a radial cutoff |kD|,

G(t) =
1

2π2 ∑
α

∫ kD

0
dk

sin(cαkt)
cαk

. (S28)

Carrying out the integration over k and subsequently integrating over time t, leads to the following

formulas for the memory kernel and spectral density,

Kcont(t) =
µ2ω4

as
mM

a3

2π2

(
2
c3

t
+

1
c3

l

)
sin(ωDt)

t
. (S29)

K̄cont(ω) =
µ2ω4

as
mM

a3

2π2

(
2
c3

t
+

1
c3

l

)
Θ(ω −ωD). (S30)

where Θ is the Heaviside step function. Eq. S30 illustrates that the memory is flat (Ohmic) with a

high frequency cutoff at the Debye frequency.

We can use Eq S29 to compute the effective adsorbate-surface bond frequency,

ω̃as =

√
µ
m

ω2
as −K(t = 0). (S31)

Figure S9 illustrates results for ω̃2
as as a function of the Debye frequency and ωas. One can see

that for physically reasonable choices of parameters (including those for CO adsorbed on Pt) the

effective frequency becomes imaginary, signifying that there is no stable adsorption state. Such a
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FIG. S9. Square of the effective (phonon-renormalized) surface-adsorbate bond frequency as a function of

the solid’s Debye frequency.

clearly unphysical conclusion is a result of the ignoring the adsorbate shift term (Eq. S20) in the

original equations of motion and its concomitant effects on the Green’s function/memory kernel.

Thus, we again emphasize that the functional forms in Eq. S29 and Eq. S30 are only valid for the

low-frequency acoustic modes of the solid, and generally integrating all k vectors up to the Debye

frequency is inappropriate and a lower frequency cutoff should be used.

SVI. REACTION RATE THEORY

A. Transition state theory

Transition state theory calculates the rate constant of a chemical reaction as the equilibrium

flux of trajectories through a dividing surface separating reactants and products. Formulaically,

such a rate constant may be expressed as,

k =
1

QR

∫
drdp e−βH(r,p)δ [ f (r)] (∇ f ·p)Θ(∇ f ·p) , (S32)

where r and p are mass-weighted positions and momenta respectively, H is the Hamiltonian,

f (x) = 0 is the dividing surface, ∇ f is the surface normal, Θ is the Heaviside step function, and

QR is the reactant partition function. QR is defined as,

Q0 =
∫

0
drdp e−βH(r,p). (S33)
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where the subscript 0 denotes that the integral is taken only over the reactant region in position

space. The transition state is the saddle point on this dividing surface and, in the vicinity of the

transition state, the reaction coordinate corresponds to the unstable (imaginary frequency) normal

mode. Carrying out the momentum integrals in Eq. S32 (assuming a one-dimensional reaction

coordinate) we have,

k =
1√
2πβ

∫
dr e−βV (r)δ [ f (r)] ,∫

R dr e−βV (r).
(S34)

The integral in the numerator is largest in the vicinity of the transition state while the integral in

the denominator is largest near the minimum of V . Expanding around these two points gives,

V (r ≈ r0) = ER −
1
2
(r− r0)

T H(0)(r− r0), (S35)

for the reactant basin and,

V (r ≈ r‡) = E‡ − 1
2
(r− r‡)T H‡(r− r‡), (S36)

for the transition state, where H is the mass-weighted Hessian evaluated at the minimum of the

reactant basin and H‡ is the mass-weighted Hessian evaluated at the transition state. Using Eq. S35

and Eq. S36 we may evaluate the integrals in Eq. S34 giving,

k =
λ ‡

2π

√
det(H(0)

−det(H‡)
e−β (E‡−ER), (S37)

where λ ‡ is the norm of the frequency of the unstable mode of H‡, and "det" denotes the matrix

determinant. For a reaction at a surface, these Hessians can be organized into a block structure

corresponding to the molecular/adsorbate degrees of freedom, the solid degrees of freedom, and

the coupling between them,

H =




HA GAS

GT
AS HS



. (S38)

The determinant of such a block matrix may be evaluated as,

det(H) = det(HS)×det(HA −GT
ASH−1

S GAS). (S39)

Using this determinant identity together with Eq. S37 gives Eq. 25 of the main text.
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B. Kramers-Grote-Hynes theory

The effect of friction on reaction rates is explicitly captured in Kramers-Grote-Hynes (KGH)

theory, wherein the rate constant is,

kKGH =
f̃0

2π
λ ‡

f̃ ‡
e−β∆E‡

, (S40)

where f̃0 is the effective (thermodynamically renormalized) frequency of the reactant basin, f̃ ‡ is

the effective barrier frequency, and λ ‡ is related to the friction kernel by,

−(λ ‡)2 +λ ‡K̄(λ = λ ‡)+( f ‡)2 = 0, (S41)

and K̄(λ ) is the Laplace transform of the friction kerrnel. Given that the friction kernel arises

explicitly in KGH theory it is appealing to directly apply Eq. S40 to evaluate the effect of phonons

on surface reaction rates. However, doing so only corresponds to using a more limited form

Eq. S37. Below we demonstrate how to derive Eq. S40 from Eq. S37, noting that that such a

relationship was originally established by Pollak? .

