
Hybrid quantum-classical computation for automatic
guided vehicles scheduling.
Tomasz Śmierzchalskia, Łukasz Pawelaa, Zbigniew Puchałaa, Mátyás Koniorczykb,
Bartłomiej Gardasa, Sebastian Deffnerc,d, and Krzysztof Dominoa *

aInstitute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, Gliwice, 44-100, Poland
bHUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33., Budapest, 1121, Hungary
cDepartment of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
dNational Quantum Laboratory, College Park, MD 20740, USA
*kdomino@iitis.pl

ABSTRACT

Motivated by global efforts to develop quantum computing for practical, industrial-scale challenges, we showcase the effective-
ness of state-of-the-art hybrid quantum-classical solvers in addressing the business-centric optimization problem of scheduling
Automatic Guided Vehicles (AGVs). These solvers leverage a noisy intermediate-scale quantum (NISQ) device, specifically a
D-Wave quantum annealer. In our study, the hybrid solvers exhibit non-zero quantum processing times, indicating a significant
contribution of the quantum component to solution efficiency. This hybrid methodology performs comparably to existing classical
solvers, thus indicating ‘quantum readiness’ for scheduling tasks. Our analysis focuses on a practical, business-oriented
scenario: scheduling AGVs within a factory constrained by limited space, simulating a realistic production setting. Our new
approach concerns mapping a realistic AGV problem onto a problem reminiscient of railway scheduling and demonstrating
that the AGV problem more suits quantum computing than the railway counterpart and is more dense in terms of an average
number of constraints per variable. We demonstrate that a scenario involving 15 AGVs, which holds practical significance
due to common bottlenecks like shared main lanes leading to frequent deadlocks, can be efficiently addressed by a hybrid
quantum-classical solver within seconds. Consequently, our research paves the way for the near-future business adoption of
hybrid quantum-classical solutions for AGV scheduling, anticipating that forthcoming improvements in manufacturing efficiency
will increase both the number of AGVs deployed and the premium on factory space.

1 Introduction
Quantum computing, a relatively young science field, has developed rapidly over recent years. It is commonly accepted that
this novel technology could shape the future. Certain tasks are not tractable with a classical computer; quantum computing
approaches are good candidates to handle these. Algorithms such as Shor’s algorithm1 proposed a polynomial-time quantum
algorithm for the integer factoring problem. At its current development level the improved efficiency offered by quantum
computing is restricted to certain computational problems2. Nevertheless, it is widely recognized that we are in the era of
noisy intermediate-scale quantum (NISQ) devices3, 4: a few hundred quantum bits are technologically available, but noise
and imperfections still have a relevant impact on their operation. Despite that, the first examples of quantum advantage have
already been presented5, and there is an increasing research interest in potential industrial applications that are considered6–8.
Currently, the community of quantum computing scientists is searching for practical industrial-scale use cases of industrial
problems that can be successfully solved using the available quantum devices9. Our intention is to address this quest by
tackling the Automated Guided Vehicles (AGV) scheduling problem. The size and characteristics of the scheduling problem
addressed in this paper make it a good candidate to explore noisy-intermediate scale quantum (NISQ)3 technologies in industrial
applications.

As current quantum devices are small and noisy, hybrid quantum-classical solvers are being developed to handle optimization
problems of sizes that are relevant from the practical application point of view. In these hybrid solvers, a part of the computation
is performed on a quantum device: the quantum processing unit (QPU), while the so-called master problem is handled by the
CPU (central processing unit). Examples of such an approach are the hybrid solvers developed by the D-Wave company10.
In the present paper, we compare the performance of one of these solvers with a state-of-the-art (classical) integer linear
programming (ILP) solver when applied for the scheduling of AGVs. Our findings indicate that in the context of this application,
the chosen hybrid solver is comparable with and has the potential to outperform the classical one.

In the broad picture of production scheduling, an approach considered as promising is Smart Scheduling11. It combines the
cyber-physical production systems (CPPS) with the decision support system (DSS). The AGV scheduling optimization can be

ar
X

iv
:2

30
9.

03
08

8v
2

 [
qu

an
t-

ph
]

 8
 M

ay
 2

02
4

treated either as part of the larger industrial system in light of the philosophy of industry 4.012 (e.g. together with industrial job
scheduling) or just as a sole component. For the sake of demonstration, we focus on the latter. However, our model can be
re-integrated into a general DSS system.

Many industrial processes can be optimized, including the design of manufacturing systems and processes, assembly line
processes, etc. Within these, we address AGV scheduling, in particular, timetabling in a short time horizon. The decisions
have to be made almost in real-time, requiring fast computational heuristics. The concept of industry 4.013 implies that AGV
scheduling must be tied to the particular factory specifics. To tie our research directly to current business needs, we address a
problem that arises in a production environment, i.e. the practice of an actual operating factory. (Its identity and further details
are confidential.) We model this particular environment, its configuration, and requirements, addressing the particular needs of
the given factory. In this factory, there is a well-defined space where AGVs can maneuver. They are restricted to moving on
dedicated "roads" (uni- or bidirectional) to reach ports, loading places, charging stations, etc. Here, the AGVs are controlled by
a central system where their scheduling occurs.

AGV scheduling algorithms are divided into rostering1 and routing14, 15. The aim of rostering is to dispatch a set of AGVs
to perform certain jobs of equipment transportation within the factory. Then, routing (path planning) aims at finding suitable
paths for the AGVs, together with the ”timetable” and a possible ordering of AGVs passing certain congested places. These
problems are commonly solved via linear programming optimization15, 16.

The work of Tuan17 provides a fair overview of the optimization of AGVs scheduling. Vehicle rostering is discussed both
as an offline scheduling problem (where all transportation requests are known in advance) or as online scheduling (where
environments are stochastic, and requirements appear on the fly, c.f. the work of18). We follow the approach of deterministic
offline scheduling, but each time the circumstances change, we recalculate schedules. An important constraint (tied to time
constraints in scheduling theory) is the maximal window of time in which a task has to be performed by an AGV. The objective
is a linear function of variables reflecting completion time costs. To solve both static and dynamic problems, most authors
apply ILP together with a (custom) column generation approach and various methods of optimization. As we consider routes
and tasks of AGVs predefined for our optimization problem, column generation is not applicable.

The literature on bigger-scale AGV scheduling problems is still scarce, and the considered sizes are rather limited when
compared to industry practice. For instance, in a recent paper19, a system with 9 AGVs is already considered as a large-scale
one. In our use case, we introduce a model tailored to the specific needs of this operational setting, employing proprietary
hybrid quantum-classical solvers for resolution. In particular, we concentrate on certain components of AGVs scheduling,
AGVs’ timing, and ordering, stressing the problem of deadlock resolution.

When compared to the most similar contributions in the literature, our approach is complementary to the work of Geitz et
al.8, where the job scheduling in a factory is optimized on a quantum annealer or classical device. There, however, the focus is
on the factory machines. As opposed to that, we focus on the AGV traffic, assuming job assignments to industrial machines are
fixed. Haba et al.20 also addressed a problem of AGV scheduling with quantum methods. There, however, quantum annealing
was applied for the routing of AGVs, as opposed to our problem, which addresses the timing and ordering of the AGVs.

