
ar
X

iv
:2

30
8.

10
02

4v
2

 [
cs

.I
T

]
 2

 M
ay

 2
02

4
1

On the Distribution of Weights Less than 2wmin in

Polar Codes
Zicheng Ye†‡∗, Yuan Li†‡∗, Huazi Zhang∗, Jun Wang∗, Guiying Yan†‡, and Zhiming Ma†‡

† School of Mathematical Sciences, University of Chinese Academy of Sciences
‡ Academy of Mathematics and Systems Science, CAS

∗ Huawei Technologies Co. Ltd.

Email: {yezicheng3, liyuan299, zhanghuazi, justin.wangjun}@huawei.com,

yangy@amss.ac.cn, mazm@amt.ac.cn

Abstract—The number of low-weight codewords is critical
to the performance of error-correcting codes. In 1970, Kasami
and Tokura characterized the codewords of Reed-Muller (RM)
codes whose weights are less than 2wmin, where wmin represents
the minimum weight. In this paper, we extend their results to
decreasing polar codes. We present the closed-form expressions
for the number of codewords in decreasing polar codes with
weights less than 2wmin. Moreover, the proposed enumeration
algorithm runs in polynomial time with respect to the code length.

Index Terms—Polar codes, weight distribution, codewords
with weight less than twice the minimum weight, polynomial
representation.

I. INTRODUCTION

POLAR codes [1], introduced by Arıkan, are a significant

breakthrough in coding theory. As the code length ap-

proaches infinity, polar codes can approach channel capacity

under successive cancellation (SC) decoding. For short to

moderate block lengths, successive cancellation list (SCL)

decoding [2], [3] can significantly improve the error-correcting

performance. In fact, SCL algorithms can approach the maxi-

mum likelihood (ML) decoding performance when the list size

is large enough.

The weight distribution of linear codes has a significant

impact on the ML decoding performance, which can be

estimated accurately through the union bound with the number

of low-weight codewords [25]. Due to the importance of the

weight distribution, many researches have approximated the

weight distribution of different codes [5]–[7]. However, in the

general case, the complexity of computing the exact weight

distribution grows exponentially with the code length.

For polar codes, since the number of low-weight codewords

affects the performance of SCL decoding with a large list

size, there have been many attempts to study the weight

distribution of polar codes. In [8], SCL decoding with a very

large list size at a high SNR was proposed to collect the

low-weight codewords. This method was improved in [9] to

save memory. In [10], [11], polynomial-complexity proba-

bilistic approaches were proposed to approximate the weight

distribution of polar codes. The authors in [12] designed an

This work was supported by the National Key R&D Program of China
(2023YFA1009602).

algorithm to calculate the exact weight distribution of original

or specific pre-transformed polar codes [13] by coset method,

but the complexity is still exponential. In [14], [15], the

authors proposed efficient recursive formulas to calculate the

average weight spectrum of pre-transformed polar codes with

polynomial complexity.

RM codes [16], [17] are closely related to polar codes.

Existing researches on the weight distribution of RM codes

may shed light on the characterization of polar code weight

spectrum. In [18], the numbers of codewords with weights

less than 2wmin in RM codes were determined, and the result

was then generalized to 2.5wmin in [19], where wmin is the

minimum weight.

The authors in [20] regarded polar codes as decreasing

monomial codes and used the lower triangular affine transfor-

mation automorphism to calculate the number of codewords

with weight wmin. Recently, the same method was applied

to calculate the number of codewords with weight 1.5wmin

[21].Their methods rely on the observation that the codewords

with weight wmin and 1.5wmin can be obtained by lower

triangular affine transformations of a single row or a sum-

mation of two rows. However, this property no longer holds

for codewords with weight larger than 1.5wmin. Therefore, we

propose a unified method to calculate the number of codewords

with weight less than 2wmin. A detailed comparison between

our method and the existing results is provided in subsection

II-D.

In this paper, we generalize the results in [18] and provide

closed-form expressions for the number of codewords with

weights less than 2wmin in decreasing polar codes. A decreas-

ing polar code is a subcode of some RM code, possessing the

same minimum weight. In brief, our task is to select those

low-weight codewords that belong to the polar code. However,

it is worth noting that the enumeration procedure for polar

codes is more complex compared to that of RM codes. We

divide codewords into disjoint subsets based on the largest

terms of their monomial representations. The size of subsets

grows logarithmically with the code length, while the number

of subsets is less than the square of code length. As a result,

the time complexity of the enumeration algorithm is almost

proportional to the square of code length.

The rest of this paper is organized as follows. In Section

II, we provide a concise introduction to polar codes and

http://arxiv.org/abs/2308.10024v2

2

RM codes. In addition, we outline our proof. In section III,

we classify and enumerate the codewords with weight less

than 2wmin, and provide algorithms to compute the weight

distribution. In section IV, the closed-form expressions for

the number of codewords and the algorithm complexity is

presented. Finally, in section V, we draw some conclusions.

II. PRELIMINARIES

A. Polar codes as monomial codes

Let G =

[

1 0
1 1

]

and GN = G⊗m, where ⊗ is Kronecker

product:

A⊗B =

a11B · · · a1kB
...

. . .
...

at1B · · · atkB

.

Polar codes can be constructed by selecting K rows of GN as

the information set I. F = Ic is called the frozen set. Denote

the polar code with information set I by C(I).
Polar codes can be described as monomial codes [20]. The

monomial set is denoted by

M , {xa1
1 ...xam

m | (a1, ..., am) ∈ F
m
2 }.

Let e = xa1
1 ...xam

m be a monomial in M, the degree of e is

defined as deg(e) =
∑m

i=1 ai. In particular, 1 is a monomial

with degree zero. The polynomial set is denoted by

RM , {
∑

e∈M
aee | ae ∈ F2},

and the degree of the non-zero polynomial g =
∑

e∈M aee
is defined as deg(g) = maxae 6=0{deg(e)}, and the zero

polynomial has no degree.

A polynomial g is said to be linear if deg(g) = 1. We say a

linear polynomial g is a linear factor of a non-zero polynomial

f if f = gh, where h is a polynomial. Linear polynomials

g1, ..., gi are said to be linearly independent if a1g1 + · · · +
aigi + a0 = 0 implies a0 = a1 = · · · = ai = 0.

Example 1. x1, · · · , xm are linearly independent polynomials.

x1, x2, x1 + x2 + 1 are not linearly independent since x1 +
x2 + (x1 + x2 + 1) + 1 = 0.

For a linear polynomial f , define the largest term of f to

be the largest xi appearing in f , and define F (f) to be its

index, i.e., if f =
∑m

i=1 aixi + a0, F (f) = max{i | ai 6= 0}.
Notice that linear polynomials with different largest terms are

linearly independent.

Let b ∈ F
m
2 . Denote g(b) to be the evaluation of g at point b.

We say a linear polynomial g is a linear factor of f if f = gh,

i.e., for any b ∈ F
m
2 , g(b) = 0 implies f(b) = 0.

The length-N = 2m evaluation vector of g ∈ RM is

denoted by

ev(g) , (g(x))x∈F
m
2
.

And the weight of g is defined as the Hamming weight of

ev(g).
In fact, each row of GN can be expressed by ev(e) for some

e ∈ M. To see this, for each z ∈ {0, 1, ..., 2m − 1}, there is

a unique binary a = (a1, ..., am) of 2m − 1 − z, where a1 is

the least significant bit, such that

m
∑

i=1

2i−1ai = 2m − 1− z.

Then we can check that ev(xa1
1 ...xam

m) is exactly the (2m−z−
1)− th row of GN . As seen, the three forms, i.e., the integer

z, the binary representation of 2m − 1− z = (a1, ..., am) and

the corresponding monomial xa1
1 ...xam

m all refer to the same

thing. Therefore, the information set I can be regarded as a

subset of the monomial set M.

Definition 1. Let I be a set of monomials. The monomial

code C(I) with code length N = 2m is defined as

C(I) , span{ev(e) : e ∈ I}.

If the maximum degree of monomials in I is r, we say the

monomial code C(I) is r-th order. As mentioned, we use the

polynomials in RM to represent the corresponding codewords

in monomial codes.

Example 2. The example shows the row vector representa-

tions of F8.

x1 =
x2 =
x3 =
x1x2x3

x2x3

x1x3

x3

x1x2

x2

x1

1

1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

If the information set is I = {1, x1, x2, x3}, then the

generator matrix of the polar code C(I) is

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

B. Decreasing monomial codes

The partial order of monomials was defined in [20] and

[22]. Two monomials with the same degree are ordered as

xi1 ...xit 4 xj1 ...xjt if and only if il ≤ jl for all l ∈ {1, ..., t},
where we assume i1 < ... < it and j1 < ... < jt. This partial

order is extended to monomials with different degrees through

divisibility, namely e 4 e′ if and only if there is a divisor e′′

of e′ such that e 4 e′′. In fact, e 4 e′ means e is universally

more reliable than e′.
An information set I ⊆ M is decreasing if ∀e 4 e′ and

e′ ∈ I we have e ∈ I. A decreasing monomial code C(I)
is a monomial code with a decreasing information set I. If

the information set is selected according to the Bhatacharryya

parameter or the polarization weight (PW) method [23], the

polar codes are decreasing. Decreasing polar codes C(I) can

3

be generated by Imin, when I is the smallest decreasing set

containing Imin, i.e., I = {e ∈ M | ∃ e′ ∈ Imin, e 4 e′}.
From now on, we always suppose I is decreasing.

C. Weight distribution of RM codes

Definition 2. The r-th order RM code RM(m, r) is defined

as

RM(m, r) , span {ev(e) : e ∈M, deg(e) ≤ r} .

Clearly, RM codes are decreasing monomials codes. It is

well-known that the minimum weight of non-zero polynomials

in RM(m, r) is 2m−r.

