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Abstract

We investigate the late-time cosmological dynamics in a simple case of explicit
spacetime-symmetry breaking. By expanding in a small symmetry-breaking
coefficient we are able to write the Friedmann equations as ΛCDM + dy-
namical dark energy, which we show contains logarithmic dependence of the
scale factor. We find that the dark energy equation of state displays diver-
gencies and phantom behaviour for certain values of the symmetry-breaking
coefficient, where the NEC is also broken. We discuss the adiabatic sound
speed of dark energy and compare the model to current constraints using the
Chevallier-Polarski-Linder parametrisation. Remarkably, although the con-
straints on the same symmetry-breaking coefficient from e.g. gravitational-
wave propagation are orders of magnitude stronger than what we obtain in
this paper, we are able to cut those constraints, which are more or less sym-
metric around zero, in half by showing that same coefficient must be negative
(or zero) if one wishes to keep the NEC intact.
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1. Introduction

The accelerating expansion of the Universe was first discovered using
type-Ia supernovae [1, 2], and was awarded the Nobel prize in physics in 2011.
Since then, significant effort has been put towards revealing the microphysics
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responsible for the acceleration, which to this day is not fully understood; this
has lead to the term Dark Energy (DE). In the standard Λ Cold-Dark-Matter
(ΛCDM) model, the effects of DE are described through the cosmological
constant Λ, which has negative pressure and becomes dominant once other
cosmological fluids have decayed sufficiently, causing the acceleration. There
is significant disagreement in the value of the cosmological constant: the
difference between values obtained from the Cosmic Microwave Background
[3] and quantum field theory calculations of the vacuum energy currently lies
around 55 orders of magnitude1, which is known as the cosmological constant
problem [4]; within the ΛCDM model, DE makes up around 68% of the energy
content of the Universe. As with other cosmic fluids, DE can be described
using the barotropic index or equation of state parameter w through p = wρ,
where p and ρ is the pressure and energy density, respectively. In the case of
a cosmological constant, the equation of state parameter is exactly w = −1,
but for more general models, w may be a function of redshift. In addition
to the cosmological constant problem, there is also an issue of fine-tuning
of initial conditions known as the coincidence problem [5]. In light of these
problems and tensions, it seems clear that new physics is needed. One may
also wish to consider whether the issue lies with the ΛCDM model itself,
and whether there exist some alternative in which these tensions are resolved
[6, 7]; if this is the case, there would be no need for new microphysics.

In order to address these outstanding issues, a number of Effective-Field
Theories (EFT’s) have been proposed throughout the years, usually attempt-
ing to replace the cosmological constant with a dynamical scalar field respon-
sible for the effects of DE; amongst these EFT’s, the most widely known are
the quintessence [8, 9] and k-essence models [1, 10, 11], but many others ex-
ist2. DE with w < −1 is known as phantom dark energy, the energy density
of which increases with time (i.e. it has strongly negative pressure, and thus
propagates against the direction of momentum) [13, 14]. If this is actually
the case, our Universe may eventually end up in one of several possible fu-
ture singularities [15]. We may obtain a phantom fluid by reversing the sign
of the kinetic term of a scalar field Lagrangian, but it also shows up nat-
urally in certain higher-order theories of gravity [16], Brans-Dicke theories,

1This differs from the most quoted discrepancy of 122 orders of magnitude due to
details of renormalisation as described in [4].

2See for example [12] for a review of DE EFT’s.
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and scalar-field theories with non-minimal coupling [17]. Generally, phantom
fields exhibit a number of undesirable features, such as classical or quantum
instabilities [18], anisotropy and superluminal propagation [19], or the lack
of a Lorentz-invariant vacuum [20, 21]. In theories where Lorentz invariance
is allowed to be broken, it may however be possible to render superluminal
modes and instabilities unobservable [22]. On the other hand, it has been
shown that DE EFT’s with w > −1 in the local Universe generally lead to
determinations of the Hubble constant which are lower than that of ΛCDM
[23, 24], thus exacerbating the mismatch of the Hubble parameter as mea-
sured with local probes as compared to its cosmological value, known as the
Hubble tension (see for example [3, 25–27]).