The planning of AGVs’ paths and task assignment, which is widely analyzed along with scheduling in literature14, is not
part of our optimization task. We are required to address AGV scheduling in itself, which has less coverage in the literature.
Our contribution is the first one in this research direction, which is dedicated to the particular business-driven problem of AGVs
scheduling in a factory with limited space.

This particular optimization problem appears to be complex but still tractable for the meaningful number of AGVs (15
AGVs in particular). The anticipated evolution of Industry 4.0, particularly with respect to AGV scheduling, is expected to
involve more complex scenarios, such as managing 40 or more AGVs within the confined spaces of a factory. Addressing such
challenges in a timely manner could become problematic using common heuristics. Hence, new heuristics or computational
paradigms may be necessary for such future applications.

This paper is organized as follows. In Section 3.2, we define our problem and formulate it mathematically. In Section 4,
we discuss computational results. In Section 5, we draw conclusions, while Appendix A is devoted to technical details of the
mathematical model, and Appendix B is devoted to details on the particular problem of AGVs’ scheduling.

2 Quantum annealing

A recent theoretical study21 points toward possible speedup for approximately solving instances of NP-hard combinatorial
optimization problems as long as they are implemented using a fault-tolerant quantum computer. Inspired by this, we hope that
a quantum-ready model can potentially scale better than classical computer algorithms. Hence, developing quantum hardware
may open the possibility of efficiently dealing with large problem instances.

1also termed as “scheduling” in some works

2/15

Quantum Annealing22 is a heuristic algorithm that operates within the principles of Adiabatic Quantum Computing23, 24,
particularly for solving optimization problems. In this regime, a given optimization task is encoded into a physical system
described by a problem Hamiltonian HP, so that the system’s lowest energy state (ground state) corresponds to the solution
of the original problem. Initially, the system is prepared in the ground state of another related physical system, described
by the initial Hamiltonian H0. Then, the system is slowly evolved into the target system HP by tuning the parameters of
the instantaneous Hamiltonian to turn H0 into HP in a long enough time T . According to the adiabatic theorem25, if certain
conditions hold, the system should remain in the ground state during the evolution and thus reach the ground state of HP at the
end, yielding a solution to the original problem. Mathematically, the evolution of the system is described by the following
time-dependent Hamiltonian:

H(t) =
(

1− t
T

)
H0 +

t
T

HP. (1)

The quantum annealers which are provided by D-Wave and are applied in our research implement a problem Hamiltonian
whose energy is expressed using a 2-local Ising model26:

HP = ∑
⟨i,i′⟩∈E

J′i,i′σ
z
i σ

z
i′ +∑

i
h′iσ

z
i , (2)

where σ z is a Pauli-Z operator acting on the i-th qubit, and J′i,i′ and h′i are real values corresponding to pairwise couplings and
the external magnetic field, respectively, and E is the graph of the processor topology. The initial Hamiltonian H0 is chosen to
consist of a transverse magnetic field, H0 = h0 ∑i σ x

i where σ x
i is the Pauli-X operator acting on the i-th qubit.

Finally, the results of quantum annealing are supposed to minimize the classical Ising problem in Eq. (3)

min
(s1,...sn)∈{−1,1}N ∑

(i,i′)∈E
siJ′i,i′si′ + ∑

i∈V
sih′i (3)

where si are spin variables si ∈ {−1,1}, J′i,i′ are couplings between spins, and h′i are local fields. Such a problem can also be
easily encoded in Quadratic Unconstrained Binary Optimization (QUBO) problem, namely:

min
(x1,...xn)∈{0,1}N

∑
(i,i′)∈E

xiJi,i′xi′ + ∑
i∈V

xihi (4)

where xi ∈ {0,1} are binary variables, and si = 2xi−1.
In practice, many optimization problems, including our scheduling case, can be modelled as an integer linear program (ILP).

The integer variables can be encoded into suitable binaries in various ways27, 28. The constraints of the integer programs are
taken into account with penalties29. The right choice of penalties, a nontrivial problem30–33 itself. Although the size of the
current quantum annealer is limited in terms of the number of qubits (in our case, approximately 5600 qubits and 40 thousands
couplings between them organized into the Pegasus topology of QPU34), larger optimization problems, that do not fit quantum
devices, can be solved via hybrid quantum-classical approach. D-Wave offers two hybrid classical-quantum solvers as a part of
its service: BQM and CQM10, 35.

The BQM solver inputs QUBO problems and solves them with a portfolio of classical heuristics. In the course of the
process, certain subproblems are sent to the quantum processor. In the case of the CQM solver, the input is a constrained
quadratic program, which can be an ILP. Its transformation to QUBO is performed within the solver. The handling of constraints
with penalties is also done by the solver internally.

These solvers are proprietary and closed source; their details are hidden from the users. Nevertheless their operation can
be understood according to D-Wave’s white paper10. In particular, the data flow is described as follows. The solver reads the
input problem. Then, it invokes a portfolio of heuristic solvers that run in parallel using classical CPUs and GPUs in a cloud
computing environment. These heuristics contain a Quantum Module (QM), which can send queries to QPU. The quantum
results help classical heuristic search to improve the quality of a current pool of solutions. After post-processing (removing
duplicates, etc.), the results are forwarded to the user.

The hybrid solvers open the possibility of easily dealing with bigger-scale problems. For instance, CQM has recently been
applied to the practical rescheduling problems in heterogeneous urban railway networks36.

3 AGV scheduling

The concept of industry 4.013 implies that AGV scheduling must be tied to the particular factory specifics. To tie our research
directly to current business needs, we address a problem that arises in a production environment, i.e. the practice of an actual

3/15

operating factory. (Its identity and further details are confidential.) We model this particular environment, its configuration, and
requirements, addressing the particular needs of the given factory. In this factory, there is a well-defined space where AGVs can
maneuver. They are restricted to moving on dedicated "roads" (uni- or bidirectional) to reach ports, loading places, charging
stations, etc. Here, the AGVs are controlled by a central system where their scheduling occurs.

Concerning a factory environment with limited space, an important issue with AGVs is the possibility of deadlocks, where
several AGVs come to such a point that none of them can move forward because each of them is blocked by the others.17

mentions various deadlock resolution methods:

1. Balancing the system workload, i.e. using workload-related dispatching rule37,

2. Controlling the traffic at intersections by semaphores38,

3. Introducing static or dynamic zones that a limited number of AGVs can occupy for a dynamic-zone strategy for
vehicle-collision39 prevention.

These deadlock resolution strategies can mostly be encoded as constraints to the ILP. We have opted for the last approach, i.e.
dynamic zones. It is worth remembering that deadlock resolution in limited space is challenging and difficult, even with limited
problem size (regarding the number of AGVs).

