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Abstract

Time series forecasting has received a lot of attention, with recurrent neural
networks (RNNs) being one of the widely used models due to their ability
to handle sequential data. Previous studies on RNN time series forecasting,
however, show inconsistent outcomes and offer few explanations for perfor-
mance variations among the datasets. In this paper, we provide an approach
to link time series characteristics with RNN components via the versatile
metric of distance correlation. This metric allows us to examine the infor-
mation flow through the RNN activation layers to be able to interpret and
explain their performance. We empirically show that the RNN activation lay-
ers learn the lag structures of time series well. However, they gradually lose
this information over the span of a few consecutive layers, thereby worsening
the forecast quality for series with large lag structures. We also show that the
activation layers cannot adequately model moving average and heteroskedas-
tic time series processes. Last, we generate heatmaps for visual comparisons
of the activation layers for different choices of the network hyperparameters
to identify which of them affect the forecast performance. Our findings can,
therefore, aid practitioners in assessing the effectiveness of RNNs for given
time series data without actually training and evaluating the networks.
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1. Introduction

Time series forecasting is a long-standing subject that continues to chal-
lenge both academic researchers and industry professionals. Accurate fore-
casting of real-world operations and processes, such as weather conditions,
stock market prices, supply chain demands and deliveries, and so on, are
still open problems that would benefit from reliable and interpretable meth-
ods. The challenges include data non-stationarity and seasonality, limited
data availability with missing observations, and the inherent uncertainty of
real-world events. These challenges require practitioners to have a thorough
understanding of both the time series characteristics and the techniques to
develop high performance models.

As the practitioners grapple with these challenges, several modeling (fore-
casting) techniques have been developed, which include classical statistical
prediction models, such as autoregressive integrated moving average (ARIMA),
statistical learning models, and deep neural networks. As might be expected,
there has been a surge of interest in the use of deep learning models for fore-
casting. This is illustrated in the recent work by Zhang et al. [1], where they
bridge the idea of localized stochastic sensitivity to recurrent neural networks
(RNNs) to induce robustness in their prediction tasks. Other works, such as
the information-aware attention dynamic synergetic network [2], use multi-
dimensional attention to create a novel multivariate forecasting model. The
rapid emergence of diverse and complex deep learning models for forecasting
has provided practitioners with numerous options. However, it has also left
many of them unsure of which models to choose and how to interpret their
successes and limitations.

Despite the lack of agreement in deep learning model selection, RNNs are
popular candidates for time series forecasting. This is due to their ability to
handle sequential data, which is a fundamental characteristic of time series.
Yet, through a series of several experiments, RNNs and their adaptations
[3, 4, 5, 6] have shown a wide range of forecasting results, making it difficult
to evaluate their effectiveness. Experimental reviews and surveys have high-
lighted both the scenarios, one in which RNNs have achieved highly accurate
results [7, 8, 9, 10, 11], and another in which they have been surpassed by
traditional statistical regression models such as ARIMA [12] and gradient
boosting trees [13]. Despite the breadth of these studies, their conclusions
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offer limited insights on the variations in RNN performance, often defer-
ring to the explainability of the chosen hyperparameters or domain-specific
hypotheses. These outlooks can be attributed to the restricted perspective
offered by generalization error, which is the primary way of evaluating these
models. While the generalization error is important to track, it does not
delve into the internal mechanism of how time series inputs evolve through
the RNN layers, limiting our understanding of this subject. As it stands, an
evaluation tool that allows us to comprehend the inner workings of RNNs on
a layer-by-layer basis is needed.

While there are several evaluation metrics to measure mathematical and
statistical relationships, many lack the flexibility that is needed for studying
the components of RNNs. A recently proposed statistical dependency metric,
called distance correlation [14], has a few key advantages in this regard.
First, it has the ability to capture the non-linear relationships present in
typical RNN operations. Additionally, it can compare random variables of
different dimensions, which are likely to occur in RNN architectures. It can
also be used as a proximal metric to measure the information stored in the
RNN activation layers through its training cycle [15, 16]. These factors make
distance correlation well suited for a detailed characterization of RNN models
based on their forecast performance.

Given this context, we make the following contributions to the deep
learning-based time series forecasting literature. First, we outline a dis-
tance correlation-based approach for evaluating and understanding time se-
ries modeling at the RNN activation layer level. Consequently, we demon-
strate that the activation layers identify time series lag structures well. How-
ever, they quickly lose this important information over a sequence of a few
layers, posing difficulties in modeling time series with large lag structures.
Further, our experiments show that the activation layers cannot adequately
model moving average and heteroskedastic processes. Last, we employ dis-
tance correlation to visualize heatmaps that compare RNNs with varying
hyperparameters. These heatmaps show that certain hyperparameters, such
as the number of hidden units and activation function, do not influence the
activation layer outputs as much as the RNN input size. A visual overview
of our work is shown in Figure 1.
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Figure 1: Overview of the use of distance correlation to examine time series forecasting
using a recurrent neural network (RNN). We begin with a time series history that comprises
the inputs xt for the RNN and the predicted outputs ŷT . The outputs for each activation
layer and ground truth values, yT , are extracted and processed with distance correlation.
This is then used to generate correlation plots for analyzing activation layers behaviors
and visualizing heatmaps for comparisons of different RNN models.

2. Related Works

Neural networks, despite their tremendous success, are not fully under-
stood from a theoretical perspective. Some strides have been made, such as
the work by Telgarsky [17], where the greater approximation power of deeper
networks is proved for a class of nodes that includes ReLU and piecewise poly-
nominal functions. Rolnick’s work [18] extended this rigorous understanding
of neural networks by establishing the essential properties of expressivity,
learnability, and robustness. Bahri et al. [19] recently reviewed a breadth of
research on the connections between deep neural networks and several prin-
ciples of statistical mechanics to obtain a better conceptual understanding of
deep learning capabilities. To estimate the overall complexity and learning
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ability of deep neural networks without actual training and testing, Badias
and Banerjee proposed a new layer algebra-based framework to measure the
intrinsic capacity and compression of networks, respectively [20]. These mea-
surements enabled us to analyze the performance (accuracy) of state-of-the
art networks on benchmark computer vision datasets.

Specifically for RNNs, one of the more well-known drawbacks is their in-
ability to retain information from long term sequences, as found by Bengio
et al. while using gradient-based algorithms for training RNNs [21]. This
finding led to the use of alternate RNN architectures, such as the Long Short-
Term Memory (LSTM) network [22], despite their increased computational
complexity. More recently, Chen et al. [23] established generalization bounds
for RNNs and their variants based on the spectral norms of the weight matri-
ces and the network size. A different approach focused on studying the im-
plicit regularization effects of RNN by injecting noise into the hidden states,
which resulted in promoting flatter minima and overall global stability of
RNNs [24]. While all these approaches are theoretically rigorous, they are
typically formulated under rigid constraints, many of which are not neces-
sarily satisfied in real-world applications.

