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Abstract—The number of low-weight codewords is critical
to the performance of error-correcting codes. In 1970, Kasami
and Tokura characterized the codewords of Reed-Muller (RM)
codes whose weights are less than 2w.,in, where wnin represents
the minimum weight. In this paper, we extend their results to
decreasing polar codes. We present the closed-form expressions
for the number of codewords in decreasing polar codes with
weights less than 2wm,in. Moreover, the proposed enumeration
algorithm runs in polynomial time with respect to the code length.

Index Terms—Polar codes, weight distribution, codewords
with weight less than twice the minimum weight, polynomial
representation.

I. INTRODUCTION

OLAR codes [[1], introduced by Arikan, are a significant

breakthrough in coding theory. As the code length ap-
proaches infinity, polar codes can approach channel capacity
under successive cancellation (SC) decoding. For short to
moderate block lengths, successive cancellation list (SCL)
decoding [2], [13] can significantly improve the error-correcting
performance. In fact, SCL algorithms can approach the maxi-
mum likelihood (ML) decoding performance when the list size
is large enough.

The weight distribution of linear codes has a significant
impact on the ML decoding performance, which can be
estimated accurately through the union bound with the number
of low-weight codewords [25]. Due to the importance of the
weight distribution, many researches have approximated the
weight distribution of different codes [S]—[7]. However, in the
general case, the complexity of computing the exact weight
distribution grows exponentially with the code length.

For polar codes, since the number of low-weight codewords
affects the performance of SCL decoding with a large list
size, there have been many attempts to study the weight
distribution of polar codes. In [8]], SCL decoding with a very
large list size at a high SNR was proposed to collect the
low-weight codewords. This method was improved in [9] to
save memory. In [10], [L1], polynomial-complexity proba-
bilistic approaches were proposed to approximate the weight
distribution of polar codes. The authors in [12] designed an
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algorithm to calculate the exact weight distribution of original
or specific pre-transformed polar codes [13] by coset method,
but the complexity is still exponential. In [14]], [15], the
authors proposed efficient recursive formulas to calculate the
average weight spectrum of pre-transformed polar codes with
polynomial complexity.

RM codes [16]], [17] are closely related to polar codes.
Existing researches on the weight distribution of RM codes
may shed light on the characterization of polar code weight
spectrum. In [18], the numbers of codewords with weights
less than 2wy,;, in RM codes were determined, and the result
was then generalized to 2.5wy;, in [19], where wy,i, is the
minimum weight.

The authors in [20] regarded polar codes as decreasing
monomial codes and used the lower triangular affine transfor-
mation automorphism to calculate the number of codewords
with weight wy,i,. Recently, the same method was applied
to calculate the number of codewords with weight 1.5wpyi,
[21].Their methods rely on the observation that the codewords
with weight wpin and 1.5wnpi, can be obtained by lower
triangular affine transformations of a single row or a sum-
mation of two rows. However, this property no longer holds
for codewords with weight larger than 1.5wy,,. Therefore, we
propose a unified method to calculate the number of codewords
with weight less than 2wp,in. A detailed comparison between
our method and the existing results is provided in subsection
II-D

In this paper, we generalize the results in [[18] and provide
closed-form expressions for the number of codewords with
weights less than 2wy,;, in decreasing polar codes. A decreas-
ing polar code is a subcode of some RM code, possessing the
same minimum weight. In brief, our task is to select those
low-weight codewords that belong to the polar code. However,
it is worth noting that the enumeration procedure for polar
codes is more complex compared to that of RM codes. We
divide codewords into disjoint subsets based on the largest
terms of their monomial representations. The size of subsets
grows logarithmically with the code length, while the number
of subsets is less than the square of code length. As a result,
the time complexity of the enumeration algorithm is almost
proportional to the square of code length.

The rest of this paper is organized as follows. In Section
II, we provide a concise introduction to polar codes and
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RM codes. In addition, we outline our proof. In section III,
we classify and enumerate the codewords with weight less
than 2wmnin, and provide algorithms to compute the weight
distribution. In section IV, the closed-form expressions for
the number of codewords and the algorithm complexity is
presented. Finally, in section V, we draw some conclusions.

II. PRELIMINARIES

A. Polar codes as monomial codes

Let G = 1 ﬂ and Gy = G®™, where ® is Kronecker
product:
a1 B a1 B
A®B = : :
an B ay B

Polar codes can be constructed by selecting K rows of G as
the information set Z. F = Z¢ is called the frozen set. Denote
the polar code with information set Z by C(Z).

Polar codes can be described as monomial codes [20]. The
monomial set is denoted by

M E 2§t 2% | (agy ...y an) € FY')

Let e = z7"...2%™ be a monomial in M, the degree of e is
defined as deg(e) = Y. a;. In particular, 1 is a monomial
with degree zero. The polynomial set is denoted by

R é{z ace | ae € Fa},
eeM

and the degree of the non-zero polynomial g = > .\, ace
is defined as deg(g) = max,, +o{deg(e)}, and the zero
polynomial has no degree.

A polynomial ¢ is said to be linear if deg(g) = 1. We say a
linear polynomial g is a linear factor of a non-zero polynomial
fif f = gh, where h is a polynomial. Linear polynomials
g1, ---,g; are said to be linearly independent if aig; + -+ +
a;g; + ap = 0 implies a9g = a1 = --- =a; = 0.

Example 1. 24, - - - , x,, are linearly independent polynomials.
r1,T2,%1 + x2 + 1 are not linearly independent since z; +
$2+($1+I2+1)+1:O.

For a linear polynomial f, define the largest term of f to
be the largest x; appearing in f, and define F'(f) to be its
index, ie., if f=>"", a;z; + ao, F(f) = max{i | a; # 0}.
Notice that linear polynomials with different largest terms are
linearly independent.

Let b € F5*. Denote g(b) to be the evaluation of g at point b.
We say a linear polynomial g is a linear factor of f if f = gh,
i.e., for any b € F5*, g(b) = 0 implies f(b) = 0.

The length-N = 2™ evaluation vector of g € R is
denoted by

ev(g) £ (g(:c))wngn,

And the weight of g is defined as the Hamming weight of
ev(g).

In fact, each row of Gy can be expressed by ev(e) for some
e € M. To see this, for each z € {0,1,...,2™ — 1}, there is

a unique binary a = (ay, ..., ay) of 2™ — 1 — 2z, where a; is
the least significant bit, such that

izi—lai =2m 11—z
=1

Then we can check that ev(x]*...x%m) is exactly the (2™ —z—
1) — th row of G . As seen, the three forms, i.e., the integer
z, the binary representation of 2™ — 1 — z = (ay, ..., a,,) and
the corresponding monomial z{*...z%" all refer to the same
thing. Therefore, the information set Z can be regarded as a

subset of the monomial set M.

Definition 1. Let 7 be a set of monomials. The monomial
code C(Z) with code length N = 2™ is defined as

C(Z) £ span{ev(e) : e € Z}.

If the maximum degree of monomials in Z is r, we say the
monomial code C(Z) is r-th order. As mentioned, we use the
polynomials in R o4 to represent the corresponding codewords
in monomial codes.

Example 2. The example shows the row vector representa-
tions of Fg.

1= 1 0101010
z2= 1 1 00 1 1 0 0
z3= 1 1 1 1.0 0 0 0
zix223 1 0 0 0 0 0 0 O
2or3 1 1 0 0 0 0 0 0
zizz 10100 0 0 0
23 1 1 1 1 00 0 0
ziz2 1 0 0 01 0 0 0
ze 1 1.0 01 1 0 0
2y 101010 1 0
1 11111111

If the information set is Z = {1,x1,x2,x3}, then the
generator matrix of the polar code C(Z7) is

11110000
110 01 1 00
101 01010
11111111

B. Decreasing monomial codes

The partial order of monomials was defined in [20] and
[22]. Two monomials with the same degree are ordered as
Tiy ..., < xj, ...z, if and only if 4 < j; forall [ € {1,...,¢},
where we assume i; < ... < i; and j; < ... < j;. This partial
order is extended to monomials with different degrees through
divisibility, namely e < ¢’ if and only if there is a divisor ¢’
of ¢’ such that e < e”. In fact, e < €’ means e is universally
more reliable than ¢’.

