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Transitions out of the ground space
limit the performance of quantum adia-
batic algorithms, while hardware imper-
fections impose stringent limitations on
the circuit depth. We propose an adia-
batic echo verification protocol which mit-
igates both coherent and incoherent er-
rors, arising from non-adiabatic transitions
and hardware noise, respectively. Quasi-
adiabatically evolving forward and back-
ward allows for an echo-verified measure-
ment of any observable. In addition to
mitigating hardware noise, our method
uses positive-time dynamics only. Cru-
cially, the estimator bias of the observable
is reduced when compared to standard
adiabatic preparation, achieving up to a
quadratic improvement.

1 Introduction
The study of quantum many-body systems re-
quires the precise estimation of observables.
Quantum state preparation is naturally a pre-
requisite to this end, which is the rationale be-
hind quantum computers or quantum simulators.
The adiabatic algorithm has demonstrated large
success in a variety of platforms [1, 2]. Still,
the performance of current devices is hindered
by noise, which cannot be error corrected, yet.
Therefore, error mitigation techniques have been
explored both theoretically and experimentally
and can significantly improve the estimation of
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Figure 1: Schematic overview of the method. Density
matrices are expressed in the energy eigenbasis of the
target Hamiltonian. The pure state after the adiabatic
evolution (ρad) approximates the true ground state. Via
a dephasing operation, the coherent error is promoted
to an incoherent error in ρd such that error mitigation
techniques can be applied. This allows measuring the
kth degree purified observable ⟨O⟩(k) which yields a lower
bias than evaluating the state directly after the adiabatic
preparation

[
⟨O⟩ad]

.

observables [3–5]. Surprisingly, there have been
few synergies jointly considering error mitigation
for the adiabatic algorithm.

Any quantum circuit can be efficiently simu-
lated by the adiabatic algorithm [6]. In adiabatic
quantum computation, the system is initialized
in the ground state of a trivial Hamiltonian and
one seeks to prepare the ground state of the final
Hamiltonian by slowly interpolating between the
two. The success of the algorithm is determined
by the speed of the adiabatic passage and spectral
properties of the Hamiltonians [7, 8]. More pre-
cisely, the total evolution time, or circuit depth,
depends inverse polynomially on the minimum
spectral gap between the ground state and the
first excited state along the adiabatic path. These
relations are quantified by the adiabatic theorem
and versions thereof [9–11]. The adiabatic al-
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gorithm is especially suited for devices that im-
plement dynamics natively without any Trotter
overhead [12–15].

To address the restrictions in current hardware,
various error mitigation techniques have been
explored in recent years to improve the usefulness
of a noisy quantum computation [3]. These meth-
ods include zero-noise extrapolation, exploiting
symmetry or purity constraints, and several other
approaches. Here, we focus on purity methods,
which aim to suppress stochastic errors by pro-
jecting the noisy state ρ onto the closest pure
state, given by the dominant eigenvector of ρ.

The purification can in general be achieved by
collective measurements of several copies of ρ,
known as virtual state distillation [16] or error
suppression by derangement [17]. Echo verifi-
cation (EV) achieves this using two copies of ρ
multiplexed in time, rather than in space [18–20].
In EV, a desired state is prepared, an observable
is measured controlled by an auxiliary qubit, and
the state is then uncomputed. This allows to ac-
cess expectation values of the so-called 2nd degree
purified state of ρ: ⟨O⟩EV = Tr

[
Oρ2]

/Tr
[
ρ2]

.
Recently, purification-based error mitigation has
been tested experimentally in the context of the
variational quantum eigensolver [4]. Error miti-
gation methods tailored specifically to the adia-
batic algorithm have been explored considerably
less in the literature. Few exceptions consider er-
ror suppression and correction [21] or symmetry-
protection for Trotter dynamics [22].

In this work, we present a mitigation technique
for estimating observables on quasi-adiabatically-
prepared states, in the spirit of echo verifica-
tion. Along with stochastic device noise, our
method seeks to suppress the coherent error due
to non-adiabatic transitions. Our method which
we denote Adiabatic Echo Verification (AEV)
relies on dephasing operations to promote the
coherent errors to random errors, which can then
be mitigated. We illustrate the combination of
dephasing and purification on a pure state in
Fig. 1. Similar to the original echo verification
technique, the leading order error in the ground
state expectation value of an observable is sup-
pressed quadratically. In particular, we consider
an imperfect implementation of the dephasing
operation using random-time evolution. Related
random-time dynamics have been successfully
used in the context of Zeno-type protocols [23].

tGround state

1st excited

(a)

(b)

(c)

t

Figure 2: (a) Quantum circuit for adiabatic echo verifi-
cation to estimate an observable ⟨O⟩. A quasi-adiabatic
sweep U→ is followed by an approximate ground state
dephasing operation D. After the controlled application
of a unitary observable O and dephasing again, the
sweep is performed backward U←( ̸= U†→). Postpro-
cessing the measurement result, including the success
information of the ground state projection, allows to
extract an improved expectation value. (b) Schematic
of the Hamiltonian dynamics. Approximate dephasing
is implemented by evolving with the target Hamiltonian
at s = 1 for a random time. Typically, this time is
much smaller than the time required for the adiabatic
algorithm as depicted in (c), where we sketch a corre-
sponding low-energy spectrum.