Therefore, several researchers have turned to interpretation based meth-
ods to develop a principled yet practically useful understanding of RNNs.
In this context, since RNNs are common for natural language processing
(NLP) tasks, many studies have focused on tracking the hidden memories
of RNNs and their expected responses to the input text [25, 26]. For time
series, Shen et al. [27] developed a visual analytics system to interpret RNNs
for high dimensional (multivariate) forecasting tasks. While this system is
very useful, we aim to approach RNN interpretability from a different per-
spective of understanding performance (forecast) generalizability by tracking
how the hidden memories respond to specific time series characteristics. For
this purpose, we look at alternate information-theoretic approaches.

One of the most promising works on information-theoretic analysis was
conducted by Schwartz and Tishby [28]. They used mutual information (MI)
to represent a deep neural network as a series of encoder-decoder networks,
enabling analysis at the activation layer level. Such analysis goes beyond
the typical generalization errors used for model assessment, and allows us to
closely observe the information flow through deep learning networks such as
RNNs. Although this approach is novel, MI estimation is challenging for real-
world data. To address this challenge, researchers have investigated different
approaches, such as a k-nearest neighbor method [29] and a semi-parametric
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local Gaussian method [30]. While these attempts seem promising, there
are questions regarding their practical usefulness. For example, McAllester
and Stratos [31] argue that without any known probability characteristics
of the data, any distribution-free, high-confidence lower bound on mutual
information would require an exponential amount of samples. It is quite
rare to find real world datasets with known (or well-fitting) distributions,
and this is generally true for time series applications [32]. Nevertheless, the
underlying framework of analyzing RNNs from a layer-by-layer perspective
is a useful concept that we can build upon using an alternative metric, as
discussed next.

As we search for an approach that affords the flexibility of analyzing
the components of RNNs, Szekely et al.’s [33] distance correlation comes to
the forefront as a dependency measure. It is closely related to Pearson’s
correlation with the advantage of measuring non-linear relationships among
the random variables. Naturally, some researchers directly apply it toward
time series forecasting. Zhou’s [34] work re-purposes distance correlation
by proposing the auto-distance correlation function (ADCF), which is an
extension of the auto-correlation function (ACF) [32]. Yousuf and Feng [35]
use distance correlation as a screening method for deciding which lagged
variables should be retained in a model.

Beyond time series applications, distance correlation has other practical
uses in the deep learning space. Zhen et al. [15] outline a process that uses
distance correlation and partial distance correlation to compare deep learning
models from a network layer level. They use it as a measure of information
lost or gained in the network layers, where high distance correlation values
indicate more information is stored in the activation layers. In a separate
study, NoPeek [16] uses a distance correlation method that decorrelates the
raw input information within the activation layers during training, which is
essential for preventing the leakage of sensitive data. These studies show the
viability of distance correlation as an analysis tool in time series applications
and deep learning, separately. Our work aims to connect the two topics to
further our understanding of time series forecasting tasks.

3. Methodology

In this section, we first characterize the time series forecasting problem
before describing the components of an RNN and providing an overview of
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distance correlation. We then propose a method that links these core topics
to further our understanding of time series forecasting using RNNs.

3.1. Time Series Forecasting

As we define the forecasting problem, we adopt the notation used by
Lara-Benitez et al. [7] in their experimental review of deep learning models
with forecasting tasks. We let Z = z1, z2, . . . , zL be the historical time se-
ries data of length L and H be the prediction horizon. The goal of a time
series forecasting problem is to use Z to accurately predict the next horizon
values zL+1, zL+2, . . . , zL+H . The time series data can either be univariate
or multivariate; we focus this paper on univariate analysis where single and
sequential observations are recorded over time.

One of the challenges of time series research is the lack of benchmark
datasets for forecasting. Many time series experimental reviews [7, 10, 11]
choose datasets from several domains with various characteristics. This
makes it difficult to generalize the behavior of the forecasting models since it
is not clear whether each dataset represents a class of time series processes
or is uniquely domain specific. It also complicates the interpretability of
the experiments and their corresponding conclusions. To circumvent these
issues, we experiment primarily with synthetic data from known time series
processes (see Section 4.1). We, however, still use real world time series data
to provide a practical context for our proposed forecasting model evaluation
tool.

Given our data, it is important for us to establish a baseline of the time
series structure. One of the primary methods for analyzing time series fore-
casting problems is by using the auto-correlation function (ACF) [32]. This
function looks at the linear correlations between zl and its previous values
zl−h where l = 1, 2 . . . , L at lag h. Formally, the auto-correlation function,
ρz(h), is defined as

ρz(h) = Cor(zl, zl−h) (1)

where Cor represents the Pearson’s correlation function. Plotting the ACF is
a common method for understanding a time series lag structure. An example
of this auto-correlation plot is shown in Figure 2 for the sun spot time series
data [36].

A final key aspect to consider is the size of the prediction horizon H.
In this study, we stick with single-step ahead forecasting (H = 1) to create
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Figure 2: An example of an auto-correlation plot for the sun spot time series data [36] with
blue shaded significance level band. Lags that fall outside of significance level band are
considered important to include in a forecasting model. It also provides a way to describe
the time series data, as the cyclical nature of the lags from this plot indicates a seasonal
characteristic to sun spot observations.

a simple experimental environment. This choice allows us to minimize the
model complexity required for multi-step forecasting and reduces the error
accumulation with having a larger H.

3.2. RNN Architecture

Considering that we are investigating recurrent neural networks (RNNs),
we must define all its components. RNN was originally proposed by Elman
[37], where they altered the classical feedforward network layer structure
into a recurrent layer. This change in architecture allowed the outputs of a
previous layer to become the inputs of the current layer, thereby creating a
compact model representation for sequential input data. Figure 4 shows an
unfolded RNN displaying the inputs, an activation function operation (i.e.,
tanh), and outputs (hidden state). While the Elman RNN is relatively simple
compared to other model architectures, focusing on this network provides a
baseline of how recurrent based networks learn time series structures.

A necessary step for modeling time series with an RNN is preparing the
full univariate time series history into samples that purposefully generate the
input-output sequences. We adopt the moving window procedure described
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by [7] to create the input and output samples. Given a full time history Z,
a window of fixed size T slides over the data to create samples of input xi

in RT and a corresponding output yi in RH , where i = 1, 2, . . . , n. A visual
example of generating these input-output samples is shown in Figure 3 for
T = 5 and H = 1.

Figure 3: Time series sampling strategy where a full univariate time series plot is displayed.
This full time series is partitioned into an 80:20 training:test split. Each of these training
and testing splits are further divided into input-output samples, where each sample is
generated via a sliding window. In this example, our sliding window is of size T = 5 and
prediction horizon H = 1.

The input-output sample vectors, (xi,yi), are currently globally repre-
sented in terms of their zl values. However, it is beneficial to convert our
vectors into a sample representation that serve as local inputs for our RNN
model. To do this, we denote our samples as xi = [x1,i, x2,i, ..., xT,i], which
represents the ith sample of a sequence of T time series values. For each
component of xi, we recover its relation to the time series history using
xt,i = zt+i−1, where t = 0, 1, . . . , T . Similarly, the output of the RNN is a
vector ŷi = [x̂T+1,i], which represents the ith forecasting output for a single-
step ahead value beyond T , or H = 1. We measure the output error with
reference to the ground truth single-step ahead vector yi = [xT+1,i].

