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Abstract— This paper presents a 2D skeleton-based action
segmentation method with applications in fine-grained human
activity recognition. In contrast with state-of-the-art methods
which directly take sequences of 3D skeleton coordinates
as inputs and apply Graph Convolutional Networks (GCNs)
for spatiotemporal feature learning, our main idea is to use
sequences of 2D skeleton heatmaps as inputs and employ
Temporal Convolutional Networks (TCNs) to extract spatiotem-
poral features. Despite lacking 3D information, our approach
yields comparable/superior performances and better robustness
against missing keypoints than previous methods on action
segmentation datasets. Moreover, we improve the performances
further by using both 2D skeleton heatmaps and RGB videos
as inputs. To our best knowledge, this is the first work to utilize
2D skeleton heatmap inputs and the first work to explore 2D
skeleton+RGB fusion for action segmentation.

I. INTRODUCTION

With the arrival of advanced deep networks and large-scale
datasets, action recognition [1], [2], which aims to classify
a trimmed video into a single action label, has achieved
considerable progress and maturity. However, action seg-
mentation [3], [4], [5], which seeks to locate and classify
action segments of an untrimmed video into action labels,
remains a challenging problem. Action segmentation under-
pins a number of robotics and computer vision applications.
Notable examples include human-robot interaction [6], [7],
[8] (i.e., recognizing human actions to facilitate interactions
between humans and robots), ergonomics studies [9], [10]
(i.e., extracting action segments in videos for ergonomics
analyses), and visual analytics [11], [12] (i.e., conducting
time and motion studies on video recordings).

A majority of action segmentation methods, e.g., [3],
[13], [14], [15], [16], take RGB videos as inputs, which
are then passed through TCNs to capture long-term action
dependencies and predict segmentation results (see Fig. 1(a)).
Since the introduction of TCNs to action segmentation in
the pioneering work of Lea et al. [3], several improvements
have been proposed. For example, multi-stage TCNs [15],
[16] operate on the full temporal resolution of the videos,
as compared to downsampling the temporal resolution of the
videos as in Lea et al. [3].

In contrast with the above RGB-based methods, skeleton-
based alternatives [9], [10], [4] have attracted research
interests only recently because of their action focus and
compact representation. These skeleton-based methods [9],
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Fig. 1: Prior methods either take sequences of RGB frames
(a) or sequences of 3D skeletons (b) as inputs. We propose
a new approach which relies on sequences of 2D skeleton
heatmaps (c). We further explore 2D skeleton+RGB fusion
(d) for action segmentation, leading to performance gains.

[10], [4] take 3D skeleton sequences as inputs and employ
GCNs to process 3D skeleton sequences directly due to their
irregular graph structures (see Fig. 1(b)). As a result, it is
difficult to incorporate other modalities that have regular grid
structures (e.g., RGB, depth, flow) into existing skeleton-
based methods [9], [10], [4].

In this work, we present a novel skeleton-based action
segmentation approach, which relies only on 2D skeleton
sequences. Inspired by the success of Duan et al. [17] in
skeleton-based action recognition, we transform sequences
of 2D skeletons into sequences of heatmaps. Since our
heatmaps have image-like structures, i.e., W ×H × C with
W = H = 56, C = 3, we can extract features from the
heatmaps by using pre-trained ResNet [18]/VGG [19] before
feeding the features to TCNs for action segmentation (see
Fig. 1(c)), in a similar manner as employing multi-stage
TCNs [15], [16] on RGB videos. Experiments on action
segmentation datasets demonstrate that our 2D skeleton-
based approach achieves similar/better performances and
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higher robustness against missing keypoints than previous
3D skeleton-based methods. In addition, we boost the perfor-
mances further via multi-modality fusion, i.e., by combining
RGB inputs with 2D skeleton inputs (see Fig. 1(d)). More
specifically, we introduce fusion modules at multiple stages
of [15], [16] to facilitate deep supervision [20], [21], [22].

In summary, our contributions include:

• We propose a 2D skeleton-based action segmentation
method, which takes 2D skeleton heatmaps as inputs
and utilizes TCNs to capture spatiotemporal features.
Our approach achieves comparable/better results and
higher robustness against missing keypoints than 3D
skeleton-based methods which operate directly on 3D
skeleton coordinates and employ GCNs for spatiotem-
poral feature extraction.