The overhead from this dephasing operation is
only poly-logarithmic in the accuracy of the de-
phasing operation for estimating observables of
states within gapped phases. We discuss how
the protocol compares favorably against doubling
the total evolution time in the standard adiabatic
algorithm. A key feature of our technique is
that hardware noise is also mitigated naturally
through the EV method. Our protocol only re-
quires implementing positive-time evolution and
applying the operator of interest in a controlled
way. Hence, the protocol is not only suitable
for purely gate-based quantum devices but also
for hybrid quantum simulators, e.g. using neutral
Rydberg atoms [14].

2 Background

2.1 The adiabatic algorithm

In order to be able to measure observables on the
ground state |E0⟩ of a target Hamiltonian HT , a
state approximating |E0⟩ with sufficient precision
needs to be prepared. The quantum adiabatic
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algorithm (QAA) is a suitable algorithm for this
task. At the heart of the QAA is the adiabatic
theorem, which states that a system remains in
an instantaneous eigenstate if the Hamiltonian is
changed sufficiently slowly and the eigenstate is
separated from other eigenstates by a minimum
spectral gap ∆min throughout the transition [24].
Hence, the desired ground state |ψT ⟩ of a Hamil-
tonian of interest HT can be prepared by inter-
polating from a suitable Hamiltonian H0 with a
trivial ground state |ψ0⟩ as

H(s) = (1 − s)H0 + sHT . (1)

where s = t/T is the parametrized time. The
folk version of the adiabatic theorem states that
a total time T = O

(
∆−2

minϵ
−1/2

)
suffices to

prepare the ground state up to fidelity 1 − ϵ.
Rigorous versions of the adiabatic theorem give
a bound T = O

(
∆−3

minϵ
−1/2

)
if H(s) is twice

differentiable [9, 10]. Given a finite coherence
time, the QAA prepares an approximation to
the target state |ψad⟩ =

√
1 − ϵ |E0⟩ +

√
ϵ

∣∣∣E⊥0 〉
where ⟨E0|E⊥0 ⟩ = 0. Measuring an observable
O, we obtain an approximation to the true value
Tr [O |ψ⟩⟨ψ|ad] = (1 − ϵ)⟨O⟩|E0⟩ + O(

√
ϵ).

2.2 Purification-based error mitigation

Purification methods such as echo verification
(EV) or virtual state distillation improve the
quality of an expectation value measurement on
a noisy (incoherent) approximation ρ of a pure
state |ψ⟩⟨ψ|. This is achieved by effectively mea-
suring the expectation value Tr

[
Oρk

]
of O on

the k-th power of the density matrix. Raising
ρ to the k-th power suppresses the eigenvectors
with smaller eigenvalues, increasing the relative
weight of the dominant eigenvector which, for
small enough noise, should be |ψ⟩. As ρk is
non-normalized, purification methods prescribe
to independently measure Tr

[
ρk

]
to calculate the

desired estimator

⟨O⟩(k) := Tr
[
Oρk

]
/Tr

[
ρk

]
. (2)

If ρ has an eigenstate |E0⟩ with large weight c0 =
1 − ϵ (small positive ϵ), we can write the density
matrix as ρ = c0 |E0⟩⟨E0|+ ϵρ⊥ with ρ⊥ a density
matrix orthogonal to |E0⟩ (i.e., ρ⊥ |E0⟩ = 0). The

kth degree purified estimator is then

⟨O⟩(k) =
ck

0 ⟨E0|O |E0⟩ + ϵk Tr
[
ρk
⊥O

]
ck

0 + ϵk Tr
[
ρk
⊥

] (3)

= ⟨E0|O |E0⟩ + O(ϵk Tr
[
ρk
⊥

]
∥O∥), (4)

where ∥·∥ is the operator norm. Echo verifi-
cation implements purification for k = 2 us-
ing a single register by multiplexing two state-
(un)preparation oracles in time. The method
suppresses the error contributions to the observ-
able estimator such that the leading order1 be-
comes O(ϵ2).

3 Mitigating coherent errors in adiaba-
tic state preparation

Our main contribution is to propose a method
where the echo verification technique is applied
to coherent errors. We focus on an application
where the coherent error arises in the adiaba-
tic algorithm due to finite algorithm runtimes.
However, as the state prepared by a noiseless im-
plementation of the adiabatic algorithm is pure,
naive purification will not have any effect.

To recover the error mitigation power on ρad =
|ψad⟩⟨ψad|, we introduce an ideal dephasing chan-
nel that turns coherent errors into incoherent
noise,

deph
H

[ρ] :=
∑

j

|Ej⟩⟨Ej | ρ |Ej⟩⟨Ej | = diag[ρ], (5)

where we sum over an eigenbasis {|Ej⟩}j of the
target Hamiltonian HT . Here, we assume a non-
degenerate spectrum and give an extension for
degenerate spectra in Appendix A. The dephas-
ing channel projects a density matrix onto its
diagonal in the energy eigenbasis, removing the
off-diagonal coherences. Applying the channel
to the state prepared by the adiabatic algorithm

1In principle, the largest error contribution to
Tr

[
O |ψ⟩⟨ψ|ad

]
is of the order O(

√
ϵ) and is then mitigated

to O(ϵ2). However, it would be misleading to interpret
this as a general quartic suppression of the error. This
is because the error contribution O(