Lastly, we define the activation layer outputs (or hidden states) in the
context of our time series data and the RNN architecture. Considering an
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Figure 4: Time series input-output structure with an unfolded RNN for the ith sample and
training epoch p. The ith input of the RNN xi = [x1,i, x2,i, ..., xT,i] produces activation

layer outputs a
(p)
t,i for t = 0, . . . , T using a predetermined activation function f . The final

activation layer output a
(p)
T,i is fed into a dense layer to produce a single-step ahead forecast

value ŷi = {x̂T+H,i} for H = 1.

input-output sample (xi,yi), the hidden state a
(p)
t,i represents the ith sample

output of an activation layer at time step t and epoch p, where p = 1, 2, . . . , P .
The activation layer output a

(p)
t,i is a vector in Rb, where b specifies the width

of the hidden state or the number of hidden units. Each activation layer
output is produced from tensor operations with the sample inputs that pass
through some activation function f . The time step t for the activation layer
output a

(p)
t,i doubles as an indicator for the layer number. For example, t = 2

corresponds to the input x2,i and a
(p)
2,i , the second activation layer for training

epoch p. In order to output a single prediction value, we must collapse the
dimension of the final activation layer output, a

(p)
T,i, with a dense layer. A

visualization of this unrolled RNN setup with the time series forecasting
problem is shown in Figure 4.

3.3. Distance Correlation

An approach for examining the relationships among random variables is
through the use of energy statistics [38]. Energy statistics comprise a set of
functions derived from the distances of statistical observations, inspired by
the gravitational potential energy between two bodies. We primarily use the
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distance correlation metric from energy statistics [33] to measure the statis-
tical dependence between random variables. Distance correlation is tailored
to measure the non-linear relationships between two random variables, not
necessarily of equal sizes. We build the empirical definition of distance corre-
lation by relating it some of our previously defined time series components.
We start with our input-output samples as X ∈ RT×n and Y ∈ RH×n:

X =

 x1 x2 . . . xn

 ,Y =

 y1 y2 . . . yn


where the columns xi ∈ RT ,yi ∈ RH are the input-output sample vectors
defined in section 3.2. From the observed samples X,Y, define

bij = ∥xi − xj∥ bi. =

(
n∑

j=1

bij

)
/n b.j =

(
n∑

i=1

bij

)
/n

b.. =

(
n∑

i,j=1

bij

)
/n2 Bij = bij − bi. − b.j + b..

These are similarly defined for ci., c.j, c.. where cij = ∥yi − yj∥ and Cij =
cij − ci. − c.j + c... Given this set of double centered matrices, the sample
distance covariance function [33] is defined as

V̂ 2(X,Y) =
1

n2

n∑
i,j=1

BijCij . (2)

Finally, the empirical distance correlation is defined as

R̂2(X,Y) =


V̂ 2(X,Y)√
V̂ 2(X)V̂ 2(Y)

, V̂ 2(X)V̂ 2(Y) > 0

0, V̂ 2(X)V̂ 2(Y) = 0
(3)

The empirical distance correlation function has the following properties [39]:

• R̂(X,Y) converges almost assuredly to the theoretical counterpart [33]
provided n → ∞ and E[∥X∥] < ∞ and E[∥Y∥] < ∞.

• R̂(X,Y) = 0 denotes the independence of X and Y
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• 0 ≤ R̂ ≤ 1

Additionally, another key property shown by [14], for a fixed n

lim
T,H→∞

R̂(X,Y) = 1 (4)

provided that X and Y are independently and identically distributed (i.i.d.)
and their corresponding second moments exist.

3.4. Analysis of RNN Activation Layers

We now provide the framework for using distance correlation to study how
the RNN activation layer outputs learn time series structures that eventu-
ally translate to forecasting outputs. We start with a set of samples (x1,y1),
(x2,y2), ... , (xn,yn) where each xi is an RNN input to produce a forecast-
ing value ŷi. This is compared with the ground truth output yi using a loss
function. For each sample fed into the RNN during training, a unique acti-
vation layer output a

(p)
t,i is produced depending on the sample i, time step t,

and epoch p. The accumulation of all the samples for a particular activation
layer output at time step t and epoch p is represented as a matrix

A
(p)
t =

 a
(p)
t,1 a

(p)
t,2 . . . a

(p)
t,n


With our representation of sample ground truth outputs Y, we estimate
the distance correlation between the activation layer output at time t and
epoch p, and the ground truth outputs. This is denoted by R̂(A

(p)
t ,Y),

and is calculated using (3). We also estimate the dependency between two
activation layers, A(p)

v ,A(p)
m , at different time steps using R̂(A(p)

v ,A(p)
m ), which

is the distance correlation between the activation layer outputs at time steps
v and m at epoch p. We note that for both the scenarios, the dimensions
between the two random variables need not be the same. This framework
guides the experiments in section 4.

4. Experiments

We now conduct a series of experiments to showcase the usefulness of
our method for assessing time series forecasting using RNN models. Using
such method, we make note of certain limitations of RNN forecasting and
compare the models (network architectures) using heatmap visualizations.
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4.1. Time Series Data

Before we begin our experiments, we must select the type of time se-
ries data we would like to analyze. As discussed in section 3.1, we generate
synthetic time series data for each time step zl, according to a few well es-
tablished processes. Perhaps the simplest case is the auto-regressive process,
signified by AR(p), where the value of the current time step l value is a lin-
ear combination of the previous p time steps. Formally, the auto-regressive
process is defined as [32]

zl =

p∑
i=1

cizl−i + ϵl . (5)

Here, ci are the coefficients of the lagged variables and ϵl is white noise which
follows a normal distribution N(µ, σ2) at time step l. We also consider the
moving average model, MA(q), which is similarly defined as [32]

zl = δ +

q∑
i=1

θiϵl−i (6)

where θi are the coefficients of the lagged white noised ϵl−i and δ is a prede-
termined average value. This moving average process generates the value of
the current time step l based on an average value δ and the previous q lagged
white noise. When we combine the processes from (5) and (6), we arrive at
the auto-regressive moving average, or the ARMA(p, q) model.

Beyond these simple models, we consider another time series model called
the generalized autoregressive conditional heteroskedasticity (GARCH) model.
Full definition of the GARCH(p, q) process is presented in [32], where this
process allows the time series to exhibit variance spikes during any given time
step. It is generally defined as:

zl =
√

hlϵl (7)

where hl is a positive function that represents the variance. The variance hl

is defined by:

hl = α0 +

p∑
i=1

αiz
2
l−i +

q∑
j=1

βjh
2
l−j . (8)
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In this GARCH(p, q) definition, αi are the coefficients of the p lagged vari-
ables, and βj are the coefficients of the q lagged variances. This process
induces volatility in the time series data that is often present in real world
datasets. One simple but effective way to characterize these times series pro-
cesses is by observing the magnitudes of their lag structures. For large values
of p, q, we consider the lag structure to be high (and correspondingly low for
small values of p, q).