An information set Z C M is decreasing if Ve < ¢’ and
¢’ € T we have e € Z. A decreasing monomial code C(7)
is a monomial code with a decreasing information set Z. If
the information set is selected according to the Bhatacharryya
parameter or the polarization weight (PW) method [23]], the
polar codes are decreasing. Decreasing polar codes C'(Z) can



be generated by Zni,, when Z is the smallest decreasing set
containing Znin, i.e, Z = {e € M | 3 € € Zin,e < €'}
From now on, we always suppose Z is decreasing.

C. Weight distribution of RM codes

Definition 2. The r-th order RM code RM(m,r) is defined
as

RM(m,r) £ span {ev(e) : e € M,deg(e) < r}.

Clearly, RM codes are decreasing monomials codes. It is
well-known that the minimum weight of non-zero polynomials
in RM(m,r) is 2™~ ",

The number of codewords with weight ¢ in C' is denoted as

A;(C) 2 |{ce C | wt(c) = i}].

The sequence (Al-(C’))ij\;O is called the weight distribution of
C.

The weight distribution as well as the polynomials in RM
codes with weight less than 2w, is presented in [18].

Theorem 1 ( [18])). Let f be a non-zero polynomial in
RM(m, 7). If the weight of f is less than 2™ "t1  then
wt(f) = 2m=rtt —2m=rtI=k where 11 is a positive integer.
Moreover, f can be written as one of the following forms:

P(917 e 797‘+2u—2) =
91 Gr—2(Gr—19r + gr19r+2 +* + Gr42u—39r+2u—2),
m—-r+22>2u>2, (D
or
Q(glu e 7gr+u) é
g1 'gr—u(gr—u-l-l e+ Gy gr+u)7
m>r—+pu,r>pu>3. 2)
Here g1, g2, -+ are linearly independent linear polynomials.

We call the Equation the type-I polynomials, and Equation
@) the type-II polynomials.

Example 3. Let m = 7 and r = 4, the minimum weight Wi,
of RM(7,4) is 8,

f1 = 1727374, by Equation (@), = 1, wt(f;) =8 ;

f2 = T1T2 (I3$4—|—ZC5ZC6), by Equation , Hn = 2, Wt(fl) =
12;

f3 = I (I2I3$4 + I5ZC6£C7), by Equation , n =
3,Wt(f1) =14.

We say P(gla T 7gr+2u—2) and P(gllv T 7g;"+2,u72) (or
Q915"+, gr+p) and Q(g5,- -+, g4,,)) have different forms
if there exists some 4 such that g; # ¢,. It is important to
note that different forms can lead to the same polynomial.
For instance, consider the case when m = 4 and r = 2.
Let g1 = x1,02 = 4,93 = T2,04 = T2,0] = T1,05 =
X4 + T2,95 = X2,9), = X3 + x2. In this example, we have
P(g1,92,93,91) = P(91, 95, 93, 94), despite g2 # g5 and g4 #
g4. This is one of the main challenges in the enumeration
process.

D. Weight distribution of polar codes

In this paper, we utilize Theorem ] to enumerate the
polynomials with weight less than 2w,,;, in decreasing polar
codes. Note that an r-th order decreasing monomial code
C(Z) is a subcode of the r-th RM code.

Example 4. Let C(Z) be a [128,80] decreasing
polar code where Z is generated by Znin =
{Z120507, T1X3T4T7, T1T4T5T6, T2X3T5L6, TATELT -

By Theorem [ the minimum weight of C(Z) is 8.

As an example, let us consider polynomials in C(Z) with
weight less than 16. Since C(Z) is a subcode of RM(7,4),
according to Theorem [II the polynomials in C(Z) with
weight less than 16 can be written as the type-I polynomials
P(g1, -+, gr42u—2) where 7 =4 and p = 1,2 or the type-II
polynomials Q(g1,- - ,gr4+,) Where r = 4 and p = 3. We
select g1, ge,--- in order to enumerate these polynomials.

During the enumeration process, g1, g2, - - - must be linearly
independent, as stated in Theorem [I} Besides, we must guar-
antee that the polynomial belongs to the subcode C/(Z).

Moreover, it is important to note that different forms
may represent the same polynomial, and thus it is redun-
dant to include all these forms in the enumerations. For
example, let us consider f = zjza(x3ws + 2475) =
P(x1, o, 23,26, T4, 5) and [ = zixo(vs(we+zs)+24(25+
x3)) = P(x1,x2, 3, T6+T4, T4, T5+x3). It is straightforward
to confirm that f = f’, i.e., both f and f’ represent the same
polynomial.

In conclusion, in order to enumerate the type-I and type-II
polynomials in C(Z) accurately, we need to carefully consider
the following points in the enumeration procedure:

1) The linear polynomials g1, g2, -- should be linearly
independent;

2) The polynomial P(g, - - -
must belong to C'(Z);

3) Different forms may represent the same polynomial.
Thus, it is important to eliminate the redundant forms during
the enumeration.

The authors in [I8] applied Theorem [ to calculate the
number of polynomials with weight less than 2wy, in
RM codes. It should be noted that in their study, since all
monomials with degree r belong to RM(m,r), the second
point is automatically satisfied. The polynomials are selected
carefully so that they do not become linear combinations of the
previously selected polynomials. The third point only appears
in the type-I polynomial, and the number is calculated based
on the weight distribution of the second order RM codes [24].

Since r-th order decreasing polar code C(Z) is a subcode
of r-th order RM code, the polynomials with weight less
than 2wy, can be expressed as the type-I polynomials or
the type-II polynomials, so there is no concern about mis-
counting. However, only a fraction of the type-I and type-
IT polynomials actually belong to r-th order polar codes.
This distinction gives rise to completely different methods
to examine the three above points to avoid overcounting in
the enumeration procedure for polar codes. The first point
is necessary, otherwise the polynomial is not a codeword
with weight less than 2wp,i,. The second point ensures that

s Iri2u—2) 0T Q(g1, -+, Gryp)



we exclude polynomials not in C'(Z), while the third point
prevents counting the same polynomials multiple times. To
facilitate this examination process, the largest term of a linear
polynomial can be utilized as a helpful tool, which will be
explained in detail later.

The case 1 = 1, i.e., the number of polynomials with wyyip,
was calculated in [20], and the case ;. = 2, with weight
1.5Wmin, was addressed in [21]. In these studies, they applied
the lower-triangular affine automorphism group to partition the
codewords into different orbits.

When p = 2, the authors in [21] provided a technique to
avoid overcounting for f +¢g = f' + ¢', where f,q,f', g
are degree-2 polynomials. However, when ;1 > 3, avoiding
overcounting with the sum of p polynomials is more complex,
which cannot be solved by [21]. To handle this problem, we
present a novel method by dividing the low-weight polyno-
mials into different sets based on their first terms rather than
orbits. And we count the free coefficients in polynomials in
Algorithm [l

Additionally, when g > 3, it is necessary to consider
type-II polynomials, which is not involved in [21]. To solve
this problem, we also divide the low-weight polynomials into
different sets based on their first terms. And we count the
linearly independent polynomials in Algorithm 21

E. Proof Outline

We describe our proof briefly as follows. In subsection
MI-Al we demonstrate that every polynomial can be expressed
in a restricted form that satisfies the conditions in Lemma 3l
Besides, when considering restricted forms, the linear factors
of a polynomial are unique. Although repetitive counting has
not been completely eliminated, this transformation reduces
the number of possible forms, which simplifies subsequent
enumeration significantly.

In subsection [II-Bl we calculate the number of the type-I
polynomials P(gi,- -+ , gr2u—2). Focusing on the restricted
forms, we ensure that the largest terms of g1, - - - , gr42,,—2 can
be rewritten to be all distinct and unique, as proven in Lemma
M and Bl Therefore, we can classify the polynomials into
subsets based on their largest terms. This prevents duplications
and enables clear categorization.