√
ϵ) contains the

term ⟨E0|O|E⊥
0 ⟩, which is often small independently of

ϵ. This term can be rigorously sent to zero by applying
a dephasing channel, which suppresses coherences in the
Hamiltonian eigenbasis.
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yields

ρd := deph
H

[ρad] = c0 |E0⟩⟨E0| + ϵρ⊥ (6)

=


c0 0 . . . 0
0
... ϵρ⊥
0

 (7)

with ρ⊥ = ∑
j ̸=0 ρjjϵ

−1 |Ej⟩⟨Ej |. Then, using the
echo verification technique on the dephased state,
which is a mixed state, we obtain the following
result for the observable O:

Tr
[
Oρk

d

]
Tr

[
ρk
d
] = (1 − γ) ⟨E0|O |E0⟩ + γ

Tr
[
Oρk
⊥

]
Tr

[
ρk
⊥

] ,

(8)

with

γ =
[
1 + ck

0/
(
ϵk Tr

[
ρk
⊥

])]−1
(9)

∼ O
(
ϵk Tr

[
ρk
⊥

])
. (10)

To implement echo verification, typically, an
inverse pair of unitaries (U→, U †→) would be re-
quired [20]. The quantum circuit that imple-
ments adiabatic echo verification for an oper-
ator O and a depasing operation is shown in
Fig. 2(a). A priori, the unpreparation U †→ would
use negative-time dynamics, which is generally
not available in analog simulators. For our pur-
poses, however, we can consider the two states
ρad = U→ |ψ0⟩⟨ψ0|U †→ and σad = U †← |ψ0⟩⟨ψ0|U←,
where U← is a positive-time adiabatic evolution
with an inverted schedule from s = 1 to s = 0.
Both states have the same guaranteed fidelity
with the target state |E0⟩ from the adiabatic the-
orem and ground state coherences are surpressed
after the dephasing operation. This allows to
use positive-time dynamics for the unpreparation
step in AEV. We illustrate the inverted schedule
in Fig. 2(b), where a red line indicates the Hamil-
tonian in the dynamics.

Next, we consider the implementation of the
dephasing channel. Importantly, we observe that
a channel that dephases only the ground state
would also be sufficient to achieve our goal, pro-
ducing a state of the form Eq. 6 with a more
general, non-diagonal ρ⊥, provided that c0 still
dominates. In the following part, we analyze
such an approximate dephasing operation using
positive-time dynamics.

3.1 Implementation and cost of the dephasing
We can implement an approximation of the de-
phasing channel (Eq. 5) by a random-time evolu-
tion exp(−iHT τ), with τ sampled from a proba-
bility distribution P (τ), as follows: We limit the
support of P to the interval τ ∈ [0, Td]. This
ensures the dephasing can be realized naturally in
quantum simulators and limits the time overhead
of the dephasing operation to 2Td for the AEV
circuit. We define the approximate dephasing
channel

deph
H,P

[ρ] :=
∫ Td

0
dP (τ)e−iHT τρeiHT τ (11)

=
∑
j,k

Fjk |Ej⟩⟨Ej | ρ |Ek⟩⟨Ek| , (12)

where Fjk := F [P ](Ej −Ek) is the Fourier trans-
form of the random-time distribution at the tran-
sition energies. We will make use of the shorthand
D[ρ] := dephH,P [ρ]. As we only need to dephase
the ground state, we require maxj>0 |F0j | < δ.
Evaluating the adiabatic echo verification circuit
with the approximate dephasing channel D[ρ]
yields an estimator with expectation

⟨O⟩AEV = Tr[Oρ̃σ̃]
Tr[ρ̃σ̃] (13)

where ρ̃jk = Fjk[ρad]jk and σ̃kl = F∗kl[σad]kl,
expressed as matrix elements in the eigenbasis of
the target Hamiltonian (cf. Appendix B). We can
bound the deviation of the AEV estimator from
the ground state expectation value as∣∣∣⟨O⟩AEV − ⟨E0|O |E0⟩

∣∣∣ ≲ ∥O∥(ϵ1/2δ + ϵ2) (14)

with a small prefactor. To ensure this error is
bounded by O(ϵ2), it is then sufficient to take
δ ∼ ϵ3/2.

An upper bound on the |F0j | can be obtained
as a functional of the distribution P (τ). We can
thus redefine

δ := max
∆>∆T

∣∣F [P ](∆)
∣∣ (15)

where ∆T < E1 −E0 is a lower bound on the tar-
get Hamiltonian ground state gap. In principle,
different distributions can be chosen. We might,
for example, simply choose a uniform distribution
P (τ) = 1/Td for τ ∈ [0, Td]. As its Fourier trans-
form is the cardinal sine function sin(x)/x, we
obtain δ ∼ (∆Td)−1. However, discontinuities in
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P or its derivatives limit the asymptotic decay of
F [P ] to a polynomial. We can improve upon this
without increasing the maximal evolution time
by choosing a mollifier, i.e. a smooth distribution
supported on [0, Td]. A suitable example for our
purposes is the rescaled bump function

PTd(τ) =


2
NTd

exp
[

T 2
d

4τ(τ−Td)

]
if τ ∈ [0, Td],

0 otherwise,
(16)

where N ≈ 2.25 is a normalization factor. The
Fourier transform of this function decays super-
polynomially. Adapting the results from Ref. [25],
we recover

δ <

√
8π√
e

(Td∆T )−3/4 exp
[
−

√
Td∆T /2

]
, (17)

with the full derivation included in Appendix C.
A dephasing time Td ∼ ∆−1

T log2[ϵ] is thus suf-
ficient to achieve an overall error O(ϵ2). Often,
one is interested in observables of states in gapped
phases [26], such that only the poly-logarithmic
term contributes to a non-constant overhead. We
include the dephasing time in the illustration in
Fig. 2(b). In Fig. 2(c), we show a cartoon of a
the lowest two eigenenergies of the instantaneous
Hamiltonian H(s), showing a small adiabatic gap
∆min during the quasi-adiabatic sweep and a
larger, possibly constant gap ∆s=1 of the final
Hamiltonian H(1).