It has been proposed in the literature that theories which break the foun-
dational symmetries of General Relativity (GR) may provide solutions to
some of the current cosmological puzzles, including the cosmological con-
stant problem. For example, it was proposed in [28] that dark energy may
emerge naturally as a Goldstone field of a broken symmetry in the context
of khronometric theories, a notion which was later tested in [29]. A related
approach is that of Hořava-Lifshitz gravity, which breaks Lorentz symme-
try explicitly and which has been shown to contain dynamical DE with a
phantom regime (for certain parameter values) [30–32]. Therefore, we inves-
tigate in this paper the DE properties of a simple case of explicit spacetime-
symmetry breaking in the form of a correction to the Einstein-Hilbert action
[33]. This cosmological solution was found using a generic EFT framework
used for testing spacetime symmetries in all sectors of the Standard Model
as well as gravity [34–36], which has been extensively studied in the past
decades (see [37] for an annually updated list of constraints). On the level of
cosmology, this EFT has been used to study inflation [38, 39], background
evolution [33, 40], the Hubble parameter tension [41], metric anisotropies [42],
and more. In weak gravity, constraints on the EFT coefficients have been
found using solar-system tests [43–45], short-range gravity [46–49], pulsar
tests [50, 51], gravitational waves [52–54], and many more.

This paper is organised as follows: in Section 2 we introduce the field
theory and the resulting cosmology; in Section 3 we isolate the effects of the
resulting dynamical DE and study its properties; we discuss our results and
conclude in Section 4. Throughout this paper we use a standard flat FLRW
cosmology with mostly-plus signature.
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2. Cosmology with explicit spacetime-symmetry breaking

We can write the Lagrange density using the vierbein formalism as

L =
e

2κ
[R− 2Λ + aλµνTλµν + bκλµνRκλµν ]. (1)

where R is the curvature scalar, Λ is the cosmological constant, e is the
determinant of the vierbein, Rκλµν is the Riemann tensor, and Tλµν is the
torsion tensor. Also present are the quantities aλµν and bκλµν , which are
the nondynamical background fields which transform as scalars under so-
called particle rotations [36], and the above action therefore explicitly breaks
particle diffeomorphisms whilst still respecting observer general coordinate
invariance. As a consequence of the broken diffeomorphisms at the level of
the action, the adherence of the theory to the traced Bianchi identity is no
longer guaranteed, and has to be imposed by hand. We note that when
working with some background tensor kµν in the spacetime frame, using the
vierbein to transform kµν to the locally Lorentz frame as kab = eµae

ν
bkµν

results in a different theory compared to using kµν to contract directly with
fields in the local frame.

In the Riemannian limit, the torsion vanishes and we can express the
theory using the metric tensor as

L =

√
−g

2κ
[R− 2Λ + bκλµνRκλµν ], (2)

where the symmetry-breaking term can be decomposed according to the sym-
metry properties of the Riemann tensor as

bκλµνRκλµν = −uR + s(T )
µν R

(T )µν︸ ︷︷ ︸
=sµνR

µν

+tκλµνCκλµν , (3)

where R(T )µν denotes the trace-free Ricci tensor and Cκλµν the Weyl tensor.
The term −uR represents the trace part of the second term. In order to
keep the equations of motion more tractable, we will consider the case where
tκλµν = 0 from now on.3 Also, we reabsorb the scalar trace term into the

3Since we later restrict ourselves to the flat Friedmann-Lemaitre-Robertson-Walker
metric, the Weyl tensor term will vanish due to conformal flatness, and the choice tκλµν = 0
does not affect the results.
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two-tensor sµν ; this tensor explicitly breaks the spacetime symmetries and
will be the main topic of study in this paper.

