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In this work, we consider a resonant bar detector of gravitational waves in the general-

ized uncertainty principle (GUP) framework with linear and quadratic momentum uncer-

tainties. The phonon modes in these detectors vibrate due to the interaction with the

incoming gravitational wave. In this uncertainty principle framework, we calculate the

resonant frequencies and transition rates induced by the incoming gravitational waves on

these detectors. We observe that the energy eigenstates and the eigenvalues get modified

by the GUP parameters. We also observe non-vanishing transition probabilities between

two adjacent energy levels due to the existence of the linear order momentum correction in

the generalized uncertainty relation which was not present in the quadratic GUP analysis

[Class. Quantum Grav. 37 (2020) 195006]. We finally obtain bounds on the dimensionless

GUP parameters using the form of the transition rates obtained during this analysis.

I. INTRODUCTION

With the advent of quantum mechanics and general relativity at the beginning of the twentieth

century, the primary focus of the scientific community shifted towards the discovery of a combined

description of the behaviour of the physical theories which is effective at a large length scale as well

as in the subatomic domain. Quantum mechanics gives an almost perfect theory at the subatomic

length scale and the general theory of relativity is extremely accurate at the astrophysical length

scale. Now, if one tries to write down a quantum theory of gravity, it is mandatory to probe

general relativity in the subatomic length scale. In quantum mechanics, we consider the geometry

of spacetime as a flat stationary background, while in general relativity energy or matter can create
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deformation in the flat structure of spacetime resulting in a curved spacetime geometry. Therefore,

to explore the universe near the Planck scale, we need a complete quantum theory of gravity that

will give rise to quantum mechanics and general relativity in their respective domains. All the

attempts to quantize gravity, like loop quantum gravity [1, 2], string theory [3, 4], noncommutative

geometry [5], and some gedanken experiments in quantum gravity phenomenology unanimously

indicates the existence of an observer-independent minimal length scale. All such calculations

suggest that this minimum length scale should be identified with the Planck length which implies

lpl ∼ 10−35 m.

The ideal way to canonically quantize a theory is to raise the phase space variables to operator

status and then implement a commutation relation among the two canonically conjugate variables.

Such commutation relation among the phase space variables leads eventually to the Heisenberg’s

uncertainty principle. One way to implement an observer-independent minimal length scale in a

theory is to modify Heisenberg’s uncertainty principle which is in general known as the gener-

alized uncertainty principle (GUP) in the literature. Interestingly, among other consequences of

this fundamental hypothesis of this Planck-length, the modification of the Heisenberg uncertainty

principle (HUP) to the generalized uncertainty principle (GUP) has gained a deep interest in a

plethora of investigations in high energy theoretical physics. In this development, Mead first pro-

posed [6] that gravity affects the uncertainty principle and leads to the GUP. Several investigations

into black hole physics, M-theory [7–9], and the nonperturbative formulation of open string field

theory [10, 11] indicate that the modification of HUP is proportional to the quadratic term in

momentum. However, it is important to note that, for such theories with modified uncertainty

relations, the classical and quantum side of the approach results in some inconsistencies. A rig-

orous Hamiltonian and Lagrangian analysis with classical and quantum systems has been done in

[12]. When the commutator between the position and momentum variables gets modified due to

the inclusion of minimal length into the theory, it is no more admissible to call the position and

momentum variables as conjugate variables. To avoid this terminological issue, we have restricted

ourselves from using the term “conjugate” corresponding to the modified phase space variables

of the system in this analysis. In a different study [13], it is observed that the physical content

of a theory resonates via the commutator of the physical observables. In this paper, it is finally

argued that the minimal length scale is physical and cannot be removed by resorting to a different

commutation relation. Recently in a study [14], we have used the noise of gravitons induced on a

freely falling particle (under the effect of Earth’s gravity) to obtain quantum gravity corrections to

the Heisenberg uncertainty principle and obtained quadratic order corrections in momentum with
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explicit dependence on the three fundamental constants (~, G, and c). In the Planck mass limit, it

reduces to the well-known form of the generalized uncertainty principle (GUP). However, doubly

special relativity theory suggests that this modification should contain a term that should be linear

in momentum. Now, combining both possibilities, one can find a further modification to the GUP,

which is also known as the linear and quadratic generalized uncertainty principle (LQGUP). This

idea has been first introduced in [15].

Hence, one gets the modified GUP between the position Qi and the momentum Pj incorporating

both the contributions from the linear and quadratic order terms in momentum as [16],

∆Qi∆Pi ≥
~

2

[

1− α

〈

P +
PiPi

P

〉

− (α2 − β)
[

(∆P )2 + 〈P 〉2
]

− (α2 − 2β)
[

(∆Pi)
2 + 〈Pi〉2

]

]

,

(1)

where P 2 ≡ |~P |2 = ηijP
iP j ; i, j = 1, 2, 3. The parameters α and β are positive and independent

of ∆Q and ∆P which generate the traces of the GUP. These parameters are defined as α =

α0/(MP lc) and β = β0/(MP lc)
2 where MP l is the Planck mass and c is the speed of light in free

space. The definitions of GUP parameters immediately show that the dimensions of α and β are

(momentum)−1 and (momentum)−2 respectively. Now the modified Heisenberg algebra following

the uncertainty relation (1) is as follows

[Qi, Pj ] = i~

[

δij − α

(

δijP +
PiPj

P

)

+ β
(

δijP
2 + 2PiPj

)

− α2(δijP
2 + PiPj)

]

. (2)

The existence of GUP has been immensely investigated at the level of black hole thermodynamics

[17–24], various quantum systems like a particle in a box, Landau-level, harmonic oscillator [15, 16],

[25–27] and so on. Theoretical analysis with this GUP framework in the path integral representa-

tion [28–30] has also been thoroughly investigated to gain more insight into the quantum gravity

phenomenology. In a recent study, the noise spectrum of a typical optomechanical setup has been

analyzed in the LQGUP framework [31]. In [32], a quantum harmonic oscillator is studied non-

perturbatively, showing that a linear correction to the commutation relation between position and

momentum cannot admit any ladder operators. Despite all these theoretical investigations in the

GUP framework, this Planck scale phenomenon poses the question of how one goes about experi-

mentally capturing its signature. Before investigating any relics of GUP in any experimental setup,

it is important to note that the upper bound on the dimensionless GUP parameter β0 reported in

recent studies [16, 23, 33–36], corresponds to the intermediate length scale lim =
√
β0lpl ∼ 10−23m.