The number of codewords with weight i in C is denoted as

Ai(C) , |{c ∈ C | wt(c) = i}|.

The sequence (Ai(C))Ni=0 is called the weight distribution of

C.

The weight distribution as well as the polynomials in RM

codes with weight less than 2wmin is presented in [18].

Theorem 1 ([18]). Let f be a non-zero polynomial in

RM(m, r). If the weight of f is less than 2m−r+1, then

wt(f) = 2m−r+1 − 2m−r+1−µ, where µ is a positive integer.

Moreover, f can be written as one of the following forms:

P (g1, · · · , gr+2µ−2) ,

g1 · · · gr−2(gr−1gr + gr+1gr+2 + · · ·+ gr+2µ−3gr+2µ−2),

m− r + 2 ≥ 2µ ≥ 2, (1)

or

Q(g1, · · · , gr+µ) ,

g1 · · · gr−µ(gr−µ+1 · · · gr + gr+1 · · · gr+µ),

m ≥ r + µ, r ≥ µ ≥ 3. (2)

Here g1, g2, · · · are linearly independent linear polynomials.

We call the Equation (1) the type-I polynomials, and Equation

(2) the type-II polynomials.

Example 3. Let m = 7 and r = 4, the minimum weight wmin

of RM(7, 4) is 8,

f1 = x1x2x3x4, by Equation (1), µ = 1,wt(f1) = 8 ;

f2 = x1x2(x3x4+x5x6), by Equation (1), µ = 2,wt(f1) =
12;

f3 = x1(x2x3x4 + x5x6x7), by Equation (2), µ =
3,wt(f1) = 14 .

We say P (g1, · · · , gr+2µ−2) and P (g′1, · · · , g′r+2µ−2) (or

Q(g1, · · · , gr+µ) and Q(g′1, · · · , g′r+µ)) have different forms

if there exists some i such that gi 6= g′i. It is important to

note that different forms can lead to the same polynomial.

For instance, consider the case when m = 4 and r = 2.

Let g1 = x1, g2 = x4, g3 = x2, g4 = x2, g
′
1 = x1, g

′
2 =

x4 + x2, g
′
3 = x2, g

′
4 = x3 + x2. In this example, we have

P (g1, g2, g3, g4) = P (g′1, g
′
2, g

′
3, g

′
4), despite g2 6= g′2 and g4 6=

g′4. This is one of the main challenges in the enumeration

process.

D. Weight distribution of polar codes

In this paper, we utilize Theorem 1 to enumerate the

polynomials with weight less than 2wmin in decreasing polar

codes. Note that an r-th order decreasing monomial code

C(I) is a subcode of the r-th RM code.

Example 4. Let C(I) be a [128,80] decreasing

polar code where I is generated by Imin =
{x1x2x5x7, x1x3x4x7, x1x4x5x6, x2x3x5x6, x4x6x7}.
By Theorem 1, the minimum weight of C(I) is 8.

As an example, let us consider polynomials in C(I) with

weight less than 16. Since C(I) is a subcode of RM(7, 4),
according to Theorem 1, the polynomials in C(I) with

weight less than 16 can be written as the type-I polynomials

P (g1, · · · , gr+2µ−2) where r = 4 and µ = 1, 2 or the type-II

polynomials Q(g1, · · · , gr+µ) where r = 4 and µ = 3. We

select g1, g2, · · · in order to enumerate these polynomials.

During the enumeration process, g1, g2, · · · must be linearly

independent, as stated in Theorem 1. Besides, we must guar-

antee that the polynomial belongs to the subcode C(I).
Moreover, it is important to note that different forms

may represent the same polynomial, and thus it is redun-

dant to include all these forms in the enumerations. For

example, let us consider f = x1x2(x3x6 + x4x5) =
P (x1, x2, x3, x6, x4, x5) and f ′ = x1x2(x3(x6+x4)+x4(x5+
x3)) = P (x1, x2, x3, x6+x4, x4, x5+x3). It is straightforward

to confirm that f = f ′, i.e., both f and f ′ represent the same

polynomial.

In conclusion, in order to enumerate the type-I and type-II

polynomials in C(I) accurately, we need to carefully consider

the following points in the enumeration procedure:

1) The linear polynomials g1, g2, · · · should be linearly

independent;

2) The polynomial P (g1, · · · , gr+2µ−2) or Q(g1, · · · , gr+µ)
must belong to C(I);

3) Different forms may represent the same polynomial.

Thus, it is important to eliminate the redundant forms during

the enumeration.

The authors in [18] applied Theorem 1 to calculate the

number of polynomials with weight less than 2wmin in

RM codes. It should be noted that in their study, since all

monomials with degree r belong to RM(m, r), the second

point is automatically satisfied. The polynomials are selected

carefully so that they do not become linear combinations of the

previously selected polynomials. The third point only appears

in the type-I polynomial, and the number is calculated based

on the weight distribution of the second order RM codes [24].

Since r-th order decreasing polar code C(I) is a subcode

of r-th order RM code, the polynomials with weight less

than 2wmin can be expressed as the type-I polynomials or

the type-II polynomials, so there is no concern about mis-

counting. However, only a fraction of the type-I and type-

II polynomials actually belong to r-th order polar codes.

This distinction gives rise to completely different methods

to examine the three above points to avoid overcounting in

the enumeration procedure for polar codes. The first point

is necessary, otherwise the polynomial is not a codeword

with weight less than 2wmin. The second point ensures that

4

we exclude polynomials not in C(I), while the third point

prevents counting the same polynomials multiple times. To

facilitate this examination process, the largest term of a linear

polynomial can be utilized as a helpful tool, which will be

explained in detail later.

The case µ = 1, i.e., the number of polynomials with wmin,

was calculated in [20], and the case µ = 2, with weight

1.5wmin, was addressed in [21]. In these studies, they applied

the lower-triangular affine automorphism group to partition the

codewords into different orbits.

When µ = 2, the authors in [21] provided a technique to

avoid overcounting for f + g = f ′ + g′, where f, g, f ′, g′

are degree-2 polynomials. However, when µ ≥ 3, avoiding

overcounting with the sum of µ polynomials is more complex,

which cannot be solved by [21]. To handle this problem, we

present a novel method by dividing the low-weight polyno-

mials into different sets based on their first terms rather than

orbits. And we count the free coefficients in polynomials in

Algorithm 1.

Additionally, when µ ≥ 3, it is necessary to consider

type-II polynomials, which is not involved in [21]. To solve

this problem, we also divide the low-weight polynomials into

different sets based on their first terms. And we count the

linearly independent polynomials in Algorithm 2.

E. Proof Outline

We describe our proof briefly as follows. In subsection

III-A, we demonstrate that every polynomial can be expressed

in a restricted form that satisfies the conditions in Lemma 3.

Besides, when considering restricted forms, the linear factors

of a polynomial are unique. Although repetitive counting has

not been completely eliminated, this transformation reduces

the number of possible forms, which simplifies subsequent

enumeration significantly.

In subsection III-B, we calculate the number of the type-I

polynomials P (g1, · · · , gr+2µ−2). Focusing on the restricted

forms, we ensure that the largest terms of g1, · · · , gr+2µ−2 can

be rewritten to be all distinct and unique, as proven in Lemma

4 and 5. Therefore, we can classify the polynomials into

subsets based on their largest terms. This prevents duplications

and enables clear categorization.

To calculate the size of each subset, we choose the linear

polynomials g1, · · · , gr+2µ−2 in order so that the three points

outlined in Example 4 are satisfied. Checking the first two

conditions is straightforward. The challenge lies in the fact

that different forms may result in the same polynomial, as

shown in Example 4.

The number of choices for g1, . . . , gr−2 is

2
λxF (g1)···xF (gr−2) = 2

∑r−2
t=1 (F (gt)−t+1). Next, the number

of distinct polynomials
∑µ

j=1 gr−3+2jgr−2+2j is computed

in Theorem 3, and the proof is divided into two parts. In

the first part (Lemma 7), we establish the feasibility of

rewriting the polynomials while fixing certain coefficients

of gr−1, · · · , gr+2µ−2 to 0. Then the number of possible

polynomials is upper bounded by 2αu+βu+2γu , where

αu + βu + 2γu is the number of the remaining coefficients

defined in subsection III-B. In the second part, we illustrate

that the remaining coefficients are actually free, i.e., any value

of these coefficients yields a different polynomial. Therefore,

the number of low-weight codewords is exactly 2αu+βu+2γu .

In subsection III-C, we calculate the number of the type-II

polynomials Q(g1, · · · , gr+µ). Similar to the previous case,

we focus on the restricted forms. As shown in Lemma 6,

we can also classify the polynomials into subsets based on

their largest terms. Similarly, we need to choose the linear

polynomials to satisfy three points in Example 4. By Lemma

6, regardless of order, different restricted forms represent

different polynomials. Therefore, the third point is satisfied,

and the challenge lies in the first and the second points.

The number of choices for g1, · · · , gr is 2
λxF(g1)···xF (gr) .

We then choose gr+1, · · · , gr+µ in order so that the linearly

independence condition is satisfied, i.e., gr+j is not the linear

combination of g1, · · · , gr+j−1 for all 1 ≤ j ≤ µ. For

the second point, the difficulty arises when F (gr−µ+j) =
F (gr+j) for all 1 ≤ j ≤ µ. Since the largest term is

cancelled, xF (g1) · · ·xF (gr) ∈ I is not a necessary condi-

tion for Q(g1, · · · , gr+µ) ∈ C(I). In this case, the coef-

ficients of monomials not belonging to C(I) in g1 · · · gr
and g1 · · · gr−µgr+1 · · · gr+µ must be equal thus are cancelled

and disappear in Q(g1, · · · , gr+µ). We calculate the number

of choices for gr+1, · · · , gr+µ satisfying this condition in

Theorem 5.