We arrive at the field equations by varying the action S =
∫
d4xL using

the Lagrange density (2), after which we find

Rµν − 1
2
gµνR− 1

2
gµνR

αβsαβ + 2R α
(µsν)α + 1

2
□sµν

−∇α∇(µs
α
ν) +

1
2
gµν∇α∇βs

αβ = κTµν ,
(4)

where □ = ∇λ∇λ is the covariant d’Alembertian, Tµν is the stress-energy
tensor for matter and dark energy, and parentheses denote symmetrisation
of indices. Collecting all terms proportional to sµν to the right-hand side
allows us to write the Einstein equations as

Gµν = κTµν + (Ts)µν

(Ts)µν = 1
2
gµνR

αβsαβ − 2R α
(µsν)α − 1

2
□sµν

+∇α∇(µs
α
ν) − 1

2
gµν∇α∇βs

αβ,

(5)

where Gµν is the Einstein tensor and (Ts)µν represents the stress-energy ten-
sor arising from the symmetry-breaking coefficients sµν .

The conservation laws of the underlying action in the form of the traced
Bianchi identities ∇µG

µν = 0 must be satisfied for the theory to be self
consistent. Applying ∇µ on both sides of Eq. (5) gives

κ∇µT
µ
ν = −1

2
Rαβ∇νsαβ +Rαβ∇βsαν +

1
2
sαν∇αR, (6)

which we can write as ∇µ[κT
µ
ν − (Ts)

µ
ν ] = 0. By demanding that the total

right-hand side of the modified Einstein equations be conserved, i.e. not
imposing the usual ∇µT

µ
ν = 0, we are modifying the cosmological evolution

of the matter fields proportional to the coefficients of spacetime-symmetry
breaking. It should be noted that if we had imposed the on-shell conservation
of T µ

ν and (Ts)
µ
ν separately, the resulting solution would have contained

divergences and other pathological behaviour [33].
From now on, we will restrict our attention to the case when only one

component of the coefficient tensor is non-zero, so we choose the ansatz

sµν =


S 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (7)
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It can be shown [52] that the spatial parts of the Bianchi identities can be
satisfied by assuming that the symmetry-breaking coefficient S4 is spatially
constant in the chosen coordinate system, and we will therefore adopt ∂iS = 0
from now on; for simplicity, we will also impose that S is a constant w.r.t
coordinate time t, i.e. ∂tS = 0.

Introducing the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) met-
ric as

ds2 = −dt2 + a(t)2
[
dx2 + dy2 + dx2

]
, (8)

we obtain the following Friedmann equations(
ȧ

a

)2

=
κρ

3(1− 3
2
S)

+
κpS

(2− 3S)(1− S)
ä

a
= − κ(ρ+ 3p)

6(1− 3
2
S)

(9)

and when adopting a standard perfect-fluid stress-energy tensor T µ
ν = diag(−ρ, p, p, p),

we find the ν = 0 Bianchi identities

∇µ(Ts)
µ
0 = 6S ä

a

ȧ

a
+ 3S

...
a

a
,

κ∇µT
µ
0 = −ρ̇− 3

ȧ

a
(ρ+ p).

(10)

By plugging Eq. (9) into Eq. (10) and imposing ∇µ[κT
µ
ν − (Ts)

µ
ν ] = 0 we

find a modified continuity equation of the form5

ρ̇+ 3Hf(S, w)ρ = 0, f(S, w) = 2(1 + w − S)
2 + S(3w − 2)

(11)

where where H ≡ ȧ/a is the Hubble parameter and f(S, w) is an auxiliary
function. We can integrate the modified continuity equation to find

ρ ∼ a−3f(w,S), (12)

which we break into the constituent fluids as ρ =
∑

i ρi. This modification
leads to non-standard cosmological evolution6 of radiation (w = 1/3) and

4We caution the reader that the coefficient S is referred to as s00 in other works, e.g.
[39, 52].

5See Appendix B for a parallel derivation for the individual perfect-fluid constituents.
6Although the equation of state parameters wx are still constant.
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cosmological constant (w = −1), which can be seen by plugging in the cor-
responding values of the barotropic index into Eq. (11)7; dust (w = 0), and
curvature (w = −1/3) receive no modification and evolve as usual (a plot
of the auxiliary function can be see in Appendix C of [39]). In terms of the
normalised energy densities Ω0

r and Ω0
Λ, the evolution is modified as

Ω0
ra

−4 → Ω0
ra

−4xr , Ω0
Λ → Ω0

Λa
−xΛ , (13)