Resonant bar detectors [37, 38] of gravitational waves (gravitational wave) have gained potential

interest following the breakthrough observation of the gravitational wave by LIGO [39] and VIRGO
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recently, and the subsequent observations of numerous additional gravitational wave sources [40–

42]. These observations open up a new epoch where one can hope to explore the signature of

quantum gravity which is generally of the order of the Planck length scale. Therefore, researchers

are interested in investigating whether any signature of quantum gravity effect lies in the gravita-

tional wave detector scenario [43]. Recently the highly sensitive detectors can detect the variations

∆L of the bar length L ∼ 1m with a sensitivity of the order of ∆L
L ∼ 10−19. Now this scale of

length variation will be more precise as the sensitivity of the detectors increases, which leads to

a better understanding of the universe. The main motivation behind the investigation of reso-

nant bar detectors is that they are technically much more straightforward to construct than the

interferometer-based ‘L’ shaped detectors like LIGO or VIRGO. Again it is also theoretically very

prudent to investigate such detectors as they involve the interaction of gravitational waves with

elastic matter. The interaction of gravitational waves with simple matter systems causes tiny vi-

brations which are many orders smaller than the size of an atomic nucleus. This tiny vibration can

be modeled as a quantum mechanical forced harmonic oscillator. Therefore, it is possible to simply

write down the resonant detectors of gravitational waves as a gravitational wave-harmonic oscilla-

tor interaction model. The possibility of detecting these Planck length relics in the gravitational

wave detection technique motivates us to do a rigorous investigation of the quantum mechanical

responses of the gravitational wave detectors to the gravitational wave fluctuations in noncommu-

tativity and GUP framework [44–51]. Recently, in[36], we have seen that the measurements of

resonant frequencies of a mechanical oscillator bear the signature of GUP. In a different way, an

optomechanical scheme has been introduced in [52], which was further developed in [53, 54], for

realizing the presence of GUP in experimental scenarios.

Motivated by the above discussion, in this paper, we present the quantum mechanical effects

of the gravitational wave detectors in the LQGUP framework. Here, we consider the LQGUP

which contains both the liner and quadratic order contributions in momentum. In our work,

we have mainly investigated the transition probabilities using the Fermi-Golden rule for several

gravitational wave templates. Remarkably, due to the presence of the linear order correction in the

momentum in the modified uncertainty relation, we observed few transitions from the ground state

of the harmonic oscillator which was absent in the case of the modified uncertainty relation with

quadratic order correction in the momentum only. If one can attenuate all other noise contributions

that can lead to such a transition, then these transitions can confirm the existence of LQGUP.

The construction of the paper goes as follows. In section 2, we construct the Hamiltonian of the

gravitational wave-harmonic oscillator system in the LQGUP framework (2). Then we calculate
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the formal perturbative solutions of that system in section 3. Next, we apply the time-independent

perturbation theory to get the perturbed eigenstates of the one-dimensional harmonic oscillator

with the new perturbed energy eigenvalues. After that, we use the time-dependent part of the

Hamiltonian to calculate the transition between the states of the harmonic oscillator caused by the

gravitational wave. In section 4, we use the various gravitational wave waveforms to calculate the

corresponding transition probabilities. We finally conclude in section 5.

II. THE HARMONIC OSCILLATOR-GRAVITATIONAL WAVE INTERACTION

MODEL

For the background spacetime of our system we have considered small time-dependent fluctuations

over the flat Minkowski background as

gµν = ηµν + hµν (3)

with hµν denoting these fluctuations (specifically gravitational wave fluctuations) over the flat

Minkowski background. Here ηµν = diag{−1, 1, 1, 1} in eq.(3).

To investigate the response of the gravitational wave detectors interacting with the incoming

gravitational wave in the LQGUP framework given by eq.(2) which contains both the linear and

quadratic contributions in momentum, we first need to write down the Hamiltonian of the har-

monic oscillator system representing the elastic matter interacting with a gravitational wave. The

representation of the dynamics of the elastic matter by a harmonic oscillator follows from the fact

that the fundamental mode of the elastic bar is described by a harmonic oscillator [59] . In order

to detect such tiny vibrations in the elastic matter due to gravitational wave, one needs to make

use of linear amplifiers to detect an acoustic oscillation of the fundamental mode of the bar. This

acoustic oscillation of the fundamental mode of the bar can be best described by the oscillation of

a single phonon mode [59]. Inspite of the bar being a macroscopic object (weighing of the order of

a ton), the oscillation of the bar is detected which is not explained properly by a classical treat-

ment. Therefore, in this case one considers the collective effect of the number of excited-phonons

to describe the oscillation of the bar.

Now the dynamics of the harmonic oscillator-gravitational wave system can be properly framed by

the geodesic deviation equation for a two-dimensional harmonic oscillator of mass m and intrinsic

frequency ω in a proper detector frame as

mQ̈j = −mRj
0,k0Q

k −mω2Qj ; j = 1, 2 . (4)
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The Riemann curvature tensor in eq.(4) in terms of the gravitational fluctuations can be represented

as Rj
0,k0 = −dΓj

0k
dt = −ḧjk/2. Here we consider the plane of the elastic matter in the x− y plane

and the direction of the propagation vector of the gravitational wave to be in the z direction.

The dot denotes the derivative with respect to the coordinate time of the proper detector frame.

It is the same as its proper time to first order in the metric perturbation and Qj is the proper

distance of the pendulum from the origin. In particular, Qj is best described by the displacement

of the individual phonon modes from their equilibrium positions. Here the spatial velocities are

nonrelativistic and the coordinate |Qj | is much smaller than the reduced wavelength λ
2π of the

gravitational wave. Now using the transverse-traceless (TT) gauge condition one can remove

the unphysical degrees of freedom and get only two relevant components, namely the × and +

polarizations of the gravitational wave arising in the analytical form of the Riemann curvature

tensor Rj
0,k0 = −ḧjk/2. Thus, the gravitational wave interaction gives rise to a time-dependent

piece in eq.(4) 1. Therefore, hjk containing the polarization information reads

hjk (t) = 2f(t)
(

ε×σ
1
jk + ε+σ

3
jk

)

(5)

where σ1 and σ3 are the Pauli spin matrices, 2f is the amplitude of the gravitational wave, and

(ε×, ε+) are the two possible polarization states of the gravitational wave satisfying the condition

ε2× + ε2+ = 1 for all t. Note that for the linearly polarized gravitational wave, the frequency Ω of

the gravitational wave is contained in the time-dependent amplitude 2f(t) and the time-dependent

polarization states (ε× (t) , ε+ (t)) contain the frequency Ω for the circularly polarized gravitational

wave.