III. CLASSIFICATION AND ENUMERATION OF

POLYNOMIALS

In this section, we focus on the classification and enumera-

tion of the polynomials with weight less than 2wmin in r-order

decreasing monomial codes C(I). According to Theorem 1,

we know wmin = 2m−r and there are two kind of polynomials

with weight less than 2m−r+1: the type-I and the type-II

polynomials. We enumerate the number of polynomials in each

type respectively by dividing polynomials into disjoint sets and

calculating the size of each set.

For u = (i1, . . . , il), define the number of indices ij with

j ∈ [s, t] and ij < k to be ϕu,[s,t](k) = |{s ≤ j ≤ t | ij <
k}|, and define ϕ̄u,[s,t](k) = k − ϕu,[s,t](k). This definition

simplifies the enumeration of low-weight codewords.

A. Restricted form of polynomials

As illustrated in Example 4, a polynomial can be expressed

in various forms. However, we prove that every polynomial

can be expressed in a way that satisfies the conditions stated

in Lemma 3. This allows us to reduce the number of possible

forms, which is beneficial for the subsequent enumeration.

Lemma 1. Let f = gh where g is a linear polynomial with

F (g) = t. Construct h′ by replacing every xt in h with g +
xt + 1. Then f = gh′ and xt does not appear in h′.

Proof. Let b = (b1, . . . , bm) ∈ F
m
2 . If g(b) = 0, then 0 =

g(b)h(b) = g(b)h′(b). If g(b) = 1, then bt = g(b)+ bt +1, so

h′(b) = h(b). Therefore, for any b ∈ F
m
2 , f(b) = g(b)h′(b).

Example 5. Let g = x2 + x1 and h = x2 + x2x3, then

h′ = x1+1+(x1+1)x3 by replacing every x2 in h by x1+1.

5

Now (x2 +x1)(x2 +x2x3) = (x2 +x1)(x1 +1+(x1+1)x3)
and x2 does not appear in h′.

Lemma 2. Let f = g. f ′, g′ are the polynomials by replacing

every xt in f, g with another polynomial h. Then f ′ = g′.

Proof. Assume there exists some b ∈ F
m
2 such that f ′(b) 6=

g′(b). Define b′ ∈ F
m
2 satisfying b′j = bj for j 6= t and

b′t = h(b). Then f(b′) = f ′(b) 6= g′(b) = g(b′), which is

a contradiction.

Lemma 3. Any non-constant polynomial f with linear factors

can be expressed as:

f = g1 · · · gkg.
satisfying

a) g1, · · · , gk are linearly independent linear polynomials

and g has no linear factors;

b) F (g1) < · · · < F (gk), and for all 1 ≤ i ≤ k, xF (gi)

only appears in gi.
If f has no linear factors, we simply write f = g.

We call f = g1 · · · gkg is expressed in the restricted form.

Furthermore, the restricted form is unique, that is, if f can be

expressed in two different ways:

f = g1 · · · gk · g = h1 · · ·hj · h
and both of the two forms satisfy the above conditions a) and

b), then k = j, gi = hi for all 1 ≤ i ≤ k and g = h.

The proof of the lemma is in Appendix A.

Remark 1. To simplify the enumeration process for the type-

I and type-II polynomials, we apply Lemma 3 to reduce

the number of different forms. For example, consider the

polynomial f = (x2 + x1)x1(x3x4 + x5x6). Although it

is not in the restricted form, we can rewrite it as f =
x1(x2 + 1)(x3x4 + x5x6). This allows us to only consider

the restricted forms in the enumeration procedure. However,

it is worth noting that it is still challenging to address the

third point in Example 4. For example, we can also write f
as f = x1(x2 + 1)(x3(x4 + x5) + x5(x6 + x3)) which still

satisfies the conditions in Lemma 3. Thus, efficient methods

need to be explored to eliminate duplicate counting according

to the characteristics of the type-I and the type-II polynomials

respectively.

By Lemma 3, we calculate the number of minimum-weight

codewords in decreasing monomial codes, which has been

shown in [20]. In fact, from Theorem 1, the minimum-weight

codewords are exactly the type-I polynomials with µ = 1.

Corollary 1. Let C(I) be an r-th order decreasing monomial

code. Define λxi1 ···xir
=

∑r
t=1(it − t + 1), then the number

of g1 · · · gr with F (gt) = it for 1 ≤ t ≤ r is 2
λxi1

···xir .

Furthermore, the number of minimum-weight codewords is

A2m−r (C(I)) =
∑

f∈Ir

2λf . (3)

where Ir is the set of all degree-r monomials in I.

Proof. According to Theorem 1, each polynomial f with

weight 2m−r in C(I) is a product of r linearly independent

polynomials. Then f can be expressed as the restricted form

f = g1 · · · gr. The number of undetermined coefficients in gt is

(F (gt)−t+1) since the coefficient of xF (gj) in gt must be zero

for j < t. Therefore, the number of polynomials g1, · · · , gr
with the largest terms xF (g1), · · · , xF (gr) is 2

λxF (g1)···xF (gr) .

To prove Equation (3), we verify the three points given in

Example 4. First, Lemma 3 ensures that g1, · · · , gk are linearly

independent. Next, since C(I) is decreasing, f ∈ C(I) if and

only if xF (g1) · · ·xF (gr) ∈ I. For the third point, Lemma 3

shows that g1 · · · gr = h1 · · ·hr if and only if gi = hi for all

1 ≤ t ≤ r, so different forms lead to different polynomials in

this situation.

Therefore, A2m−r (C(I)) is equal to the sum of 2λf where

f ∈ Ir.

Example 6. Let C(I) be the polar code defined in Example

4 with minimum weight 8.

For example, if f = x1x2x5x7 then

λf = 1 + (2− 1) + (5 − 2) + (7− 3) = 9,

so the number of g1 · · · g4 with F (g1) = 1, F (g2) =
2, F (g3) = 5, F (g4) = 7 is 29 = 512.

We calculate that A8(C(I)) = ∑

f∈I4
2λf = 5680.

Next, we extend our analysis to other low-weight code-

words. Since each low-weight codeword can be expressed as

either a type-I or type-II polynomial, we calculate the number

of both types respectively.

B. Number of the type-I polynomials

In this subsection, our objective is to calculate the number

of polynomials which can be expressed as equation (1) in the

r-th order decreasing monomial code C(I) when µ ≥ 2. The

case µ = 1, i.e., the number of minimum-weight codewords,

has already been solved in Corollary 1. Thanks to Theorem 1,

we can classify the type-I polynomials into disjoint set and the

number of polynomials in each set is calculated in Theorem

3.

For a type-I polynomial f , we define the form f =
P (g1, · · · , gr+2µ−2) to be proper if both f itself and

gr−3+2tgr−2+2t for each 1 ≤ t ≤ µ satisfy the two conditions

a) and b) in Lemma 3. According to Lemma 3, each f can

be expressed as a proper form, so we only need to consider

proper forms from now on.

Example 7. f = x1((x4 + x2)(x2 +1)+ x3(x5 + x1)) is not

proper since the largest term of x2+1 is x2, which appears in

x4+x2. We can rewrite it as the proper form f = x1(x2(x4+
1) + x3(x5 + 1)).

Define Aµ to be the set of proper polynomials

P (g1, · · · , gr+2µ−2) ∈ C(I). Denote u = (i1, · · · , ir+2µ−2),
and define Au to be the subset of Aµ such that

F (gt) = it. Define Sµ = {(i1, · · · , ir+2µ−2) |
P (xi1 , · · · , xir+2µ−2) ∈ C(I), ir−1 < ir+1 < · · · <
ir+2µ−3, and i1, · · · , ir+2µ−2 are all different}. Due to the

proper condition, we also have i1 < i2 < · · · < ir−2 and

ij < ij+1 for j = r − 1, r + 1, · · · , r + 2µ− 3.

6

In fact, Sµ is defined to avoid the repetition

of counting due to exchange of polynomials (e.x.

g1 · · · gr−2 (gr−1gr + gr+1gr+2 + · · ·+ gr+2µ−3gr+2µ−2) =
g1 · · · gr−2 (gr+1gr+2 + gr−1gr + · · ·+ gr+2µ−3gr+2µ−2)).
By defining Sµ, we ensure each type-I polynomial belongs

to a unique Au for some u ∈ Sµ. This prevents duplication

in the classification of the polynomials and allows for a clear

and distinct categorization.

Theorem 2.

Aµ =
⋃

u∈Sµ

Au.

And different Au are disjoint. Therefore,

|Aµ| =
∑

u∈Sµ

|Au|.

In order to prove the theorem 2, we rely on the following

lemmas to show that every polynomial f =
∑µ

i=1 f2i−1f2i can

be rewritten so that the largest terms of linear polynomials fi
are different regardless of the order.

Lemma 4. Let f1, ..., f2µ be linearly independent polynomials

and f =
∑µ

i=1 f2i−1f2i. Then there exists linearly indepen-

dent polynomials g1, ..., g2µ with different largest terms such

that f =
∑µ

i=1 g2i−1g2i.

The proof of the lemma is in Appendix B.

Lemma 5. Assume
∑µ

i=1 f2i−1f2i =
∑µ

i=1 g2i−1g2i, where

all F (fi) are different, F (f1) < F (f3) < · · · < F (f2µ−1),
F (f2j−1) < F (f2j) for 1 ≤ j ≤ µ, and gi satisfy similar

conditions. Then F (fi) = F (gi) for all 1 ≤ i ≤ 2µ.

The proof of the lemma is in Appendix C.

Proof of Theorem 2. Denote f = P (f1, · · · , fr+2µ−2) ∈
Aµ. Since f is proper, for all 1 ≤ i ≤ r − 2, xF (fi)

only appears in fi. According to Lemma 4, we suppose

that F (f1), · · · , F (fr+2µ−2) are all different. Therefore, each

polynomial in Aµ belongs to some Au after sorting the linear

polynomials based on the largest terms.