• We further fuse 2D skeleton heatmaps with RGB
videos, yielding improved performances. To the best
of our knowledge, our work is the first to utilize 2D
skeleton heatmap inputs and the first to explore 2D
skeleton+RGB fusion for action segmentation.

• We annotate framewise action labels and obtain esti-
mated 2D/3D skeletons for TUM-Kitchen, which are
available at https://bitly.ws/3eWhV.

II. RELATED WORK

RGB-Based Action Segmentation. RGB-based methods,
e.g., [3], [13], [14], [15], [16], typically employ TCNs to
learn long-term action dependencies. TCNs are first applied
in Lea at al. [3], which perform temporal convolutions and
deconvolutions. TricorNet [13] further utilizes bi-directional
LSTMs, while TDRN [14] uses deformable temporal convo-
lutions instead. One drawback of the above methods is that
they temporally downsample videos. To address that, multi-
stage TCNs [15], [16] are designed to preserve temporal
resolutions. Recently, refinement techniques, e.g., [23], [24],
are developed to reduce over-segmentations. Instead of RGB
inputs, in this paper we use 2D skeleton inputs and introduce
2D skeleton+RGB fusion for action segmentation.
Skeleton-Based Action Segmentation. Skeleton-based ap-
proaches [9], [10], [4] have emerged only recently. In particu-
lar, Parsa et al. [9] propose a GCN architecture for skeleton-
based action segmentation, while a GCN backbone is em-
ployed in their succeeding work [10] for joint skeleton-based
action segmentation and ergonomics analysis. Recently, Filt-
jens et al. [4] extend multi-stage TCNs [15], [16] for RGB
inputs to multi-stage GCNs for skeleton inputs. All of the
above methods use 3D skeleton inputs and GCNs, which
makes it hard to combine with other modalities (e.g., RGB,
depth, flow). In contrast, our approach employs 2D skeleton
inputs and TCNs, yielding comparable/superior results and
better robustness against missing keypoints. Further, our 2D
skeleton+RGB fused version leads to performance gains.
Note that 2D skeletons have been used in previous meth-
ods [25], [26]. However, Kobayashi et al. [25] compute hand
heatmaps for reweighting image features only, while Ma et
al. [26] operate directly on 2D skeleton coordinates.

(a) Joints (b) Limbs (c) Joints+Limbs

Fig. 2: Examples of 2D skeleton heatmaps.

Skeleton-Based Action Recognition. Action recognition
with skeleton inputs can roughly be grouped into GCN-
based methods, e.g., [27], [28], [29], [30], and CNN-based
ones, e.g., [31], [32], [33], [34]. The former process skeleton
sequences directly with GCNs, whereas the latter aggregate
them into regular grid inputs that are suitable for CNNs.
While GCN-based methods are difficult to fuse with other
modalities (e.g., RGB, depth, flow), CNN-based ones suffer
from information loss during aggregation. To address the
above, Duan et al. [17] model skeleton sequences as heatmap
sequences and pass the heatmap sequences to CNNs, yielding
superior results. Motivated by Duan et al. [17], we exploit
heatmap representations and heatmap+RGB fusion for the
fine-grained action segmentation task.

III. OUR APPROACH

Below we present our main contributions, including a 2D
skeleton-based approach and a multi-modality approach with
both RGB and 2D skeleton inputs for action segmentation.

A. 2D Skeleton Heatmap

Given video frames F , a well-known human detector, e.g.,
Faster-RCNN [35], and a recent top-down 2D human pose
estimator, e.g., HRNet [36], can first be applied for extracting
2D skeletons S with high quality. Here, we model a 2D
skeleton s by a set of 2D joint triplets {(xk, yk, ck)}, where
the k-th joint has 2D coordinates (xk, yk) and (maximum)
confidence score ck. In the following, 2D skeletons S are
transformed into heatmaps H . For a 2D skeleton s, we derive
a heatmap h of size W × H × K (with the width W and
height H of the video frame and the number of 2D joints K).
Specifically, given a set of 2D joint triplets {(xk, yk, ck)},
we derive a joint heatmap hJ , which includes K Gaussian
distributions centered at every 2D joint, as:

hJ
ijk = e−

(i−xk)2+(j−yk)2

2∗σ2 ∗ ck, (1)

with standard deviation σ = 0.6. Alternatively, we derive a
limb heatmap hL of size W ×H × L (with the number of
limbs L) as:

hL
ijl = e−

dist((i,j),seg(al,bl))