where xr and xΛ are polynomials in S and read xr = (1 − 3
4
S)/(1 − 1

2
S),

xΛ = −3S/(1 − 5
2
S). The change in the evolution is ”small“, since |S| must

be much smaller than unity8; nevertheless, the symmetry breaking induces
evolution in Λ where previously there was none. An interesting phenomeno-
logical consequence of this modification might be its effect on the Hubble
tension. Such a tension actually emerges naturally in symmetry-breaking
models, as was first discussed in [56]; however, as was shown in [41], the
approach we take in this paper does not affect the present Hubble tension.
The Friedmann equations in Eq. (9) contains different scalings of known GR
terms and also the presence of a pressure contribution which is not present
in GR. Many of these scalings can be absorbed [52] into the definition of the
density parameters of matter, radiation, and cosmological constant, and are
thus unobservable. In the end, we can write the final Friedmann equations
as

H2 = H2
0

[
Ω0

ma
−3 + Ω0

ra
−4xr + Ω0

Λa
−xΛ

]
,

Ḣ +H = H0

[
1
2
Ω0

ma
−3 − Ω0

r

2(1− S)
2− S

a−4xr

+ Ω0
Λ

2(1− S)
2− 5S

a−xΛ

]
,

(14)

where H0 is the value of the Hubble parameter at the present time, and
the quantities Ω0

X denote the normalised densities for matter, radiation, and
cosmological constant, respectively.

3. Dark energy

Spacetime symmetries have been tested with very high precision, and in
the gravity sector, most constraints have been obtained in the spontaneous

7A similar modification was found in the context of a type of interacting dark energy;
see for example Eq. 12 in [55].

8As experiment has determined that Lorentz symmetry holds to very high precision.
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breaking case; all constraints using the present EFT can be found in [37]. The
weak gravity spontaneous-breaking analogue of the coefficient S (denoted
s̄
(0)
00 in [37]) has received bounds from e.g. the speed of gravity measurement

using GW170817 + GR170817A, which lead to s̄
(4)
00 = (−20 to +5)·10−15 [37,

57]. S has also received bounds from GW propagation using the modified
propagation of tensor modes, obtaining −6 · 10−15 < S < +7 · 10−16 [39].
We note that this was obtained from the same explicit-breaking model under
study in this paper, but where the metric was linearised (i.e. without splitting
S into background + fluctuation as one would do in the spontaneous-breaking
case).

Given the strong constraints on S as outlined above, we expand the Fried-
mann equations (14) to second order in S, after which they read

H2 = H2
0

[
Ω0

ma
−3 + Ω0

ra
−4 + ΩΛ + Ω0

ka
−2 + S(Ω0

ra
−4 ln a

+ 3Ω0
Λ ln a) + S2(1

2
Ω0

r(ln a+ ln a2)a−4 + 3
2
Ω0

Λ(5 ln a+ 3 ln a2))
]

Ḣ +H = H2
0

[
− 1

2
Ω0

ma
−3 − Ω0

ra
−4 + Ω0

Λ + S(1
2
Ω0

r(1− 2 ln a)a−4

+ 3
2
Ω0

Λ(1 + 2 ln a)) + S2(1
4
Ω0

r(1− 2 ln a2)a−4 + 3
4
Ω0

Λ(5

+ 16 ln a+ 6 ln a2))
]
,

(15)

and we see that the effects of the modified continuity equation can be rep-
resented by standard ΛCDM cosmology plus a dynamical dark-energy term
with logarithmic dependence of the scale factor; for example, we can write
the first equation as

H2 = H2
0 [Ω

0
ma

−3 + Ω0
ra

−4 + ΩDE(a)], (16)

where ΩDE(a) represents all symmetry-breaking terms along with the cosmo-
logical constant.
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We find the energy density ρDE and pressure pDE of the dark energy as

ρDE =
H2

0

κ

[
Ω0

Λ + S(Ω0
ra

−4 ln a+ 4Ω0
Λ ln a)