Our problem can also be understood in the standard metaphor of scheduling theory40: zones are machines, and AGVs are
jobs. Each AGV has to visit a set of infrastructure elements in a given sequence: each job has to be processed by a set of
machines in a prescribed order: this is a job-shop Job Shop (Jm) environment. Generalizations allowing for having multiple
AGVs in a zone would result in a Flexible Job Shop (FJc) environment; this we will not consider here. We treat parts of
the infrastructure that lie between zones (i.e. where conflicts are not expected) as buffers. The requirement of a minimal
headways between AGVs leaving and entering zones and deadlock constraints on bidirectional "roads" (also termed as lanes)
imply blocking constraints (block). The prescription of the initial availability of AGVs implies release date (r j) constraints.
The minimal passing times of AGVs through particular resources are limited: minimal processing times (p jm) appear. In
addition, due dates (d j) are also prescribed: the AGVs’ tasks have to be completed in a given time. Finally, permutation (prmu)
constraints arise, as AGVs cannot overtake on lanes between zones. Recirculation (rcrc), if a given AGV can visit the same
zone multiple times during the trip, could also be considered but will not be addressed here as it does not occur in the particular
factory we model.

The objective is to ensure that the AGVs finish their travels as soon as possible, considering certain priorities. Hence,
the objective is the travel completion time, the weighted sum of completion times of each AGV. We shall refer to this
as completion time in what follows. With the standard notation of scheduling theory, our problem falls in the class
(Jm|r j, p jm,d j,block, prmu|∑ j w jC j).

The objective is the weighted sum of completion times17. The weights reflect the priorities of AGVs. We assume that
AGVs’ tasks and paths (represented by the colour lines in Fig. 1) are pre-defined as input for our problem. Each time these
inputs are changed, a new optimization problem is created and recomputed. Such changes in the input can be caused e.g. by
disturbances in the AGV traffic.

Fig. 1 displays an example of the considered topologies. This setup closely resembles the situation in the considered
real-life factory (it is distorted to maintain confidentiality). AGVs paths (color lines) are as follows:

• bidirectional lanes (e.g. between s5 and s6 in Fig. 1),

• uni-directional lanes,

• zones39 the locations where conflicts are possible according to the given (predefined) paths, i.e. where AGVs paths split,
join, or where uni-directional lanes start or end.

To avoid collisions, we assume that only one AGV can occupy each zone at a given time (This limitation can be lifted in a more
elaborate model by increasing the allowed number of AGVs within the zone and introducing some local traffic conditions38.)

3.1 AGV scheduling: algorithm
The practical AGVs scheduling will be performed via the following algorithm triggered at each change of input parameters.

Fixed inputs

1. J - set of AGVs;

2. w j - priority weights (as the part of total weighted completion time objective);

4/15

s5

s6

s3s1

s0

s2

s4

AGVs paths
ports

b
i-

d
ir

e
ct

io
n
a
l

uni-directional

uni-directional

working area

working area

Figure 1. Example of the AGV scheduling problem given pre-defined AGVs paths as colour lines. First, AGVs are routed to
travel between ports, what is the input to our algorithm. The goal of the algorithm is ti timetable AGVs to avoid collisions at
zones. In our case zones s0, . . .s6 are allegorically assigned spatial areas where AGVs paths intercept start or active ports are
located. AGVs paths in terms of zones are AGV s0,s1,s2,s3, AGV s4,s3,s2,s1, AGV s6,s5,s4,s3 AGV s5,s6 and AGV s2,s3

3. dmax - the parameter determining the time window, due time, +can be computed from this parameter;

4. topology of the network as in Fig. 1, containing:

• uni-directional double lanes,

• bidirectional single lanes (imposing blocking constraints);

5. minimal headways between two subsequent AGVs, this is a parameter of blocking constraints.

Variable inputs

1. starting points of AGVs in time and space,

2. AGVs destinations and paths (from this, the sequence of machines will be determined);

3. nominal speeds of AGVs, processing time constraints can be formulated based on these parameters.

Processing

1. from paths of AGVs create zones where conflicts are possible; see Fig. 1,

2. define AGVs paths by the sequence of zones e.g. S j = {s j,1,s j,2 . . .s j,end−1,s j,end}, e.g. see caption of Fig. 1;

3. given initial conditions, compute the lowest possible entering and leaving times of each AGV at the zones, assuming
there are no collisions between the given AGV and all other AGVs;

4. encode the problem into ILP: entering and leaving times of AGVs at the zones are integer decision variables, and there
are binary order variables determining which AGV leaves a zone first. (A relaxation of the integer constraint on time
variables yields a mixed integer program that is also meaningful but not considered here, as quantum devices support
integers. In addition, our computational experience shows that the relaxation of the integer constraints on time variables
and using a MILP solver does not significantly improve computational time when using CPLEX; the real difficulty
is encoded in the order variables.) Lower limits of these variables are determined in point 3 while upper limits are
determined by lower limits and model parameter dmax, encode constraints and objective;

5. solve the problem using a chosen solver (classical, quantum, hybrid, etc.).

5/15

Output

1. conflict-free timetable of AGVs encoded as entering and leaving times of AGVs at zones, or correspondingly the order of
AGVs therein.

Steps 1 - 3 in processing are pre-processing steps. The higher computational effort is required in step 5, which deals with
optimization. Hence, the analysis of the computation process (both quantum and classical) will refer to step 5 of the algorithm.
Importatnly, the optimization results (values of order variables uniquely defining the order of AGVs at each zone while the
traffic beyond zones is conflict-free) can be directly fed into the application programming interface (API) of the operation
control software system of the factory we have modeled.

3.2 AGV scheduling: ILP model
Here, we provide the details of the model in step 4 of the algorithm, given that step 5 will be handled in Section 4.

Decision variables include the integer times when AGVs are entering and leaving zones are denoted by tin / out(j,s). As
floating point numbers cannot be treated easily, we use integer time variables tin / out(j,s) ∈ N. The time window constraints17,
implies that each of these variables fit into the time window of length dmax, namely:

υin / out(j,s)≤ tin / out(j,s)≤ υin / out(j,s)+dmax. (5)

where υin / out(j,s) are lower limits computed by assuming the nominal speed of j’th AGV and assuming no conflicts (collisions)
with other AGVs, according to40. The dmax parameter imposes due time constraints, while lower limits are tied to release date
constraints. Let |S| be the number of zones in a particular optimization problem, and |J| the number of AGVs therein.

To determine the order of AGVs at zones, we introduce binary order variables.