In the next step, we find the Lagrangian describing the interaction of the elastic matter system

with the gravitational wave from the geodesic deviation eq.(4) as

L =
1

2
mQ̇jQ̇

j −mΓj
0kQ̇jQ

k − 1

2
mω2QjQ

j (6)

where QjQ
j =

∑3
j=1 QjQj ≃

∑3
j=1 QjQj .

Hence, computing the momentum P j = mQ̇j − mΓj
0kQ

k corresponding to Qj from the above

Lagrangian, one immediately can write down the Hamiltonian of the gravitational wave-harmonic

oscillator system as

H =
δij
2m

(

P i +mΓi
0kQ

k
)(

P j +mΓj
0lQ

l
)

+
1

2
mω2QjQ

j . (7)

1 This TT gauge condition makes the spatial part of the gravitational wave to be unity ( ei
~k.~x

≈ 1) all over the

detector site in case of the plane-wave expansion of gravitational wave.
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Now, we want to explore whether the gravitational wave detectors can testify to any signature

of GUP incorporating both the contributions from the linear and quadratic order corrections in

momentum. To do this, first, we build the quantum mechanical description of the system. At

first, we replace the phase-space variables (Qj, Pj) by the operators
(

Q̂j, P̂j

)

. Then we use the

map between the modified operators (Q̂j , P̂j) in terms of the usual canonically conjugate operators

(q̂j, p̂j) up to first order in β obeying eq.(2) as

Q̂i = q̂i , P̂i = p̂i(1− αp̂i + βp̂2) (8)

where q̂i, p̂j satisfy the usual canonical commutation relation [q̂i, p̂j ] = i~δij and p̂2 =
∑3

i=1 p̂ip̂i.

Here qi and pj are canonically conjugate variables as they satisfy the usual commutation relation.

Before proceeding further, note that a typical bar of gravitational wave-detector has a length

L = 3 m and radius R = 30 cm. Therefore, it is straightforward to approximate the gravitational

wave-harmonic oscillator system as a one-dimensional system as a whole. It is quite simple to

understand that because of this one-dimensional treatment, the cross-polarization term does not

survive anymore. The Hamiltonian describing the system up to order (α2, β) reads 2

H =

(

p2

2m
+

1

2
mω2q2

)

+
1

2
Γ1
01 (pq + qp)−αp3

m
−α

2
Γ1
01

(

p2q + qp2
)

+
α2p4

2m
+
βp4

m
+
β

2
Γ1
01

(

p3q + qp3
)

(9)

where p1 = p and q1 = q. It can be seen that the above Hamiltonian is Hermitian. Hence we break

the Hamiltonian (9) as

H = H0 +H1 +H2 (10)

where the analytical forms of H0, H1, and H2 are given by

H0 =
p2

2m
+

1

2
mω2q2 (11)

H1 = − α

m
p3 +

γ

m
p4 , γ =

(

α2

2
+ β

)

(12)

H2 =
1

2
Γ1
01 (pq + qp)− α

2
Γ1

01

(

p2q + qp2
)

+
β

2
Γ1
01

(

p3q + qp3
)

. (13)

The above expressions show that we can treat H1 and H2 as perturbative Hamiltonians which

arise due to the gravitational wave interaction and the underlying GUP framework. The GUP

parameters α and β give rise to the time-independent part of the Hamiltonian denoted by H1.

Therefore with this background in place, to analyze the quantum mechanical behavior of the

2 For notational simplicity, we use p̂j ≡ pj and q̂j ≡ qj . For the one dimensional case we have used p1 ≡ p and

q1 ≡ q.
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gravitational wave detector under the LQGUP framework, first we calculate the shift in the energy

eigenvalues and the modified energy eigenstates of the harmonic oscillator due to H1. Up to this

point, no interaction terms arise due to the incoming gravitational wave. Now the time-dependent

Hamiltonian H2 arises due to the interaction of the gravitational wave with the harmonic oscillator

system. The time-dependent part of the Hamiltonian is responsible for the transitions between the

perturbed energy eigenstates. Our aim in this paper is to calculate these transition amplitudes and

the corresponding transition probabilities as in the future if such transition probabilities can be

measured, it will indicate the existence of an observer-independent minimal length scale in nature.

Again we can easily see that H2 also contains terms that are linear in α and β. Such terms may

be more significant in our theoretical setup.

Now, the Hamiltonians in eq.(s)(11,12,13) can be recast in terms of the operators (a†, a) as

H0 =~ω

(

a†a+
1

2

)

(14)

H1 =− i
α

m

(

~mω

2

)
3
2 [

a3 − a2a† − aa†a+ aa†2 − a†a2 + a†aa† + a†2a− a†3
]

+
γ

m

(

~mω

2

)2
[

a4 − a3a† − a2a†a+ a2a†2 − aa†a2 + (aa†)2 + aa†2a− aa†3 − a†a3 + a†a2a†

+ (a†a)2 − a†aa†2 + a†2a2 − a†2aa† − a†3a+ a†4
]

(15)

H2 =i~ḣ11

[

−1

2

(

a2 − a†2
)

+ α~

(

~mω

2

)

[

a3 − aa†a− a†aa† + a†3
]

+
β~mω

4

(

a4 − a2a†a− aa†a2 + aa†2a− a†a2a† + a†aa†2 + a†2aa† − a†4
)

]

. (16)

where q and p in terms of the raising and lowering operators are given as

q =

(

~

2mω

) 1
2 (

a+ a†
)

, (17)

p = −i

(

m~ω

2

)
1
2 (

a− a†
)

. (18)

It is important to note that in the above equation, the operators a and a† act on the eigenstates

of the Hamiltonian H0
3. We shall make use of these relations in the next section to obtain the

perturbative energy levels and then find the transition probabilities between them.