Now let us assume there exists another proper form g =
P (g1, · · · , gr+2µ−2) ∈ Av such that f = g. By Lemma 3,

we find that fi = gi for 1 ≤ i ≤ r − 2 and fr−1fr + · · · +
fr+2µ−3fr+2µ−2 = gr−1gr + · · · + gr+2µ−3gr+2µ−2. Since

u, v ∈ Sµ, the conditions in Lemma 5 are satisfied. Thus,

F (fi) = F (gi) for r − 1 ≤ i ≤ r + 2µ − 2. Therefore, we

conclude that u = v, which implies that the different sets Au

are disjoint.

Now we proceed to calculate |Aµ|. For

u = (i1, · · · , ir+2µ−2) ∈ Sµ. We aim to determine

the number of different polynomials which can be

expressed as f = P (f1, · · · , fr−2, h1, g1, · · · , hµ, gµ) =
f1 · · · fr−2 (h1g1 + · · ·+ hµgµ) ∈ Au by assigning values to

the coefficients in f1, · · · , fr−2, h1, g1, · · · , hµ, gµ.

We verify the three points in Example 4. Firstly, since

i1, · · · , ir+2µ−2 are all different, the linearly independence is

naturally satisfied. Next, since C(I) is decreasing, f ∈ C(I)
if and only if P (xi1 , · · · , xir+2µ−2) ∈ C(I), i.e., the µ

Algorithm 1 Calculate |Aµ|

Input: information set I of the r-order decreasing polar code,

weight 2m−r+1 − 2m−r+1−µ.

Output: the number M of the type-I polynomials with weight

2m−r+1 − 2m−r+1−µ.

1: M ← 0
2: for u = (i1, · · · , ir+2µ−2) ∈ Sµ do

3: Calculate the number αu of the integer pairs (k, t)
satisfying 1 ≤ k < t ≤ µ, ir−2+2k > ir−2+2t >
ir−3+2k > ir−3+2t;

4: Calculate the number βu of the integer pairs (s, t)
satisfying ir−2+2t > s > ir−3+2t and s does not appear

in u;

5: Calculate the number γu of the integer pairs (s, t)
satisfying ir−3+2t > s and s does not appear in

i1, · · · , ir−2;

6: M ←M + 2
λxi1

···xir−2
+αu+βu+2γu

;

7: end for

polynomials xi1 · · ·xir , xi1 · · ·xir−2xir+1xir+2 , · · · ,
xi1 · · ·xir−2xir+2µ−3xir+2µ−2 ∈ I. However, the challenge

arises from the fact that different forms may lead to the same

polynomial.

Since f is proper, different ft with 1 ≤ t ≤ r − 2 will

result in different f by Lemma 3. Thus, there are 2
λxi1

···xir−2

choices for f1, · · · , fr−2.

For u = (i1, · · · , ir+2µ−2) ∈ Sµ, define αu =
|{(k, t) | 1 ≤ k < t ≤ µ, ir−2+2k > ir−2+2t >
ir−3+2k > ir−3+2t}|, βu =

∑µ
t=1(ϕ̄u,[1,r+2µ−2](ir−2+2t) −

ϕ̄u,[1,r+2µ−2](ir−3+2t)), i.e., the number of the integer pairs

(s, t) satisfying ir−2+2t > s > ir−3+2t and s does not appear

in u, γu =
∑µ

t=1 ϕ̄u,[1,r−2](ir−3+2t), i.e, the number of the

integer pairs (s, t) satisfying ir−3+2t > s and s does not

appear in i1, · · · , ir−2. In fact, αu + βu + 2γu is the number

of free coefficients in
∑µ

j=1 hjgj which can be determined

arbitrarily.

Theorem 3. For u = (i1, · · · , ir+2µ−2) ∈ Sµ,

|Au| = 2
λxi1

···xir−2
+αu+βu+2γu

. (4)

Therefore,

|Aµ| =
∑

u∈Sµ

|Au| =
∑

u∈Sµ

2
λxi1

···xir−2
+αu+βu+2γu

. (5)

The proof of the theorem is in Appendix D.

The Algorithm 1 concludes the procedure for calculating

|Aµ|.
Remark 2. As m approaches infinity, the complexity of

calculating λxi1 ···xir+2µ−2
, αu, βu and γu is O(r + 2µ − 2),

O(µ2), O(µm) and O(µr) respectively. Consequently, the

complexity of calculating |Au| is O(µm). Additionally, the

size of Sµ is smaller than
(

m
r+2µ−2

)

. Therefore, the time

complexity of Algorithm 1 is O(µm
(

m
r+2µ−2

)

).

7

Remark 3. When µ = 2, Theorem 3 provides the same

result as Theorem 4 in [21] with the number of sets S2 being

identical. Moreover, the complexity associated with calculating

the size of each set is also at O(m), thus the complexity is

similar.

Example 8. Let C(I) be the polar code defined in Example

4 We have calculated A8((C(I)) in Example 6. Now we

calculate A12(C(I)) with µ = 2.

For example, if u = (1, 7, 2, 5, 3, 4) ∈ S2, |Au| is the

number of different polynomials f1f2(h1g1 + h2g2) with

F (f1) = 1, F (f2) = 7, F (h1) = 2, F (g1) = 5, F (h2) = 3
and F (g2) = 4. Then λx1x7 = 7. Since F (g1) > F (g2) >
F (h2) > F (h1), we have αu = 0. Besides, βu is the sum of

number of s does not appear in u satisfying 5 > s > 2 and

4 > s > 3. Since only 6 does not appear in u, βu = 0. Next,

ϕu,[1,2](2) = ϕu,[1,2](3) = 1, so γu = 2 − 1 + 3 − 1 = 3. In

fact, x7, x6 and x1 do not appear in g1h1 + g2h2. For x5, the

coefficients of x5 can be determined arbitrarily by assigning

h1. For x4, the coefficients of x4x2 and x4 can be determined

arbitrarily by assigning h2. For x3 and x2, the coefficients

of x3x2, x3 and x2 can be determined arbitrarily. Therefore,

|Au| = 27+6 = 8192.

From Theorem 1 and 3, we have A12(C(I)) =
∑

u∈S2
|Au| =

∑

u∈S2
2
λxi1

···xir−2
+αu+βu+2γu

= 508672.

C. Number of the type-II polynomials

In this subsection, our objective is to calculate the number

of polynomials which can be expressed as equation (2) for

µ ≥ 3 in the r-th order decreasing monomial code C(I). As in

section III-B, we classify the type-II polynomials into disjoint

set and the number of polynomials in each set is calculated in

Theorem 5.

For a type-II polynomial f , we define the form f =
Q(g1, · · · , gr+µ) to be proper if f itself, gr−µ+1 · · · gr and

gr+1 · · · gr+µ satisfies the conditions a) and b) in Lemma 3,

also satisfy those conditions. According to Lemma 3, each

f can been expressed as a proper form, so we only need to

consider proper forms from now on.

Let a = (a1, ..., aµ), b = (b1, ..., bµ) ∈ N
µ, define the

lexicographic order a ≤l b if and only if there exists some

i such that ai < bi and aj = bj for all i < j ≤ µ or aj = bj
for all 1 ≤ j ≤ µ.

Define Bµ to be the set of polynomials Q(g1, · · · , gr+µ) ∈
C(I). Denote u = (i1, · · · , ir+µ). Define Bu to

be the subset of Bµ such that F (gt) = it. De-

fine Tµ = {(i1, · · · , ir+µ) | Q(xi1 , · · · , xir+µ
) ∈

C(I), (ir−µ+1, · · · , ir) ≤l (ir+1, · · · ir+µ)}. Due to the

proper condition, we also have i1 < i2 < · · · <
ir−µ, ir−µ+1 < · · · < ir, ir+1 < · · · < ir+µ, and i1, · · · , ir
are all distinct as well as i1, · · · , ir−µ+1, ir+1, · · · , ir+µ.

In fact, the introduction of the lexicographic order in Tµ

is to avoid repetition of counting due to exchange of poly-

nomials (e.g., g1 · · · gr−µ (gr−µ+1 · · · gr + gr+1 · · · gr+µ) =
g1 · · · gr−µ (gr+1 · · · gr+µ + gr−µ+1 · · · gr)).

By defining Tµ, we ensure each type-II polynomial belongs

to a unique Bu for some u ∈ Sµ. This prevents duplication

in the classification of the polynomials and allows for a clear

and distinct categorization, similar to what we have seen in

section III-B.

Theorem 4.

Bµ =
⋃

u∈Tµ

Bu.

And different Bu are disjoint. Therefore,

|Bµ| =
∑

u∈Tµ

|Bu|.

In order to prove the theorem 4, we rely on the follow-

ing lemma presented in [18] (L6) to show that different

gr−µ+1, · · · , gr+µ lead to different polynomials.

Lemma 6 ([18]). Suppose µ ≥ 3, f = g + h = g′ + h′, g =
y1 · · · yµ, h = yµ+1 · · · y2µ, g′ = y′1 · · · y′µ, h′ = y′µ+1 · · · y′2µ,

y1, · · · , y2µ are linearly independent, y′1, · · · , y′2µ are also

linearly independent. Then

g = g′, h = h′ or g = h′, h = g′.

Proof of Theorem 4. Let f = Q(f1, · · · , fr+µ) ∈ Bµ. Since

f is proper, every polynomial in Bµ belongs to some Bu after

sorting the linear polynomials based on their largest terms.

If there exists another proper form g = Q(g1, · · · , gr+µ) ∈
Bv such that f = g. According to Lemma 3, we have fi = gi
for 1 ≤ i ≤ r − µ and fr−µ+1 · · · fr + fr+1 · · · fr+µ =
gr−µ+1 · · · gr + gr+1 · · · gr+µ. Then by Lemma 6 and

the lexicographic order, we deduce that fr−µ+1 · · · fr =
gr−µ+1 · · · gr, fr+1 · · · fr+µ = gr+1 · · · gr+µ. Once again,

applying Lemma 3, fi = gi for r − µ + 1 ≤ i ≤ r + µ.