To calculate the size of each subset, we choose the linear
polynomials g1, - - - , gr42,—2 in order so that the three points
outlined in Example ] are satisfied. Checking the first two
conditions is straightforward. The challenge lies in the fact
that different forms may result in the same polynomial, as
shown in Example 4

The number of choices for ¢1,...,9,—2 18
9o P = 9XIZI(F(9)~t+1)| Next, the number
of distinct polynomials 25:1 9r—342j9r—242; 1s computed
in Theorem 3l and the proof is divided into two parts. In
the first part (Lemma [7), we establish the feasibility of
rewriting the polynomials while fixing certain coefficients
of gr—1,"+,gry2u—2 to 0. Then the number of possible
polynomials is upper bounded by 2¥:tAut2vu  where
Qy + By + 27, is the number of the remaining coefficients
defined in subsection In the second part, we illustrate

that the remaining coefficients are actually free, i.e., any value
of these coefficients yields a different polynomial. Therefore,
the number of low-weight codewords is exactly 2%u+But27u

In subsection we calculate the number of the type-II
polynomials Q(g1,- -, gr+,)- Similar to the previous case,
we focus on the restricted forms. As shown in Lemma [6]
we can also classify the polynomials into subsets based on
their largest terms. Similarly, we need to choose the linear
polynomials to satisfy three points in Example @l By Lemma
[6l regardless of order, different restricted forms represent
different polynomials. Therefore, the third point is satisfied,
and the challenge lies in the first and the second points.

The number of choices for g1,---, g, is 2 F(g1) T F o)
We then choose ¢41,- -, gr4+, in order so that the linearly
independence condition is satisfied, i.e., g,4; is not the linear
combination of gi,---,gr4j—1 for all 1 < j < p. For
the second point, the difficulty arises when F'(gy—,1;) =
F(gr4j;) for all 1 < j < p. Since the largest term is
cancelled, Tp(y,) - Tpg,) € Z is not a necessary condi-
tion for Q(g1, -+ ,9r+n) € C(Z). In this case, the coef-
ficients of monomials not belonging to C(Z) in g1 --- g,
and g1 - - gr—pgr41 - - - Gr4, must be equal thus are cancelled
and disappear in Q(g1,- -, gr+,). We calculate the number
of choices for g,41,---,gr4, satisfying this condition in
Theorem [3

III. CLASSIFICATION AND ENUMERATION OF
POLYNOMIALS

In this section, we focus on the classification and enumera-
tion of the polynomials with weight less than 2w,y,;, in r-order
decreasing monomial codes C(Z). According to Theorem [
we know wpin, = 2™ 7" and there are two kind of polynomials
with weight less than 2™~ "*!: the type-I and the type-II
polynomials. We enumerate the number of polynomials in each
type respectively by dividing polynomials into disjoint sets and
calculating the size of each set.

For u = (i1,...,%;), define the number of indices ¢; with
J € ls,t]and iy < ktobe @, (k) ={s<j<t]i;<
k}|, and define @, [s4(k) = k — ¢y (s (k). This definition
simplifies the enumeration of low-weight codewords.

A. Restricted form of polynomials

As illustrated in Example[d] a polynomial can be expressed
in various forms. However, we prove that every polynomial
can be expressed in a way that satisfies the conditions stated
in Lemma[3l This allows us to reduce the number of possible
forms, which is beneficial for the subsequent enumeration.

Lemma 1. Let f = gh where g is a linear polynomial with
F(g) = t. Construct h' by replacing every x; in h with g +
zy + 1. Then f = gh/ and x; does not appear in '

Proof. Let b = (b1,...,by) € F5*. If g(b) = 0, then 0 =
g(b)h(b) = g(b)R(b). If g(b) = 1, then by = g(b) +b; + 1, so
K (b) = h(b). Therefore, for any b € F5*, f(b) = g(b)h'(b).

O

Example 5. Let g = x2 + 1 and h = x5 + x2x3, then
h' = 21+ 1+ (z1+ 1)z3 by replacing every x5 in h by 1+ 1.



Now (22 + 21) (22 + 2223) = (x2+21)(x1 + 1+ (21 + 1)a3)
and x5 does not appear in h’.

Lemma 2. Let f = g. f', g’ are the polynomials by replacing
every xy in f,g with another polynomial h. Then ' = ¢'.

Proof. Assume there exists some b € F3* such that f/(b) #
g'(b). Define b € F3' satisfying b; = b; for j # t and
b; = h(b). Then f(b') = f'(b) # ¢'(b) = g(V'), which is
a contradiction. (|

Lemma 3. Any non-constant polynomial f with linear factors
can be expressed as:

=91 9rg

satisfying

a) g1, ,gr are linearly independent linear polynomials
and g has no linear factors;

b) F(g1) < -+ < F(gx), and for all 1 < i < k, xp(g,)
only appears in g;.

If f has no linear factors, we simply write f = g.

We call f = g1---grg is expressed in the restricted form.
Furthermore, the restricted form is unique, that is, if f can be
expressed in two different ways:

f=91g-g=hi---hj-h

and both of the two forms satisfy the above conditions a) and
b), then k=3, gi=h; forall 1 <i <k and g = h.

The proof of the lemma is in Appendix A.

Remark 1. To simplify the enumeration process for the type-
I and type-II polynomials, we apply Lemma [3] to reduce
the number of different forms. For example, consider the
polynomial f = (z2 + z1)z1(z324 + T526). Although it
is not in the restricted form, we can rewrite it as f =
21(x2 + 1)(x3x4 + x5x6). This allows us to only consider
the restricted forms in the enumeration procedure. However,
it is worth noting that it is still challenging to address the
third point in Example dl For example, we can also write f
as f = x1(z2 + 1)(xs(zy + x5) + x5(x6 + x3)) which still
satisfies the conditions in Lemma [Bl Thus, efficient methods
need to be explored to eliminate duplicate counting according
to the characteristics of the type-I and the type-II polynomials
respectively.

By Lemma[3] we calculate the number of minimum-weight
codewords in decreasing monomial codes, which has been
shown in [20]. In fact, from Theorem [ the minimum-weight
codewords are exactly the type-I polynomials with p = 1.

Corollary 1. Let C(Z) be an r-th order decreasing monomial
code. Define Ay, ..o, = Yy (it — t + 1), then the number
of g1-+gr with F(g;) = iy for 1 <t < ris QAeiy iy
Furthermore, the number of minimum-weight codewords is
A (C(T)) = > 2V, 3)
fELr
where I, is the set of all degree-r monomials in 1.

Proof. According to Theorem each polynomial f with
weight 2" in C(Z) is a product of r linearly independent

polynomials. Then f can be expressed as the restricted form
f = g1 gr. The number of undetermined coefficients in g; is
(F(g+)—t+1) since the coefficient of z (4, in g; must be zero
for j < t. Therefore, the number of polynomials g;,--- , g,
with the largest terms Tr(g,), "+, Tr(g,) 18 9N F o) TR

To prove Equation (3), we verify the three points given in
Examplel] First, Lemma[lensures that gy, - - - , g, are linearly
independent. Next, since C(Z) is decreasing, f € C(Z) if and
only if Tp(g,) - Tp(g,) € Z. For the third point, Lemma 3
shows that gy --- g, = hy - --h, if and only if g; = h; for all
1 <t <r, so different forms lead to different polynomials in
this situation.

Therefore, Agm—-(C(Z)) is equal to the sum of 25 where
fer.

(]

Example 6. Let C(Z) be the polar code defined in Example
4 with minimum weight 8.
For example, if f = z122x527 then

Ar=1+2-1)+(B-2)+(7-3)=09,

so the number of g¢1---g4 with F(g1) = 1,F(g2) =
2,F(g3) =5,F(gq) = 7is 29 = 512.
We calculate that As(C(Z)) = > o7, 2Ar = 5680.

Next, we extend our analysis to other low-weight code-
words. Since each low-weight codeword can be expressed as
either a type-I or type-II polynomial, we calculate the number
of both types respectively.

B. Number of the type-I polynomials

In this subsection, our objective is to calculate the number
of polynomials which can be expressed as equation (I) in the
r-th order decreasing monomial code C'(Z) when p > 2. The
case u = 1, i.e., the number of minimum-weight codewords,
has already been solved in Corollary [Il Thanks to Theorem[I]
we can classify the type-I polynomials into disjoint set and the
number of polynomials in each set is calculated in Theorem
Bl

For a type-I polynomial f, we define the form f =
P(g1,--- ,gr+2u—2) to be proper if both f itself and
Gr—3+2tgr—a+2¢ for each 1 < ¢ < p satisfy the two conditions
a) and b) in Lemma Bl According to Lemma 3l each f can
be expressed as a proper form, so we only need to consider
proper forms from now on.