• For zone s passed by AGVs j and j′ we have:

yin/out(j, j′,s) ∈ {0,1} (6)

which is equal to 1 iff j enters / leaves zone s before j′, as the order of AGVs cannot be changed at the zone by assumption;
obviously:

yin/out(j, j′,s) = 1− yin/out(j′, j,s). (7)

• For a bidirectional lane (joining zones s and s′) used by AGV j heading in one direction and AGV j′ heading in the
opposite direction, we assign the following order variable:

z(j, j′,s,s′) ∈ {0,1}, (8)

which is equal to 1 iff j enters such lane (bounded by zone s and s′) before j′, and zero otherwise, hence,

z(j, j′,s,s′) = 1− z(j′, j,s′,s). (9)

As for the number of variables observe that if an AGV passes a zone, there are two t variables (c.f. Eq. (5)); for the AGV
entering and leaving the zone. As not all AGVs pass through all zones, we have

#t ≤ 2|J||S|. (10)

Concerning order variables, for each pair of AGVs passing a zone there is a pair of these (yin and yout). However, the order of
AGVs cannot change in a zone (this will be enforced by constraints in Eq. (22)), a single order variable per zone and AGVs’
pair suffices; there are |J|(|J|−1)/2 such pairs. Further, if hypothetically the whole topology consisted of bidirectional lanes,
we had #z = #y. In a more general layout, inequality #z≤ #y holds. Hence,

#y≤ |J|(|J|−1) |S|
2

, #z≤ |J|(|J|−1) |S|
2

, and #y+#z+#t≪ |J|(|J|−1) |S|+2|J||S|. (11)

For topologies with most uni-directional lanes (as in our example in Section 3.1), we have #z≪ #y, which leads to the following
approximation:

#y+#z+#t≪ |J|(|J|−1) |S|
2

+2|J||S|. (12)

6/15

Objective is defined as the weighted sum of completion times17, namely:

f = ∑
j∈J

w j
tout(j,s j,end)

dmax
. (13)

Here s j,end is the last zone of the path of j AGV, and w j is the weight tied to the priority of such AGV. (We assume that the
AGV’s path is conflict-free after leaving the last zone.) This can be referred to as the total completion time objective.

Constraints. The minimal passing time constraint (mpt) of AGVs between subsequent zones can be computed from the
problem topology and AGVs speeds. For any pair of subsequent zones (s,s′) on the route of AGV j we require:

tin(j,s′)≥ tout(j,s)+ τ
pass(j,s,s′), (14)

see Fig. 2 (upper panel). In our model, zones are considered as bottleneck areas. Hence, we allow waiting of AGVs in the
buffer before the zone entrance, yielding ≥ sign in Eq. (14).

The minimal headway constraint (mh) is the model input that determines minimal time spacing between two subsequent
AGVs. In detail, consider two AGVs j, j′ heading in the same direction. Let s∗,s,s′ be the sequence of subsequent zones they
both pass. Then:

tout(j′,s)+M · yout(j′, j,s)≥ tout(j,s)+ τ
headway(j, j′,s,s′), (15)

see Fig. 2 (lower panel), and analogously

tin(j′,s)+M · yin(j′, j,s)≥ tin(j,s)+ τ
headway(j, j′,s∗,s). (16)

Here M is a large enough number for inequality to always hold for y(j′, j,s) = 1 (we used so called “big M encoding”). If s
does not have a successor in the sequence, we do not consider Eq. (15). Analogously , if s does not have the predecessor, we do
not consider Eq. (16).

s s′AGVj AGVj

τpass(j, s, s′)

s s′AGVj′ AGVj

τheadway(j, j′, s, s′)

Figure 2. Illustration of minimal passing time (upper panel) and headway (lower panel) Eq. (14)

The deadlock on bidirectional lane constraint (d) is defined as follows. Let the pair (s,s′) be two zones connected by the
single bidirectional lane and j and j′ be two AGVs first going s→ s′ and the second s← s′. Then:

tout(j′,s′)+M · z(j′, j,s′,s)≥ tin(j,s′) (17)

and

z(j, j′,s,s′) = yin(j, j′,s) = yin(j, j′,s′) (18)

Equation (18) yields that the order of AGVs heading in opposite directions cannot change between zones s, s′ (including zones
itself), as they cannot meet at the bidirectional lane, which would lead to the deadlock.

In the zone constraint (zc), we assume that the zone can be occupied only by one AGV at a time. This is to avoid collisions
within the zone. Hence, AGV j′ can enter the zone after j leaves it (provided j is first on the zone, i.e. yin(j′, j,s) = 0):

tin(j′,s)+M · yin(j′, j,s)≥ tout(j,s) (19)

7/15

Then we also have to include minimal passing time over the zone τzone

tout(j,s)≥ tin(j,s)+ τ
zone(j,s). (20)

In the scheduling theory language: the assumption that the zone can be occupied by one AGV only defines the job shop machine
environment, and the prescription of the passing time over zones imposes processing time constraints.

As AGVs are, in general, moving with similar speed, we assume that they cannot overtake both on lanes and zones. This no
overtake (no) constraint requires the order of such AGVs to be maintained. (This is the permutation constraint.) In detail, let j
and j′ be a pair of AGVs heading in the same direction, passing the sequence of zones: s1,s2, . . .sk. Then:

y(j, j′,s1out) = y(j, j′,s2out) = . . .= y(j, j′,skout) (21)

(Note that if the route of two AGVs splits and joins later, the condition in Eq. (21) has to be modified).
As mentioned before, we also assume that AGVs cannot overtake within a zone:

yin(j, j′,s) = yout(j, j′,s). (22)

Let us now estimate the number of constraints. The minimal passing time (mpt) constraint, there is a single inequality as in
Eq. (14) for each AGV and each zone passed by this AGV. Then, taking the upper limit of each AGV passing each zone, we
have

#mpt ≤ |J||S|. (23)

The minimal headway (mh) constraints are required for each pair of AGVs following each other at each zone. There are roughly
|J|2/2 such pairs. To obtain an upper limit we consider all AGVs passing all zones. Then, for each AGV in the pair and each
zone, we have one constraint from Eq. (15) and one from Eq. (16);

#mh ≤ 2
|J|2
2
|S|= |J|2|S|. (24)

Analogously , we would expect from Eq. (17) the same limit for the number of deadlock (d) constraints;

#mh +#d ≤ 2|J|2|S|. (25)

To approximate the number of zone constraints (zc), the upper limit is obtained again with the hypotatical assumption that all
AGVs pass all zones. Then for each zone and each AGV we have |J|−1 inequalities from Eq. (19) and one inequality from
Eq. (20), yielding

#zc ≤ |J|2|S|. (26)

Hence, the number of minimal passing time (mpt) constraints (see Eq. (23)) is linear in |J|, while the number of all other
constraints (zc, mh, d) is quadratic in |J|. Then, for a large enough |J|, we can assume:

m = #mpt +#zc +#mh +#d ≈ #zc +#mh +#d ≤ 3|J|2|S|, (27)

Finally, the number of no overtake (no) constraints in Eq. (21)

#no ≤
|J|2|S|

2
(28)

is also expected to be linear in |S| and quadratic in |S|.
Altogether the problem size (in terms of the number of constraints and binary variables) scales linearly in the number of

zones |S| and quadratically in the number of AGVs |J|. The quadratic scaling can cause difficulties when applying the ILP
model to a large number of AGVs. As such, this AGV problem seems to be a good use-case for the quantum approach described
at the beginning of this section.