Therefore, we conclude that u = v, which implies different

sets are disjoint.

Now we proceed to calculate |Bµ|. Denote u =
(i1, · · · , ir+µ) ∈ Tµ. From the proof of Theorem 4,

Q(f1 · · · fr+µ) = Q(g1 · · · gr+µ) if and only if fi = gi for

all 1 ≤ i ≤ r+ µ, so the third point in Example 4 is satisfied

trivially. However, we still need to check the first two points.

There are λxi1 ···xir
choices for f1, · · · , fr. Next, we need to

choose linearly independent fr+1, · · · , fr+µ with given largest

terms such that Q(f1 · · · fr+µ) ∈ C(I).
Now, if ir−µ+j 6= ir+j for some 1 ≤ j ≤ µ,

Q(xi1 · · ·xir+µ
) ∈ C(I) if and only if Q(f1 · · · fr+µ) ∈

C(I). However, if ir−µ+j = ir+j for all 1 ≤ j ≤ µ,

Q(xi1 · · ·xir+µ
) = 0 ∈ C(I) does not imply

Q(f1 · · · fr+µ) ∈ C(I), so we need to examine the

second point carefully. Define bu(k) = max{t |
xi1 · · ·xir−µ

xir+1 · · ·xir+k−1
xtxir+k+1

· · ·xir+µ
∈

I, t 6= ir+1, · · · , ir+µ}. If

xi1 · · ·xir−µ
xir+1 · · ·xir+k−1

x1xir+k+1
· · ·xir+µ

/∈ I, bu(k)
is defined to be 0. In this situation, Q(f1 · · · fr+µ) ∈ C(I)
if and only if for all 1 ≤ k ≤ µ, the coefficients of xj with

j > bu(k) in fr−µ+k and fr+k are equal. If bu(k) = 0, then

fr−µ+k = fr+k + a0 which contradicts against the linear

independence condition, so Bu = ∅.

Define su(k) to be the number of choices for fr+k.

Case 1) ir−µ+j 6= ir+j for some 1 ≤ j ≤ µ,

8

Subcase I) ir+k 6= ir−j for all 0 ≤ j ≤ µ − 1, su(k) =
2ϕ̄u,[1,r−µ](ir+k)−k+1.

Subcase II) ir+k = ir−j for some 0 ≤ j ≤ µ −
1, su(k) = 2ϕ̄u,[1,r−µ](ir+k)−k+1 − 2ϕu,[r−µ+1,r](ir+k)+1 if

ϕ̄u,[1,r−µ](ir+k)− k > ϕu,[r−µ+1,r](ir+k) and 0 otherwise.

Case 2) ir−µ+j = ir+j for all 1 ≤ j ≤ µ.

su(k) = 2ϕ̄u,[1,r](bu(k))+1 − 2k if ϕ̄u,[1,r](bu(k)) + 1 > k
and 0 otherwise.

Finally, define σu =
∏µ

k=1 su(k) for Case 1 and

σu = (
∏µ

k=1 su(k))/2 for Case 2. We need to di-

vide the value by 2 in Case 2 since Q(f1, · · · , fr+µ) =
Q(f1, · · · , fr−µ, fr+1, · · · , fr+µ, fr−µ+1, · · · , fr) is calcu-

lated twice.

Next, we prove the correctness of the definition of su(k)
and derive |Bµ| in Theorem 5.

Theorem 5. For u = (i1, · · · , ir+µ) ∈ Tµ,

|Bu| = 2
λxi1

···xir σu. (6)

Therefore,

|Bµ| =
∑

u∈Tµ

|Bu| =
∑

u∈Tµ

2
λxi1

···xir σu. (7)

The proof of the theorem is in Appendix E.

The Algorithm 2 concludes the procedure for calculating

|Bµ|.
Remark 4. As m approaches infinity, the complexity of

calculating ϕu,[1,r−µ](k), ϕ̄u,[r−µ+1,r](k) and bu(k) is O(m)
since u is vector with length r + µ ≤ m. So the complexity

of calculating su(k) is O(m). Then the complexity of cal-

culating σu and further |Bu| is O(m2). The size of Tµ is
(

m
r

)(

m−r+µ
µ

)

. Therefore, the time complexity of Algorithm 2

is O(m2
(

m
r

)(

m−r+µ
µ

)

).

Example 9. Let C(I) be the polar code defined in Example 4.

We have calculated A8((C(I)) and A12((C(I)) in Example

6 and 8. Now we calculate A14(C(I)) with µ = 3.

For example, if u = (1, 2, 5, 7, 3, 4, 7) ∈ T3 then

λx1x2x5x7 = 9. For the choice of f5, we have F (f5) = 3,

x3 does not appear in x2x5x7 and ϕ̄u,[1,1](3) = 2, so there

are 22−1+1 = 4 choices for f5. Similarly there are 4 choices

for f6. For f7, we have F (f7) = 7 and x7 appears in x2x5x7,

since ϕu,[2,4](7) = 2, there are 26−3+1 − 22+1 = 8 choices

for f7. Therefore, |Bu| = 29 × 4× 4× 8 = 65536.

In another example, if v = (1, 4, 5, 7, 4, 5, 7) ∈ T3 then

λx1x4x5x7 = 11. Since x1x3x5x7 /∈ I and x1x2x5x7 ∈
I, bv(1) = 2, ϕ̄v,[2,4](bv(1)) = 2. Similarly, bv(2) =
3, ϕ̄v,[2,4](bv(2)) = 3, bv(3) = 6, ϕ̄v,[2,4](bv(3)) = 4. Hence,

f7, f6, f5 have 22− 2 = 2, 23− 22 = 4, 24− 23 = 16 choices,

respectively. Therefore, |Bv| = 211× 2× 4× 16/2 = 131072.

By Theorem 1 and 5, it can be calculated that A14(C(I)) =
∑

v∈Tµ
2λxv1

···xvr−µσv = 1835008.

IV. NUMBER OF LOW-WEIGHT POLYNOMIALS

In this section, we provide the closed-form expressions and

the enumeration complexity for the number of codewords with

weight less than 2wmin.

By Corollary 1, Theorem 3 and Theorem 5, we have

Algorithm 2 Calculate |Bµ|

Input: the information set I of r-order decreasing polar

codes, weight 2m−r − 2m−r−µ.

Output: the number M of type-II polynomials with weight

2m−r+1 − 2m−r+1−µ.

1: M ← 0;

2: for u = (i1, · · · , ir+µ) ∈ Tµ do

3: if there exists some 1 ≤ j ≤ µ such that ir−µ+j 6= ir+j

then

4: L← 1;

5: for k = 1 to µ do

6: if there exists some 0 ≤ j ≤ µ − 1 such that

ir+k = ir−j then

7: L← 2ϕ̄u,[1,r−µ](ir+k)−k+1L;

8: else

9: if ϕ̄u,[1,r−µ](ir+k) − k ≤ ϕu,[r−µ+1,r](ir+k)
then

10: L← 0;

11: Return

12: else

13: L ← 2(ϕ̄u,[1,r−µ](ir+k)−k+1 −
2ϕu,[r−µ+1,r](ir+k)+1)L;

14: end if

15: end if

16: end for

17: M ←M + 2λx1···xir L;

18: else

19: L← 1;

20: for k = 1 to µ do

21: if ϕ̄u,[1,r](bu(k)) + 1 ≤ k then

22: L← 0;

23: Return

24: else

25: L← (2ϕ̄u,[1,r](bu(k))+1 − 2k)L;

26: end if

27: end for

28: M ←M + 2λx1···xir L/2;

29: end if

30: end for

Theorem 6. Let (C(I)) be an r-order monomial code and µ
be a positive integer. Denote M = A2m−r+1−2m−r+1−µ(C(I)).

When µ = 1,

M =
∑

f∈Ir

2λf . (8)

When µ = 2,

M =
∑

u∈Sµ

2
λxi1

···xir−2
+αu+βu+2γu

. (9)

When 3 ≤ µ ≤ min{(m− r + 2)/2,m− r, r},

M =
∑

u∈Tµ

2
λxi1

···xir−2 σu +
∑

u∈Sµ

2
λxi1

···xir−µ
+αu+βu+2γu

.

(10)

9

The closed-form expressions for case µ = 1 and 2 have

been discovered in [20] and [21].

Remark 5. As m approaches infinity, the complexity of

calculating the number of codewords with weight less than

2wmin in a decreasing monomial code is determined by the

combined complexity of Algorithm 1 and 2, which is given

by O(m2(
(

m
r+2µ−2

)

+
(

m
r

)(

m−r+µ
µ

)

)).
When r is a constant, i.e., independent of m,

the time complexity is O(m2+max{r+2µ−2,r+µ}) =
O((logN)2+max{r+2µ−2,r+µ}) where N is code length.

When r is proportional to m, i.e., r = am, a ∈
(0, 1), the time complexity is O(m22max{1,2h(a)}m) =
O((logN)2Nmax{1,2h(a)}) where h(a) = −a log a − (1 −
a) log(1 − a).

Therefore, our algorithms provide polynomial time com-

plexity for calculating the number of codewords with weight

less than 2wmin. In comparison to the approach of using SCL

decoding with a very large list to collect low-weight codewords

[8], our algorithms are efficient and guarantee an accurate

collection of low-weight codewords.

Example 10. We check our results for RM(6, 3). From The-

orem 6, we calculate that A8(C(I)) = 11160, A12(C(I)) =
174999 and A14(C(I)) = 28555680, which is consistent with

the results obtained from Theorem 1 [18]. Therefore, our result

is correct for RM codes.