Example 7. [ = z1((z4 +x2)(z2 + 1) + z3(5 + x1)) is not
proper since the largest term of x2 + 1 is 2, which appears in
24+ x2. We can rewrite it as the proper form f = a1 (22 (x4 +
1) + z3(xs + 1)).

Define A, to be the set of proper polynomials
P(gla e 7gT+2#*2) € O(I) Denote u = (ila t 7i7“+2#*2)’
and define A, to be the subset of A, such that
F(gt) = it. Define SN = {(il, s 7ir+2u—2) |
P(,Til,"- 7xi7‘+2;¢72) S C(I),ir_l < ir+1 < e <
Ipq2,—3, and i1, -+ ,i.49, o are all different}. Due to the
proper condition, we also have i1 < 42 < -+ < 4,_2 and
1; <ijypr forj=r—1,r+1,---,r+2u—3.



In fact, S, is defined to avoid the repetition
of counting due to exchange of polynomials (e.x.
g1 Gr-2 (nglgT + 9r+1Ggr+2+ -+ gr+2,u73gr+2,u72) =
g1 Gr-2 (gr+1gr+2 +gr—19r + -+ gr+2,u73gr+2,u72))~
By defining S,,, we ensure each type-I polynomial belongs
to a unique A, for some u € S,. This prevents duplication
in the classification of the polynomials and allows for a clear
and distinct categorization.

A= | A

u€eS,

Theorem 2.

And different A,, are disjoint. Therefore,

Al = 3 JAul.

u€eS,

In order to prove the theorem 2l we rely on the following
lemmas to show that every polynomial f = Zle f2i—1f2; can
be rewritten so that the largest terms of linear polynomials f;
are different regardless of the order.

Lemma 4. Let fi, ..., fa,, be linearly independent polynomials
and f = Y !, foi—1 foi. Then there exists linearly indepen-
dent polynomials g1, ..., g2, with different largest terms such
that f =377 | g2i-192i-

The proof of the lemma is in Appendix B.

Lemma 5. Assume Y %' | foi—1f2i = Y i1 g2i—102i where
all F(f;) are different, F(f1) < F(f3) < .-+ < F(fou-1),
F(f2j—1) < F(fa;) for 1 < j < p, and g; satisfy similar
conditions. Then F(f;) = F(g;) for all 1 <1 <2pu.

The proof of the lemma is in Appendix C.

Proof of Theorem 2] Denote f = P(fi, -, fr4ou—2) €
A,. Since f is proper, for all 1 < ¢ < r — 2, TR(f)
only appears in f;. According to Lemma M we suppose
that F'(f1),- -, F(fryou—2) are all different. Therefore, each
polynomial in A, belongs to some A, after sorting the linear
polynomials based on the largest terms.

Now let us assume there exists another proper form g =
P(g1,-+ ,gr42u—2) € A, such that f = g. By Lemma [3
we find that f; = ¢g; for 1 <i<r—2and f._1f- + -+
,fr+2,u73fr+2,u472 = Gr—1Gr + - + 9r+2p—39r+2pu—2- Since
u,v € S, the conditions in Lemma [3] are satisfied. Thus,
F(f;) = F(g;) for r —1 < i < 1+ 2u — 2. Therefore, we
conclude that v = v, which implies that the different sets A,
are disjoint.

|
Now we proceed to calculate |A,|. For
u = (i1,"  ,%pq2u—2) € S,. We aim to determine

the number of different polynomials which can be
expressed as f = P(fi,-- ., frooshis g, husgp) =
fi-- fr—a(h1g1 + - + hug,) € Ay by assigning values to
the coefficients in f1,---, fr—2,h1,91, -+, hy, Gu-

We verify the three points in Example [ Firstly, since
11, ,1r42,—2 are all different, the linearly independence is
naturally satisfied. Next, since C'(Z) is decreasing, f € C(Z)
if and only if P(xi, - ,74.,,, ,) € C(), ie., the p

Algorithm 1 Calculate |A,,|

Input: information set Z of the r-order decreasing polar code,
weight 2m— 71 _ gm=ri+l=p,
Output: the number M of the type-I polynomials with weight
2m7r+1 _ 2m77"+17,u.
. M<+0
2: for u = (il, s 7ir+2u—2) S SH do
3:  Calculate the number «, of the integer pairs (k,t)
satisfying 1 < k < ¢ < p,ir—242k > fr—242t >
lp—3+2k > br—342t;
4:  Calculate the number f3, of the integer pairs (s,t)
satisfying ¢, _a49¢ > S > 4,_3492¢ and s does not appear
in u;
5. Calculate the number ~, of the integer pairs (s,t)
satisfying 4,_342¢ > s and s does not appear in

(SPRER 7ir72;>\
6: M - M+2 Ty T g +au+ﬂu+27u;
7: end for

polynomials @;, -+ i, , Tiy *+* Tip o Tipy Tipns** s
Tiy Ty o Tipn,_3Tiri0,_» € L. However, the challenge
arises from the fact that different forms may lead to the same
polynomial.

Since f is proper, different f; with 1 < ¢t < r — 2 will
result in different f by Lemma[3l Thus, there are 9 i i

choices for fy,---, fr—o.
For w = (i1, - ,lpqou—2) € S, define o, =
Hkt) | 1 < k < t < pyipoyor > dp-242t >

ir—3yok > i3ttt Bu = Doymy (Putrt2u—2)(ir—2r2:) —
@u,1,r+2u—2) (Ir—342¢)), i.e., the number of the integer pairs
(s,t) satisfying i, _o49; > § > i,_319; and s does not appear
in u, Yo = Y1y Pu,1,r—2)(ir—312¢), i.e, the number of the
integer pairs (s,t) satisfying i,_342; > s and s does not
appear in 41, - - - ,4i,—2. In fact, ay, + By + 2, is the number
of free coefficients in Z;.L:l h;g; which can be determined
arbitrarily.

Theorem 3. For u = (i1, -+ ,iryou—2) € Sy,

D utBut2vu
Ay | = 2wyt B2 @)
Therefore,
Aoy oo A Bu+27u
Al = 3 1Al = 30 2 e TR )
u€S, u€S,

The proof of the theorem is in Appendix D.
The Algorithm [I| concludes the procedure for calculating
[Apl-

Remark 2. As m approaches infinity, the complexity of
calculating /\zil...%‘ﬂkz,au,ﬂu and v, is O(r + 2u — 2),
O(u?), O(um) and O(ur) respectively. Consequently, the
complexity of calculating |A,| is O(um). Additionally, the
size of S, is smaller than (. +;’;_2). Therefore, the time

complexity of Algorithm [ is O(um(, +;’; )



Remark 3. When p = 2, Theorem [3 provides the same
result as Theorem 4 in [21] with the number of sets S2 being
identical. Moreover, the complexity associated with calculating
the size of each set is also at O(m), thus the complexity is
similar.

Example 8. Let C(Z) be the polar code defined in Example
We have calculated Ag((C(Z)) in Example [ Now we
calculate A12(C(Z)) with u = 2.

For example, if u = (1,7,2,5,3,4) € Sa, |Ay| is the
number of different polynomials f;fo(h1g1 + hage) with
F(fl) = 17F(f2) = 77F(h1) = 27F(91) = 57F(h2) =3
and F(g2) = 4. Then Ag,,, = 7. Since F(g1) > F(g2) >
F(hg) > F(h1), we have o, = 0. Besides, 3, is the sum of
number of s does not appear in u satisfying 5 > s > 2 and
4 > s > 3. Since only 6 does not appear in u, 3, = 0. Next,
u12)(2) = Pun(3) =150 7 =2—-14+3-1=3In
fact, x7, z¢ and x; do not appear in g1~ + go2ho. For x5, the
coefficients of x5 can be determined arbitrarily by assigning
hy. For x4, the coefficients of 42 and x4 can be determined
arbitrarily by assigning hs. For z3 and z9, the coefficients
of x3x2, 3 and x2 can be determined arbitrarily. Therefore,
|A,| =276 = 8192.