3 A way of working with ladder operators corresponding to the full system (any general system) has been shown in

[55].
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III. PERTURBED ENERGY LEVELS AND TRANSITION AMPLITUDES

In this section, we proceed to calculate the perturbed eigenstates due to time-independent Hamil-

tonian H1 in eq.(15). Using time-independent perturbation theory, the perturbed n th energy

eigenstate reads

|n〉β = |n〉 − i
α

m~ω

(

~mω

2

) 3
2

[

√

n(n− 1)(n − 2)

3
|n− 3〉 − 3n

√
n|n− 1〉 − 3(n + 1)

×
√

(n+ 1)|n+ 1〉+
√

(n+ 1)(n + 2)(n + 3)

3
|n+ 3〉

]

+ γ~mω

[

(2n + 3)
√

(n+ 1)(n + 2)

4

× |n+ 2〉 − (2n − 1)
√

n(n− 1)

4
|n− 2〉 +

√

n(n− 1)(n− 2)(n − 3)

16
|n− 4〉

−
√

(n+ 1)(n + 2)(n + 3)(n + 4)

16
|n+ 4〉

]

(19)

with energy eigenvalues

En =

(

n+
1

2

)

~ω

[

1 +mω~γ
3(2n2 + 2n+ 1)

2(2n + 1)

]

. (20)

These are the general forms of the eigenstates and eigenvalues of a one-dimensional harmonic

oscillator in the presence of GUP containing both linear and quadratic contributions in momentum.

In eq.(19), the left-hand side is the corrected eigenstate of the time-independent part of the full

Hamiltonian H0 +H1 whereas the |n〉 states in the right-hand side are the eigenstates of the free

Hamiltonian H0 such that a|n〉 = √
n|n−1〉 and a†|n〉 =

√
n+ 1|n+1〉. Here, a and a† do not lower

or raise |n〉β directly as they are not the raising and lowering operators of the full Hamiltonian H.

We now calculate the transitions between the modified states of the harmonic oscillator induced

by the incoming gravitational wave which is mathematically taken care of by the time-dependent

Hamiltonian H2(t) in eq.(13). To the lowest order approximation in time-dependent perturbation

theory, the probability amplitude of transition from an initial state |i〉 to a final state |f〉, (i 6= f),

due to a perturbation H2(t) is given by [60]

Ci→f (t → ∞) = − i

~

∫ t→+∞

−∞
dt′F

(

t′
)

e
i
~
(Ef−Ei)t

′〈Ψf |Q̂|Ψi〉 (21)

where H2(t) = F (t)Q̂ with F (t) = ḣ11, and Q̂ being given by (hat has been omitted while writing

the expression)

Q = i~

[

−1

2

(

aa− a†a†
)

+ α~

(

~mω

2

)

[

aaa− aa†a− a†aa† + a†a†a†
]

+
β~mω

4

(

aaaa− aaa†a− aa†aa+ aa†a†a− a†aaa† + a†aa†a† + a†a†aa† − a†a†a†a†
)

]

.(22)
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Using eq.(22) in eq.(21), we can write down all of the possible transition amplitudes from the

perturbed ground state as

C0β→1β = T01

∫ t→+∞

−∞
dt′ ḣ11 ei(1+3γmω~)ωt′ (23)

C0β→2β = T02

∫ t→+∞

−∞
dt′ ḣ11 ei(2+9γmω~)ωt′ (24)

C0β→3β = T03

∫ t→+∞

−∞
dt′ ḣ11e

i(3+18γmω~)ωt′ (25)

C0β→4β = T04

∫ t→+∞

−∞
dt′ ḣ11 ei(4+30γmω~)ωt′ (26)

where T01, T02, T03, and T04 are given by

T01 = −iα

√

m~ω

2

T02 =
1

2
√
2

[

1 +
17

2
α2mω~+

9

4
βmω~

]

T03 = −iα
√
3mω~

T04 = −
√
6

4

[

29

12
α2mω~+ 3βmω~

]

. (27)

Now looking at the above transition amplitudes, we can make the following observations. In the

limit α → 0 and β → 0, all the transition amplitudes become zero except C0β→2β . Hence for a

one-dimensional harmonic oscillator interacting with gravitational wave under the standard HUP

framework, only 0β → 2β transition will occur. Due to the presence of the GUP containing only

quadratic term in momentum (i.e., α = 0), we get another transition 0β → 4β in addition to the

previous one (0β → 2β) with different amplitudes [29]. In this paper, we consider the LQGUP which

contains both the contributions in linear and quadratic terms in momentum. This consideration

reveals that there are transitions between 0β → 1β, 0β → 2β , 0β → 3β and 0β → 4β with different

amplitudes. Moreover, note that T01 and T03 arises due to presence of only α and T02 and T04

bear the contributions of both α and β. Therefore, looking at the possible experimental outcomes

[29, 49, 50] of these detectors in a future generation of resonant bar detectors, one can see that

resonant detector of the gravitational wave is not only a reliable candidate to probe such Planckian

effects but also be able to predict the mathematical structure of such Planckian modifications. This

is one of the most important results in this paper. It is important to note that such transitions can

occur also if certain external noise contribution is there which may lead to such transitions between

adjacent states as well. Hence, one needs to get rid of all the additional noise contributions to truly

detect the existence of LQGUP in nature.
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Now eq.(s)(23,24,25,26) denoting the transition amplitudes indicate that the presence of the

LQGUP can be checked by measuring the corresponding transition probabilities from the relation

Pi→f = |Ci→f |2. (28)

In the next section, we shall calculate the transition probabilities for different types of incoming

gravitational waves.

IV. TRANSITION PROBABILITIES FOR DIFFERENT TYPES OF GRAVITATIONAL

WAVE TEMPLATES

We now investigate the analytical forms of the transition probabilities for the harmonic oscillator

interacting with different gravitational wave templates. Such different gravitational wave templates

can indeed be generated in nature in complex astronomical events. At first, we start with the

simplest possible gravitational wave template which is a linearly polarized gravitational wave.