In addition to the synthetic time series processes, we also experiment
with the following three real world datasets. (1) ETTh1, OT [5] includes
the hourly oil temperature (OT) collected by electricity transformers from
July 2016 to July 2018 from two different counties in China. (2) Solar-energy
[3] includes the solar power production records in the year of 2006, which is
sampled every 10 minutes from 137 photovoltaic plants in Alabama, USA. (3)
Daily NASDAQ composite index values between 2014 to 2023 are gathered
from Yahoo! Finance [40]. Note that ETTh1, OT, and Solar-energy have
served as benchmarks for time series forecasting tasks [3, 41, 42].

4.2. RNN behavior under various time series processes

The focus of this section is to use distance correlation to determine the
characteristics of RNNs for various time series processes. To investigate this,
we carry out a series of experiments that track the outputs of each activation
layer and compare it to the ground truth output via distance correlation upon
the completion of model training. In effect, we are calculating R̂(A

(P )
t ,Y)

for t = 1, 2, ..., T at the final epoch, P . R̂(A
(P )
t ,Y) values near one show

that the activation layer at t has a strong dependency to Y, indicating it is
a highly important layer in the training process. Conversely, values close to
zero imply that the activation layer at t does not contribute to learning the
output Y.

One particular component of interest is layer number T , A
(P )
T , which is

the final activation layer before the RNN generates an output. Since all the
previous inputs flow to this activation layer, tracking R̂(A

(P )
T ,Y) serves as a

measure of what information has been retained or lost during training.
Since we are tracking the dependency structure of each layer A

(P )
t and

ground truth Y, we can make a parallel comparison to the auto-correlation
function (ACF) defined by (1). If we are interested in understanding the
linear structure between a single-step ahead time series value and a corre-
sponding lag h, we would calculate Cor(zl+1, zl+1−h). The analogous com-

parison to this would be calculating the distance correlation, R̂(A
(P )
T+1−h,Y).
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For example, given a window size of T = 20 and a lag of h = 5, activation
layer number 16, A

(P )
16 , can be directly compared to the ACF value at the

5th lag. Note that this inverse relationship between the layer number and
lag (e.g., layer 20 and lag 1, or, layer 1 and lag 20) is used for comparisons
during our experiments. We make this comparison to establish a baseline
analysis of the underlying time series structure.

4.2.1. Implementation Details

Before presenting the results, we choose some parameters specific to our
experiments. We begin by generating a time series history Z of length
L = 4, 000 from the processes and datasets in Section 4.1. We change L
to 2,000 and 1,500 for the Solar-energy and NASDAQ datasets, respectively,
to accommodate their smaller size. As is customary in training deep learning
models, we standardize each time series using the z-score [7]. This is done to
aid the stability of training an RNN and analyze all the time series processes
or datasets using the same scale. We then split our time series history such
that the first 80% points form the training set and the last 20% points are
used for evaluation (test set), as shown in Figure 3. We only consider single
step-ahead forecasts, i.e., H = 1.

For the Elman RNN setup, we fix the input window size T = 20, the
number of hidden units as b = 64, use the ReLU activation function, batch
size of 64, learning rate of 0.0001 and train the model for 35 epochs. We also
initialize the networks weights via a Kaiming He initialization procedure [43],
as it has been shown to be a stable and efficient initialization scheme [18].
We choose these parameters with the aim of creating a stable environment
where the RNN has a high likelihood of converging. Overall, we want to
ensure an experiment that captures how RNNs learn time series structures,
not why they have known instabilities. We then evaluate the performance
(forecast accuracy) of the RNNs using mean squared error (MSE) and mean
average percentage error (MAPE) on the standardized data to allow consis-
tent comparisons of the outcomes. In terms of the computational resources,
we use TensorFlow 2.1 on a single GTX 970 GPU for model training and
activation layer extraction.

4.2.2. Time Series Process Results

We now report the results of a series of simulations where a total of 50
runs are conducted for a given time series process. For each run, we train an
RNN from scratch using a specified time series, calculate both the distance
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correlation values described in Section 4.2, and the corresponding MSE and
MAPE values. Note that for all the time series plots, the values are de-
standardized to their original scales in order to view the actual results.

Beginning with auto-regressive time series, Figure 5 shows two plots each
for AR(1) and AR(5) time series processes: 1) A time series plot with the
original and de-standardized forecast values by the trained RNN; and 2) the
mean correlation values between the ground truth and each activation layer
using both distance correlation and ACF metrics. Figure 6 shows the same
plots for AR(5) and AR(10) time series processes. In addition, the figures
also display the corresponding MSE and MAPE values, and the coefficients
for the time series processes.

Figure 5(a) shows that for an AR(1) process, the distance correlation
values closely resemble the pattern produced by the ACF values for all the
layers and lags. The similarity between ACF and distance correlation is
likely due to the recursive nature of the AR(1) process, where all the time
steps are recursively dependent on each other. There is a gradual increase
in correlation as the layer numbers increase, which remain relatively high for
all the layers (above 0.7). Noting that layer number 20 is the final activation
layer prior to generating a forecast, it follows that a high distance correlation
in this layer yields accurate forecasts. This is supported by the low MSE and
MAPE values, and well fitting de-standardized time series forecasting plots.

However, the corresponding plots for AR(5), AR(10) and AR(20) indicate
that the forecasting accuracy of RNN decreases for increasing time series lag
structures. Figure 5(b) shows the correctly identified AR(5) lag structure
by displaying high correlation values at layers 1, 6, 11 and 16. Recalling the
inverse relationship that lags have with the layer numbers, this aligns with the
ACF values whose corresponding correlations are high at lags 20, 15, 10 and
5. This alignment, however, diminishes quickly as the distance correlation
values decrease to approximately 0.5 at layer 20. This is further evident
in Figure 6, where although the correct lags are identified by both distance
correlation and ACF, distance correlation reduces to less than 0.4 for AR(10)
and approximately 0.35 for AR(20) when it reaches layer 20; see Table 1 for
the exact correlation values at activation layer T = 20. This reduction
in distance correlation with increasing layer numbers is synonymous to the
RNN losing memory of the important previous inputs. As a result, the MSE
and MAPE scores increase for the AR(10) and AR(20) time series, which is
supported by the poor fitting de-standardized forecasting plots.