From Theorem and B we have A2(C(Z)) =

Mgy ay Fau+But+27u
ZU,ESQ |Au| = ZUESQ 2 " o2 - 508672

C. Number of the type-1I polynomials

In this subsection, our objective is to calculate the number
of polynomials which can be expressed as equation for
i > 3in the r-th order decreasing monomial code C(Z). As in
section we classify the type-II polynomials into disjoint
set and the number of polynomials in each set is calculated in
Theorem [3

For a type-II polynomial f, we define the form f =
Q(g1,"*+ ,gr+u) to be proper if f itself, g, 41---g, and
9r+1 - " gr4+p satisfies the conditions a) and b) in Lemma 3l
also satisfy those conditions. According to Lemma [3] each
f can been expressed as a proper form, so we only need to
consider proper forms from now on.

Let a = (ai,...,au),b = (b1,...,b,) € N¥, define the
lexicographic order a <; b if and only if there exists some
i such that a; < b; and a; =b; forall ¢ < j < pora; =b;
forall 1 <j5 <.

Define B, to be the set of polynomials Q (g1, - , gr+p) €
C(Z). Denote uw = (i1, - ,%r4u). Define B, to
be the subset of B, such that F(g;) = . De-
fine Tu = {(7’17 7ir+u) | Q(xilu"' 7xiT+M) €
C(I), (iT—H‘f‘l’ s ,ir) S[ (ir+1, s 7;7~+H)}. Due to the
proper condition, we also have i3 < 42 < -+ <
irf,u,irf,uﬂrl L OEREIEG ir,irJrl < e < ir+#, and il, cee ,Z'T
are all distinct as well as 41, -+ ,%r— i1, 0r41, "+ brigp-

In fact, the introduction of the lexicographic order in 7T},
is to avoid repetition of counting due to exchange of poly-
nomials (e.g., 91" Gr—p (grfwrl gr g1 ngr,u) =

g1 Gr—p (ngrl o Grdp t Gr—pg1 'gr))-
By defining 7T},, we ensure each type-II polynomial belongs

to a unique B, for some u € S,. This prevents duplication
in the classification of the polynomials and allows for a clear

and distinct categorization, similar to what we have seen in

section =Bl

Theorem 4.

B, = |J Bu.

u€Ty,

And different B, are disjoint. Therefore,

B =3 [Bu.

u€Ty,

In order to prove the theorem 4 we rely on the follow-
ing lemma presented in [18] (L6) to show that different

9r—p+1," " > gr+p lead to different polynomials.

Lemma 6 ( [18]). Suppose n >3, f=g+h=9g +h/, g=
YooY D= Yty O =YY M = Y Yo
Y1, Y2u are linearly independent, y,--- ,y, are also
linearly independent. Then

g=¢g, h=h or g=h, h=g.
Proof of Theorem®d Let f = Q(f1, -+, fr4u) € By. Since
f is proper, every polynomial in B, belongs to some B, after
sorting the linear polynomials based on their largest terms.

If there exists another proper form g = Q(g1, -+ , gr+p) €
B, such that f = g. According to Lemma[3] we have f; = g;
for 1 <i < r—pand frpyp1--fr+ fror o frop =
Gr—pt1- 9r + Gr41- - Grppn- Then by Lemma and
the lexicographic order, we deduce that f,_,41---fr =
Gr—pt1° Gy fre1 frapw = Gr+1-- grypu Once again,
applying Lemma 3l f; = g; forr —pu+1 < i < 7+ p.
Therefore, we conclude that v = v, which implies different
sets are disjoint.

O

Now we proceed to calculate |B,|. Denote u =
(i1, ,ir4p) € T,. From the proof of Theorem M4
Q(Ufr++ fr4n) = Q91+ gryy) if and only if f; = g; for
all 1 <7 <7+ p, so the third point in Example 4l is satisfied
trivially. However, we still need to check the first two points.

There are )\xil ...z;, choices for f1,---, f.. Next, we need to
choose linearly independent f,41,-- -, fr, with given largest
terms such that Q(f1--- fryu) € C(2).

Now, if 4p_u4; # ipg; for some 1 < 5 < g,
Qs -+ xi,,,) € C(T) if and only if Q(f1--- frip) €
C(Z). However, if i,_,4; = ipq; forall 1 < j < p,

Qs ---x,,,) = 0 € C(I) does not imply
Q(fi- fr4p) € C(Z), so we need to examine the
second point carefully. Define b,(k) = max{t |
Tiy o L Ly " Ly g Tt Ly gy " Ly, S
I,t Tty s brgp ) If

Tiy * Tiy Ty Tigy 1 B1Tipy gy Ty, & L, bulk)
is defined to be 0. In this situation, Q(f1--- fr+u) € C(Z)
if and only if for all 1 < k < p, the coefficients of x; with
j > by(k) in fr—,qr and f,qp are equal. If b, (k) = 0, then
fr—u+k = fr+r + ao which contradicts against the linear
independence condition, so B, = &.

Define s, (k) to be the number of choices for f, 1.

Case 1) 4p—putj # ir4; for some 1 < j < p,



Subcase I) ip4p # ip—j forall 0 < j < p—1, s,(k) =
9P, [1,r—p) () —h+1

Subcase II) i,y = 4,—; for some 0 < 7 < p —
1, Su(k) = 92%utr—pUirgr) =k+1 _ 9@y (rept1,r (b e)+1§f
Gu1,r—p) (r k) =k > Qo r—pt1,r) (ir+x) and O otherwise.

Case 2) 4,y = ipq; forall 1 <5 < p.

su(k) = 20w CuE)FL 9k if 5 0 (bu(k) +1 > k
and 0 otherwise.

Finally, define o, = ngl sy(k) for Case 1 and

ow = ([T4_; su(k))/2 for Case 2. We need to di-
vide the value by 2 in Case 2 since Q(fi, -, frip) =
Q(f1,- - 7fr—uafr+la"' afr-i—uafr—u-i—lu"' , fr) is calcu-

lated twice.
Next, we prove the correctness of the definition of s, (k)
and derive |B,,| in Theorem 5.

Theorem 5. For v = (i1, -+ ,irqu) € T},

|B,| = 2*0 "ir gy (6)
Therefore,

Bul= D IBul= Y 2% o, )

ueT), ueT),

The proof of the theorem is in Appendix E.
The Algorithm [2] concludes the procedure for calculating
| Bul-

Remark 4. As m approaches infinity, the complexity of
calculating @y, 17— (K), Pu,jr—pt1,7 (k) and by (k) is O(m)
since u is vector with length » + ¢ < m. So the complexity
of calculating s, (k) is O(m). Then the complexity of cal-
culating o, and further |B,| is O(m?). The size of T}, is
™) (™). Therefore, the time complexity of Algorithm

is O(m? (7) ("))

Example 9. Let C'(Z) be the polar code defined in Example [l
We have calculated As((C(Z)) and A12((C(Z)) in Example
[6l and [8l Now we calculate A14(C(Z)) with p = 3.

For example, if v = (1,2,5,7,3,4,7) € T3 then
Azyzazsz, = 9. For the choice of f5, we have F(f5) = 3,
x3 does not appear in zyxsx7 and Py, [1.1)(3) = 2, so there
are 2271+1 = 4 choices for f5. Similarly there are 4 choices
for fg. For f7, we have F'(f7) = 7 and x7 appears in zox527,
since y, [2,4)(7) = 2, there are 26731 — 22+1 — § choices
for f7. Therefore, |B,| = 2% x 4 x 4 x 8 = 65536.

In another example, if v = (1,4,5,7,4,5,7) € T3 then
Agyzazsz, = 11. Since xixszsxr ¢ I and xqxexszy €
T, by(1) = 2,@up4(bo(1) = 2. Similarly, b,(2) =
3, Pu,j2,4(00(2)) = 3,b,(3) = 6,y [2,4)(by(3)) = 4. Hence,
f7, fe, f5 have 22 —2 = 2,23 — 22 = 4 2% — 23 = 16 choices,
respectively. Therefore, |B,| = 21 x 2 x 4 x 16/2 = 131072.

By Theorem[Iland[3 it can be calculated that A14(C(Z)) =
Yper, 2 T Tron e, = 1835008,

IV. NUMBER OF LOW-WEIGHT POLYNOMIALS

In this section, we provide the closed-form expressions and
the enumeration complexity for the number of codewords with
weight less than 2wp;y.