4 Comparison with standard adiabatic
algorithm
We seek to compare the method proposed here
with the trivial alternative for improving the
performance of the adiabatic algorithm, which
simply consists of doubling the evolution time
in the QAA. In the standard adiabatic theorem,
there is a polynomial relationship between the
accuracy and the evolution time [9]. In principle,
the adiabatic theorem can be improved towards
an exponential error dependence by assuming
a sufficiently smooth schedule with vanishing
derivatives at the beginning and end of the sched-
ule [11]. However, this is at the cost of passing
the minimal spectral gap at a faster rate, which,
in general, leads to more transitions.

Regarding our method, we therefore conclude
that if the error dependence was indeed expo-
nential, as in a Landau-Zener problem, the AEV
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Figure 3: Comparing the QAA and AEV for different
dephasing times Td, as a function of the total sweep
time T (QAA: T = Tad, AEV: T = 2Tad). AEV
improves over simply doubling the QAA sweep time in
the regime of polynomial error dependence. The respec-
tive estimator bias from ⟨E0|O |E0⟩ is shown, where
O = 1 − 2 |E0⟩⟨E0| is a reflection on the target state.
We perform density-matrix simulations; time-dependent
evolution is implemented by Euler integration, ensuring
a sufficiently small error when discretizing the sweep.
Approximate dephasing is implemented with P (τ) as in
Eq. 16.

would yield a performance comparable to the
QAA with double the evolution time. Com-
pared to the standard theorems with a polyno-
mial dependence, our method improves up to
quadratically. For the sake of concreteness, we
include numerical benchmarks in Fig. 3 showing
an advantage for preparing the ground state of
a transverse field Ising model. We consider the
reflection operator O = 1 − 2 |E0⟩⟨E0| on the
ground state |E0⟩ and show the error from the
expectation value ⟨E0|O |E0⟩ as a function of the
total sweep time. In Appendix D, we include
additional numerics that consider the average
magnetization of the state as another observable
with practical relevance. For the QAA, the sweep
time is simply the time of one forward sweep. We
compare this with the error we obtain using the
AEV for three different scenarios: no dephasing
(Td = 0), approximate dephasing (Td = 10) and
perfect dephasing Td → ∞. Here, the total
sweep time is the sum of the forward and the
backward sweeps. The Hamiltonian chosen for
the benchmark is an Ising model with a trans-
verse and a longitudinal field, which is a non-
integrable model. The quasi-adiabatic sweeps
linearly interpolate from H0 = ∑5

j=1 σ
x
j to HT =

0.2 ∑5
j=1 σ

z
j −

∑4
j=1 σ

z
jσ

z
j+1. We observe an ex-
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ponential scaling, in the so-called Landau-Zener
regime, transitioning into an inverse-quadratic
scaling for longer times (cf. Ref. [27]). For these
longer times, the AEV improves up to quadrati-
cally (error ∝ T−4) over the QAA (error ∝ T−2)
if the detuning time is sufficiently large. The
source code for the numerical simulations is pub-
lished on Zenodo [28].

5 Discussion and practical considera-
tions

In this paper, we introduced Adiabatic Echo Ver-
ification (AEV), a scheme to mitigate the co-
herent errors that characterize adiabatic state
preparation. Our method is tailored to current
quantum devices, which lack the possibility to
correct errors. AEV requires doubling the cir-
cuit time compared to standard adiabatic state
preparation, but improves up to quadratically in
the estimator bias. The additional features of
the protocol are the following. First, in order to
implement the verification part of the circuit, the
path of the quasi-adiabatic evolution is simply re-
versed. Moreover, we show how the dephasing op-
eration can be approximately implemented with
positive-time dynamics. Hence, only positive-
time evolution is required in AEV. This makes
our method suitable for quantum computers that
operate in a hybrid mode of digital gates and
analog simulation. Rydberg atom arrays have
recently demonstrated such capabilities [14, 29].

Additionally, AEV naturally mitigates non-
coherent hardware noise through echo verifica-
tion. While our paper focuses on the theoretical
analysis of the suppression of algorithmic noise,
the hardware-error mitigation power of echo ver-
ification has been previously demonstrated in
literature. Numerical studies suggest that echo
verification can effectively mitigate the effect of
any single error, obtaining a quadratic improve-
ment on the error on an observable from O(p)
to O(p2) with p the error probability [20]. The
effectiveness of echo verification for hardware er-
ror mitigation has also been demonstrated for a
10-qubit chemical simulation problem on a super-
conducting gate-based device [4].