We extend these experiments to the moving average process by looking
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Figure 5: AR time series plots with RNN forecasts of the test set (top row). The mean
values of ACF and the distance correlations between the outputs of activation layers and
the ground truth horizon values are shown in the bar plots for 50 runs (bottom row).
For the AR(1) process, we observe high correlation values for both metrics and a gradual
increase as the layer number increases. For the AR(5) process, we see layers 1, 6, 11,
and 16 with high correlations, but they cyclically diminish for every 5 layers. This aligns
with high ACF values whose corresponding lags occur at 20, 15, 10, and 5. Both the de-
standardized time series plots have well fitting forecasts from the RNN, which corresponds
to the relatively low MSE and MAPE scores.

at MA(1) and MA(20) structures. Figure 7 shows the same mean correla-
tion and de-standardized time series forecasting plots. In Figure 7(a), the
mean correlation plot displays the correct layer number (or lag structure) for
MA(1); however, the value is relatively low (approximately 0.4). Although
the distance correlation value is highest at layer number 20, the MSE and
MAPE scores are larger than their AR(1) counterparts. The relatively low
distance correlation value at the final activation layer combined with worse
MSE and MAPE scores indicate that the RNN struggles to model the error
lag structures well, even under ideal low lag structures.

Figure 7(b) shows the results for the MA(20) structure. Although the
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Figure 6: AR time series and mean correlation plots for 50 simulation runs. For AR(10),
we see high distance correlation values at layers 1 and 11 with diminishing correlation
values from layers 12 to 20. The high correlation values align with the ACF lags at layers
10 and 20. For AR(20), we only see high correlation at layer 1 (or lag 20), before a similar
dissipation in values occur from layers 2 to 20. This decrease likely occurs due to the RNN
losing some memory of the previous important inputs. We also see an increase in the MSE
and MAPE values for both the processes, as compared to the AR(1) and AR(5) processes,
with worse fits of the de-standardized forecasting plots.

proper lag is identified at layer number 1, it is again relatively low with a value
of approximately 0.4. However, since the lag structure is high (larger values
of p, q) and far removed from the forecast horizon, we see an asymptotic
decrease in correlation values near layer number 20, exhibiting values less
than 0.1. The RNN appears to compensate for this lack of information being
transmitted to the final layer by modeling values near the average (of zero), as
opposed to the fluctuations that characterize the MA processes. This mean
trend prediction is noticeable in the de-standardized time series forecasting
plot where the amplitude is truncated and centered around zero.

We also look at the combined effects of AR(p) and MA(q) processes by
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modeling ARMA(p, q) time series structures. Figure 8 shows the same set of
plots for the ARMA(1,10) and ARMA(10,1) processes. Figure 8(a) shows the
results for ARMA(1,10), which exhibit a similar correlation behavior to that
of AR(1). The distance correlation values are high for all the layers with the
highest occurring at layer number 20. This results in highly accurate fore-
casts with low MSE and MAPE values, and well fitting de-standardized time
series plots. Figure 8(b) shows the results for ARMA(10,1), which exhibits
similar correlation patterns to that of AR(10). However, the correlations do
not decrease as much when approaching layer number 20 (0.5 instead of 0.4).
The inclusion of the MA terms, therefore, seems to provide additional per-
tinent information on the underlying time series characteristics to the RNN.
This slightly higher correlation values at the final layer leads to lower MSE
and MAPE scores for both the ARMA processes as compared to their AR
counterparts.

We also explore how RNNs internally learn time series processes exhibit-
ing heteroscedasticity with GARCH processes. We report the same time
series forecasts and mean value correlation plots in Figure 9, where we note
that the distance correlation values are quite low (less than 0.25) for all the
layers. The low correlation values indicate that none of the RNN activation
layers make strong contributions to learning the ground truth. This is cor-
roborated by the poor fitting de-standardized forecasting plots for both the
GARCH(2,2) and GARCH(4,4) processes. In essence, the RNN activation
layers are not able to effectively model the heteroscedasticity and volatility
present in the GARCH process, at least without additional pre-processing.

Last, we employ our evaluation method on the real world datasets de-
scribed in Section 4.1. We generate the same correlation plots and de-
standardized forecast plots for the ETTh1, OT and the Solar-Energy datasets
in Figure 10. Figure 10(a) shows that layers 1-10 have approximately con-
stant correlation values of around 0.5 before gradually increasing to 0.8 at
layer 20. This corresponds to having well fitting forecasts and lower MSE
and MAPE scores. Similar observations are found in Figure 10(b), where
the correlation values increase at a constant rate until a value of 0.85 at ac-
tivation layer 20. As seen for the AR and ARMA processes, high correlation
values at the final layer lead to fairly accurate forecasts.

However, the results for the NASDAQ Composite data in Figure 11 are
quite different. The correlation plots show that none of the activation lay-
ers recognize the underlying process exhibited by the financial data. All the
correlation values are near 0.1 and there is no evidence that the activation
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Figure 7: MA time series plots with RNN forecasts of the test set (top row). The mean
values of ACF and distance correlation between the outputs of the activation layers and
the ground truth horizon values are shown in the bar plots for 50 runs (bottom row). For
both the MA(1) and MA(20) processes, we see that the lags are identified at layers 20
and 1 (lags 1 and 20), respectively, with the correlation values around 0.4 (0.5 for ACF).
We also see for MA(20), distance correlation diminishes asymptotically and converges to
a value of less than 0.1 at the final activation layer. This is analogous to the RNN losing
memory of the important inputs, resulting in higher MSE and MAPE scores, and a worse
fitting de-standardized forecasting plot.

layers learn the outputs well, leading to poor forecasting results. In fact, the
results are similar to those for the GARCH process. In summary, these real
world examples provide additional validity to the fact that distance corre-
lation can effectively examine the behavior, especially, learning capacity, of
RNN forceasting models for any given times series.

4.2.3. Temporal information loss in RNNs

We recall the studies that used distance correlation as a metric of the
information stored in neural network activation layers [15, 16], and apply
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Figure 8: ARMA time series plots with RNN forecasts of the test set (top row). The
mean values of ACF and the distance correlations between the outputs of the activation
layers and the ground truth horizon values are shown in the bar plots for 50 runs (bottom
row). For ARMA(1,10), high distance correlation values are exhibited for all the layers,
which resemble the correlation plots of AR(1) and result in highly accurate forecasts. For
ARMA(10,1), there is a notable lag structure similar to the AR(10) process. However, the
decrease in RNN memory is less severe with a distance correlation value of 0.5 at layer
20, as compared to 0.4 for AR(10). This results in relatively well fitting de-standardized
forecasting plots for both the ARMA processes.

the same principle in our study. From our experiments, we observe that the
distance correlation values change as the time series inputs move from one
activation layer to the next, analogous to a measurable change in information
content across the RNN. Table 1 summarizes the results for all the time
series forecasting experiments, and report the metrics that encode this RNN
information flow. The key metric is the percentage change between the max
distance correlation at any layer and the distance correlation at the final
layer. This is calculated by (R̂(A

(P )
t ,Y)max − R̂(A

(P )
T ,Y))/R̂(A

(P )
t ,Y)max.