+ S2(1
2
Ω0

ra
−4(ln a+ ln a2) + 3

2
Ω0

Λ(5 ln a+ 3 ln a2))
]

pDE = −H2
0

κ

[
3Ω0

Λ + S(Ω0
ra

−4 + 3Ω0
Λ − Ω0

ra
−4 ln a

+ 9Ω0
Λ ln a) + S2 1

2
(Ω0

ra
−4 + 15Ω0

Λ + (Ω0
ra

−4

+ 63Ω0
Λ) ln a− (Ω0

ra
−4 − 27Ω0

Λ) ln a
2)
]
,

(17)

from which we obtain the dark-energy equation of state parameter wDE =
pDE/ρDE, which can be found in Appendix Appendix A9; it can easily be
checked that wDE → −1 as S → 0. We use a standard set of values for the cos-
mological parameters when generating the figures below: Ωr = 10−4, ΩΛ =
0.7.

For small values of a, the wDE mimics that of radiation, with a formal
limit wDE → 1/3 as a → 0. As a increases, we see that there exists a
divergence when S is positive, after which wDE settles down to a value close
to minus one, i.e. almost pure cosmological constant. For negative values of
S, the transition in wDE is smooth, and shows no divergent behaviour. We
plot the behaviour of wDE in Figure 1 for different values of S. In Figure 1,
we see that reducing the value of S pushes the transition from a positive to
negative equation of state to higher values of a, i.e. into the future. The same
effect can be achieved by adjusting the value of Ω0

Λ: a increase (decrease) in
this parameter pushes the transition to earlier (later) times. Adjusting the
value of the radiation density has very similar effects, moving the transition
point further into the future (by decreasing Ω0

r) or further into the past (by
increasing Ω0

r). The only way to completely remove a divergent phantom
crossing for S > 0 is to set Ω0

r → 0; interestingly, setting Ω0
r to zero for S < 0

introduces a divergent crossing.
Although not easily visible in Figure 1, wDE only reaches minus one for

certain values of the coefficient S; in fact, for S < 0, which we have to choose
if we want to avoid the divergences seen in Figure 1, wDE is always greater

9Similar equations of state, with logarithmic dependence of the scale factor, were found
in [58] and [59].
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Figure 1: The dark-energy equation of state for different values of the coefficient S. Neg-
ative values can be seen to ensure a smooth transition to wDE ≈ −1.

than minus one, which can be seen in Figure 2, where we have temporarily
fixed a = 5010.

3.1. The CPL parametrisation and check of logarithmic corrections
The Chevallier-Polarski-Linder parametrisation of the DE equation of

state is one of the standard tools used to represent the unknown properties
of DE in the late Universe [60, 61]. For values of the scale factor close to the
value at the present day (a0 = 1), we may expand the equation of state for
dark energy as

wDE = w0 + wa(1− a) + wb(1− a)2 + . . . , (18)

and we find from the DE equation of state (Eq. (A.1)) that

w0 =− 1− S
(
1 +

Ω0
r

3Ω0
Λ

)
− S2Ω

0
r + 15Ω0

Λ

6Ω0
Λ

(19)

wa = −S 8Ω0
r

Ω0
Λ

− S2Ω
0
r(Ω

0
r + 9Ω0

Λ)

3(Ω0
Λ)

2
, (20)

10Note here that since we have expanded in S, only “small” values should be taken into
account. In the plots, we exaggerate the magnitude of S in order to show the features
more clearly.
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Figure 2: The dark energy equation of state as a function of the coefficient S with the
scale factor fixed to a = 50. A negative values of S is necessary in order to avoid phantom
behaviour.

where in wa we have excluded terms of higher than second order in S, which
can be used to place direct limits on S from data. One of the more re-
cent perturbation-level analyses [62] used a combination of the final Planck
2018 data release, Baryon Acoustic Oscillation measurements (BAO), and
the Cosmic Distance Ladder (CDL) calibrated with Cepheid variable stars.
The results revealed that to 1σ, w0 is distinctly negative (w0 = −1 and
wa = 0 gives a pure cosmological constant), and that wa is consistent with
zero. The exact values are given in Table 1, We also consider results ob-