2∗σ2 ∗min(cal
, cbl). (2)

Here, the l-th limb denotes the segment seg(al, bl) between
the joints al and bl, and the dist function denotes the distance
from the location (i, j) to the segment seg(al, bl). As we
will show in Sec. IV-A, combining joint and limb heatmaps
yields the best results. Thus, for each 2D skeleton si, we
derive the combined heatmap hi = hJ+L

i . In contrast with

https://bitly.ws/3eWhV
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Fig. 3: (a) 2D skeleton-based action segmentation. We convert 2D skeletons into image-like heatmaps, which are passed to
an RGB-based network for action segmentation, i.e., MS-TCNN++ [16]. (b) 2D skeleton+RGB-based action segmentation.
During training, we propose fusion modules at various stages of MS-TCN++ [16] for deep supervision [20], [22]. At testing,
the segmentation predicted by the last refinement stage is considered as our output. (c) 2D skeleton+RGB fusion module.

all previous skeleton-based methods [9], [10], [4], which use
3D skeletons, we rely only on 2D skeletons. Also, accurate
2D skeletons are easier to obtain than accurate 3D skeletons,
as accurate depths are not required. Lastly, as we will show
in Sec. IV-C, 2D skeleton heatmaps are more robust than
3D skeleton coordinates as joints/limbs are represented by
Gaussian distributions.

In addition, we crop hi along the spatial dimensions by
using the smallest bounding box containing all 2D skeletons
in the entire video sequence. Next, we sum all component
(joint/limb) heatmaps within hi into a single heatmap and
resize it to 56 × 56. Finally, we replicate the heatmap and
stack the copies, yielding an image-like heatmap hi of size
56 × 56 × 3, which can be used for extracting pre-trained
features. Fig. 2 illustrates examples of 2D skeleton heatmaps.
Unlike Duan et al. [17], which are mainly interested in video-
level cues for coarse-grained action recognition (predicting
a single label for a video) and perform temporal sampling to
reduce computation costs, our work addresses fine-grained
action segmentation (predicting framewise labels) where
frame-level cues are important and hence temporal sampling
is not employed in our method.

B. 2D Skeleton-Based Action Segmentation

As described above, our 2D skeleton heatmaps resem-
ble RGB images. Thus, we can extract features from the
2D skeleton heatmaps by using ResNet [18]/VGG [19]
pre-trained on ImageNet [37]. Next, an RGB-based action
segmentation network can be employed to perform action
segmentation on the extracted features. Here, we choose MS-
TCN++ [16] due to its accuracy and efficiency. Fig. 3(a)
shows an overview of our 2D skeleton-based action segmen-
tation method. The network includes one prediction genera-

tion stage, which computes the initial segmentation, and three
refinement stages, which improve the initial segmentation.
The prediction generation stage consists of eleven dilated
temporal convolutional layers, while the refinement stages
share the same ten dilated temporal convolutional layers.

To train MS-TCN++ [16], deep supervision [20], [22] is
employed. Particularly, all four stages are trained with the
same combination of classification loss and smoothness loss.
The classification loss is computed as the cross-entropy loss:

Lclass =
1

M

∑
i

− log yi,c, (3)

with the number of video frames M and the probability
yi,c of assigning frame fi to ground truth action class c.
To reduce over-segmentation, the smoothness loss is added:

Lsmooth =
1

MC

∑
i,c

∆̃2
i,c, (4)

∆̃i,c =

{
∆i,c, ∆i,c ≤ τ

τ, ∆i,c > τ
, (5)

∆i,c = |log yi,c − log yi−1,c| , (6)

with the number of action classes C and thresholding pa-
rameter τ = 16. The final loss is written as:

L = Lclass + αLsmooth, (7)

with balancing parameter α = 0.15. At testing, the prediction
by the last refinement stage is used as our output.