It summarizes how much information is lost by the time the data reaches the
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Figure 9: Time series plots with RNN forecasts of the test set (top row). The mean values
of distance correlation and ACF between all the activation layer outputs and the ground
truth horizon values are shown in a bar plot for 50 runs (bottom row). For both the
GARCH(2,2) and GARCH(4,4) processes, we see that the distance correlation and ACF
values are low; in fact, they are effectively zero with ACF for all the layer numbers. We
also see that both the time series plots have poor RNN fitting forecasts, which corresponds
to the relatively high MSE and MAPE scores. In particular, the RNN forecasts do not
capture the spikes in variance well.

final activation layer before the RNN produces a forecasting value.
From Table 1, we see that for the higher AR lag structures, the RNN is

able to identify the proper lags. However, higher lag structure AR processes
lose a larger percentage of the information as they reach the final activation
layer. For the MA lag structures, the proper lags are also identified, although
they exhibit smaller distance correlation values. Nonetheless, the higher lag
structures still lose more information as they reach the final activation layer.
This general loss of memory in the final activation layer leads to higher
MSE and MAPE scores. This is also exemplified by comparing AR(10) to
ARMA(10,1), where they have similar distance correlation patterns, as seen
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Figure 10: Time series plots with RNN forecasts of the test set (top row). The mean
values of distance correlation and ACF between all the activation layer outputs and the
ground truth horizon values are shown in a bar plot for 50 runs (bottom row). For both the
ETTh1, OT and Solar-Energy data, we see that the distance correlation and ACF values
gradually increase until layer 20 is reached. This results in well fitting de-standardized
forecasts, which correspond to the relatively low MSE and MAPE scores.

in Figures 6(a) and 8(b). However, ARMA(10,1) loses 48% of the input
memory as compared to 59% for AR(1), resulting in lower MSE and MAPE
values. The exception to this behavior occurs for the GARCH and NASDAQ
time series, where no RNN activation layer learns the ground truth values
well, leading to poor overall results.

These experiments and outcomes were replicated for different RNN hy-
perparameters to show that this behavior is consistent despite changes in
the modeling parameters. See Appendix A for a summary of the additional
results that include changes to the number of hidden units, learning rate,
and dropout rate of the final RNN layer.
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Table 1: MSE, MAPE, and distance correlation results for all the experiments

Time Series MSE MAPE R̂(A
(P )
t ,Y)

(max)
R̂(A

(P )
T ,Y) Change

(in %)

AR(1) 0.025 ±
0.006

0.050 ±
0.014

0.927 0.927 0

AR(5) 0.100 ±
0.039

0.111 ±
0.064

0.916 0.436 52

AR(10) 0.672 ±
0.344

0.319 ±
0.240

0.949 0.391 59

AR(20) 1.281 ±
0.441

0.884 ±
1.154

0.964 0.356 63

MA(1) 0.602 ±
0.037

0.388 ±
0.438

0.418 0.418 0

MA(5) 0.783 ±
0.057

0.525 ±
0.603

0.427 0.131 69

MA(10) 1.008 ±
0.081

0.512 ±
0.235

0.422 0.098 77

MA(20) 1.056 ±
0.063

0.579 ±
0.374

0.435 0.093 79

ARMA(1,1) 0.009 ±
0.003

0.035 ±
0.012

0.935 0.935 0

ARMA(1,10) 0.013 ±
0.003

0.037 ±
0.011

0.951 0.951 0

ARMA(10,1) 0.341 ±
0.195

0.216 ±
0.199

0.947 0.496 48

GARCH(2,2) 1.037 ±
0.830

0.614 ±
0.674

0.264 0.259 2

GARCH(4,4) 1.080 ±
0.751

0.720 ±
0.728

0.215 0.202 6

ETTh1, OT 0.040 ±
0.020

0.453 ±
0.324

0.923 0.923 0

Solar-
Energy

0.017 ±
0.013

0.510 ±
0.691

0.983 0.983 2

NASDAQ 1.499 ±
0.521

1.077 ±
0.818

0.123 0.114 7

Notes: MSE and MAPE scores are calculated for 50 simulation runs. R̂(A
(P )
t ,Y) (max) represents the max distance

correlation for any layer number t. R̂(A
(P )
T

,Y) is the distance correlation value at layer number T = 20. The percent
change from the peak distance correlation values in any activation layer to the final layer measures how much information
is lost during RNN training. In general, we see that larger lag structures tend to lose more information during training,
leading to higher MSE and MAPE scores.
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Figure 11: Time series plots with de-standardized RNN forecasts of the test set (top).
The mean values of distance correlation and ACF between all the activation layer outputs
and the ground truth horizon values are shown in a bar plot for 50 runs (bottom). For
the NASDAQ Composite returns, we see that the distance correlation and ACF values are
low; in fact, the ACF values are close to zero for all the layers. This leads to poor fitting
forecasts, which correspond to the relatively high MSE and MAPE scores. This example
is similar to the outcomes of the GARCH process in Figure 9.

4.3. Visualizing differences in time series RNN models

As we try to gain a better understanding of RNN capabilities with time
series forecasting, we leverage distance correlation to generate heatmaps as
a visual way of investigating the activation layers; similar to the comparison
of computer vision models [15]. We motivate this visualization method by
considering which RNN hyperparameters lead to accurate forecasts. These
include input size, activation functions, the number of hidden units, and even
the RNN output configurations (i.e., many-to-one or many-to-many). For
example, Figure 12 shows a distance correlation heatmap between a trained
RNN with 10 inputs (activation layers) and itself, where we see a complete
symmetry in the heatmap. This baseline heatmap can help us visualize the
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Figure 12: Distance correlation heatmap between RNN with 10 inputs and itself. The RNN
was trained on an AR(7) process with the following governing equation: zl = 0.8zl−7 + ϵl.
We observe there is an exact symmetry along the diagonal, where the distance correlation
between each RNN layer and itself is 1. We also see that the AR(7) pattern is detected if
we follow the progression of values from layer 1 on the y-axis to layer 8 of the x-axis.

similarities between the activation layers at different time steps and reveal
characteristics such as the lag structure. We expand such comparisons with
some of the hyperparameters mentioned above.

Distance correlation heatmaps can show whether two networks with dif-
ferent hyperparameters are similar at each activation layer. Two examples of
this are displayed in Figure 13, where we test networks with different activa-
tion functions and number of hidden units. In the case of Figure 13(a), the
symmetric nature of the heatmap suggests that using either ReLU or Tanh
activation function makes minimal difference in its evaluation of an AR(1)
process. Extending this to Figure 13(b), we see a similar symmetry in the
heatmap for networks having 8 and 128 hidden units in the activation layer
for an ARMA(1,2) process. Note that all the networks were allowed to train
until convergence, which exceeded 100 epochs for the RNN with 8 hidden
units. Both these results show that the different hyperparameter choices do
not have any noticeable effect for a given time series process, provided the
computational cost is not an issue.