Parameter from [62] Planck Planck+BAO Planck+CDL

w0 −1.21+0.33
−0.60 < −0.37 −0.67± 0.32 −0.89+0.32

−0.16

wa < −0.85 < 0.71 −1.05+0.99
−0.77 < −1.04 < 0.47

Ω0
m 0.215+0.024

−0.078 0.335± 0.029 0.261+0.010
−0.011

Ω0
r · 105 6.34+0.71

−0.23 9.88± 0.85 7.69+0.29
−0.32

H0 [km s−1 Mpc−1] 84+15
−7 > 63 65.5+2.4

−3.2 74.1± 1.4

S using Eq. (19) (−0.63,+0.81) (−0.65, 0.01) (−0.43, 0.05)

Table 1: 1σ constraints on the pertinent cosmological parameters from [62] with the
resulting bounds on S from Eq. (19) at linear order in S. We can estimate Ω0

Λ = 1 −
Ω0

m − Ω0
r.

tained using a background analysis presented in [63], using the Pantheon
catalogue of Supernovae Type Ia (Pantheon), Cosmic Chronometers (CC),
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as well as Gravitational-Wave events (GW) in the GWTC-1 and GWTC-2
catalogues from the LIGO/Virgo collaborations; these parameters along with
our derived constraints on S can be seen in Table 2. When deriving these
constraints, we have also used the value of Ω0

r as Ω0
r = Ω0

m/(1 + zeq), where
zeq is the redshift at the matter-radiation equality, for which we adopt the
Planck 2018 central value of zeq = 3402 [3].

Parameter from [63] GW Pantheon+GW Pantheon+GW+CC

w0 −1.0+2.7
−3.0 −1.19± 0.17 −0.948+0.052

−0.074

wa 0.2± 2.9 0.01+1.8
−0.67 0.60+0.47

−0.18

Ω0
m 0.27+0.22

−0.12 0.309+0.12
−0.044 0.169+0.079

−0.031

H0 [km s−1 Mpc−1] 74.00+0.12
−0.18 73.36± 0.0042 73.34+0.0032

−0.0028

S using Eq. (19) (−2.70, 3.00) (0.02, 0.36) (−0.10, 0.02)

Table 2: 1σ constraints on the pertinent cosmological parameters from [63] with the
resulting bounds on S from Eq. (19) at linear order in S. We can estimate Ω0

Λ = 1−Ω0
m−Ω0

r

and Ω0
r = Ω0

m/(1 + zeq), where zeq, where zeq = 3402 is the Planck 2018 central value for
the matter-equality redshift [3].

Since Eq. (19) and (20) are quadratic in S, some of the parameter values
in Table 1 and 2 result in complex solutions for S. To mitigate this, we
consider only the terms in these equations which are linear in S, remem-
bering that this coefficient should be small. When doing this we find that
Eq. (20) leads to constraints on the order of ±103, far outside the radius of
convergence of the linear expansion we have made. Therefore, we present
in Table 1 and 2 the results from Eq. (19) to linear order in S. We obtain
the tightest constraint from the Pantheon+GW+CC combination of data
from the background analysis in [63], and the least competitive from GW
only, at 1σ. Interestingly, since the Pantheon+GW data combination prefers
w0 ̸= 1 at 1σ, we obtain a constraint on S which excludes zero. This is in
sharp contrast to the bound obtained in [39] from the propagation speed of
gravitational waves, which yielded −6 · 10−15 < S < +7 · 10−16.

3.1.1. Check of logarithmic corrections
It was reported in [64] that a logarithmic relationship between the scale

factor and the barotropic index provides a good fit to Supernovae Type Ia and
Cosmic Microwave Background data. In this paper, the authors used tracker
solutions to explore the parameter space and arrived at w = wQ + α ln a,
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with limits on the parameters being approximately wQ ∼ (−1,−0.4), α ∼
(−0.05,−0.14). Our expression for w cannot be put into the form in [64] with
constant parameters; instead, we can obtain tracker-like solutions where the
parameters wQ and α vary slowly with the scale factor. By expanding our
expression for w in Appendix A in ln a, we obtain the following expressions
for wQ and α to first order in S

wQ =
4Ω0

rS
6Ω0

rS + 3Ω0
Λa

4(1 + 6S)
α =− 10Ω0

rS−3Ω0
Λa

4(1+10S)
9Ω0

r+3ΩΛ0a4(1+9S) ,

(21)