By Corollary [[l Theorem ] and Theorem [3 we have

Algorithm 2 Calculate |B,,|

Input: the information set Z of r-order decreasing polar
codes, weight 2" ~" — 27",
Output: the number M of type-II polynomials with weight
2m7r+1 _ 2m77"+17,u.
1. M+ 0
2: for u = (i1, ,irqp) €T, do
3. if there exists some 1 < j < p such that 4,1 7# 4,4
then
: L+ 1;
5: for k=1 to u do
: if there exists some 0 < j < p — 1 such that
lp4k = ip—; then

7: L 2Pultr—p (irsr) —k+1 .
else
if @u,[l,r—u] (ir+k) -k < Pu,[r—p+1,r] (iTJrk)
then
10: L+ 0;
11: Return
12: else
13: L — 2(Pu.1,r— ) (irpr) k41
QPu,lr—pt1,r] (ir+k)+1)L;
14: end if
15: end if
16: end for
17: M+ M + X1, L;
18:  else
19: L+ 1;
20: for k=1 to u do
21: if @y [1,7(bu(k)) +1 < k then
22: L+ 0
23: Return
24: else
25: L < (27w1nGu(R)+1 _ okyL .
26: end if
27: end for
28: M M + 21w /2;
29:  end if
30: end for

Theorem 6. Let (C(Z)) be an r-order monomial code and p
be a positive integer. Denote M = Agm—r+1_gm—ri1-4(C(T)).

When p =1,
M= 2, ®)
feZ-
When = 2,
M _ Z 2)\Ii1"‘ziT72 +au+ﬂu+27u. (9)
u€S),

When 3 < pu < min{(m —r +2)/2,m —r,r},

M — Z 2>‘1i1"'1ir,2 oy + Z 2)\3:7;1.,.337;7‘7”+au+ﬂu+27u'

ucT), uesS,

(10)



The closed-form expressions for case ¢ = 1 and 2 have
been discovered in [20] and [21].

Remark 5. As m approaches infinity, the complexity of
calculating the number of codewords with weight less than
2wWpin in a decreasing monomial code is determined by the
combined complexity of Algorithm [1] and 2 which is given
by O(m? (.3, o) + (7) ("7"))-

When r 1is a constant, i.e., independent of m,
the time complexity is O(m2tmax{r+2p=2rtuly — —
O((log N)?tmax{r+2u=2r+1}) where N is code length.

When r is proportional to m, ie., r = am,a €
(0,1), the time complexity is O(m?2max{L.2h(a)}m)  —
O((log N)2 Nwax{1.2h(@)}) where h(a) = —aloga — (1 —
a)log(1l — a).

Therefore, our algorithms provide polynomial time com-
plexity for calculating the number of codewords with weight
less than 2wp,iy. In comparison to the approach of using SCL
decoding with a very large list to collect low-weight codewords
[8ll, our algorithms are efficient and guarantee an accurate
collection of low-weight codewords.

Example 10. We check our results for RM(6, 3). From The-
orem [6] we calculate that Ag(C(Z)) = 11160, A12(C(Z)) =
174999 and A14(C(Z)) = 28555680, which is consistent with
the results obtained from Theorem[] [18]. Therefore, our result
is correct for RM codes.

Next we examine our findings for C(Z) where T is gen-
erated by Zin = {15,21,55}. Since C(Z) is a subcode of
RM(6, 3), we list all the polynomials of RM(6, 3) with weight
less than 16 and verify whether each one is a codeword in
C(Z). The result shows that Ag(C(Z)) = 2456, A12(C(Z)) =
142208 and A14(C(Z)) = 868325, which yields the same
value as Theorem

We also validate our results for the code whose weight
distribution was previously calculated in [12| Table VIII]. By
calculating the codewords with less than 16 in C(Z), we obtain
As(C(Z)) = 304, A12(C(Z)) = 768 and A14(C(Z)) = 0.
These results perfectly align with those presented in [[12, Table
VIII]. It is worth noting that the complexity of the method in
[12] is exponential, while our algorithm runs in polynomial
time relative to the code length.

Example 11. Table [l and Table 2] present a comparison of
the weight distribution of different [128,80] and [256, 94]
decreasing monomial codes with minimum distance 8 and
16, respectively. It is worth noting that different constructions
yield significantly different weight distributions.

Zinin Ag | A1z | Ay
code 1{{23, 44, 50, 70, 73}|5680{508672| 1835008

code 2 {15, 28,73} 5168|367360(1376256
code 3 {23,38,97} 7216|596736(4128768
code 4 {29, 39,41} 87521897792|6881280

Table 1: The number of codewords in [128,80] codes with
weight less than 16

Example 12. Figure [1] illustrates the union bounds [25]
calculated by the weight distribution less than 2w, and

Znnin Aig| A2q | Asg
code 1]{63, 91,103, 120, 204, 210, 225} |1584] 49920 | 0
code 2 {63, 94,103, 151, 180, 204, 209} 2096| 84376 0
code 3 {63, 94,107,151, 180, 202, 209} 2608|127740| 65536
code 4| {63,92,107, 155,167,201} |4144|264960|589824

Table 2: The number of codewords in [256,94] codes with
weight less than 32

102

—©— code1 union bound
—O— code2 union bound
—O— code3 union bound

code4 union bound
—*—code1 SCL-8
—%—code2 SCL-8
—*—code3 SCL-8
code4 SCL-8

3
Qo
10
10.5 L L L L L L L L
4.6 4.8 5 5.2 54 5.6 5.8 6 6.2 6.4
snr[dB]

Fig. 1: SCL performance and union bound for different [128,
80] polar codes

the performance of SCL decoding with list size 8 for four
different [128, 80] polar codes as outlined in Table In
these cases, the performance of SCL8 decoding is close to
the ML decoding. Here the union bounds are calculated as
Y d<2wnin A4Q(—+/d/o) where o is the standard variance of

.. . . . o 1 oo _,2/9
.addltlve. whlte.Gausmar.l noise and Q(x) = ors fx e /. dz
is the distribution function of the standard normal distribution.
The simulation results show that the union bound calculated
by our results is closed to the performance of ML decoding,

particularly at high signal-to-noise ratios (SNR).

V. CONCLUSION

In this paper, we present a comprehensive framework for
classifying and enumerating the codewords with weights less
than 2wp,i, in decreasing polar codes. We provide the closed-
form expressions and the algorithms to calculate the number
of these codewords. Importantly, the time complexity of the
algorithms is in polynomial with respect to the code length.
Our work contributes to a better understanding of the algebraic
structure for polar codes and may provide valuable insights
that can potentially guide practical constructions in the future.

APPENDIX A
PROOF OF LEMMA 3]

Proof. Apparently, each non-constant polynomial f with lin-
ear factors can be expressed as g; - - - gxg wWhere g; are linear
polynomials and g has no linear factors. First we prove that
f can be rewritten to satisfy the conditions a) and b).



Assume gy, is a linear combination of g1, --,9x—1, i.€.,
gk = Zf:_ll a;g; + aop. Since g (Zf:_ll aigi + ao) = g1(a1 +
S aigi +a0), g1 gk = g1 gkt Zf;ol a;. As f is
non-zero, Zz:_ol a; =1land g - gx = g1 - - gk—1. Therefore,
without loss of generality we can assume that g1, --- , g, are
linearly independent.

Assume F(g;) = F(g;) = ¢ forsome 1 < i < j < k.
According to Lemma [Il we replace z; in g; by g; + ¢ + 1.
The new polynomial is g% = g; + g; + 1, then g;g; = g:g;; and
F(g};) < F(g;)- Note that this procedure does not break the
condition a). As Zl 1 F(gz) cannot decrease infinitely, after
finite procedures, F(g1),--- , F'(gx) will be all different from
each other. Then we reorder gy, - - - , g so that F'(g1) < --- <
F(gr).

Assume x;, = F(g;) appears in some g; with j > 4, by
Lemma [T} replacing x; in g; by g; + x4 + 1 does not change
the value of g;g;. Note that this procedure does not break the
condition a) or change F'(g;). Similar procedure can also be
applied to g to avoid the appearance of xp(g4,). In this way,
x; only appears in g;, and thus condition b) satisfies.