Another crucial choice with RNN time series forecasting is the proper
window input size. While some heuristics can be applied in choosing this
parameter, we can also use distance correlation heatmaps to understand the
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Figure 13: Visualization of the similarities of different RNNs in time series modeling using
distance correlation heatmaps. (a) The symmetry in the heatmap suggests that using
either activation function yields similar outputs at each activation layer. (b) The heatmap
also suggests that both the networks arrive at similar activation layer outputs, despite the
differences in the hidden unit size of the activation layers.

impact. We exemplify this with a heatmap that compares an RNN with 6
inputs and 10 inputs under an AR(8) process which is shown in Figure 14. In
this scenario, the smaller RNN shows that it can learn similar activation out-
puts to the larger 10 input RNN as shown by the similarities in the diagonal
elements between activation layers 1-6 and 5-10, respectively. However, it
seems that without having access to at least 8 inputs for the AR(8) process,
suggests that the smaller network cannot adjust its learning weights via a
backpropagation through time algorithm [44] to produce accurate forecasts.
This is supported by the lack of good fit in the de-standardized time series
forecast plot for the 6 input RNN and the better fit in the 10 input RNN.

We can then adopt a conservative strategy of choosing a window input
size that is larger than necessary. Putting aside the known issues with long
term dependency and exploding gradient problems in RNNs, we use distance
correlation heatmaps to identify how the RNNs learn time series when the
networks inputs are oversized. Figure 15 simulates this scenario where both
the RNN input sizes (10 and 20, respectively) are greater than the AR(6)
process lag structure. We notice that the diagonal streaks of similarities are 6
activation layers apart, which confirms that both the RNNs can detect the 6
lag structure of the time series. Further, the 20 input RNN encounters the lag
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Figure 14: Distance correlation heatmap between RNN with 6 inputs and 10 inputs. This
example invokes a scenario where the input size is smaller than the largest lag in the AR
process. The RNNs were trained under an AR(8) process with the following governing
equation: zl = 0.8zl−8 + ϵt. The 6 input and 10 input RNNs received an MSE = 1.18 ±
0.056 (MAPE = 0.510 ± 0.0816) and 0.496 ± 0.024 (MAPE = 0.272 ± 0.226), respectively,
after 50 simulation runs. RNN (6 input) activations layers 1-6 and RNN (10 input)
activation layers 5-10 are noticeably highly correlated. This correlation suggests that the
smaller network learns the final activation layer outputs of sufficiently sized networks.
However, without access to the 8th lagged time step from the AR(8) process, the smaller
network is missing crucial information that prevents accurate forecasts. This is evident
from the worse fitting forecasts of the time series plot and the corresponding MSE and
MAPE scores.

structure multiple times. This redundancy likely aids in the backpropagation
through time algorithm, where the adjusted layer weights are updated to have
more accurate forecasts.
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Figure 15: Distance correlation heatmap between RNNs with 10 inputs and 20 inputs.
The RNNs were trained under an AR(6) process with the following governing equation:
zl = 0.8zl−6 + ϵt. The 10 input and 20 input RNNs received an MSE of 0.501 ± 0.061
(MAPE = 0.278 ± 0.0790) and 0.490 ± 0.045 (MAPE = 0.293 ± 0.137), respectively,
after 50 simulation runs. The heatmap shows diagonal streaks of similarities in both the
networks, which are spaced apart by 6 activation layers, matching the AR(6) process. The
20 input RNN encounters the AR(6) lag structure at least thrice, as compared to twice
in the 10 input RNN. This may be the source of why the former RNN yields a slightly
lower MSE (and comparable MAPE) than the latter RNN. However, the corresponding
time series forecasting plots indicate that both the RNNs learn the time series structure
adequately as their input sizes are sufficiently large.

5. Discussion

We use distance correlation to show that the RNN activation layers can
identify lag structures but have issues in transmitting that information to the
final activation layer. This loss in information seems to occur over a span
of 5-6 activation layers before the distance correlation values converge. The
critical implication is that the RNN forecasts of univariate time series pro-
cesses with large lag structures are likely to be poor since they are subject to
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more information loss. This can affect design decisions such as the sampling
rate. For example, a sampling rate of hours, as compared to days, may sub-
ject the RNN to larger lag structures, even though a higher resolution input
sequence is obtained. Conversely, lower lag structures make RNNs a pre-
ferred model with fast forecast results as they are relatively computationally
inexpensive. These results are supported by our evaluation on the ETTh1,
OT and Solar-Energy datasets, where we observe high correlation values at
the final activation layers. This yields favorable forecasts and indicates that
the RNNs have adequate learning capacity for single-step forecasting of such
data.

Additionally, low distance correlation values of the activation layers in
MA processes show that the error lags are difficult to model for RNNs. This
lower accuracy is exacerbated by the information loss of RNNs. We also
observe that the low distance correlation values in all the activation layers
for GARCH processes lead to poor performance. Thus, an RNN model of any
heteroskedastic time series is not likely to perform well. Relating this to real
world data, we observe that the NASDAQ Composite returns look similar
to the GARCH process results. None of the activation layer correlations are
high, leading to poor fitting forecasts. In these instances, we find that the low
correlations in the activation layers relate to the lack of the RNN’s learning
capacity given this form of time series data.

These results can also help the practitioners with a priori assessments of
the suitability of RNN forecasts given the characteristics of their time series
data. For example, ACF plots, indicating whether the lag structures are high,
can determine whether the corresponding time series processes are suitable
for RNN forecasting. The presence of AR, MA, ARMA, and GARCH pro-
cesses are also indicated in the ACF plots, providing cues on whether RNNs
would be suitable for the corresponding forecast problems. This knowledge is
valuable in reducing unnecessary and time-consuming model building and ex-
ploration steps. Coupling these observations with the hyperparameter-based
comparisons provided by the distance correlation heatmaps, analysts are now
better equipped to both interpret and explain RNN modeling of time series.

We acknowledge some ways to improve and expand our findings. First,
we primarily consider well-established time series processes. This is done
intentionally to create a controlled experiment, where the inputs and outputs
of the time series processes are well defined. An expansion of the scope
of our experiments to real world datasets, may provide a more practical
context for our evaluation tool. Further, we only consider the most basic
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form of time series forecasting, which is univariate, single-step prediction.
Single-step predictions can make our plotted forecasting results look quite
favorable, but they should not be confused with the much more challenging
task of forecasts with larger prediction horizons. Multivariate and multiple
horizon forecasting are expected to reveal more insights into the effectiveness
of RNNs, and we believe that distance correlation is powerful and generic
enough to be adapted to such problems.

We also recognize that our distance correlation-based analysis is done
with only Elman RNNs. However, we contend that it can be expanded
to other widely-used RNN architectures, such as Long-Short Term Memory
(LSTM) and Gated Recurrent Unit (GRU) models, which have more complex
cell operations to alleviate some of the common pitfalls of RNNs. It may
be particularly interesting to investigate how the information is partitioned
among the regulatory gates and additional recurrent cell states of LSTMs.
This analysis tool can also be extended to many other deep learning networks
that attempt to address time series forecasting. This includes observing how
a time series input evolves through every major component in a transformer
or another hybrid architecture. Overall, we feel that distance correlation is
a flexible metric that can potentially unlock the unexplained nature of deep
learning models for time series forecasting tasks.