both of which vary slowly in a. By plugging in the same values for the
cosmological parameters as in Section 3.1, we find that wQ stays within the
quoted limit of (−1,−0.4) for S < 0, even at a → 1, the original definition
in [64]; however, we also see that α is three orders of magnitude too large
(∼ 10−5 versus the quoted 10−2), but we notice that it receives that correct
sign for S < 0. Although it seems that a logarithmic correction cannot
accurately capture the features of the present model, we do reaffirm the
main claim of this paper, that S < 0 must hold.

3.2. Adiabatic sound speed
Assuming for a moment that the pressure pDE depends on the entropy S

and energy density ρDE, a generic variation can be written as δpDE(S, ρDE) =
(∂p/∂S)δS + (∂p/∂ρDE)δρDE. We can rewrite this as δp = δpna + c2aδρDE,
where δpna is the non-adiabatic perturbation related to a variation in the
entropy S, and c2a is the adiabatic sound speed, which can be written as

c2a =
ṗDE

ρ̇DE

. (22)

This definition follows naturally by considering the behaviour of δpDE and
δρDE under the gauge transformation t → t − δt, δρDE → ρ̇δt, δpDE →
δpDE + ṗDEδt, where only the definition of c2a leaves δpna gauge invariant
[65, 66].

Since the adiabatic sound speed can be written using only background
quantities, we can find it without resorting to perturbation theory; the result
is rather lengthy and can be found in Appendix A. We find that for small
values of the scale factor, c2a → 1/3, and then increases slightly before relaxing
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Figure 3: The adiabatic sound speed for different values of the coefficient S.

smoothly down to a value close to minus unity for larger values of a, as can
be seen in Figure 3. This behaviour is similar to that of IR-modified Hořava-
Lifshitz gravity, which has also been shown to contain a type of dynamical
dark energy, but where c2a flows from +1/3 → −1/3 [30, 32]. We note that
that a negative adiabatic sound speed is not a problem, as it does not describe
the propagation speed, but rather the relative change between the pressure
and the density.

3.3. Null-energy condition
The Null-Energy Condition (NEC) plays an important role in general rel-

ativity, where it is an ingredient in the Hawking-Penrose singularity theorem
and the positive mass theorem. For a causal and Lorentz-invariant scalar-
field theory, imposing the NEC is sufficient to guarantee stability, and NEC
violation is often used as an indication of phantom behaviour. It states that
for any null vector kµ, the stress-energy tensor should satisfy

Tµνk
µkν ≥ 0, (23)

and can be interpreted as a condition of causality in the theory; the equivalent
condition reads ρ + p ≥ 0. Since we are working with with a model where
local Lorentz invariance is broken explicitly, there is no guarantee that the
dynamical dark energy discussed here will uphold causality, and therefore the
NEC may be in jeopardy. We check this explicitly by plotting ρDE + pDE for
different values of the coefficient S, which can be seen in Figure 4, after which
it becomes clear that S needs to be negative for the NEC to hold. We can
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Figure 4: The Null Energy Condition (NEC) in arbitrary units, which can be seen to be
violated for positive values of the coefficient S.

come to the same conclusion by studying the modified continuity equation
(11), where the NEC implies that energy density cannot increase as long as
the Universe is expanding. In order for the NEC to hold here, the auxiliary
function f(S, w) must have the correct sign, which can easily be shown to
occur only for S < 0 when w = −1 and for all values of S when w = 1/3.

4. Conclusions

In this paper, we have investigated the DE properties of a cosmological
solution featuring a simple type of spacetime-symmetry breaking. By im-
posing the covariant conservation of the entire stress-energy tensor (without
demanding that the matter stress-energy tensor be conserved separately) we
endow the model with a modified continuity equation which affects the evo-
lution of the cosmological constant and the radiation density; it would be
interesting to identify if other types of spacetime-symmetry breaking could
isolate the modification to one constituent only.