C. 2D Skeleton+RGB-Based Action Segmentation

In the following, we explore multi-modality fusion to
improve the performance. Fig. 3(b) shows an overview of
our 2D skeleton+RGB-based action segmentation method.



The network consists of two branches for processing 2D
skeleton heatmaps and RGB frames respectively. Since our
2D skeleton heatmaps have the same structures as the RGB
frames, we use the same MS-TCN++ [16] architecture for
both branches. To perform 2D skeleton+RGB fusion, we
introduce fusion modules at all stages from prediction gen-
eration stage to refinement stages. In particular, our fusion
module first concatenates the heatmap feature vector with the
RGB feature vector before passing the concatenated feature
vector through a 1×1 convolutional layer to reduce the fused
feature vector to the original size of 64. Fig. 3(c) illustrates
the above steps. We follow MS-TCN [16] to use the same
losses as described in the previous section. At testing, our
output is the prediction by the last refinement stage.

In addition, we have experimented with adding augmen-
tation to 2D skeleton heatmaps (i.e., temporal augmenta-
tion, position augmentation, orientation augmentation, and
horizontal flipping) and RGB frames (i.e., temporal aug-
mentation, brightness augmentation, contrast augmentation,
and horizontal flipping). However, the performance gain is
marginal while the computational cost is increased signif-
icantly. Therefore, we do not apply data augmentation in
this work. In contrast with Parsa et al. [9], which operate
directly on 3D skeleton coordinates, our 2D skeleton heatmap
representation makes it easier to fuse with RGB frames.
Furthermore, while Parsa et al. [9] conduct fusion at the
final level only, we perform fusion across multiple levels.

IV. EXPERIMENTS

Datasets, Annotations, and Poses. We use three datasets,
which capture a diverse set of human activities:

• UW-IOM [38] includes 20 videos of a ware-
house activity, which consists of 17 actions (e.g.,
“box bend pick up low”). Each video is ∼3 minutes
long. We use both framewise action labels and 2D/3D
human poses (estimated with [39]) released by [10].

• TUM-Kitchen [40] consists of 19 videos of a kitchen ac-
tivity, which comprises of 21 actions (e.g., “walk,hold-
both-hand”). The duration of each video is ∼2 minutes.
We manually annotate framewise action labels and
obtain 2D/3D human poses with [39], as they are not
provided by [10].

• Desktop Assembly [41], [42] includes 76 videos of an
assembly activity. The activity consists of 23 actions
(e.g., “tighten screw 4”) and the video length is ∼1.5
minutes. We use framewise action labels of [41], while
estimating 2D human poses with [36] and 3D human
poses with [43].

Implementation Details. Our heatmap-based model is im-
plemented in pyTorch. We randomly initialize our model
and use ADAM optimization with a learning rate of 0.001.
We train our model for 100 epochs. Furthermore, our
heatmap+RGB-based model is trained in two stages: i) we
first train the heatmap and RGB branches separately with
the same losses in Eq. 7, ii) we then train our entire fusion
model (with a learning rate of 0.0005) by using the weights
from the first stage as initialization.

(a) Complete skeleton (b) Missing arm (c) Missing leg 

Fig. 4: Examples of missing keypoints.

Competing Methods. We test against prior skeleton-based
methods, which rely on 3D skeletons and GCNs. They
include ST-PGN [9], MTL/STL [10], and MS-GCN [4].
Moreover, we evaluate the classical MS-TCN++ [16] with
RGB inputs. Lastly, we compare with the 3D skeleton+RGB
fusion version of ST-PGN [9]. If the results are reported in
the original papers, we copy them (except for TUM-Kitchen,
since we use different sets of labels/poses). Otherwise, we
run the official implementations 1 to obtain the results.
Metrics. Following [9], [10], we use F1 score (10% overlap),
Edit distance, and mean Average Precision (mAP). In addi-
tion, we follow [4], [16] to add framewise Accuracy (Acc).
Please refer to [9], [10], [4], [16] for detailed definitions.