A. Periodic linearly polarized gravitational wave

In this subsection, we consider a periodic gravitational wave with linear polarization. The analytical

form of the gravitational perturbation indicating a linearly polarized gravitational wave reads

hjk (t) = 2f0 cos Ωt
(

ε×σ
1
jk + ε+σ

3
jk

)

. (29)

The amplitude hjk(t) varies periodically with a single frequency Ω. In order to obtain the transition

probabilities we shall make use of the form of hjk from eq.(29) and substitute it back in eq.(s)(23-

26) and obtain the transition amplitudes. Using eq.(28), it is now possible to write down all of the

physically possible transition probabilities from the obtained transition amplitudes (where we got

rid of the transitions for which ω is negative as they are not possible physically)

P0β→1β = (2πf0Ω|T01|ǫ+)2 × [δ (ω (1 + 3γmω~)− Ω)]2

P0β→2β = (2πf0Ω|T02|ǫ+)2 × [δ (ω (2 + 9γmω~)− Ω)]2

P0β→3β = (2πf0Ω|T03|ǫ+)2 × [δ (ω (3 + 18γmω~) − Ω)]2

P0β→4β = (2πf0Ω|T04|ǫ+)2 × [δ (ω (4 + 30γmω~) − Ω)]2 .

(30)

When a real experimental observation is done then the observational time is finite, therefore we

can regularize the Dirac delta function as δ(ω) =

[

∫

T
2

−T
2

dt eiωt
]

= T . It is now possible to write
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down all of the possible transition rates (after getting rid of the unphysical part in the transition

probabilities)

lim
T→∞

1

T
P0β→1β = (2πf0Ω|T01|ǫ+)2 × [δ (ω (1 + 3γmω~)− Ω)]

lim
T→∞

1

T
P0β→2β = (2πf0Ω|T02|ǫ+)2 × [δ (ω (2 + 9γmω~)− Ω)]

lim
T→∞

1

T
P0β→3β = (2πf0Ω|T03|ǫ+)2 × [δ (ω (3 + 18γmω~)− Ω)]

lim
T→∞

1

T
P0β→4β = (2πf0Ω|T04|ǫ+)2 × [δ (ω (4 + 30γmω~)− Ω)] .

(31)

From the above expressions we can easily find the resonant frequencies and amplitudes of the

transitions between the different modified states. Note that for an ordinary harmonic oscillator,

there is only one transition P0→2 at resonant frequency Ω = 2ω. Now in this paper, we consider the

general form of the LQGUP containing both the linear and quadratic contributions in momentum

and get four transitions namely P0β→1β , P0β→2β , P0β→3β and P0β→4β . Among them P0β→1β and

P0β→3β take place at frequencies Ω = ω(1+3γmω~) and Ω = ω(3+18γmω~). Here the amplitudes

of the transitions are proportional to α2. Therefore, only the linear contributions of momentum

to the GUP are seen in these two transitions. On the other hand the transitions P0β→2β and

P0β→4β occur due to both the GUP parameters α and β. These show resonances at frequencies

Ω = ω(2 + 9γmω~) and Ω = ω(4 + 30γmω~) retain the terms linear and quadratic of both the

parameters α and β.

Hence, this theoretical model not only detects signatures of GUP but may also prove to be a

reliable candidate to validate the form of the proposed GUP structure in the future.

B. Circularly polarized gravitational wave

The next template that we will discuss is the periodic gravitational wave signal with circular

polarization which can be expressed as

hjk (t) = 2f0
[

ε× (t)σ1
jk + ε+ (t)σ3

jk

]

(32)

where ε+ (t) = cosΩt and ε× (t) = sinΩt with Ω denoting the gravitational wave frequency.

Following the same approach as in the linear polarization case, the transition rates corresponding
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to the gravitational wave template in eq.(32) reads

lim
T→∞

1

T
P0β→1β = (2πf0Ω|T01|)2 × [δ (ω (1 + 3γmω~)− Ω)]

lim
T→∞

1

T
P0β→2β = (2πf0Ω|T02|)2 × [δ (ω (2 + 9γmω~)− Ω)]

lim
T→∞

1

T
P0β→3β = (2πf0Ω|T03|)2 × [δ (ω (3 + 18γmω~)− Ω)]

lim
T→∞

1

T
P0β→4β = (2πf0Ω|T04|)2 × [δ (ω (4 + 30γmω~)− Ω)] .

(33)

Eq.(33) have striking similarities with that of the transition rates obtained in the case of the linearly

polarized gravitational wave in eq.(31) indicating that the circularly polarized gravitational waves

can also be good candidates in signatures of LQGUP in future generation of resonant bar detectors.

C. Aperiodic linearly polarized gravitational wave: gravitational wave burst

Next we consider the gravitational wave with aperiodic signals. Such aperiodic signals are generated

from the in-spiral neutron stars or black hole binaries in general. When the two black holes or

neutron stars merge with each other, they emit gravitational wave signals with huge amounts of

energy. The duration of such signals is very small and they lie in the time range of 10−3 sec< τg < 1

sec. Such emission of gravitational waves with high energy are commonly known as bursts. The

analytical way of expressing such bursts is given as

hjk (t) = 2f0g (t)
(

ε×σ
1
jk + ε+σ

3
jk

)

. (34)

As the duration of such signals must be very small, the smooth function g (t) must go to zero very

rapidly for time |t| > τg
4. Let us take a Gaussian form for the function g(t)

g (t) = e−t2/τ2g . (35)

As the gravitational wave burst is very short-lived, it contains a wide range of frequency values

[45]. It is now possible to write down the gravitation wave burst in terms of its Fourier transform

as

hjk (t) =
f0
π

(

ε×σ
1
jk + ε+σ

3
jk

)

∫ +∞

−∞
ḡ (Ω) e−iΩtdΩ . (36)

In the above equation, we have defined ḡ (Ω) ≡ √
πτge

−
(

Ωτg
2

)2

. It is rather straightforward to

see that ḡ(Ω) is the amplitude of the Fourier mode at frequency Ω. Before writing down all of

4 Note that τg ∼
1

fmax

. Here fmax is the maximum value of a broad range of continuum spectrum of frequency.
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the possible transition amplitudes from the ground state to higher excited energy states, we shall

explicitly calculate one of the transition amplitudes as follows.

C0β→1β = −iα

√

m~ω

2

∫ ∞

−∞
dte

i
~
(E1−E0)tḣ11(t)

=
4iαf0ε+

τ2g

√

m~ω

2

∫ ∞

−∞
dtte

− t2

τ2g eiωt(1+3γ~ω)

=
4iαf0ε+

τ2g

√

m~ω

2
e−

ω2τ2g
4

(1+3γ~ω)2
∫ ∞

−∞
dtte

−
(

t
τg

− iωτg
2

(1+3γ~mω)
)2

.