Next, we prove the second part of the lemma by induction.
When k = 0, since g has no linear factor, we have j = k and
g=h.

For the inductive step k—1 — k, we replace zp(y,) by g; +
Tp(g) +1 for all ¢ < k on both sides. After this replacement,
g; becomes 1, g does not change since x4,y does not appear
in g, and hy and h becomes h; and h’ respectively. Then by
Lemma 2l g = h)---h} - h'. Since g has no linear factors,
hy---h}=1.

Suppose b € F3* satisfying ¢1(b)--- gr(b) =
br(g) = 9i(b) + bp(g,y + 1, it follows that h(b)
and then hq(b) ---h;(b) = 1. Similarly, hy (V') --- h; (b ) =
implies g1 (b') -+ gr(b') = 1 for ¥ € FJ'. Hence, hy
g1+ Gk-

Since deg(hi---h;) = deg(g1---gr), we deduce that
Jj = k. Assume F(hg) > F(gx), then xp(,, ) appears in
hy---hy but notin g; - - - g, which means the equality cannot
hold. Similarly, F'(hy) < F(gx) is also impossible. Therefore,
F(hi) = F(gk).

Since xp(,) only appears in gp and hg, f =
Trg)91 - gk—19 + 9" = xpgh1---hik_1h + h”, where
Tp(g,) does not appear in g” or h”. Therefore, we have
g1+ gk—19 = hi---hg_1h. By the inductive hypothesis,
gi =h; for 1 <i<k—1 and g = h. Similarly, expanding f
in terms of wp( implies gx = hg.

1, the
= (b

H }—‘\/:3

- hy

gk—1)

O

APPENDIX B
PROOF OF LEMMA [4]

Proof. Denote a = Zfil F(f;) to be the sum of indices of
the largest terms.

First, if F(f2;-1) = F(f2;) = t for some 1 < i < p,
as in Lemma we replace fo; by fo,—1 + fo; + 1. This
procedure does not change the value of f or break the linear
independence condition, and a will decrease.

10

Second, if F(f2;—1) = F(f2;—1) = t for some i # j,
denote fo;_1 =z + g and f3;_1 = x; + h. Without loss of
generality, let F'(fo;) < F(f2;). Since
(@t + 9)f2i + (T + D) foj = (xe + 9) (fai + f25) + (9 + 1) f2,

1D
we can rewrite f so that a decreases. Similarly, this procedure
does not change the value of f or break the linear indepen-
dence condition.

When F(fo1) = F(fo)) F(fa) =
F(f2;) = F(f2;), the procedure is similar.

As a cannot decrease infinitely, after finite procedures
described above, f can be rewritten to satisfy that all the
largest terms are different.

F(fijl)? or

O

APPENDIX C
PROOF OF LEMMA[3]

Proof. We prove this lemma by induction. When p = 1, the
lemma is implied by Lemma 3l For the induction step p —
L — p, if F(f2u) > F(gau), then xp(s, ) appears in the
left side but not in the right side, which means the equality
cannot hold. Similarly, F(fa,) < F(g2,) is also impossible.
Therefore, F'(fa,) = F'(gau). Since xp(y,,) does not appear
in other linear polynomials, we have fa,_1 = g2,—1. Denote
F(fap-1) =t.

Define fj’ to be the polynomial by replacing every z; in
fi by fou—1 + x4, and g} is deﬁned similarly. Then g5, ; =
f2,u 1 =0. By Lemma 2 Z f2z lf2z = 27;11 géi—lgéi'
Since x; cannot be the largest term of other linear polynomials,
replacing z; by f2,—1 + x; does not change the largest terms
of other polynomials. Then by induction hypothesis, '(f}) =
F(g;) for 1 < j <2u — 2. Therefore, F'(f;) = F(g;) for all
1 <3< 2. O

APPENDIX D
PROOF OF THEOREM[3]

We first prove the following lemma.

Lemma 7. Suppose > i, hig: is proper and satisfies
the conditions in Lemma [3] then we can rewrite g =

t t t t
21<J<m b )IJ + b() and hy = 21< i<m Cg )xa + C()
such that the condmons in Lemma B still hold, in addmon
vVl < t t/ < u,

1) bF(g y =0, if Fge) > Flgv) > F(hy) > F(hy);
2) bF(h )y =0, if Fgt) > F(hy) > F(hy);
3) bF(h =0 (X1, hegy is still proper).

Proof. First, if b%% N =

F(hy) > F(hy), since

1 for some F(g:) > F(gv) >

hige + hy g = hi(ge + g) + (he + har) g, (12)

we can replace g; by ¢g; + g and hy by hy + hy such that
b(t) .y = 0 without changing " for s > F(gy) and et ) for
5> F (ht), so the largest terms of g; and h; are not changed,
thus the conditions in Lemma [3] still hold.



Similarly, if b%) = 1 for some F(g;) > F(hy) > F(h,),

(hy) ™
since
hige + hy gy = hi(ge + he) + he (g + he),  (13)

we can replace g; by g; + hy and gy by hy + gy such that

bgzht,) = 0 without changing bgt) for s > F(hy) and bgt’) for
If bg(i )= 1, since

ht’gt’ = ht’ (gt’ + ht’ + 1)7 (14)

(") -0

we can replace gy by gy + hy + 1 such that by F(hy)

without changing b\ for s > F(hy).

Since all the above procedures do not influence bgt) with
larger subscript, we sort F'(gy) and F(hy) forall 1 <t < p
in descending order. Then for all 1 < ¢ < u, check whether
conditions 1)-3) satisfy, if not, apply the above procedures
(12)-(14). Note that the previously satisfied conditions re-
main intact throughout the subsequent steps, we can rewrite
>4, hegy to satisfy conditions 1)-3).

O

Now we are going to calculate |A,|. By Lemma [3 and
Lemma [7] in order to avoid counting the same polynomials
multiple times, we can fix some coefficients to zeros, thus the
number of polynomials in A, is at most 2 to the power of the
number of the remaining coefficients, which is 2%« Ffu+27u
as shown in Theorem [3l Now we prove that any value of
these coefficients yields a different polynomial. Therefore, the
number of low-weight codewords is exactly 2%«+5u+27u,

Proof of Theorem 3] Denote u = (i1, ,ir42u—2) € Sp.
We calculate the number of different polynomials f =
P(fi,..., fr—2,h1,01,-..,hu,9,) € Ay. Since f is proper,
there are 2“1 """ir-2 choices for f1,..., fr_o.

Next we calculate the number of choices for g =

St hige. Let us write g = D o1<j<kcm @ kTiTE +
¢ t
Zlgkgm ao kTk + 0,0, Gt = Zlgsgm bg)xs + bg) and

he = Yicoem e + ).

:c? =z, we have

“w
aj = Z(bgt)c,(f) + b,(:)c;t))

Since ¢ = Y 4, hig, and

5)
t=1
for 1 <j< k<mand
n
aok = > (b et +00ct” +0{cl) (16)

t=1
for 0 < k <m.
Some of the coefficients in g; and h; are prefixed. Firstly,

bgggt) = 1and b = 0 for s > F(gy), nght) = 1 and

cgt) = 0 for s > F(h:). Besides, since f is proper, bgt) =
if s = F(hy) or s = F(fy) for 1 <1 <r—2 ¢ =0if
= F(f;) for 1 <1 < r — 2. Furthermore, we assume the
coefficients in g; which satisfy the conditions in Lemma [7] are
fixed to zeros.
We are going to assign values to the remaining bgt) and

cg) in a specific order such that for each remaining bgt)
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and cgt), there exists one different coefficient a; j determined

by it, thus different values of b\"” and ¢ yield different
polynomials. First, we assign values to bg ) and c( ) appearing
in the expanded formula of a;,, from j = m — 1 to 0 .
Then, we assign values to other bgt) and cgt) appearing in the
expanded formula of a;,,_1 from j =m —2 to 0, and so on.
In this way, some a; j can be freely determined by assigning
specific values to b(t) and cgt) as desired, while other a; , are
determined by other coefficients in f determined earlier. The
number of choices for g = Y% | h;g; is exactly the 2 to the
power of the number of free coefficients.