A. Impacts of Different Heatmaps

We first study the performance of our 2D skeleton-based
approach by using various inputs: joint heatmaps, limb
heatmaps and integrated joint+limb heatmaps. We use the
UW-IOM dataset and ResNet-50 features in this experiment.
The ablation results are shown in Tab. I. It is evident that
the best performance is achieved by combined joint+limb
heatmaps, followed by limb heatmaps alone, whereas the
worst performance is obtained by joint heatmaps alone.

B. Impacts of Different Features

We now investigate the performance of our 2D skeleton-
based method by using various networks pre-trained on
ImageNet for feature extraction: VGG-16, ResNet-18, and
ResNet-50. The UW-IOM dataset and joint+limb heatmaps
are used in this experiment. Tab. II presents the ablation re-
sults. It is clear that ResNet-50 features yield the best results,
outperforming ResNet-18 features and VGG-16 features.

C. Robustness against Missing Keypoints

We conduct an experiment in which a certain component
of the skeleton is removed to examine the robustness of our
2D skeleton-based approach. In particular, at testing (without
any finetuning), we randomly drop a limb (i.e., arm or leg)
with a probability p for each frame in the UW-IOM dataset.
Fig. 4 shows examples of missing keypoints. The F1 scores
of our method, MS-GCN [4], and STL [10] are illustrated in
Tab. III. It can be seen that our approach demonstrates a high
level of robustness against missing keypoints. For example,
when one limb is dropped per frame (i.e., p = 100%), our
F1 score drop is 2.54%, as compared to 3.88% and 6.99%

1MTL/STL: https://github.com/BehnooshParsa/MTL-ERA
MS-GCN: https://github.com/BenjaminFiltjens/MS-GCN
MS-TCN++: https://github.com/sj-li/MS-TCN2

https://github.com/BehnooshParsa/MTL-ERA
https://github.com/BenjaminFiltjens/MS-GCN
https://github.com/sj-li/MS-TCN2


Heatmap F1 Edit mAP Acc
Joint 89.87 ± 05.95 89.77 ± 04.86 85.07 ± 06.71 79.62 ± 06.93
Limb 93.41 ± 02.85 92.20 ± 03.92 88.63 ± 03.66 83.15 ± 03.37

Joint+Limb 93.82 ± 02.90 92.88 ± 04.13 89.82 ± 03.83 85.04 ± 03.08

TABLE I: Impacts of different heatmaps on UW-IOM. Best results are in bold. Second best results are underlined.

Feature F1 Edit mAP Acc
VGG-16 91.58 ± 04.38 92.26 ± 04.91 87.20 ± 02.98 79.42 ± 04.22

ResNet-18 93.76 ± 03.23 92.79 ± 04.24 88.01 ± 04.19 84.53 ± 04.07
ResNet-50 93.82 ± 02.90 92.88 ± 04.13 89.82 ± 03.83 85.04 ± 03.08

TABLE II: Impacts of different features on UW-IOM. Best results are in bold. Second best results are underlined.

Method Input Keypoint Missing Probability p
0% 25% 50% 100%

STL [10] △ 87.24 ± 01.50 86.19 ± 02.27 84.29 ± 03.71 80.25 ± 05.68
MS-GCN [4] △ 91.93 ± 04.60 90.14 ± 04.63 89.33 ± 04.83 88.05 ± 04.64

Ours ⋆ 93.82 ± 02.90 93.48 ± 02.95 93.43 ± 02.75 91.28 ± 02.65

TABLE III: Robustness against missing keypoints on UW-IOM. Note that △ denotes 3D pose coordinate inputs and ⋆
denotes 2D pose heatmap inputs. Best results are in bold. Second best results are underlined.

of MS-GCN [4] and STL [10] respectively. Moreover, our
F1 score remains stable for p = 25% and p = 50%, whereas
the F1 scores of MS-GCN [4] and STL [10] decrease up
to 2.60% and 2.95% respectively. This is likely because our
method models each joint as a Gaussian and uses TCNs for
learning spatiotemporal features, whereas MS-GCN [4] and
STL [10] represent each joint by its coordinates and use
GCNs for spatiotemporal feature extraction.