8/15

s0

s1 s2 s3 s4 s5

s6

τpass(s0, s1)

τpass(s1, s2) τpass(s3, s4) τpass(s4, s5)

τpass(s5, s6)

Figure 3. Example network with 7 zones derived from Fiq. 1

|J| / |S| / dmax
actual ILP upper limit
n.o. vars
int / bin

n.o.
equalities

n.o.
inequalities

n.o. vars
Eq. (12)

equalities
Eq. (28)

inequalities
Eq. (27)

2 / 4 / 10 16 12/4 4 16 20 16 32
4 / 4 / 10 36 20/16 10 34 56 62 124
6 / 7 / 40 78 38/40 32 80 189 252 504
7 / 7 / 40 118 48/70 55 127 245 343 686
12 / 7 / 40 596 102/494 429 766 630 1008 2016
15 / 7 / 40 696 118/576 495 883 945 1575 3150

Table 1. Sizes of ILPs of the analyzed AGV problems. The notion of upper limits is described in Section 3.2. We have
approximately 2 constraints per variable (equality and inequality), what makes the the problem sparse in comparison with
railway counter example in36.

4 Computational results and discussion
For numerical calculations we used examples of problems similar to those presented in Fig. 1, but with different numbers of
AGVs and zones. This is a typical setting in an industrial system, as various AGVs are in traffic at various times, and collision
zones form dynamically. As a typical example of the particular parameter setting with 7 zones see Fig. 3. The actual values of
parameters can be read from the topology, AGVs’ speeds, and zone locations. The example with 7 zones and 7 AGVs will be
discussed in more detail in Appendix B.

From an optimization point of view, one of our goals is to examine the scaling of the problems’ computational time and
number of variables and constraints with the size of the problem in terms of |J| and |S| (namely the number of AGVs and
zones). We start with 2 AGVs and 4 zones and end with 15 AGVs and 7 zones. The sizes of the instances we have solved are
tabulated in Tab. 1. Referring to somehow analogous problem in railways in36 with 3 to 5,5 constraints per variable the AGV
problem is much more sparse (approximately 2 constraints per variable). Such less dense problem is more probable to be better
handled on the quantum device, where the embedding on the device with limited degre connectivity is performed.

All classical (that is not quantum) calculations were performed on the consumer-grade computer described in Tab. 2, and
quantum calculations were performed on DWave’s Advantage_systems6.2 quantum annealer, whose physical properties are
described in34. In short, the quantum device has over 5600 qubits and 40 thousand couplings between them, organized into
the Pegasus topology of QPU. Concerning pure quantum computing, we were able to fit to real quantum device only first
two smallest problems, from Table. 1. The larger of 36 ILP variables and 44 ILP constrains (equalities and inequalities) was
converted into 268 qubits Ising problem with 2644 (quadratic) couplings between. However, even for these two small problems
we did not achieve the feasible solution. From this, we can conclude that quantum annealers are too small and too prone to

9/15

Performance of hybrid and classical solvers

0 200 400 60010−3

10−2

10−1

100

101

102

problem size - # linear variables

co
m

pu
ta

tio
na

lt
im

e
[s]

hybrid CQM
CPLEX exact

CPLEX const comp. time
0 200 400 600

1

1.02

1.04

problem size - # linear variables

ob
je

ct
iv

e
/

op
tim

um

hybrid CQM
CPLEX exact

CPLEX const comp. time

Figure 4. Comparison of performance of Classical CPLEX exact and approximate (achieved by setting constant
computational time) with hybrid quantum-classical solver, CQM in particular. All presented solutions were feasible. As
concerning BQM feasible solutions were found only for small instances.

OS Windows 10 Pro N
Type 64 bits
CPU 11th Gen Intel(R) Core(TM) i5-11600K @ 3.90GHz
RAM 32 GB
GPU Intel(R) UHD Graphics 750

Table 2. Technical specifications of the classical computer used for computations.

errors, and hence for more accurate solutions of larger problem we opt for hybrid quantum - classical solvers.
Our first approach was to use the BQM solver. In order to do so, the ILP has to be converted to QUBO. Appendix A describes

the details of this transcription. The constraints were taken into account with penalties using ad-hoc penalty coefficients. We
have found that except for the smallest problems, the BQM solver does not return high-quality solutions (see Fig. 6, right panel).
Notably, the solutions were not feasible: a more advanced and systematic determination should replace our ad-hoc choice of
the penalty coefficients. As this issue is handled in the CQM solver, we switched to that one. Indeed, the CQM hybrid solver,
which is convenient also because it accepts ILPs directly, has always provided some feasible solutions in our problems.

We have therefore made a comparison of 3 approaches: the exact CPLEX ILP solver wich always solves the problem
to optimality, an approximate CPLEX solution, achieved by setting constant computational time for CPLEX solver, and the
CQM hybrid solver as an approximate heuristic. Our comparison is summarized in Fig. 4. In terms of computational time,
CQM has outperformed the classical exact CPLEX solver for large problems (596 and 696 linear variables). It has to be noted

Histogram of feasible solutions of CQM

3.2 3.4 3.6 3.8 40

5

10

15

20

78 variables
6 AGVs

a)

Objective value

C
ou

nt
s

CQM
optimum

4 5 6 7 80

5

10

15

20

118 variables
7 AGVs

b)

Objective value

CQM
optimum

;

8 10 12 14 160

5

10

15

20
596 variables

12 AGVs

c)

Objective value

CQM
optimum

;

10 12 14 16 180

5

10

15

20

696 variables
15 AGVs

d)

Objective value

CQM
optimum

Figure 5. Histograms of objectives of feasible CQM solutions for various problem sizes: 6 AGVs a), 7 AGVs b), 12 AGVs c),
15 AGVs d). For each run approx hundred of samples were returned. Histogram spreads are measured by standard deviation
(std): 6 AGVs std = 0.19, 7 AGVs std = 0.68, 12 AGVs std = 1.66, 15 AGVs std = 2.08.

10/15

Details on performance of hybrid solvers

0 200 400 600
0

50

100

150

200

problem size - # linear variables

Q
P
U

ti
m
e
[m

s] BQM
CQM

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

problem size - # linear variables

F
ea
si
b
il
it
y
p
er
ce
n
ta
ge

CQM

0 200 400 600
0

100

200

300

problem size - # linear variables

#
b
ro
k
en

co
n
st
ra
in
s

BQM
D-Wave

Figure 6. Details of hybrid solvers. The QPU time is in the left panel, and the number of broken constraints of the solution is
in the right panel. Observe that the output of the CQM solver was satisfactory, which was not the case in the BQM solver,
especially for large problems.

that in each of the CQM computations, a nonzero QPU time was reported (see Fig. 6, left panel), indicating that the QPU
was active during the calculation. The largest problem was of 15 AGVs and 7 zones, which is the sound size concerning the
real live factory environment. As for the quality of the solutions, slightly higher objective value than the exact solution. This
overview shows that the CPLEX approximate solver, performing all computations in 1 second, is fast enough for almost online
scheduling and dynamics response of our algorithm. Hence, such results would be admissible for practical application in
real-life factories. In the future, when better quantum annealers will be available, they may become more efficient than classical
heuristics. Concerning railway counterpart problem in 36 and analogous real live problems of 817 variables and over 3000
constraints the performance of the CQM solver therein could compete only with exact CPLEX in terms of computational time
but at larger cost of the solution quality than in the AGV case.