(37)

the above integral is a Gaussian integral and it is straightforward to obtain the analytical form of

the transition amplitude in eq.(37) as

C0β→1β = −2if0ε+T01(ω + 3γm~ω2)
√
πτge

−( τg
2
(ω+3γ~mω2))

2

= −2if0ε+T01(ω + 3γm~ω2)ḡ(ω + 3γm~ω2) .
(38)

Following the above procedure one can compute the transition amplitudes corresponding to other

allowed transitions as

C0β→2β = −2if0ε+T02

(

2ω + 9γmω2
~
)

ḡ(2ω + 9γmω~)

C0β→3β = −2if0ε+T03

(

3ω + 18γmω2
~
)

ḡ(3ω + 18γmω2
~)

C0β→4β = −2if0ε+T04

(

4ω + 30γmω2
~
)

ḡ(4ω + 30γmω2
~) .

(39)

The main difference of the transition amplitudes in eq.(s)(38,39) from the earlier cases with linear

and circularly polarized gravitational wave templates is that the Dirac delta functions no more

appear in the calculation as a result of the time-dependent part being a Gaussian function. Using

the expression of ḡ (Ω) we can obtain the form of the transition probabilities given as

P0β→1β =
(

2f0|T01|ε+
√
πτg

(

ω + 3γmω2
~
))2

e
−2

{

ω+3γmω2
~

2
τg

}2

P0β→2β =
(

2f0|T02|ε+
√
πτg

(

2ω + 9γmω2
~
))2

e
−2

{

2ω+9γmω2
~

2
τg

}2

P0β→3β =
(

2f0|T03|ε+
√
πτg

(

3ω + 18γmω2
~
))2

e
−2

{

3ω+18γmω2
~

2
τg

}2

P0β→4β =
(

2f0|T04|ε+
√
πτg

(

4ω + 30γmω2
~
))2

e
−2

{

4ω+30γmω2
~

2
τg

}2

.

(40)

The above exercises reveal a very beautiful insight into the underlying nature of the linear and

quadratic generalized uncertainty principle. If we start with the basic case with Heisenberg’s

uncertainty relation, we observe that only one transition occurs from the ground state of the

harmonic oscillator which is the |0〉 → |2〉 transition due to the interaction with gravitational
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wave. Now if one considers the quadratic GUP as has been analyzed in [44], an extra transition is

also possible from the perturbed ground state to the fourth excited energy state. In the current

work, due to the inclusion of the linear order correction in momentum uncertainty, we obtain the

transition to first and third excited energy eigenstates as well. Therefore, these results indicate

a new window to probe the presence of quantum gravity effects in the resonant detector of the

gravitational wave set up and if experimentally proven the possible transitions will also indicate a

way to identify what kind of uncertainty relation nature obeys in a quantum gravity scenario.

D. Gaussian wave packet

The previous system is a simple case where gravitational wave bursts are considered for a scenario

where gravitational waves are being generated from a binary system or merger phase. We shall

further generalize the initial ansatz in the previous section to consider a general class of astronomical

scenarios. In this subsection, we consider the case when the gravitational wave has the structure

of a Gaussian wave packet. The function g(t) in eq.(35) takes the form [59]

g(t) =

(

2

π

)
1
4 1
√
τg
e−iΩte−t2/τ2g . (41)

It is important to note that the above function is no longer dimensionless. Hence, the only way is

to multiply the above function by a
√
τg factor. With the above Gaussian wave packet in hand, we

can write down the classical gravitational fluctuation term as

hjk(t) = 2f0
√
τgg(t)(ε×σ

1
jk + ε+σ

3
jk). (42)
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Following the earlier analysis, we obtain the transition amplitude for going from 0β state to 1β

state to be

C0β→1β

= −iα

√

m~ω

2

∫ ∞

−∞
dt e

i
~
(E1−E0)tḣ11(t)

=
4iαf0ε+

(2π)
1
4

√
m~ω

∫ ∞

−∞

dt

τg
e
− t2

τ2g ei(ω(1+3γm~ω)−Ω)t

(

t

τg
+

i

2
Ωτg

)

=
4iαf0ε+

(2π)
1
4

√
m~ωe−

τ2g
4
(ω(1+3γm~ω)−Ω)2

∫ ∞

−∞
d

(

t

τg

)(

t

τg
+

i

2
Ωτg

)

e
−
(

t
τg

+ i
2
Ωτg− i

2
ωτg(1+3γm~ω)

)2

=
4iαf0ε+

(2π)
1
4

√
m~ωe−

τ2g
4
(ω(1+3γm~ω)−Ω)2

(√
π
i

2
ωτg(1 + 3γm~ω)

)

= −αf0ε+
√
2m~ωτg(2π)

1
4ω(1 + 3γm~ω)e−

τ2g
4
(ω(1+3γm~ω)−Ω)2

= −2if0ε+T01(2π)
1
4 τg(ω + 3γm~ω2)e−

τ2g
4
(ω(1+3γm~ω)−Ω)2 .

(43)

Similarly, the other transition amplitudes are given by

C0β→2β = −2if0ε+T02(2π)
1
4 τg(2ω + 9γm~ω2)e−

τ2g
4
(ω(2+9γm~ω)−Ω)2 (44)

C0β→3β = −2if0ε+T03(2π)
1
4 τg(3ω + 18γm~ω2)e−

τ2g
4
(ω(3+18γm~ω)−Ω)2 (45)

C0β→4β = −2if0ε+T04(2π)
1
4 τg(4ω + 30γm~ω2)e−

τ2g
4
(ω(4+30γm~ω)−Ω)2 . (46)

The Dirac-delta function in terms of a Gaussian function can be written as

lim
σ→0

1√
2πσ

e−
(x−x0)

2

2σ2 = δ(x − x0) (47)

with σ denoting the width of the Gaussian distribution. In principle, τg denotes the duration of

measuring a single mode of the gravitational wave. One should therefore take τg → ∞ limit for a

general gravitational wave measurement. Taking this limit, we can recast eq.(43) as

lim
τg→∞

C0β→1β = lim
τg→∞



−4if0ε+T01

√
π(2π)

1
4 (ω + 3γm~ω2)

τg
2
√
π
e

− 1

2

(√
2

τg

)2 (ω(1+3γm~ω)−Ω)2




≃ −4if0ε+T01

√
π(2π)

1
4 (ω + 3γm~ω2) lim

τg→∞





τg
2
√
π
e

− 1

2

(√
2

τg

)2 (ω(1+3γm~ω)−Ω)2


 .