We note that our method is compatible with
arbitrary sweep profiles in the QAA. This is es-
pecially helpful as it is well known that slowing
down the adiabatic sweep at the position of the

minimum spectral gap mitigates transitions out
of the ground state [30, 31]. More generally,
our technique can be applied to other coherent
approximate state preparation approaches, such
as variational quantum algorithms (VQAs) [32].
This applies to VQAs that prepare a pure state
heuristically by a parametrized operation U(θ)
aiming at approximating the desired ground
state. By dephasing the prepared state and using
the echo verification technique, unpreparing the
state with U(θ)†, we expect that the performance
of VQAs can be improved.

We note that the control-free versions of echo
verification [4, 20], which employ a reference
state instead of a control qubit, are not naively
available for AEV. This is due the dephasing
channel annihilating coherences between the
reference state and the state of interest.
Recently, a method for rescaling survival
probabilities was considered that has similarities
with control-free echo verification [33]. While
their unnormalized estimator Tr

[
ρOρO†

]
differs

from the echo verification counterpart Tr
[
Oρ2]

, it
would still allow for mitigating errors for certain
interesting observables such as out-of-time-order
correlators (OTOCs) [34]. Not requiring the
implementation of a controlled operation can
significantly simplify experiments. This is why
an extension of AEV without a control qubit
is an interesting direction for future work; a
related idea has been recently proposed [35].
Another promising research direction is the
combination of AEV with other purification-
based error mitigation methods such as virtual
state distillation [16, 17]. Using multiple
copies of the quasi-adiabatically prepared state,
further improvements for surpressing errors seem
possible.
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A Dephasing operation on a degenerate spectrum
In Eq. 5, we define the perfect dephasing channel for an operator H with a non-degenerate spectrum.
If the spectrum of H contains degeneracies, the dephasing channel will project ρ to a block-diagonal
operator, where the blocks are defined by the (degenerate) eigenspaces of H:

deph
H

[ρ] =
∑

j

ΠjρΠj (18)

where Πj = δ(H − Ej) is the projector on the eigenspace of H with eigenvalue Ej .
For AEV, we are only interested in dephasing the ground state with respect to the rest of the

spectrum; we only require the ground state of H to be non-degenerate for Eq. 6 and the subsequent
analysis to be valid. This is anyway a typical requirement in adiabatic state preparation.

B Evaluation of AEV estimator with approximate dephasing
In this section, we evaluate the error on the Adiabatic Echo Verification (AEV) estimator with respect
to the target value ⟨E0|O |E0⟩. We bound it as a function of the adiabatic state (un)preparation error
ϵ and the dephasing approximation error δ. The AEV circuits we consider only require positive-time
evolution with respect to the adiabatic Hamiltonian Eq. 1, and the ability to perform a controlled-O
operation (or a decomposition thereof) to implement the Hadamard test.

We recall the echo verification (EV) expectation value estimator [4, 36] is defined as

⟨O⟩EV := E[verified Hadamard test circuit (VHT)]
E[echo circuit (Echo)] . (19)

In our case, the verified Hadamard test circuit is

VHT :=
|+⟩ X + iY

|ψ0⟩ U→ D O D U← |ψ0⟩⟨ψ0|
, (20)

where U→ is the adiabatic state preparation, U← is the state unpreparation, and D := dephH,P is the
approximate dephasing. At the end of the circuit we need to measure X ⊗ |ψ0⟩⟨ψ0| and Y ⊗ |ψ0⟩⟨ψ0| to
recover the real Re[⟨O⟩EV] and imaginary i Im[⟨O⟩EV] parts of the expectation value, respectively. The
output of a single sample of the circuit will be the result of the Pauli X (±1) or Y (±i) on the control
qubit if the system register returns to the state |ψ0⟩, and 0 otherwise. Our notation supposes that O
is a unitary operator, and its application is controlled by the state of the control qubit. If O is not
unitary, we can rewrite it as a decomposition O = ∑

x ax Re[Ux] + bx Im[Ux] and measure the terms
of the decomposition separately [36]. The echo circuit, which is used to compute the normalization of
⟨O⟩EV, is given as

Echo := |ψ0⟩ U→ D D U← |ψ0⟩⟨ψ0| (21)
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and obtained by substituting the operator O with the identity in the previous circuit.
The adiabatic preparation and the adiabatic unpreparation are defined as

U→ = T exp
{

−i
∫ Tad

0
H[s(t)] dt

}
; U← = T exp

{
−i

∫ Tad

0
H[s(Tad − t)] dt

}
, (22)

where T exp notates the time-ordered exponential, H(s) is the adiabatic Hamiltonian (Eq. 1), s(t) the
adiabatic schedule with s(0) = 0 and s(Tad) = 1, and Tad is the total evolution time of the adiabatic
algorithm. Note that dt is always positive, thus negative-time evolution is not required to implement
U→ and U←. Typically, in an EV circuit, if the preparation unitary is U , then the unpreparation is
performed with its conjugate transpose U † such that UU † = 1. Here, however, this is not the case
for the two operations U← and U→. We will show that the added dephasing indeed removes this
requirement for our purposes.

In our calculations, we only assume that U→ (U←) implement an approximate state (un)preparation
of |E0⟩ with a fidelity of at least 1 − ϵ with small ϵ > 0. Concretely, we define

| ⟨E0|U→ |ψ0⟩ |2 = 1 − ϵ← , | ⟨ψ0|U← |E0⟩ |2 = 1 − ϵ→, (23)

such that ϵ = max{ϵ←, ϵ→}. It is reasonable to assume the two adiabatic processes will have a similar
error, as any adiabatic theorem bounds both in the same way.