D. Comparisons on UW-IOM

In this section, we compare our 2D skeleton-based
and 2D skeleton+RGB-based approaches with state-of-the-
art action segmentation methods, including ST-PGN [9],
MTL/STL [10], MS-GCN [4], and MS-TCN++ [16], on UW-
IOM. The quantitative results are shown in Tab. IV. It is
evident that our 2D skeleton+RGB fusion approach achieves
the best overall results, outperforming the 3D skeleton+RGB
fusion version of ST-PGN [9] by large margins on F1 score,
Edit distance, and mAP, e.g., 92.88% Edit distance for
Ours (Fusion) vs. 80.90% for ST-PGN (Fusion). Next, our
2D skeleton-based approach obtains the second best overall
results, outperforming previous 3D skeleton-based and RGB-
based methods on F1 score, mAP, and Acc. The results
in Tab. IV confirm the effectiveness of using 2D skeleton
heatmaps and TCNs for capturing spatiotemporal features.

E. Comparisons on TUM-Kitchen

Tab. V presents the quantitative results on TUM-Kitchen.
It is clear that our 2D skeleton-based approach outperforms
previous 3D skeleton-based and RGB-based methods on all
metrics, e.g., on Acc, 71.55% for Ours, as compared to
69.38%, 59.77%, and 69.28% for MS-GCN [4], STL [10],
and MS-TCN++ [16] respectively. Further, fusing 2D skele-
ton inputs and RGB inputs leads to the best overall perfor-
mance with the best numbers on Edit distance, mAP, and

Acc. The above observations validate the use of 2D skeleton
heatmaps for action segmentation.

F. Comparisons on Desktop Assembly

We now evaluate our approaches on Desktop Assembly.
Tab. VI shows the quantitative results. It can be seen that
our multi-modality fusion approach achieves the best overall
performance, followed by our 2D skeleton-based approach,
whereas STL [9] performs the worst, e.g., on mAP, 91.55%
for Ours (Fusion) and 91.19% for Ours, as compared to
86.91%, 60.05%, and 91.00% for MS-GCN [4], STL [10],
and MS-TCN++ [16] respectively. The above results show
the advantages of using 2D skeleton heatmaps and TCNs
for learning spatiotemporal features. Lastly, we present some
qualitative results in Fig. 5, where our results match the
ground truth better than MS-GCN [4] and MS-TCN++ [16].
Please see also our supplementary video 2.

G. Discussions

Numbers of Parameters. We discuss the numbers of pa-
rameters of our approaches and previous methods on UW-
IOM. Our heatmap-only model with around 1M parameters
is larger than MS-GCN [4] with around 650K parameters,
but significantly smaller than STL and MTL [10] with about
20M and 40M parameters respectively. MS-TCN++ [16] has
the same number of parameters (i.e., about 1M parameters)
as our heatmap-only model, while the number of parameters
of our fusion model roughly doubles that of our heatmap-
only model (yielding about 2M parameters).
Run Times. We measure the run times of our approaches and
previous methods on UW-IOM. Our heatmap-only approach
has a similar run time as MS-GCN [4], i.e., 71ms and
72ms respectively. They are considerably more efficient than
STL and MTL [10], which have run times of 183ms and

2Supplementary video: https://youtu.be/skx7rkkhcUw

https://youtu.be/skx7rkkhcUw


Method Input F1 Edit mAP Acc
MS-TCN++ [16] □ 93.36 ± 03.35 92.17 ± 04.08 87.99 ± 05.10 82.29 ± 03.89

†ST-PGN [9] △ 87.95 ± 01.54 97.86 ± 02.15 87.03 ± 02.85 -
†ST-PGN (Fusion) [9] △,□ 88.08 ± 01.89 80.90 ± 02.06 87.05 ± 03.47 -

†MTL [10] △ 92.03 ± 02.54 91.59 ± 01.23 74.45 ± 10.36 -
†STL [10] △ 92.33 ± 00.78 92.08 ± 01.18 49.61 ± 00.17 -

MS-GCN [4] △ 91.93 ± 04.60 87.61 ± 05.87 87.52 ± 05.29 82.75 ± 05.04
Ours ⋆ 93.82 ± 02.90 92.88 ± 04.13 89.82 ± 03.83 85.04 ± 03.08

Ours (Fusion) ⋆,□ 94.54 ± 02.75 93.25 ± 03.81 90.12 ± 03.65 85.84 ± 03.27

TABLE IV: Quantitative comparisons on UW-IOM. Note that □ denotes direct RGB inputs, △ denotes 3D pose coordinate
inputs, and ⋆ denotes 2D pose heatmap inputs. Also, † indicates that results are copied from the original papers. Best results
are in bold. Second best results are underlined.