(48)

Applying eq.(47) in eq.(48), we obtain

lim
τg→∞

C0β→1β = −4if0ε+|T01|(2π3)
1
4 (ω + 3γm~ω2)δ (ω(1 + 3γm~ω)− Ω) . (49)
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The associated transition probability reads in this limit

P∞
0β→1β = | lim

τg→∞
C0β→1β |2

=
√
2π3

(

4f0ε+|T01|(ω + 3γm~ω2)
)2

(δ(ω(1 + 3γm~ω)− Ω))2

= 4

√

2

π
(2πf0Ω|T01|ε+)2 (δ(ω(1 + 3γm~ω)− Ω))2

(50)

where in the final line of the above equation we have used the property f(x)δ(x−x0) = f(x0)δ(x−
x0) of the Dirac delta function. The above result in eq.(50) is the same as that of the first result in

eq.(30) of the linearly polarized gravitational wave case up to a constant factor 4
√

2
π . Similar results

follow for the other three transition probabilities. This does establish a one-to-one correspondence

among the linearly polarized gravitational wave with that of the Gaussian wave function case in

the τg → ∞ limit up to some coefficient factor. This constant factor can be absorbed just by

multiplying hjk(t) with a number 1
2

(

π
2

)
1
4 which recasts eq.(42) as

hjk(t) =
(π

2

) 1
4
f0
√
τgg(t)(ε×σ

1
jk + ε+σ

3
jk)

= f0e
−iΩte−t2/τ2g (ε×σ

1
jk + ε+σ

3
jk) .

(51)

We can similarly also calculate all other transition amplitudes and probabilities in this τg → ∞
limit but we are not listing them as they will follow the same structure. The transition probabilities

for the Gaussian wave function read

P0β→1β = (2f0ε+|T01|)2 (2π)
1
2 τ2g (ω + 3γm~ω2)2e−

τ2g
2
(ω(1+3γm~ω)−Ω)2 (52)

P0β→2β = (2f0ε+|T02|)2 (2π)
1
2 τ2g (2ω + 9γm~ω2)2e−

τ2g
2
(ω(2+9γm~ω)−Ω)2 (53)

P0β→3β = (2f0ε+|T03|)2 (2π)
1
2 τ2g (3ω + 18γm~ω2)2e−

τ2g
2
(ω(3+18γm~ω)−Ω)2 (54)

P0β→4β = (2f0ε+|T04|)2 (2π)
1
2 τ2g (4ω + 30γm~ω2)2e−

τ2g
2
(ω(4+30γm~ω)−Ω)2 . (55)

E. Obtaining bounds on the dimensionless GUP parameters

In this subsection, our primary aim is to obtain bounds on the dimensionless GUP parameter α0 and

β0. We shall consider only the linear polarization case to obtain the bounds on the dimensionless

GUP parameter. From eq.(31), it is straightforward to observe that the Dirac delta functions

in the transition rates are dependent on the frequency of the harmonics oscillator, gravitational

wave frequency as well as the parameter γ which is dependent on the parameters α and β. It is

quite intuitive to claim that the GUP correction part must be smaller than the leading order ω
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correction. Hence, it is possible to write down the following inequality

γm~ω2 ≤ 4ω

30
(56)

where we have used the final transition rate expression as it shall provide us with the tightest

bound on the γ parameter. The most sensitive frequencies of resonant bar detectors are of the

order of 1 kHz. Events like collapsing and bouncing cores of supernovas can produce gravitational

waves in the vicinity of 1 − 3 kHz. Hence, for resonance to occur the frequency of the harmonic

oscillator must lie in the range of 1− 3 kHz. On the other hand, the mass of such a resonant bar

detector is of the order of one ton (1.1×103 kg). Instead of using ω ∼ 1 kHz, we use the maximum

value of ω needed to detect gravitational wave with maximum frequency 3 kHz. Hence, ω = 3 kHz.

Now it is important to note that the ‘L’ shaped interferometer detectors are more efficient than

the general resonant bar detectors presently in existence. In order to increase the sensitivity of the

detectors, one needs to use more sophisticated technology which will provide us with a higher gain

in the change in the total length while being at the resonance condition. Such a technology may be

useful in the future when bar detectors can be made much longer in length than the ones currently

present. For the lower sensitivity of the bar detectors, the bounds on the GUP parameters become

indeed weaker but if a much more sensitive detector is made it will be possible to predict tighter

bounds on the same. Currently, few attempts are being made to increase the sensitivity of the bar

detectors to 10−21 by cooling them down to milli-Kelvin temperature and using the full capability

of the bar detectors [61]. Resonant bar detectors with spherical geometry are also being considered

for substantially increasing the sensitivity of the bar detectors [62].

Now, α = α0
mpc

and β = β0

m2
pc

2 with mp ∼ 2.176 × 10−8 kg denoting the Planck mass. We can now

express γ in terms of a dimensionless parameter γ0 as

γ =

(

α2

2
+ β

)

=
1

m2
pc

2

(

α2
0

2
+ β0

)

=
γ0

m2
pc

2

(57)

where γ0 =
α2
0
2 + β0. In terms of γ0, eq.(56) can be recast in the following form

γ0 ≤
2m2

pc
2

15~mω

=⇒ γ0 ≤ 1.6 × 1028 .

(58)

We now need to obtain bounds on the dimensionless parameters α0 and β0 individually. In order to

do so, we need to use the inequality obtained earlier in [63] while using the path integral formulation
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of a point particle moving in an arbitrary potential. The inequality obtained in [63] reads

β > 4α2 (59)

which in terms of the dimensionless parameters read β0 > 4α2
0. using this relation back in eq.(58)

we obtain the bounds on the dimensionless GUP parameters as α0 ≤ 1014 and β0 ≤ 1028. The

bound on the β0 parameter is at par with the bound obtained in [44] but tighter than the bound

obtained in a graviton-detector interaction case [64] in a quadratic GUP framework. We shall now

make comparisons among the bounds obtained in our paper with some of the bounds currently

in existence among other literature. For example, in [65] using observational bounds from the

Big Bang nucleosynthesis and primordial abundances of some of the light elements, bound on the

quadratic GUP parameter was obtained. In [65], the most stringent bound that was obtained for

β0 was β0 ≤ 1081 which is much weaker than the bound obtained for our case (β0 was β0 ≤ 1028).