The approximate dephasing channel, of the form Eq. 11, is defined via a matrix of Fourier coefficients

Fjk := F [P ](Ej − Ek) ∈ C , D[ρ]jk = Fjkρjk (24)

We denote Ajk = ⟨Ej |A |Ej⟩ the matrix elements of an operator in the eigenbasis of HT .
The only requirement on the dephasing channel is that the Fourier coefficients are bounded

maxj>0 |F0j | < δ, which imposes that the coherences between the ground state and any other eigenstate
are suppressed by a factor smaller than δ. In the main text, we relate this factor to the dephasing time
and to ground state gap of the target Hamiltonian.

The expectation value of circuit Eq. 20 is

E[VHT] = Tr
{
U← D

[
CtrlO D

[
U→(|+⟩⟨+| ⊗ |ψ0⟩⟨ψ0|)U †→

]
CtrlO†

]
U †← (|ψ0⟩⟨ψ0| ⊗ 2 |0⟩⟨1|)

}
= Tr

{
U †← |ψ0⟩⟨ψ0|U←︸ ︷︷ ︸

σ

D
[
O D

[
U→ |ψ0⟩⟨ψ0|U †→︸ ︷︷ ︸

ρ

]]}
=

∑
jk

Fjk Tr
{
U †← |ψ0⟩⟨ψ0|U← D

[
O |Ej⟩ ⟨Ej |U→ |ψ0⟩⟨ψ0|U †→ |Ek⟩︸ ︷︷ ︸

ρjk

⟨Ek|
]}

=
∑
jkl

FjkFlkσkl Olj ρjk (25)

where we expand the dephasing channels, and we define the density matrices ρ and σ, corresponding
respectively to the pure states

U→ |ψ0⟩ =
√

1 − ϵ |E0⟩ +
√
ϵ

∑
j>0

αj |Ej⟩ ,
∑
j>0

|αj |2 = 1; (26)

⟨ψ0|U← =
√

1 − ϵ ⟨E0| +
√
ϵ

∑
j>0

β∗j ⟨Ej | ,
∑
j>0

|βj |2 = 1. (27)

We can then absorb the dephasing coefficients into ρ̃jk = Fjkρjk and σ̃kl = Flkσkl = F∗lkσkl, simplifying

E[VHT] = Tr[ρ̃σ̃O] , E[Echo] = Tr[ρ̃σ̃] , ⟨O⟩EV = Tr[ρ̃σ̃O]
Tr[ρ̃σ̃] . (28)
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Comparing this result to the standard purification estimator Eq. 2, we see that the ρ2 is substituted
by ρ̃σ̃. The explicit expression for this operator in the HT eigenbasis is

ρ̃σ̃ =
[
(1 − ϵ)2 + ϵ(1 − ϵ)

∑
j>0

α∗jβjF∗j0F0j

]
|E0⟩ ⟨E0|

+
√
ϵ
√

1 − ϵ
∑
j>0

[
(1 − ϵ)αjFj0 + ϵ

∑
l>0

αjα
∗
l βlFjlF∗l0

]
|Ej⟩ ⟨E0|

+
√
ϵ
√

1 − ϵ
∑
j>0

[
(1 − ϵ)β∗j Fj0 + ϵ

∑
l>0

β∗jα
∗
l βlFjlF∗l0

]
|E0⟩ ⟨Ej |

+ ϵ
∑

j,k>0

[
(1 − ϵ)αjβ

∗
kFj0F∗0k + ϵ

∑
l>0

αjα
∗
l βlβ

∗
kFjlF∗lk

]
|Ej⟩ ⟨Ek| (29)

=[ρ̃σ̃]00 |E0⟩ ⟨E0| +
∑
j>0

[ρ̃σ̃]j0 |Ej⟩ ⟨E0| +
∑
j>0

[ρ̃σ̃]0j |E0⟩ ⟨Ej | +
∑

j,k>0
[ρ̃σ̃]jk |Ej⟩ ⟨Ek| . (30)

We proceed by bounding the error of ⟨O⟩EV with respect to the target ⟨E0|O |E0⟩,

error :=
∣∣∣∣Tr[Oρ̃σ̃]

Tr[ρ̃σ̃] − ⟨E0|O |E0⟩
∣∣∣∣ =

∣∣Tr[Oρ̃σ̃] −O00 Tr[ρ̃σ̃]
∣∣ ·

∣∣Tr[ρ̃σ̃]
∣∣−1

. (31)

In the HT eigenbasis, the relevant terms read

Tr[Oρ̃σ̃] = [ρ̃σ̃]00O00 +
∑
j>0

[ρ̃σ̃]0jOj0 +
∑
k>0

[ρ̃σ̃]k0O0k +
∑

j,k>0
[ρ̃σ̃]jkOkj , (32)

Tr[ρ̃σ̃] = [ρ̃σ̃]00 +
∑
j>0

[ρ̃σ̃]jj . (33)

We focus first on bounding the first factor on the right-hand side of Eq. 31,∣∣Tr[Oρ̃σ̃] −O00 Tr[ρ̃σ̃]
∣∣ =

∣∣Tr[(O −O00)ρ̃σ̃]
∣∣. (34)