We begin by assuming that the reaction coordinate is one-dimensional and ignoring other

molecular degrees of freedom besides this reaction coordinate. Under such assumptions HA has

only one entry. For the reactant basin this entry is the square frequency of the well H(0)
A = f 2

0 and

for the transition-state this entry is the square frequency of the barrier H(‡)
A =−( f ‡)2. The Hessian

for the reactant basin is now,

H(0) =




f 2
0 G(0)

AS

G(0)
SA H(0)

S



, (S42)

and the Hessian for the transition state is,

H‡ =




−( f ‡)2 G‡
AS

G‡
SA H‡

S



. (S43)

We must also assume that the solid phonon modes and the adsorbate-solid coupling are equal in

both reactant basin and transition well; that is G‡
AS = G(0)

AS and H‡
S = H(0)

S . Many surface-chemical
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processes may violate such assumptions. For example, in a desorption process the reactant basin

may have a very strong coupling to the phonon modes, while the transition state usually does not.

However, in KGH theory it is required that the friction kernel, and by extension HS and GAS,

remain the same at every point along the reaction coordinate.

These assumptions simplify the Hessian determinants significantly. In particular, for the reac-

tant determinant we have,

det(H(0)) = det(HS) ·
(

f 2
0 −GT

ASH−1
S GAS

)
(S44)

and for the transition state determinant we have,

det(H‡) = det(HS) ·
(
−( f ‡)2 −GT

ASH−1
S GAS

)
. (S45)

With these determinants, and noting that K(t = 0) = GT
ASH−1

S GAS, we can simplify Eq. S37 to,

k =
f̃0

2π
λ ‡

f̃ ‡
e−β∆E‡

, (S46)

where f̃0 =
√

f 2
0 −K(t = 0) and f̃ ‡ =

√
( f̃ ‡)2 +K(t = 0).

The remaining step is to show that λ ‡ satisfies Eq. S41. To do so, first note that the Laplace

transform of the friction kernel may be expressed as,

K̄(λ ) =
∫ ∞

0
dωK̄(ω)

λ
λ 2 +ω2 (S47)

where K̄(ω) is the spectral density defined in Eq. 13 of the main text. The equation det(H(‡)−
λ 2I) = 0 sets the eigenfrequencies in the vicinity of the barrier including λ ‡. Evaluating this

determinant leads to,
[

N

∏
i=1

(ω2
i −λ 2)

]
·
[
( f̃ ‡)2 +λ 2 +∑

j

(
c2

j

ω2
j

λ 2

ω2
j −λ 2

)]
= 0, (S48)

where c is the coupling between the reaction coordinate and each phonon mode and ω are the

phonon frequencies. From Eq. S48 we see that λ ‡ must satisfy,

( f̃ ‡)2 − (λ ‡)2 −∑
j

(
c2

j

ω2
j

(λ ‡)2

ω2
j +(λ ‡)2

)
= 0. (S49)

Using Eq. S49 with Eq. S47 clearly shows that λ ‡ satisfies Eq. S41.

In summary, while we can directly apply KGH theory to derive equations for rate constants

which depend explicitly on the friction kernel, such equations are a severe simplification of the

multidimensional TST formalism we use in the main text.
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C. Desorption rate constants

In the main text, we presented phonon-corrected desorption rates using a model where we

computed the friction kernel in the limit of an infinite surface slab by averaging across k-space.

In Figure S10, we illustrate results from single 4x4x8 surface slab without accounting for phonon

dispersion. The results illustrated Figure S10 are extremely similar to that of the main text, and the

deviation between the two is smaller than the intrinsic uncertainty in the experimental measure-

ments of the rate constant. Parameters used in computing the reaction rates shown in Figure S10

are given in Table SI.

TABLE SI. Parameters used for computing desorption rate constants shown in Figure S10

E‡ (eV) ωas (cm−1) ω̃as (cm−1) ω̃D (cm−1)

CO 1.47? 480? 133 203

Xe 0.245? 28? 21 156
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FIG. S10. Comparison of experimental desorption rate constants to theoretical results calculated using a

4x4x8 EMT Pt(111) slab. (A) CO desorption. (B) Xe desorption.
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