Next we examine our findings for C(I) where I is gen-

erated by Imin = {15, 21, 55}. Since C(I) is a subcode of

RM(6, 3), we list all the polynomials of RM(6, 3) with weight

less than 16 and verify whether each one is a codeword in

C(I). The result shows that A8(C(I)) = 2456, A12(C(I)) =
142208 and A14(C(I)) = 868325, which yields the same

value as Theorem 6.

We also validate our results for the code whose weight

distribution was previously calculated in [12, Table VIII]. By

calculating the codewords with less than 16 in C(I), we obtain

A8(C(I)) = 304, A12(C(I)) = 768 and A14(C(I)) = 0.

These results perfectly align with those presented in [12, Table

VIII]. It is worth noting that the complexity of the method in

[12] is exponential, while our algorithm runs in polynomial

time relative to the code length.

Example 11. Table 1 and Table 2 present a comparison of

the weight distribution of different [128,80] and [256, 94]

decreasing monomial codes with minimum distance 8 and

16, respectively. It is worth noting that different constructions

yield significantly different weight distributions.

Imin A8 A12 A14

code 1 {23, 44, 50, 70, 73} 5680 508672 1835008
code 2 {15, 28, 73} 5168 367360 1376256
code 3 {23, 38, 97} 7216 596736 4128768
code 4 {29, 39, 41} 8752 897792 6881280

Table 1: The number of codewords in [128,80] codes with

weight less than 16

Example 12. Figure 1 illustrates the union bounds [25]

calculated by the weight distribution less than 2wmin and

Imin A16 A24 A28

code 1 {63, 91, 103, 120, 204, 210, 225} 1584 49920 0
code 2 {63, 94, 103, 151, 180, 204, 209} 2096 84376 0
code 3 {63, 94, 107, 151, 180, 202, 209} 2608 127740 65536
code 4 {63, 92, 107, 155, 167, 201} 4144 264960 589824

Table 2: The number of codewords in [256,94] codes with

weight less than 32

Fig. 1: SCL performance and union bound for different [128,

80] polar codes

the performance of SCL decoding with list size 8 for four

different [128, 80] polar codes as outlined in Table 1. In

these cases, the performance of SCL8 decoding is close to

the ML decoding. Here the union bounds are calculated as
∑

d<2wmin
AdQ(−

√
d/σ) where σ is the standard variance of

additive white Gaussian noise and Q(x) = 1√
2π

∫∞
x

e−z2/2dz
is the distribution function of the standard normal distribution.

The simulation results show that the union bound calculated

by our results is closed to the performance of ML decoding,

particularly at high signal-to-noise ratios (SNR).

V. CONCLUSION

In this paper, we present a comprehensive framework for

classifying and enumerating the codewords with weights less

than 2wmin in decreasing polar codes. We provide the closed-

form expressions and the algorithms to calculate the number

of these codewords. Importantly, the time complexity of the

algorithms is in polynomial with respect to the code length.

Our work contributes to a better understanding of the algebraic

structure for polar codes and may provide valuable insights

that can potentially guide practical constructions in the future.

APPENDIX A

PROOF OF LEMMA 3

Proof. Apparently, each non-constant polynomial f with lin-

ear factors can be expressed as g1 · · · gkg where gi are linear

polynomials and g has no linear factors. First we prove that

f can be rewritten to satisfy the conditions a) and b).

10

Assume gk is a linear combination of g1, · · · , gk−1, i.e.,

gk =
∑k−1

i=1 aigi + a0. Since g1(
∑k−1

i=1 aigi + a0) = g1(a1 +
∑k−1

i=2 aigi + a0), g1 · · · gk = g1 · · · gk−1

∑k−1
i=0 ai. As f is

non-zero,
∑k−1

i=0 ai = 1 and g1 · · · gk = g1 · · · gk−1. Therefore,

without loss of generality we can assume that g1, · · · , gk are

linearly independent.

Assume F (gi) = F (gj) = t for some 1 ≤ i < j ≤ k.

According to Lemma 1, we replace xt in gj by gi + xt + 1.

The new polynomial is g′j = gi+gj+1, then gigj = gig
′
j and

F (g′j) < F (gj). Note that this procedure does not break the

condition a). As
∑k

i=1 F (gi) cannot decrease infinitely, after

finite procedures, F (g1), · · · , F (gk) will be all different from

each other. Then we reorder g1, · · · , gk so that F (g1) < · · · <
F (gk).

Assume xt = F (gi) appears in some gj with j > i, by

Lemma 1, replacing xt in gj by gi + xt + 1 does not change

the value of gigj . Note that this procedure does not break the

condition a) or change F (gj). Similar procedure can also be

applied to g to avoid the appearance of xF (gi). In this way,

xt only appears in gi, and thus condition b) satisfies.

Next, we prove the second part of the lemma by induction.

When k = 0, since g has no linear factor, we have j = k and

g = h.

For the inductive step k−1→ k, we replace xF (gi) by gi+
xF (gi) +1 for all i ≤ k on both sides. After this replacement,

gi becomes 1, g does not change since xF (gi) does not appear

in g, and ht and h becomes h′
t and h′ respectively. Then by

Lemma 2, g = h′
1 · · ·h′

j · h′. Since g has no linear factors,

h′
1 · · ·h′

j = 1.

Suppose b ∈ F
m
2 satisfying g1(b) · · · gk(b) = 1, then

bF (gi) = gi(b) + bF (gi) + 1, it follows that ht(b) = h′
t(b)

and then h1(b) · · ·hj(b) = 1. Similarly, h1(b
′) · · ·hj(b

′) = 1
implies g1(b

′) · · · gk(b′) = 1 for b′ ∈ F
m
2 . Hence, h1 · · ·hj =

g1 · · · gk.

Since deg(h1 · · ·hj) = deg(g1 · · · gk), we deduce that

j = k. Assume F (hk) > F (gk), then xF (gk) appears in

h1 · · ·hk but not in g1 · · · gk, which means the equality cannot

hold. Similarly, F (hk) < F (gk) is also impossible. Therefore,

F (hk) = F (gk).

Since xF (gk) only appears in gk and hk, f =
xF (gk)g1 · · · gk−1g + g′′ = xF (gk)h1 · · ·hk−1h + h′′, where

xF (gk) does not appear in g′′ or h′′. Therefore, we have

g1 · · · gk−1g = h1 · · ·hk−1h. By the inductive hypothesis,

gi = hi for 1 ≤ i ≤ k − 1 and g = h. Similarly, expanding f
in terms of xF (gk−1) implies gk = hk.

APPENDIX B

PROOF OF LEMMA 4

Proof. Denote a =
∑2µ

i=1 F (fi) to be the sum of indices of

the largest terms.

First, if F (f2i−1) = F (f2i) = t for some 1 ≤ i ≤ µ,

as in Lemma 1, we replace f2i by f2i−1 + f2i + 1. This

procedure does not change the value of f or break the linear

independence condition, and a will decrease.

Second, if F (f2i−1) = F (f2j−1) = t for some i 6= j,

denote f2i−1 = xt + g and f2j−1 = xt + h. Without loss of

generality, let F (f2j) ≤ F (f2i). Since

(xt + g)f2i +(xt + h)f2j = (xt + g)(f2i + f2j) + (g+ h)f2j ,
(11)

we can rewrite f so that a decreases. Similarly, this procedure

does not change the value of f or break the linear indepen-

dence condition.

When F (f2i−1) = F (f2j), F (f2i) = F (f2j−1), or

F (f2i) = F (f2j), the procedure is similar.

As a cannot decrease infinitely, after finite procedures

described above, f can be rewritten to satisfy that all the

largest terms are different.

APPENDIX C

PROOF OF LEMMA 5

Proof. We prove this lemma by induction. When µ = 1, the

lemma is implied by Lemma 3. For the induction step µ −
1 → µ, if F (f2µ) > F (g2µ), then xF (f2µ) appears in the

left side but not in the right side, which means the equality

cannot hold. Similarly, F (f2µ) < F (g2µ) is also impossible.

Therefore, F (f2µ) = F (g2µ). Since xF (f2µ) does not appear

in other linear polynomials, we have f2µ−1 = g2µ−1. Denote

F (f2µ−1) = t.
Define f ′

j to be the polynomial by replacing every xt in

fj by f2µ−1 + xt, and g′j is defined similarly. Then g′2µ−1 =

f ′
2µ−1 = 0. By Lemma 2,

∑µ−1
i=1 f ′

2i−1f
′
2i =

∑µ−1
i=1 g′2i−1g

′
2i.

Since xt cannot be the largest term of other linear polynomials,

replacing xt by f2µ−1 + xt does not change the largest terms

of other polynomials. Then by induction hypothesis, F (f ′
j) =

F (g′j) for 1 ≤ j ≤ 2µ− 2. Therefore, F (fi) = F (gi) for all

1 ≤ i ≤ 2µ.

APPENDIX D

PROOF OF THEOREM 3

We first prove the following lemma.

Lemma 7. Suppose
∑µ

t=1 htgt is proper and satisfies

the conditions in Lemma 5, then we can rewrite gt =
∑

1≤j≤m b
(t)
j xj + b

(t)
0 and ht =

∑

1≤j≤m c
(t)
j xj + c

(t)
0 ,

such that the conditions in Lemma 5 still hold, in addition,

∀1 ≤ t, t′ ≤ µ,

1) b
(t)
F (gt′)

= 0, if F (gt) > F (gt′) > F (ht′) > F (ht);

2) b
(t)
F (ht′)

= 0, if F (gt) > F (ht′) > F (ht);

3) b
(t′)
F (ht′)

= 0 (
∑µ

t=1 htgt is still proper).

Proof. First, if b
(t)
F (gt′)

= 1 for some F (gt) > F (gt′) >

F (ht′) > F (ht), since

htgt + ht′gt′ = ht(gt + gt′) + (ht + ht′)gt′ , (12)

we can replace gt by gt + gt′ and ht′ by ht + ht′ such that

b
(t)
F (gt′)

= 0 without changing b
(t)
s for s > F (gt′) and c

(t′)
s for

s > F (ht), so the largest terms of gt and ht are not changed,

thus the conditions in Lemma 5 still hold.