We separate this expression through the triangle inequality,

∣∣Tr[Oρ̃σ̃] −O00 Tr[ρ̃σ̃]
∣∣ =

∣∣∣∣∑
j>0

[ρ̃σ̃]0jOj0 +
∑
k>0

[ρ̃σ̃]k0O0k +
∑

j,k>0
[ρ̃σ̃]jkOkj −

∑
j>0

[ρ̃σ̃]jjO00

∣∣∣∣
≤ ∥O∥

(∣∣∣∣∑
j>0

[ρ̃σ̃]0j

∣∣∣∣ +
∣∣∣∣∑
j>0

[ρ̃σ̃]j0

∣∣∣∣)
+

∣∣∣∣ ∑
j,k>0

[ρ̃σ̃]jkOkj −
∑
j>0

[ρ̃σ̃]jjO00

∣∣∣∣, (35)

where ∥ · ∥ is the operator norm. To bound the first term, we apply again the triangle inequality,∣∣∣∣∑
j>0

[ρ̃σ̃]0j

∣∣∣∣ ≤
∣∣∣∣∑
j>0

ρ̃00σ̃0j

∣∣∣∣ +
∣∣∣∣ ∑
j,k>0

ρ̃0kσ̃kj

∣∣∣∣ (36)

and bound both resulting terms through Cauchy-Schwartz inequalities,∣∣∣∣ ∑
j>0

ρ̃00σ̃0j

∣∣∣∣ ≤ (1 − ϵ)3/2 ϵ1/2
∣∣∣∣∑

j

Fj0β
∗
j

∣∣∣∣ ≤ (1 − ϵ)3/2 ϵ1/2 |β⃗| max
k>0

|F0k| = (1 − ϵ)3/2 ϵ1/2δ; (37)

∣∣∣∣ ∑
j,k>0

ρ̃0k σ̃kj

∣∣∣∣ = (1 − ϵ)1/2 ϵ3/2
∣∣∣∣ ∑
j,k>0

F0kα
∗
kβkFjkβ

∗
j

∣∣∣∣
≤ (1 − ϵ)1/2 ϵ3/2 |β⃗|

∑
j>0

∣∣∣∣ ∑
k>0

Fjkα
∗
kβkF0k

∣∣∣∣
≤ (1 − ϵ)1/2 ϵ3/2 |β⃗|2 |α⃗| max

j,k>0
|Fjk| max

k>0
|F0k| ≤ (1 − ϵ)1/2 ϵ3/2δ (38)
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where we note that α⃗ and β⃗ are normalized by defintion, Fjk ≤ 1 and maxk>0 |F0k| = δ. The same
bound applies to the second term in the parentheses in Eq. 35,

∣∣∑
j>0[ρ̃σ̃]j0

∣∣. The last term of Eq. 35
can be rewritten as ∑

j,k>0
[ρ̃σ̃]jkOkj −

∑
j>0

[ρ̃σ̃]jjO00 = Tr[Π> ρ̃σ̃Π>(O −O001)] (39)

where Π> = 1 − |E0⟩⟨E0| is the projector on the subspace orthogonal to |E0⟩. We can then use the
Von Neumann inequality to bound∣∣Tr[Π> ρ̃σ̃Π>(O −O001)]

∣∣ ≤ ∥O −O001∥ · ∥Π> ρ̃σ̃Π>∥1 (40)

where ∥A∥1 = Tr
√
A†A is the trace norm.

Now, by virtue of the triangle inequality, and the fact that ∥ |u⟩⟨v| ∥1 = ∥u∥∥v∥, for any vectors
|u⟩ , |v⟩, we have

∥Π>ρ̃σ̃Π>∥1 ≤ ϵ(1 − ϵ)
∥∥∥ ∑

j>0
αjFj0 |Ej⟩

∥∥∥ ∥∥∥ ∑
k>0

βkF0k |Ek⟩
∥∥∥ + ϵ2

∑
l>0

|αl||βl|
∥∥∥ ∑

j>0
αjFjl |Ej⟩

∥∥∥ ∥∥∥ ∑
k>0

βkFlk |Ek⟩
∥∥∥

≤ ϵ(1 − ϵ)δ2 + ϵ2 (max
j,k>0

|Fjk|)2 ∑
l>0

|αl||βl|

≤ ϵ(1 − ϵ)δ2 + ϵ2 (41)

where we used Cauchy-Schwartz in the last line.
Combining the bounds from Eqs. (37), (38) and (41), and using ∥O −O001∥ ≤ 2∥O∥, we get∣∣Tr[Oρ̃σ̃] −O00 Tr[ρ̃σ̃]

∣∣ ≤ 2∥O∥
[
(1 − ϵ)3/2 ϵ1/2δ + 3(1 − ϵ)1/2 ϵ3/2δ + ϵ(1 − ϵ)δ2 + ϵ2

]
. (42)

Next, to bound the factor |Tr[ρ̃σ̃]|−1 in Eq. 31, we apply the reverse triangle inequality to |Tr[ρ̃σ̃]|:

∣∣Tr[ρ̃σ̃]
∣∣ =

∣∣∣∣(1 − ϵ)2 + 2ϵ(1 − ϵ) Re
( ∑

j>0
αjβ

∗
j F2

j0

)
+ ϵ2

∑
j,l>0

αjα
∗
l βlβ

∗
j F2

jl

∣∣∣∣
≥

∣∣(1 − ϵ)2 − 2ϵ(1 − ϵ) − ϵ2
∣∣ (43)

where we used that δ ≤ 1. For ϵ <
√

3/2 − 1, the argument in Eq. 43 is strictly positive, so we can
remove the absolute value signs. The dominant terms in the error Eq. 31 are then

error ∼ ∥O∥(ϵ1/2δ + ϵ2). (44)

We can verify that for δ → 0 we recover the error scaling with ϵ2, as expected from perfect dephasing.
To achieve the same scaling, it is in fact sufficient to choose δ = ϵ3/2.