Method Input F1 Edit mAP Acc
MS-TCN++ [16] □ 81.75 ± 04.04 84.76 ± 02.90 56.44 ± 02.63 69.28 ± 03.98

STL [10] □ 78.81 ± 08.42 81.50 ± 07.57 46.24 ± 17.42 59.77 ± 15.76
MS-GCN [4] △ 76.30 ± 04.23 80.14 ± 03.36 57.20 ± 02.59 69.38 ± 03.70

Ours ⋆ 81.96 ± 03.72 85.14 ± 03.01 58.81 ± 03.95 71.55 ± 04.75
Ours (Fusion) ⋆,□ 81.38 ± 02.86 85.33 ± 02.16 61.40 ± 01.93 72.89 ± 03.77

TABLE V: Quantitative comparisons on TUM-Kitchen. Note that □ denotes direct RGB inputs, △ denotes 3D pose coordinate
inputs, and ⋆ denotes 2D pose heatmap inputs. Best results are in bold. Second best results are underlined.

Method Input F1 Edit mAP Acc
MS-TCN++ [16] □ 97.24 ± 02.08 98.05 ± 02.11 91.00 ± 04.62 87.42 ± 03.35

STL [10] △ 87.16 ± 07.23 85.71 ± 06.43 60.05 ± 00.23 76.41 ± 15.23
MS-GCN [4] △ 95.81 ± 03.43 95.03 ± 04.04 86.91 ± 04.97 87.01 ± 04.08

Ours ⋆ 97.90 ± 02.48 97.15 ± 02.22 91.19 ± 03.88 88.85 ± 03.92
Ours (Fusion) ⋆,□ 98.02 ± 01.71 97.75 ± 02.39 91.55 ± 03.58 89.40 ± 02.62

TABLE VI: Quantitative comparisons on Desktop Assembly. Note that □ denotes direct RGB inputs, △ denotes 3D pose
coordinate inputs, and ⋆ denotes 2D pose heatmap inputs. Best results are in bold. Second best results are underlined.

Ours (Fusion)

Ground Truth

Ours

MS-TCN++

MS-GCN

Fig. 5: Qualitative comparisons on Desktop Assembly (sequence 2020-04-02-150120).

554ms respectively. The run time of our fusion approach (i.e.,
147ms) roughly doubles that of our heatmap-only approach.

Limitations. Despite our state-of-the-art performances on
standard action segmentation datasets, our 2D skeleton
heatmap-based approach may suffer from a few drawbacks.
In contrast to 3D skeletons, 2D skeletons do not include
depth cues. Thus, our approach may fail in cases where depth
cues are important, e.g., occlusions and viewpoint changes.
However, depth cues can still be inferred implicitly from 2D
skeleton heatmaps, similar to monocular depth prediction. In
addition, both 3D and 2D skeletons do not contain context
details, e.g., objects and background information, which are
available in RGB videos. Therefore, our approach may suffer
in scenarios where context details are crucial. Nevertheless,
our fusion approach overcomes that by utilizing both 2D
skeleton heatmaps and RGB videos as inputs.

V. CONCLUSION

We introduce a 2D skeleton-based action segmentation
method, which uses 2D skeleton heatmap inputs and employs
TCNs for spatiotemporal feature learning. This is in contrast
with previous methods, where 3D skeleton coordinates are
handled directly and GCNs are used to capture spatiotempo-
ral features. Our approach achieves similar/better results and
higher robustness against missing keypoints than previous
methods on action segmentation datasets, without requiring
3D information. To further improve the results, we fuse 2D
skeleton heatmaps with RGB videos. To our best knowledge,
this work is the first to utilize 2D skeleton heatmap inputs
and the first to perform 2D skeleton+RGB fusion for action
segmentation. Our future work will study the generalization
of our approach by evaluating it on Epic Kitchens [44], which
has diverse hand-object interactions and camera viewpoints.
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