11

Similarly, if b
(t)
F (ht′)

= 1 for some F (gt) > F (ht′) > F (ht),
since

htgt + ht′gt′ = ht(gt + ht′) + ht′(gt′ + ht), (13)

we can replace gt by gt + ht′ and gt′ by ht + gt′ such that

b
(t)
F (ht′)

= 0 without changing b
(t)
s for s > F (ht′) and b

(t′)
s for

s > F (ht).

If b
(t′)
F (ht′)

= 1, since

ht′gt′ = ht′(gt′ + ht′ + 1), (14)

we can replace gt′ by gt′ + ht′ + 1 such that b
(t′)
F (ht′)

= 0

without changing b
(t′)
s for s > F (ht′).

Since all the above procedures do not influence b
(t)
s with

larger subscript, we sort F (gt′) and F (ht′) for all 1 ≤ t′ ≤ µ
in descending order. Then for all 1 ≤ t ≤ µ, check whether

conditions 1)-3) satisfy, if not, apply the above procedures

(12)-(14). Note that the previously satisfied conditions re-

main intact throughout the subsequent steps, we can rewrite
∑µ

t=1 htgt to satisfy conditions 1)-3).

Now we are going to calculate |Au|. By Lemma 3 and

Lemma 7, in order to avoid counting the same polynomials

multiple times, we can fix some coefficients to zeros, thus the

number of polynomials in Au is at most 2 to the power of the

number of the remaining coefficients, which is 2αu+βu+2γu

as shown in Theorem 3. Now we prove that any value of

these coefficients yields a different polynomial. Therefore, the

number of low-weight codewords is exactly 2αu+βu+2γu .

Proof of Theorem 3. Denote u = (i1, · · · , ir+2µ−2) ∈ Sµ.

We calculate the number of different polynomials f =
P (f1, . . . , fr−2, h1, g1, . . . , hµ, gµ) ∈ Au. Since f is proper,

there are 2
λxi1

···xir−2 choices for f1, . . . , fr−2.

Next we calculate the number of choices for g =
∑µ

t=1 htgt. Let us write g =
∑

1≤j<k≤m aj,kxjxk +
∑

1≤k≤m a0,kxk + a0,0, gt =
∑

1≤s≤m b
(t)
s xs + b

(t)
0 and

ht =
∑

1≤s≤m c
(t)
s xs + c

(t)
0 . Since g =

∑µ
t=1 htgt and

x2
j = xj , we have

aj,k =

µ
∑

t=1

(b
(t)
j c

(t)
k + b

(t)
k c

(t)
j) (15)

for 1 ≤ j < k ≤ m and

a0,k =

µ
∑

t=1

(b
(t)
k c

(t)
k + b

(t)
k c

(t)
0 + b

(t)
0 c

(t)
k) (16)

for 0 ≤ k ≤ m.

Some of the coefficients in gt and ht are prefixed. Firstly,

b
(t)
F (gt)

= 1 and b
(t)
s = 0 for s > F (gt), c

(t)
F (ht)

= 1 and

c
(t)
s = 0 for s > F (ht). Besides, since f is proper, b

(t)
s = 0

if s = F (ht) or s = F (fl) for 1 ≤ l ≤ r − 2, c
(t)
s = 0 if

s = F (fl) for 1 ≤ l ≤ r − 2. Furthermore, we assume the

coefficients in gt which satisfy the conditions in Lemma 7 are

fixed to zeros.

We are going to assign values to the remaining b
(t)
s and

c
(t)
s in a specific order such that for each remaining b

(t)
s

and c
(t)
s , there exists one different coefficient aj,k determined

by it, thus different values of b
(t)
s and c

(t)
s yield different

polynomials. First, we assign values to b
(t)
s and c

(t)
s appearing

in the expanded formula of aj,m from j = m − 1 to 0 .

Then, we assign values to other b
(t)
s and c

(t)
s appearing in the

expanded formula of aj,m−1 from j = m− 2 to 0, and so on.

In this way, some aj,k can be freely determined by assigning

specific values to b
(t)
s and c

(t)
s as desired, while other aj,k are

determined by other coefficients in f determined earlier. The

number of choices for g =
∑µ

i=1 higi is exactly the 2 to the

power of the number of free coefficients.

Next, we specify the stage when we assign b
(t)
s and c

(t)
s

in the predefined order. If s > F (ht), b
(t)
s first appears

in the coefficient of xF (ht)xs. Thus, b
(t)
s is assigned when

determining aF (ht),s. If s < F (ht), b
(t)
s is assigned when

determining as,F (ht). And c
(t)
s is assigned when determining

as,F (gt), since c
(t)
s first appears in the coefficient of xsxF (gt).

Now we prove that the first appearance of the free coef-

ficients b
(t)
s and c

(t)
s are at different stages, that is, they are

assigned to determine different aj,k. It is clear that all the

b
(t)
s and c

(t)
s′ are assigned at different stages. Assume that for

t 6= t′, b(t)s and b
(t′)
s′ are assigned when determining the same

aj,k. If s > F (ht) and s′ > F (ht′), the subscripts of aF (ht),s

and aF (ht′),s
′ are the same, thus F (ht) = F (ht′), which is

against that the largest terms are different. Similarly, the case

s < F (ht) and s′ < F (ht′) is impossible. W.l.o.g, assume

s > F (ht) and s′ < F (ht′), we have j = F (ht) = s′,
k = s = F (ht′). Therefore,

F (ht) = s′ < F (ht′) = s < F (gt).

Since we fix the coefficients in gt which satisfy the conditions

2) in Lemma 7 to zeros, b
(t)
s = b

(t)
F (ht′)

= 0 needs not be

considered in our procedure. Therefore, all b
(t)
s and b

(t′)
s′ are

assigned at different stages.

Assume that for t 6= t′, b
(t)
s and c

(t′)
s′ are assigned when

determining the same aj,k. If s > F (ht), the subscripts j =
F (ht) = s′, k = F (gt′) = s. Therefore,

F (ht) = s′ < F (ht′) < F (gt′) = s < F (gt).

Since we fix the coefficients in gt which satisfy the conditions

1) in Lemma 7 to zeros, b
(t)
s = b

(t)
F (gt′)

= 0 needs not be

considered in our procedure. If s < F (ht), then F (ht) =
F (gt′), which is against that the largest terms are different.

Therefore, b
(t)
s and c

(t′)
s′ are assigned at different stages.

Now assume that for t 6= t′, c(t)s and c
(t′)
s′ are assigned when

determining the same aj,k. Therefore, F (ht) = F (ht′), which

is against hat the largest terms are different.

Note that all the free b
(t)
s and c

(t)
s are assigned at different

stages, their values determine the corresponding aj,k, since

other terms in the expanded formula are already assigned. The

number of
∑µ

i=1 higi is exactly 2 to the power of the number

of free coefficients in b
(t)
s and c

(t)
s . Now we count the number

of the coefficients:

1) The number of c
(t)
s with s 6= i1, · · · , ir−2 is

ϕ̄u,[1,r−2](ir−3+2t).

12

2) The number of b
(t)
s with s < F (ht) and s 6= i1, · · · , ir−2

is ϕ̄u,[1,r−2](ir−3+2t).

3) The number of b
(t)
s with s > F (ht) and s 6= il, 1 ≤ l ≤

r+2µ−2 is ϕ̄u,[1,r+2µ−2](ir−2+2t)−ϕ̄u,[1,r+2µ−2](ir−3+2t)).

4) The number of b
(t)
s with s > F (ht) and s = F (gk) is the

number of k satisfying F (gt) > F (gk) > F (hk) > F (ht).
In conclusion, the number of free coefficients is |{(k, t) |

1 ≤ k < t ≤ µ, ir−2+2k > ir−2+2t > ir−3+2k > ir−3+2t}|+
∑µ

t=1(ϕ̄u,[1,r+2µ−2](ir−2+2t) − ϕ̄u,[1,r+2µ−2](ir−3+2t)) +
2
∑µ

t=1 ϕ̄u,[1,r−2](ir−3+2t) = αu + βu + 2γu, which implies

Equation (4). Equation (5) follows from Equation (4) and

Theorem 2.

APPENDIX E

PROOF OF THEOREM 5

Proof. Denote u = (i1, · · · , ir+µ) ∈ Tµ. From the proof of

Theorem 4, Q(f1 · · · fr+µ) = Q(g1 · · · gr+µ) if and only if

fi = gi for all 1 ≤ i ≤ r+ µ. There are λxi1 ···xir
choices for

f1, · · · , fr. Next we discuss the choice of fr+1, · · · , fr+µ with

largest terms ir+1, · · · , ir+µ such that f = Q(f1 · · · fr+µ) ∈
C(I) is proper and the linear independence condition is

satisfied. We first assign the coefficients in fr+1, then fr+2

and so on. To guarantee the linear independence condition,

we need to ensure that

fr+k =

r−µ
∑

t=1

atft +
r

∑

t=r−µ+1

atft +
r+k−1
∑

t=r+1

atft + a0. (17)

does not hold for any ai ∈ F2.

Now we consider two cases for u:

1) ir−µ+j 6= ir+j for some 1 ≤ j ≤ µ. In this

case, Q(f1 · · · fr+µ) ∈ C(I) if and only if xi1 · · ·xir and

xi1 · · ·xir−µ
xir+1 · · ·xir+µ

belong to I. Next, we calculate the

choices of fr+1, · · · , fr+µ satisfying the linear independence

condition.

Assume we have already determined fr+j for 1 ≤ j < k.

There are two cases for fr+k:

I) ir+k 6= ir−j for all 0 ≤ j ≤ µ − 1. Assume, by

contradiction, Equation (17) holds.