Next, we specify the stage when we asngn
in the predefined order. If s > F(h:), first appears
in the coefficient of TF(hy)Ts- Thus, bg) is assigned when
I s < F(hy), bgt) is assigned when

determining a, p(p,). And cgt) is assigned when determining

and Cs )

determining QF(hy),s

as,F(g,)» SINCE e first appears in the coefficient of xszp(y,).

Now we prove that the first appearance of the free coef-
ficients bgt) and cgt) are at different stages, that is, they are
assigned to determine different a; . It is clear that all the

bgt) and CS) are assigned at different stages. Assume that for

t#£t, bgt) and bgl) are assigned when determining the same
aji. If s > F(h:) and s’ > F(hy), the subscripts of ap,),s
and ap(p,,),s are the same, thus F'(h;) = F(hy), which is
against that the largest terms are different. Similarly, the case
s < F(ht) and s’ < F(hy) is impossible. W.l.o.g, assume
s > F(hy) and s’ < F(hy), we have j = F(hy) = ¢,
k = s = F(hy). Therefore,

F(ht) = S/ < F(ht/) =s< F(gt)

Since we fix the coefficients in g; which satisfy the conditions

2) in Lemma [7] to zeros, bgt) = bgght/) = 0 needs not be

considered in our procedure. Therefore, all bgt) and bgl) are
assigned at different stages.

Assume that for ¢ # t/, bgt) and cgl) are assigned when
determining the same a; . If s > F(h), the subscripts j =
F(hy) = ',k = F(gy) = s. Therefore,

F(ht) = SI < F(ht/) < F(gt/) =s< F(gt)

Since we fix the coefficients in g; which satisfy the conditions
1) in Lemma [7] to zeros, b() b Floy) = = 0 needs not be
considered in our procedure. If s < F (ht), then F(h;) =
F(gy), which is against that the largest terms are different.
Therefore, bgt) and cgl) are assigned at different stages.

Now assume that for ¢ # t/, ¢ (t) and c( ) are assigned when
determining the same a; j. Therefore F(ht) = F(h4), which
is against hat the largest terms are different.

Note that all the free bgt) and cgt) are assigned at different
stages, their values determine the corresponding a; j, since
other terms in the expanded formula are already assigned. The
number of 25:1 hig; is exactly 2 to the power of the number
of free coefficients in bgt) and cgt).
of the coefficients:

1) The number of c;
<Pu,[1,r—2](lr—3+2t)-

Now we count the number

(®)

with s }é i1, ,dp_g 18



2) The number of b with s < F(h;) and s # i1, ,ir_o
is @u,[l.m72] (ir—3+2t)~

3) The number of bgt) with s > F(hy) and s £ 4,1 <1 <
T4+20—218 Qo (1,r120—2) (Tr—2+2t) = Pu1,r2p—2) (Fr—3+2¢))-

4) The number of b{" with s > F(h;) and s = F(gy) is the
number of k satisfying F'(g;) > F(gr) > F(hi) > F(hy).

In conclusion, the number of free coefficients is |{(k,?) |
1<k <t<pir—gyor > ir—2q2t > Ir—342k > tr—3420}| +
Yo (Putrrou—2)(ir—212¢) — Putrs2u—2)(ir—342t)) +
23 0 Putr—2(ir—342t) = @y + Bu + 274, Which implies
Equation (). Equation (@) follows from Equation and
Theorem O

APPENDIX E
PROOF OF THEOREM 3]

Proof. Denote v = (i1, ,ip4,) € T,. From the proof of
Theorem Bl Q(f1 - fr4n) = Q91+ gr4) if and only if
fi=g; forall 1 <i < r+ u. There are )‘%"'% choices for
fi,---, fr- Next we discuss the choice of f, 11, -, fr4, With
largest terms 4,41, ,ir4, such that f = Q(f1--- fr4,) €
C(Z) is proper and the linear independence condition is
satisfied. We first assign the coefficients in f,;1, then f, o
and so on. To guarantee the linear independence condition,
we need to ensure that

T— r r+k—1
frok=>_afi+ Y afi+ Y, afi+ap. (17)
t=1 t=r—p+1 t=r+1

does not hold for any a; € Fa.

Now we consider two cases for u:

1) 4r—pyj # dpqy for some 1 < j < p. In this
case, Q(f1--- fryp) € C(Z) if and only if z;, ---x;. and
Tiy ** Tip_, Ti,y * Ti,y, Delong to Z. Next, we calculate the
choices of f,11,---, fr+, satisfying the linear independence
condition.

Assume we have already determined f,4; for 1 < j < k.
There are two cases for f,x:

D) dppp # ip—j for all 0 < j < p — 1. Assume, by
contradiction, Equation holds.

For 1 <t < r — pu, since x;, only appears in f, a; must
be 0, so we can delete them from the equation:

r r+k—1
frow = E aifr + E aifi + aop.
t=r—u+1 t=r+1

Forr —p+1 <t < rand i > %4k, since x;, does not
appear in other f; with r —u+1 <1 <r+k—1, a; must
be 0. Since 4,44 # ir—; for all 0 < j < p — 1, the equation
becomes:

r r+k—1
frok = E as fr + E ai fe + ao.
t=r—p+1, t=r+1
it <ipyk

Now all the f; remained in the equation satisfy iy < 4,4,
and f,,j cannot be linear combination of these linear poly-
nomials.

12

Therefore, we conclude that f,; cannot be a linear com-
bination of any f; where 1 < j < r + k — 1, so the linear
independence condition is always satisfied in this case.

The coefficients of x;; with 1 <j<r—porr+1<j<
r+k in fr4; must be O to satisfy the proper condition. Since
Ou,[r41,r+k—1)(Ir4x) = k — 1, there are 29w Lr—ul (trgr)—k+1
choices for f .

1) ¢y44 = t,—; for some 0 < j < p — 1. Assume Equation
holds.

Similarly, a; must be O when 1 < ¢ < r —py,orr—pu+
1 <t < r with 4 > 4,4. Since ¢4 = 7,—;, the equation
becomes:

r r+k—1
Sfrok = ar—jfr—j + E agfr + E aifi + ao.
t=r—p+l, t=r+1
i <ipyp

Now x; ., only appears in f,,r and f._;, so a,_; must
be 1. Forr—p+1 <t <randi < i1k, a; can be assigned
arbitrarily. And for r — 1 < ¢t < r + k — 1, since the form
is proper, a; must be assigned so that x;, does not appear in
f r+k-

Therefore, the free coefficients are ag and a; with r—u+1 <
t < r and ¢ < @r4k. Since all the polynomials are linear
independent, there are 2%u.(r—xn+1.710r+8)+1 choices for frix
such that Equation holds.

Therefore, there are s,(k) =
2¢0ulr—ut1ri(irt0)+1 choices for frip. I @u 1y (irin) —
kE < @y jr—p+1,,1(Gr4k), then there does not exist any f, i
such that linear independence holds, so B, = &.

2) Gp—ptj = tpqy for all 1 < 5 < p. It should be
noted that in this case x;, - - - x;. may not belong to Z. Then
fr4+1,- -, fr+, must be chosen to be linearly independent and
Q(f1,-+, fr4pn) € C(Z). We first analyse fr1, then frio
and so on.

To guarantee f € C(Z), notice that the coefficients larger
than b,(k) in fryr and fr_,4, must be equal, and then
the monomials that do not belong to Z in f._,--- f, and
fr41 -+ fr4u will cancel each other out. Therefore, the num-
ber of free coefficients of f.  is @y 1, (bu(k)) 4+ 1. Next
we analyse the number of linearly dependent choices. Similar
to the first case, assume Equation holds. Since w;,
with 1 < j < k only appears in f,.,; and fr4;_,, we have
Gr4j = Gr_yu45. Then there are 2k choices for fr+x such that
Equation holds.

Therefore, there are s, (k) = 27w01.71(u(F)+1 _ 9k choices
for fryx. If @m[lw] (bu(k})) +1<k, B, =a.

In conclusion, since there are )‘ril---rir choices for

9Pu,[1,r—p) (irgr) —k+1

fi,---, fr and oy choices for f.i1, - -, fr4pu, We prove

Equation (@). Equation follows from Equation (@) and

Theorem @l O
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