As the CQM solver returns multiple feasible solutions at a time, in Fig. 5 we present the histograms of these, for problems
of various sizes. Observe that for small problems, the results concentrate around the optimum, while for large problems, the
histogram spreads towards higher-than-optimum objective values. It is important to note that even for large problems there are
multiple feasible and potentially valuable solutions obtained. The results with the CQM solver are competitive and illustrate an
efficient application of hybrid algorithms. The details of a particular case and its solutions, including a detailed comparison of
classical and different quantum solutions are presented in Appendix B.

For the largest problem of 15 AGVs and 7 zones (696 linear variables), the problem is still tractable using classical heuristics.
As we expect the size of the problem to scale quadratically with the number of AGVs, other heuristics may be required to
handle larger problems in expanding industrial environments; a hybrid quantum-classical approach may be one of these. This
however would also require the improvement of the hybrid solvers as the feasibility percentage of CQM decreases with the
problem size, as it can be observed in Fig. 6, middle panel. If the linear scaling between feasibility percentage and the number
of linear variables holds, the biggest problems that can be solvable using the current CQM can have approximately up to 1000
variables.

5 Conclusions
In this research, we have demonstrated the utility of a hybrid quantum-classical approach for a close-to-real-life AGVs
scheduling problem that can be implemented in a real factory environment. We have not yet demonstrated quantum advantage,
but the results of one of the hybrid quantum-classical approaches are close to those of CPLEX, which is widely recognized
as the benchmark classical solver. As such hybrid approaches are expected to improve in the near future, we may be on the
edge of quantum advantage. While larger problems of hundreds of AGVs that are expected to arise from the developments of
the concept of industry 4.0 (yielding several thousands of variables in our model) may remain out of the range of classical
algorithms, future hybrid quantum-classical algorithms can be expected to have the potential to cope with them.

The CQM solver even for large problems provides the spectrum of distinguishable solutions, that can be the input to
multi cases DSS system or sophisticated stochastic scheduling approach. Besides, CPLEX (with limited time) is faster and
closer to optimality it provides only one solution. The experience with BQM underlines the importance of systematic penalty
determination3332.

11/15

Data availability
The code and the data used for generating the numerical results can be found in https://github.com/iitis/AGV_
quantum

Acknowledgements
The research was supported by the Foundation for Polish Science (FNP) under grant number TEAM NET POIR.04.04.00-00-
17C1/18-00 (BG, ZP, ŁP); National Science Centre, Poland under grant number 2022/47/B/ST6/02380 (KD), and under grant
number 2020/38/E/ST3/00269 (TŚ), and by the Ministry of Culture and Innovation and the National Research, Development and
Innovation Office within the Quantum Information National Laboratory of Hungary (Grant No. 2022-2.1.1-NL-2022-00004)
(MK). S.D. acknowledges support from the John Templeton Foundation under Grant No. 62422. For the purpose of Open
Access, the authors have applied a CC-BY public copyright license to any Author Accepted Manuscript (AAM) version arising
from this submission.

Author contributions statement

Z.P., B.G., S.D., K.D. - conceptualization, K.D., T.Ś. - preparing experiments, T.Ś. - running experiments, K.D., Z.P., Ł.P.,
M.K., B.G., S.D. - data analysis, K.D., M.K, T.Ś. - manuscript writing, Z.P., Ł.P., B.G., S.D. - manuscript supervision. All
authors reviewed the manuscript.

References
1. Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium

on foundations of computer science, 124–134, DOI: https://doi.org/10.1109/SFCS.1994.365700 (IEEE, 1994).

2. Preskill, J. Quantum computing and the entanglement frontier. arXiv preprint arXiv:1203.5813 (2012). https://arxiv.org/
abs/1203.5813.

3. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79, DOI: https://doi.org/10.22331/
q-2018-08-06-79 (2018).

4. Brooks, M. Beyond quantum supremacy: the hunt for useful quantum computers. Nature 574, 19–21, DOI: https:
//doi.org/10.1038/d41586-019-02936-3 (2019).

5. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510, DOI:
https://doi.org/10.1038/s41586-019-1666-5 (2019).

6. Domino, K. et al. Quantum annealing in the NISQ era: railway conflict management. Entropy 25, 191, DOI: https:
//doi.org/10.3390/e25020191 (2023).

7. Vikstål, P. et al. Applying the Quantum Approximate Optimization Algorithm to the Tail-Assignment Problem. Phys. Rev.
Appl. 14, 034009, DOI: https://doi.org/10.1103/PhysRevApplied.14.034009 (2020).

8. Geitz, M., Grozea, C., Steigerwald, W., Stöhr, R. & Wolf, A. Solving the Extended Job Shop Scheduling Problem with
AGVs–Classical and Quantum Approaches. In International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, 120–137, DOI: https://doi.org/10.1007/978-3-030-19212-9 (Springer,
2022).

9. Katzgraber, H. Searching for applications of quantum computing in industry. Bull. Am. Phys. Soc. (2024). https:
//meetings.aps.org/Meeting/MAR24/Session/Y49.1.

10. D-Wave Systems Inc. Hybrid Solver for Quadratic Optimization [WhitePaper] (2022). https://www.dwavesys.com/media/
soxph512/hybrid-solvers-for-quadratic-optimization.pdf, visited 2023.08.31.

11. Rossit, D. A., Tohmé, F. & Frutos, M. Industry 4.0: smart scheduling. Int. J. Prod. Res. 57, 3802–3813, DOI: https:
//doi.org/10.1080/00207543.2018.1504248 (2019).

12. Stock, T. & Seliger, G. Opportunities of sustainable manufacturing in industry 4.0. procedia CIRP 40, 536–541, DOI:
https://doi.org/10.1016/j.procir.2016.01.129 (2016).

13. Luo, Y., Duan, Y., Li, W., Pace, P. & Fortino, G. A novel mobile and hierarchical data transmission architecture for smart
factories. IEEE Transactions on Ind. Informatics 14, 3534–3546, DOI: https://doi.org/10.1109/TII.2018.2824324 (2018).

14. Zhong, M., Yang, Y., Dessouky, Y. & Postolache, O. Multi-AGV scheduling for conflict-free path planning in automated
container terminals. Comput. & Ind. Eng. 142, 106371, DOI: https://doi.org/10.1016/j.cie.2020.106371 (2020).

12/15

https://github.com/iitis/AGV_quantum
https://github.com/iitis/AGV_quantum
https://doi.org/10.1109/SFCS.1994.365700
https://arxiv.org/abs/1203.5813
https://arxiv.org/abs/1203.5813
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/d41586-019-02936-3
https://doi.org/10.1038/d41586-019-02936-3
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.3390/e25020191
https://doi.org/10.3390/e25020191
https://doi.org/10.1103/PhysRevApplied.14.034009
https://doi.org/10.1007/978-3-030-19212-9
https://meetings.aps.org/Meeting/MAR24/Session/Y49.1
https://meetings.aps.org/Meeting/MAR24/Session/Y49.1
https://www.dwavesys.com/media/soxph512/hybrid-solvers-for-quadratic-optimization.pdf
https://www.dwavesys.com/media/soxph512/hybrid-solvers-for-quadratic-optimization.pdf
https://doi.org/10.1080/00207543.2018.1504248
https://doi.org/10.1080/00207543.2018.1504248
https://doi.org/10.1016/j.procir.2016.01.129
https://doi.org/10.1109/TII.2018.2824324
https://doi.org/10.1016/j.cie.2020.106371

15. Qiu, L., Hsu, W.-J., Huang, S.-Y. & Wang, H. Scheduling and routing algorithms for AGVs: a survey. Int. J. Prod. Res. 40,
745–760, DOI: https://doi.org/10.1080/00207540110091712 (2002).