6. Conclusions

In this paper, we develop a distance correlation framework to study the
effectiveness of RNNs for time series forecasting. Specifically, we leverage
the versatility of distance correlation to track the outputs of the RNN acti-
vation layers and examine how well they learn specific time series processes.
Through both synthetic and real world data experiments, we find that the
activation layers detect time series lag structures well, but tend to lose this
information over a sequence of five-six layers. This affects the forecast accu-
racy of series with large lag structures. Further, the activation layers have
difficulty in modeling the error lag terms for both moving average and het-
eroscedastic processes. Last, our distance correlation heatmap comparisons
reveal that certain network hyperparameters, such as the number of hidden
units and activation function, matter less as compared to the input window
size of an RNN for accurate forecasts. We, therefore, believe our framework
is a foundational step toward improving our understanding of the ability of
deep learning models to handle time series forecasting tasks.

31



Appendix A. Additional Experimental Results

The following tables report the time series forecasting results using RNN
models that are slightly different to the model used in Table 1. These tables
expand the RNN architecture to a larger number of input hidden units of
128 (Table A.2), a learning rate of 0.001 (Table A.3), and a dropout rate
of 0.2 in the final layer (Table A.4). The purpose of these additional tables
is to show consistency in the results from Section 4.2, even with a different
set of hyperparameters. For example, each table shows that for increasing
lag structures, MSE and MAPE scores grow, and the activation memory loss
increases (shown by the change in % column). It also shows that despite
the changes to the hyperparameters, large MA lag structures and GARCH
processes are not adequately modeled by an RNN. Given the agreement of
these results, we contend that other changes to the RNN hyperparameters
will lead to the same general outcomes.
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Table A.2: MSE, MAPE, and distance correlation results for all the experiments with 128
input hidden units

Time Series MSE MAPE R̂(A
(P )
t ,Y)

(max)
R̂(A

(P )
T ,Y) Change (in

%)

AR(1) 0.024 ±
0.005

0.058 ±
0.039

0.952 0.952 0

AR(5) 0.070 ±
0.029

0.105 ±
0.078

0.913 0.449 45

AR(10) 0.404 ±
0.197

0.275 ±
0.192

0.947 0.402 58

AR(20) 1.112 ±
0.333

0.809 ±
1.275

0.966 0.378 61

MA(1) 0.612 ±
0.034

0.303 ±
0.050

0.434 0.434 0

MA(5) 0.772 ±
0.050

0.434 ±
0.178

0.431 0.134 69

MA(10) 0.920 ±
0.059

0.424 ±
0.159

0.431 0.105 76

MA(20) 1.080 ±
0.064

0.572 ±
0.309

0.428 0.096 78

ARMA(1,1) 0.008 ±
0.002

0.035 ±
0.019

0.947 0.947 0

ARMA(1,10) 0.012 ±
0.003

0.040 ±
0.025

0.966 0.966 0

ARMA(10,1) 0.235 ±
0.137

0.251 ±
0.344

0.946 0.482 49

GARCH(2,2) 0.85 ±
0.674

0.651 ±
0.551

0.272 0.267 2

GARCH(4,4) 1.186 ±
1.081

1.406 ±
4.608

0.218 0.208 5

ETTh1, OT 0.038 ±
0.019

0.603 ±
0.650

0.913 0.913 0

Solar-
Energy

0.010 ±
0.007

1.083 ±
5.48

0.976 0.976 0

NASDAQ 1.558 ±
0.460

8.953 ±
8.554

0.120 0.112 7
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Table A.3: MSE, MAPE, and distance correlation results for all the experiments with a
learning rate of 0.001

Time Series MSE MAPE R̂(A
(P )
t ,Y)

(max)
R̂(A

(P )
T ,Y) Change

(in %)

AR(1) 0.028 ±
0.007

0.048 ±
0.012

0.964 0.9964 0

AR(5) 0.070 ±
0.036

0.099 ±
0.083

0.917 0.416 55

AR(10) 0.438 ±
0.184

0.272 ±
0.282

0.952 0.426 55

AR(20) 1.111 ±
0.250

1.259 ±
2.677

0.965 0.346 64

MA(1) 0.826 ±
0.060

0.367 ±
0.199

0.472 0.472 0

MA(5) 1.011 ±
0.078

0.399 ±
0.144

0.450 0.170 62

MA(10) 1.213 ±
0.092

0.468 ±
0.179

0.439 0.115 74

MA(20) 1.534 ±
0.130

0.569 ±
0.222

0.431 0.106 75

ARMA(1,1) 0.008 ±
0.002

0.030 ±
0.018

0.967 0.967 0

ARMA(1,10) 0.012 ±
0.004

0.037 ±
0.021

0.972 0.972 0

ARMA(10,1) 0.193 ±
0.097

0.267 ±
0.359

0.945 0.508 46

GARCH(2,2) 1.201 ±
1.034

1.453 ±
4.901

0.279 0.270 27

GARCH(4,4) 1.235 ±
1.201

0.581 ±
0.471

0.209 0.068 20

ETTh1, OT 0.039 ±
0.021

0.523 ±
0.537

0.942 0.942 0

Solar-
Energy

0.010 ±
0.006

1.083 ±
2.29

0.977 0.977 0

NASDAQ 1.592 ±
0.497

1.132 ±
0.907

0.112 0.103 8
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Table A.4: MSE, MAPE, and distance correlation results for all the experiments with a
dropout rate of 0.2

Time Series MSE MAPE R̂(A
(P )
t ,Y)

(max)
R̂(A

(P )
T ,Y) Change

(in %)

AR(1) 0.030 ±
0.009

0.060 ±
0.030

0.923 0.923 0

AR(5) 0.174 ±
0.160

0.184 ±
0.176

0.911 0.457 50

AR(10) 1.210 ±
0.470

0.610 ±
0.864

0.948 0.423 55

AR(20) 1.292 ±
0.291

0.774 ±
1.080

0.967 0.368 62

MA(1) 0.605 ±
0.037

0.378 ±
0.190

0.430 0.430 0

MA(5) 0.811 ±
0.047

0.437 ±
0.381

0.436 0.127 71

MA(10) 1.027 ±
0.056

0.492 ±
0.231

0.425 0.099 77

MA(20) 1.040 ±
0.056

0.550 ±
0.313

0.433 0.094 78

ARMA(1,1) 0.015 ±
0.007

0.042 ±
0.021

0.923 0.923 0

ARMA(1,10) 0.014 ±
0.005

0.044 ±
0.017

0.955 0.955 0

ARMA(10,1) 0.684 ±
0.271

0.387 ±
0.363

0.948 0.499 47

GARCH(2,2) 1.128 ±
0.835

0.701 ±
1.248

0.280 0.276 2

GARCH(4,4) 1.226 ±
1.252

1.666 ±
4.024

0.226 0.213 6

ETTh1, OT 0.041 ±
0.019

0.842 ±
2.136

0.940 0.940 0

Solar-
Energy

0.029 ±
0.031

0.663 ±
1.47

0.985 0.985 0

NASDAQ 1.562 ±
0.487

2.514 ±
4.312

0.096 0.088 9
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