C Dephasing time for a smooth probability distribution
In this section we motivate the choice of the rescaled bump function in Eq. 16 for the distribution
P (τ) used to implement dephasing by random-time evolution (Eq. 11). We recall that we require
P : [0, Td] → R+ to have support on [0, Td]. This ensures we only need to evolve for positive times
and the maximal dephasing time is Td. The performance for the dephasing operation on the ground
state is measured by δ = max∆>∆T

|F [P ](∆)|, which is essentially a bound on the decay of the Fourier
transformation of P . As τ and ∆ are conjugate dimensionful variables, we can equivalently study

δ = max
ω>∆T Td

|F [P̃ ](ω)| for P̃ : [0, 1] → R+, (45)

where P̃ (τ∆T ) = P (τ).
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To obtain the best possible asymptotic decay of the Fourier transform of a function F [f ], we should
choose f to be smooth. In fact, requiring the Fourier transform of f to decay as F [f ](k) ≲ |k|−(r+1+ϵ)

(for any choice of ϵ > 0) implies that

∃Lr > 0 : ∀x
∣∣∣∣drf(x)

dxr

∣∣∣∣ =
∣∣∣∣ ∫

dk eikt krF [f ](k)︸ ︷︷ ︸
≲|k|−(1+ϵ)

∣∣∣∣ < Lr, (46)

because |k|−(1+ϵ) is absolutely integrable away from 0 and F [f ](k) is bounded. This implies that f
and all its derivatives up to order r− 1 are Lipschitz continuous. Thus, to achieve a Fourier transform
decaying faster than any polynomial F [f ](k) = o(1/poly(k)), we have to choose f(x) ∈ C∞ a smooth
function.

One smooth function with compact support is the bump function

f(x) =
{
e−(1−x2)−1 if − 1 < x < 1,
0 otherwise,

(47)

we define its norm N :=
∫ 1
−1 f(x) dx ≈ 2.25. Based on this function, we define the probability

distribution

PTd(τ) = 2
TdN

f

(
2 τ
Td

− 1
)

=


2

TdN
exp

([
4( τ

Td
− 1) τ

Td

]−1
)

if 0 < τ < Td,

0 otherwise,
(48)

which is normalized, smooth, and has support on [0, Td]. The Fourier transform of this function can be
estimated through the saddle point approximation; we build on the results of Ref. [25] which provide
a bound the Fourier transform F [N f ] of the normalized f(x):

F [N f ](k) ≈ 2 Re
[√

−iπ√
2i
eik− 1

4−i
√

k

]
k−

3
4 e−

√
k. (49)

We construct a monotonic envelope for this oscillating function by substituting the real part for an
absolute value, and we perform a change of variables obtaining the bound

δ = max
∆>∆T

|F [PTd ](∆)| <
√

8π√
e

(Td∆T )−3/4 e−
√

Td∆T /2. (50)

The validity of this bound is also verified numerically. This translates to a statement on the dephasing
time Td required to achieve a target dephasing performance δtarget for a given gap ∆T between the
ground state and the first excited state of HT . Note that the inverse is defined in terms of the principal
branch W0 of the Lambert W function. We obtain

Td = 9
2 ∆T

W0

 2
√

2π1/3

3 e1/6 δ
2/3
target

 ≲ O
(
log2(δ−1

target)∆−1
T

)
. (51)

Thus, Td grows linearly with ∆T and poly-logarithmically with δ−1
target.

D Numerical simulations for magnetization in an Ising model
To complement the numerics in the main text, we include additional simulations where we consider
the total magnetization

M =
n∑
i

σz
i (52)
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Figure 4: Numerical simulation of the AEV protocol on Ising chain of five spins; this is the same model as in Fig 3,
but here the measured observable is the total magnetization M =

〈∑5
j=1 σ

z
j

〉
. (a) Expectation values for the

magnetization M , comparing the quantum adiabatic algorithm (QAA) with the AEV for different dephasing times.
While all scenarios converge asymptotically towards the true value for sufficiently long sweep times, they differ in
their convergence behavior. (b) Absolute error of the different scenarios with the true value. The convergence of the
magnetization behaves qualitatively as the reflection operation in Fig. 3.

as the observable in the AEV protocol. The considered model is the same Ising model as for Fig. 3,
where the reflection along the target ground state was probed instead of the magnetization. We observe
a strong similarity in the behavior of the error between both observables.

Note that the error on the measured observable in AEV with approximate dephasing (see Sec. 3.1)
can be positive or negative, thus the results can overshoot variational bounds. This is because the
result of AEV is obtained as a fraction between expectation value of two circuits, either of which having
independent variationally-bounded errors. In practice, in Fig. 4 we observe a value of the magnetization
overshooting the bound of ⟨M⟩ ≤ 5 only for Td = 0. A modest amount of dephasing suppresses the error
in the echo circuit, suppressing the oscillations in the sign of the error and recovering a variationally-
bounded result.
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