In [66], a procedure was proposed to connect the β0 parameter to coefficients of the gravity sector

in the standard model extension where violation of Lorentz invariance is encoded into specific

parameters. The bound obtained in this process was β0 ≤ 1051 which is again way weaker than the

bound obtained in this analysis. In [67], the Baryon asymmetry problem was explained using the

GUP framework which gave the values of the two GUP parameters to be α0 ≈ 104 and β0 ≈ −108,

which are way tighter than the bounds obtained in our current analysis.

Another insight into the entire problem comes from the viewpoint that the position and momentum

observables that we work with correspond to the center of mass (COM) motion of the resonant bar

detector. If the GUP modified phase space variables of the COM of the bar detector are Q̂C and

P̂C , then the modified commutation relation in a one-dimensional model has some differences from

that of the commutation relation given in eq.(2). This has been explicitly analyzed in the literature

[68] and later a detailed discussion regarding the relativistic and field theoretical generalization has

been done in [69]. In [69], a critical discussion of the ongoing GUP framework has been done and

its application to composite systems has been thoroughly investigated.

In [68], for a macroscopic body with N constituent particles, the commutator between Q̂C and P̂C

is given by (in one dimension)

[Q̂C , P̂C ] = i~

(

1− λ′

N
P̂C +

λ2

N2
P̂ 2
C

)

. (60)

Comparing the parameter appearing in the above equation with our results, we observe that the

quadratic and linear GUP parameters, α and β scale as

α ∼ α0

Nmpc
, β ∼ β0

N2m2
pc

2
. (61)
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As a result γ shall also scale as γ ∼ γ0
N2m2

pc
2 . Now if we consider one mole of constituents per

gram of the bar detector, then one gram of the bar detector will consist of Avogadro number of

particles (6.023 × 1023). Hence for a 103 kg bar detector, there are approximately 1029 number of

particles. As a result the bound on γ0 becomes γ0 ≤ 2m2
pc

2

15N2~mω
∼ 1086. Hence, we obtain β0 ≤ 1086

and α0 ≤ 1043. These bounds obtained using COM observables are not very stringent. What is

important to note for a gravitational wave fluctuation, the center of mass is not displaced rather

only the bar is stretched and squeezed and hence, the bounds obtained using the COM degrees of

freedom are redundant. We have included this analysis only for the sake of completeness of our

current calculation. What we have looked at in the discussion earlier can be thought of as variables

not corresponding to the COM variables and which is applicable in our current analysis. For the

response of the detector to the gravitational wave, one needs to look at the collective microscopic

vibration of individual perturbations and hence the bounds obtained are strictly α0 ≤ 1014 and

β0 ≤ 1028.

V. CONCLUSION

In this paper, we explore the quantum responses of the resonant bar detectors to the gravitational

waves in the presence of quantum gravity corrections in the Heisenberg uncertainty principle.

Here we have derived the modified quantum states of a bar detector and the transitions between

them induced by the incoming gravitational wave in the extended generalized uncertainty principle

framework, namely the LQGUP framework. This relation contains both the corrections linear

and quadratic terms in momentum. Firstly, the existence of the linear and quadratic generalized

uncertainty principle makes a shift in the non-degenerate states of the one-dimensional harmonic

oscillator. The energy eigenvalues also get modified by the LQGUP parameters α and β. Then

we derive the observable effects in the transition rates from the ground state to the excited states

to trace out any possible relic effects of the generalized uncertainty principle in the gravitational

wave data from the resonant bar detectors. From the exact forms of the transition rates, we have

made the following observations.

In the presence of the linear and quadratic generalized uncertainty principle, there are four possible

transitions from the modified ground state |0β〉 to the higher excited states up to |4β〉. Eq.(26)

together with eq.(27) shows the transition between |0β〉 → |1β〉 and |0β〉 → |3β〉 which occur only

due to the linear GUP parameter α. Therefore, these two transitions ensure the contribution of the

linear order correction in momentum in the modified uncertainty principle which is absent for the
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ordinary HUP and quadratic GUP structures. Again the transitions |0β〉 → |2β〉 and |0β〉 → |4β〉
bear the signature for both α and β. Note that in the limit α, β → 0, there is only one transition due

to T02 = 1
2
√
2
. Thus resonant detectors of the gravitational wave are not only a reliable candidate

to probe such GUP effects but also able to predict the mathematical structure of such Planckian

modifications. Now we have the resonant frequencies Ω = ω(1 + 3γmω~), Ω = ω(2 + 9γmω~),

Ω = ω(3 + 18γmω~) and Ω = ω(4 + 30γmω~), where γ =
(

α2

2 + β
)

. Hence the frequencies at

which the resonant detector responds to the incoming gravitational waves get modified by the

generalized uncertainty principle parameters α and β. We hope that such effects in the resonant

frequencies will be detectable in the near future if the generalized uncertainty principle exists.

This observation is quite similar to that of the noncommutative structure of space [49], [50]. The

transition rates P0β→1β and P0β→3β contain the quadratic term in the dimensionless parameter

α which is of the linear order of β. Again both the linear and quadratic terms in β appear in

the transition rates. The linear dependence in β is easier to detect. Our analysis shows that

both linear and circularly polarized gravitational waves are good candidates to probe the presence

of the generalized uncertainty principle in the resonant detectors. This observation is valid for

both the periodic and aperiodic signals as well. Finally, we obtain bounds on the dimensionless

GUP parameters α0 and β0. We observe that the bound on the β0 parameter agrees with the

result obtained earlier in the case of a similar setup with only quadratic GUP framework [44].

The observations made in this paper reveal that resonant detectors may allow in the near future

to detect the existence of an underlying generalized uncertainty principle framework. Moreover,

these gravitational wave data in the resonant detectors can also be helpful in constructing the

mathematical form of the proposed quantum gravity effect in the generalized uncertainty principle.
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