16. Vivaldini, K. C., Rocha, L. F., Becker, M. & Moreira, A. P. Comprehensive review of the dispatching, scheduling and
routing of AGVs. In CONTROLO’2014–proceedings of the 11th Portuguese conference on automatic control, 505–514
(Springer, 2015).

17. Le-Anh, T. Intelligent control of vehicle-based internal transport systems. 51 (Erasmus University Rotterdam, 2005).
http://hdl.handle.net/1765/6554.

18. Sabuncuoglu, I. & Bayız, M. Analysis of reactive scheduling problems in a job shop environment. European Journal of
Operational Research 126, 567–586, DOI: https://doi.org/10.1016/S0377-2217(99)00311-2 (2000).

19. Li, G., Li, X., Gao, L. & Zeng, B. Tasks assigning and sequencing of multiple AGVs based on an improved harmony search
algorithm. J. Ambient Intell. Humaniz. Comput. 10, 4533–4546, DOI: https://doi.org/10.1007/s12652-018-1137-0 (2019).

20. Haba, R., Ohzeki, M. & Tanaka, K. Travel time optimization on multi-AGV routing by reverse annealing. arXiv preprint
arXiv:2204.11789 (2022). https://arxiv.org/abs/2204.11789.

21. Pirnay, N., Ulitzsch, V., Wilde, F., Eisert, J. & Seifert, J.-P. An in-principle super-polynomial quantum advantage for
approximating combinatorial optimization problems via computational learning theory. arXiv preprint arXiv:2212.08678
(2024). https://arxiv.org/abs/2212.08678.

22. Apolloni, B., Carvalho, C. & De Falco, D. Quantum stochastic optimization. Stoch. Process. their Appl. 33, 233–244, DOI:
https://doi.org/10.1016/0304-4149(89)90040-9 (1989).

23. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355, DOI: https:
//doi.org/10.1103/PhysRevE.58.5355 (1998).

24. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum Computation by Adiabatic Evolution. arXiv preprint
quant-ph/0001106 (2000). https://arxiv.org/abs/quant-ph/0001106.

25. Tanaka, S., Tamura, R. & Chakrabarti, B. K. Quantum spin glasses, annealing and computation (Cambridge University
Press, 2017).

26. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5, DOI: https://doi.org/10.3389/fphy.2014.00005
(2014).

27. Karimi, S. & Ronagh, P. Practical integer-to-binary mapping for quantum annealers. Quantum Inf. Process. 18, 1–24, DOI:
https://doi.org/10.1007/s11128-019-2213-x (2019).

28. Tamura, K., Shirai, T., Katsura, H., Tanaka, S. & Togawa, N. Performance comparison of typical binary-integer encodings
in an ising machine. IEEE Access 9, 81032–81039 (2021).

29. Glover, F., Kochenberger, G., Hennig, R. & Du, Y. Quantum bridge analytics i: a tutorial on formulating and using qubo
models. Annals Oper. Res. 314, 141–183 (2022).

30. Karimi, S. & Ronagh, P. A subgradient approach for constrained binary optimization via quantum adiabatic evolution.
Quantum Inf Process. 16, DOI: https://doi.org/10.1007/s11128-017-1639-2 (2017).

31. Gusmeroli, N. & Wiegele, A. EXPEDIS: An exact penalty method over discrete sets. Discret. Optim. 44, 100622, DOI:
https://doi.org/10.1016/j.disopt.2021.100622 (2022).

32. Quintero Ospina, R. A., Zuluaga, L., Terlaky, T. & Vera, J. Polyhedral structure of penalty constants in quadratic
unconstrained binary optimization and applications to quantum computing. In APS March Meeting Abstracts, vol. 2023,
B70–007 (2023). https://ui.adsabs.harvard.edu/abs/2023APS..MARB70007Q.

33. García, M. D., Ayodele, M. & Moraglio, A. Exact and sequential penalty weights in quadratic unconstrained binary
optimisation with a digital annealer. In Proceedings of the Genetic and Evolutionary Computation Conference Companion,
184–187, DOI: https://doi.org/10.1145/3520304.3528925 (2022).

34. D-Wave Systems Inc. QPU-Specific Physical Properties: Advantage_system6.2 (2023).

35. D-Wave Systems Inc. Hybrid Solver for Constrained Quadratic Model [WhitePaper] (2022). https://www.dwavesys.com/
media/rldh2ghw/14-1055a-a_hybrid_solver_for_constrained_quadratic_models.pdf, visited 2023.08.31.

36. Koniorczyk, M., Krawiec, K., Botelho, L., Bešinović, N. & Domino, K. Solving rescheduling problems in heterogeneous
urban railway networks using hybrid quantum-classical approach. arXiv preprint arXiv:2309.06763 (2023). https:
//arxiv.org/abs/2309.06763.

13/15

https://doi.org/10.1080/00207540110091712
http://hdl.handle.net/1765/6554
https://doi.org/10.1016/S0377-2217(99)00311-2
https://doi.org/10.1007/s12652-018-1137-0
https://arxiv.org/abs/2204.11789
https://arxiv.org/abs/2212.08678
https://doi.org/10.1016/0304-4149(89)90040-9
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1007/s11128-019-2213-x
https://doi.org/10.1007/s11128-017-1639-2
https://doi.org/10.1016/j.disopt.2021.100622
 https://ui.adsabs.harvard.edu/abs/2023APS..MARB70007Q
https://doi.org/10.1145/3520304.3528925
https://www.dwavesys.com/media/rldh2ghw/14-1055a-a_hybrid_solver_for_constrained_quadratic_models.pdf
https://www.dwavesys.com/media/rldh2ghw/14-1055a-a_hybrid_solver_for_constrained_quadratic_models.pdf
https://arxiv.org/abs/2309.06763
https://arxiv.org/abs/2309.06763

37. Kim, C., Tanchoco, J. & Koo, P.-H. AGV dispatching based on workload balancing. Int. J. Prod. Res. 37, 4053–4066,
DOI: https://doi.org/10.1080/002075499189925 (1999).

38. Evers, J. J. & Koppers, S. A. Automated guided vehicle traffic control at a container terminal. Transp. Res. Part A: Policy
Pract. 30, 21–34, DOI: https://doi.org/10.1016/0965-8564(95)00011-9 (1996).

39. Ho, Y.-C. A dynamic-zone strategy for vehicle-collision prevention and load balancing in an AGV system with a single-loop
guide path. Comput. industry 42, 159–176, DOI: https://doi.org/10.1016/S0166-3615(99)00068-8 (2000).