For 1 ≤ t ≤ r − µ, since xit only appears in ft, at must

be 0, so we can delete them from the equation:

fr+k =

r
∑

t=r−µ+1

atft +

r+k−1
∑

t=r+1

atft + a0.

For r − µ + 1 ≤ t ≤ r and it > ir+k, since xit does not

appear in other fl with r − µ + 1 ≤ l ≤ r + k − 1, at must

be 0. Since ir+k 6= ir−j for all 0 ≤ j ≤ µ − 1, the equation

becomes:

fr+k =

r
∑

t=r−µ+1,
it<ir+k

atft +

r+k−1
∑

t=r+1

atft + a0.

Now all the ft remained in the equation satisfy it < ir+k,

and fr+k cannot be linear combination of these linear poly-

nomials.

Therefore, we conclude that fr+k cannot be a linear com-

bination of any fj where 1 ≤ j ≤ r + k − 1, so the linear

independence condition is always satisfied in this case.

The coefficients of xij with 1 ≤ j ≤ r − µ or r + 1 ≤ j <
r+ k in fr+k must be 0 to satisfy the proper condition. Since

ϕu,[r+1,r+k−1](ir+k) = k − 1, there are 2ϕ̄u,[1,r−µ](ir+k)−k+1

choices for fr+k.

II) ir+k = ir−j for some 0 ≤ j ≤ µ− 1. Assume Equation

(17) holds.

Similarly, at must be 0 when 1 ≤ t ≤ r − µ, or r − µ +
1 ≤ t ≤ r with it > ir+k. Since ir+k = ir−j , the equation

becomes:

fr+k = ar−jfr−j +

r
∑

t=r−µ+1,
it<ir+k

atft +

r+k−1
∑

t=r+1

atft + a0.

Now xir+k
only appears in fr+k and fr−j , so ar−j must

be 1. For r−µ+1 ≤ t ≤ r and it < ir+k, at can be assigned

arbitrarily. And for r − 1 ≤ t ≤ r + k − 1, since the form

is proper, at must be assigned so that xit does not appear in

fr+k.

Therefore, the free coefficients are a0 and at with r−µ+1 ≤
t ≤ r and it < ir+k. Since all the polynomials are linear

independent, there are 2ϕu,[r−µ+1,r](ir+k)+1 choices for fr+k

such that Equation (17) holds.

Therefore, there are su(k) = 2ϕ̄u,[1,r−µ](ir+k)−k+1 −
2ϕu,[r−µ+1,r](ir+k)+1 choices for fr+k. If ϕ̄u,[1,r−µ](ir+k) −
k ≤ ϕu,[r−µ+1,r](ir+k), then there does not exist any fr+k

such that linear independence holds, so Bu = ∅.

2) ir−µ+j = ir+j for all 1 ≤ j ≤ µ. It should be

noted that in this case xi1 · · ·xir may not belong to I. Then

fr+1, · · · , fr+µ must be chosen to be linearly independent and

Q(f1, · · · , fr+µ) ∈ C(I). We first analyse fr+1, then fr+2

and so on.

To guarantee f ∈ C(I), notice that the coefficients larger

than bu(k) in fr+k and fr−µ+k must be equal, and then

the monomials that do not belong to I in fr−µ · · · fr and

fr+1 · · · fr+µ will cancel each other out. Therefore, the num-

ber of free coefficients of fr+k is ϕ̄u,[1,r](bu(k)) + 1. Next

we analyse the number of linearly dependent choices. Similar

to the first case, assume Equation (17) holds. Since xir+j

with 1 ≤ j < k only appears in fr+j and fr+j−µ, we have

ar+j = ar−µ+j . Then there are 2k choices for fr+k such that

Equation (17) holds.

Therefore, there are su(k) = 2ϕ̄u,[1,r](bu(k))+1 − 2k choices

for fr+k. If ϕ̄u,[1,r](bu(k)) + 1 ≤ k, Bu = ∅.

In conclusion, since there are λxi1 ···xir
choices for

f1, · · · , fr and σu choices for fr+1, · · · , fr+µ, we prove

Equation (6). Equation (7) follows from Equation (6) and

Theorem 4.

REFERENCES

[1] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,”
in IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-
3073, July 2009.

[2] K. Niu and K. Chen, “CRC-Aided Decoding of Polar Codes,” in IEEE

Communications Letters, vol. 16, no. 10, pp. 1668-1671, October 2012.

13

[3] I. Tal and A. Vardy, “List Decoding of Polar Codes,” in IEEE Transac-

tions on Information Theory, vol. 61, no. 5, pp. 2213-2226, May 2015.
[4] I. Sason and S. Shamai, “Performance analysis of linear codes under

maximum-likelihood decoding: A tutorial”, Foundations and Trends®

in Communications and Information Theory, 2006, 3(1–2): 1-222.
[5] I. Krasikov and S. Litsyn, “On spectra of BCH codes,” in IEEE

Transactions on Information Theory, vol. 41, no. 3, pp. 786-788, May
1995.

[6] C. Di, T. J. Richardson and R. L. Urbanke, “Weight Distribution of
Low-Density Parity-Check Codes,” in IEEE Transactions on Information

Theory, vol. 52, no. 11, pp. 4839-4855, November 2006.
[7] T. Kasami, T. Fujiwara and S. Lin, “An approximation to the weight

distribution of binary linear codes,” in IEEE Transactions on Information
Theory, vol. 31, no. 6, pp. 769-780, November 1985.

[8] B. Li, H. Shen and D. Tse, “An Adaptive Successive Cancellation List
Decoder for Polar Codes with Cyclic Redundancy Check,” in IEEE

Communications Letters, vol. 16, no. 12, pp. 2044-2047, December
2012.

[9] Z. Liu, K. Chen, K. Niu and Z. He, “Distance spectrum analysis of
polar codes,” 2014 IEEE Wireless Communications and Networking
Conference (WCNC), Istanbul, Turkey, 2014, pp. 490-495.

[10] M. Valipour and S. Yousefi, ”On Probabilistic Weight Distribution of
Polar Codes,” in IEEE Communications Letters, vol. 17, no. 11, pp.
2120-2123, November 2013.

[11] Q. Zhang, A. Liu and X. Pan, ”An Enhanced Probabilistic Computation
Method for the Weight Distribution of Polar Codes,” in IEEE Commu-

nications Letters, vol. 21, no. 12, pp. 2562-2565, December 2017.
[12] H. Yao, A. Fazeli and A. Vardy, ”A Deterministic Algorithm for Com-

puting the Weight Distribution of Polar Codes,” 2021 IEEE International

Symposium on Information Theory (ISIT), Melbourne, Australia, 2021,
pp. 1218-1223.

[13] B. Li, H. Zhang, J. Gu. “On Pre-transformed Polar Codes,”
arXiv:1912.06359, 2019.

[14] Y. Li, H. Zhang, R. Li, J. Wang, G. Yan and Z. Ma, “On the Weight
Spectrum of Pre-Transformed Polar Codes,” 2021 IEEE International

Symposium on Information Theory (ISIT), Melbourne, Australia, 2021,
pp. 1224-1229.

[15] Y. Li, Z. Ye, H. Zhang, J. Wang, G. Yan and Z. Ma, “On the
Weight Spectrum Improvement of Pre-transformed Reed-Muller Codes
and Polar Codes,” 2023 IEEE International Symposium on Information

Theory (ISIT), Taipei, Taiwan, 2023, pp. 2153-2158.
[16] I. S. Reed, “A class of multiple-error-correcting codes and the decoding

scheme,” Massachusetts Inst of Tech Lexington Lincoln Lab, 1953.
[17] D. E. Muller, “Application of Boolean algebra to switching circuit design

and to error detection,” in Transactions of the I.R.E. Professional Group
on Electronic Computers, vol. EC-3, no. 3, pp. 6-12, September 1954.

[18] T. Kasami and N. Tokura, “On the weight structure of Reed-Muller
codes,” in IEEE Transactions on Information Theory, vol. 16, no. 6, pp.
752-759, November 1970.

[19] T. Kasami, N. Tokura and S. Azumi, “On the weight enumeration
of weights less than 2.5 d of Reed—Muller codes”, Information and

control, 1976, 30(4): 380-395.
[20] M. Bardet, V. Dragoi, A. Otmani and J. -P. Tillich, “Algebraic properties

of polar codes from a new polynomial formalism,” 2016 IEEE Interna-

tional Symposium on Information Theory (ISIT), 2016, pp. 230-234.
[21] M. Rowshan, V. -F. Drăgoi and J. Yua, “On the Closed-form Weight Enu-

meration of Polar Codes: 1.5d-weight Codewords”, arXiv:2305.02921,
2023.

[22] C. Schürch, “A partial order for the synthesized channels of a polar
code,” 2016 IEEE International Symposium on Information Theory

(ISIT), 2016, pp. 220-224.
[23] G. He et al., “β-Expansion: A Theoretical Framework for Fast and

Recursive Construction of Polar Codes,” IEEE Global Communications
Conference, Singapore, 2017, pp. 1-6.

[24] N. Sloane and E. Berlekamp, “Weight enumerator for second-order
Reed-Muller codes,” in IEEE Transactions on Information Theory, vol.
16, no. 6, pp. 745-751, November 1970.

[25] I. Sason, S. Shamai, “Performance analysis of linear codes under
maximum-likelihood decoding: A tutorial,” Foundations and Trends®

in Communications and Information Theory, 2006, 3(1–2): 1-222.

http://arxiv.org/abs/1912.06359
http://arxiv.org/abs/2305.02921

	Introduction
	Preliminaries
	Polar codes as monomial codes
	Decreasing monomial codes
	Weight distribution of RM codes
	Weight distribution of polar codes
	Proof Outline

	Classification and enumeration of polynomials
	Restricted form of polynomials
	Number of the type-I polynomials
	Number of the type-II polynomials

	Number of Low-weight polynomials
	Conclusion
	References