40. Pinedo, M. L. Scheduling, vol. 29 (Springer, 2012). https://doi.org/10.1007/978-1-4614-2361-4.

41. Darlay, J., Brauner, N. & Moncel, J. Dense and sparse graph partition. Discret. Appl. Math. 160, 2389–2396, DOI:
https://doi.org/10.1016/j.dam.2012.06.004 (2012).

A QUBO model
The most general form of inequalities in our model is in Eq. (15) or Eq. (16). Based on these, we present detailed path of
transformation of these inequalities into QUBO. Let us contract t-variables and y-variables to vectors with elements t j and yi
(the same with constant terms ci). Then, from the aforementioned equations (or similar), we have:

t j− t j′ −Myi +ξi =−ci. (29)

To replace inequalities with equalities, we use slack variables

0≤ ξi ≤ ξ̄i where ξ̄i =−min(t j− t j′ −Myi)− ci =−υ j +υ j′ +dmax +Mi− ci = dmax +Mi, (30)

as min(t j) = v j, and max(t j) = v j +dmax from Eq. (5), and we expect υ j′ = υ j + ci. Observe that some of the inequalities such
as these of the minimal passing time constraints in Eq. (14) do not have order variables (y or z), for such variables ξ̄i = dmax.

To convert the constrained problem in Eq. (29) into the unconstrained one, we use the penalty method: each constraint
violation is penalized by the hard constraint penalty p > 0. Such a penalty has to be sufficiently large not to be overruled by the
objective. Then, the optimization problem has the form:

min.t1,...,y′1,...,ξ1,...
p ∑
(j, j′,i)∈I

(t j− t j′ −Miy′i +ξi + ci)
2 + p ∑

(i,i′)∈I′
(y′i− y′i′)

2 +objective. (31)

The first sum yields inequalities (mpt, mh, d, zc constraints) and takes Mi = 0 if no order variable is included. The set I contains
all indices tied to these constraints, yielding |I|= m (c.f. Eq. (27)). The number of slack variables is also equal to m, as we
have one slack variable per inequality. The second sum is for equates to (no) constraint and (d) constraint. Then, I′ contains all
indices tied to this constraint, and |I′|= #no +#d.

Finally (following Eq. (5) in27) , we replace all t j and ξi with the corresponding monomial of bits ∑k dkbk where bk are new
bits variables. This transforms the quadratic unconstrained model into the quadratic unconstrained binary model. We have #t
t-variables (with dmax +1 distinct values) and m slack variables (with at most dmax +maxi ξi +1 distinct values). Referring to
Eq. (27), the number of binary variables in QUBO representation can be limited by

#QUBO≤ #t
⌈

ln2(dmax +1)
⌉
+m

⌈
ln2(dmax +max

i
ξi +1)

⌉
+#y+#z. (32)

The size of the problem (in terms of the number of QUBO variables) scales linearly with the number of zones and quadratically
in the number of AGVs. The number of constraints per variable (the mean vertex degree of the graph model) is tied to the
expansion of quadratic terms in Eq. (31). In Tab. 3, sizes of actual problems in terms of Ising variables (derived directly from
QUBO) are presented.

For the 15 AGVs and 7 zones problem we have 696 variables (upper limit according to Eq. (12) was 945), and 1378 linear
constraints (upper limit according to Eq. (28) (27) was 5513). These limits are quadratic in the number of AGVs and linear in
the number of zones. We may expect the problem size to be quadratic with the number of AGVs as the number of zones is
constant. If, however, the number of AGVs increases further, more zones will appear where collisions occur, and therefore, the
problem size will scale worse than quadratic.

B Details of one particular AGV problem
In this Appendix, we present a step-by-step solution of the 7 AGVs and 7 zones problem with topology presented in Fig 3. We
have bi-directional lanes between zones s0, s1, s2, s3, s4 and s5 as well uni-directional lane between zones s5 and s6. For this

14/15

https://doi.org/10.1080/002075499189925
https://doi.org/10.1016/0965-8564(95)00011-9
https://doi.org/10.1016/S0166-3615(99)00068-8
https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.1016/j.dam.2012.06.004

|J| / |S| n.o. qubits
(vertices)

n.o. quadratic couplings
edges edge density41 edges

f ullgraph n.o. linear fields

2 / 4 122 1066 0.14 121
4 / 4 268 2644 0.07 267
6 / 7 796 11954 0.04 782
7 / 7 1204 19084 0.03 1183

12 / 7 6357 116422 0.006 6250
15 / 7 7343 134415 0.005 7219

Table 3. Sizes of analyzed AGV problems, in terms of Ising approach. Observe, that for the density is of the order of
magnitudes lower, than the one for corresponding full graph. Concerning the largest problem, the factor is 0.005.

particular computation, the following parameters have been chosen: τheadway = 2 (for all pairs of AGVs) τzone = 2 (for all AGVs),
passing times (for each AGV): τpass(s0,s1) = τpass(s1,s2) = τpass(s3,s4) = 6, τpass(s2,s3) = 0, τpass(s4,s5) = τpass(s5,s6) = 4.

Then, we assume that each AGV (denoted by j) is ready to enter its initial station (denoted by s j,0) at vin(j,s j,0). We also
assume that AGVs have the following paths and initial conditions:

AGV0 : {s0,s1,s2,s3},vin(j0,s0) = 0 AGV1 : {s0,s1,s2}, vin(j1,s0) = 0
AGV2 : {s4,s3,s2,s1},vin(j2,s4) = 8 AGV3 : {s4,s3,s2,s1,s0},vin(j3,s4) = 9
AGV4 : {s2,s3} vin(j4,s2) = 15 AGV5 : {s6,s5,s4,s3} vin(j5,s6) = 0
AGV6 : {s5,s6} vin(j6,s5) = 0

(33)

In practice, the above will be done by step 2 of Algorithm in Section 3.1. In objective function in Eq. (13) for this computational
example each AGV is assigned an equal weight of w j = 1. Further, we set dmax = 40.

The most important step of the Algorithm in Section 3.1 is step 5: solving the optimization problem. The CQM hybrid
solver yields many solutions at a time. The best solution conicides with the optimal one also provided by CPLEX. However
other solutions can also be of use for the decision support system. The soltuions are presented in the form of a simplified
time-space diagram (in which known points are connected with lines) in Fig. 7.

0 20 40

time

s0

s1

s2
s3

s4

s5

s6

zo
n

es

CQM objective = 4.25

0 20 40

time

s0

s1

s2
s3

s4

s5

s6

zo
n

es

CQM objective = 5.22

0 25

time

s0

s1

s2
s3

s4

s5

s6

zo
n

es

CPLEX

AGV0

AGV1

AGV2

AGV3

AGV4

AGV5

AGV6

Figure 7. Solution in the form of a space-time diagram, two suboptimal CQM solutions and an optimal one obtained with
both CQM and CPLEX. The suboptimal solutions can also be useful for the decision support system.

15/15

	Introduction
	Quantum annealing
	AGV scheduling
	AGV scheduling: algorithm
	AGV scheduling: ILP model

	Computational results and discussion
	Conclusions
	References
	QUBO model
	Details of one particular AGV problem