By writing down the modified Friedmann equations and considered the
non-ΛCDM contributions as a type of dynamical DE, we identified the ef-
fective DE equation of state wDE. We found that wDE is singular at small
values of the scale factor a when the spacetime-symmetry breaking coefficient
S is positive, but exhibits smooth evolution for negative values of the same;
we also found that the DE is phantom for large a if S > 0. Further, we
identified the CPL parameters of our DE model and concluded that current
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bounds on w0 and wa yield weaker constraints constraints on the coefficient
for spacetime-symmetry breaking S as compared to other results. It would
be interesting to implement this model into a Markov-Chain Monte Carlo
(MCMC) code and fully exploit the quadratic dependence of S in the CPL
parameters; we leave this for future work. We also investigated the adia-
batic sound speed, which shows no discontinuities for any value of S, but
we concluded that the NEC is broken for S > 0. We also compare with a
logarithmic parametrisation of the barotropic index, and obtain a poor fit;
however, we do find that the parameters obtain the correct signs when S < 0.

The main take-home message from this analysis is that in this specific
realisation of explicit breaking, the EFT coefficient S needs to be negative
(or zero) if one wants to avoid the issues normally present in phantom-like
cosmological fluids. A negative S would have consequences in other contexts:
for example, S is related to the propagation speed of gravitational waves, as
was discussed in [39], where the bound −6 · 10−15 < S < +7 · 10−16 was ob-
tained from the observation of GW170817 and GRB170817A, and restricting
S to negative values implies that the propagation speed of tensor modes is
less than unity, i.e. slower than light; generalising the initial ansatz (7) will
necessarily alter these predictions. We also expect severe constraints from
early-Universe physics such as BBN, which will be affected given that the
logarithmic contribution to the equation of state will dominate at a < 10−3.
In this era, this contribution may be thought of as a time-dependent effec-
tive number of relativistic species (Neff) and may also affect the radius of the
sound horizon, although the above constraint from the speed of gravity makes
any modification necessarily very small. Comparison with early-Universe
data is planned, but lies beyond the scope of the present work.
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Appendix A. Explicit expressions for wDE and c2a

The expressions for the equation of state and adiabatic sound speed are

wDE =
−3a4(S(5S + 2) + 2)Ω0

Λ + S ln(a)
(
−9a4(7S + 2)Ω0

Λ + S ln(a)
(
Ω0

r − 27a4Ω0
Λ

)
− (S − 2)Ω0

r

)
− S(S + 2)Ω0

r

3S ln(a)
(
3a4(5S + 2)Ω0

Λ + S ln(a)
(
9a4Ω0

Λ + Ω0
r

)
+ (S + 2)Ω0

r

)
+ 6a4Ω0

Λ

,

c
2
a =

1

3
−

2
(
−39a4SΩ0

Λ − 36a4SΩ0
Λ ln(a) − 12a4Ω0

Λ + 4SΩ0
r ln(a) + SΩ0

r + 4Ω0
r

)
3
(
−15a4SΩ0

Λ − 18a4SΩ0
Λ ln(a) − 6a4Ω0

Λ + 4SΩ0
r ln2(a) + 2SΩ0

r ln(a) + 8Ω0
r ln(a) − SΩ0

r − 2Ω0
r

) .

(A.1)

Appendix B. Sanity check of modified conservation laws

In this appendix, we show explicitly that the modified continuity equation
(11) implies the effective conservation laws for the perfect-fluid constituents
(13).

We start by assuming that, as in GR, there is no mixing between the
different constituents. By using the generic perfect-fluid stress-energy tensor
in comoving coordinates

(TM)µν = diag(
∑
l

ρl ,
∑
l

(pl, pl, pl)), (B.1)

and so we can write the total modified Bianchi identity in Eq. (10) as

6S ȧ

a

ä

a
+ 3S

...
a

a
−

∑
i

(ρ̇i + 3H(ρi + pi)) = 0. (B.2)

In order to evaluate the left-hand side, we use the Friedmann equations (9)
for k = 0, which we can write as(

ȧ

a

)2

=
∑
i

[
κρi

3(1− 3
2
S)

+
κpiS

(2− 3S)(1− S)

]
ä

a
= −

∑
i

[
ρi + 3pi
6(1− 3

2
S)

]
,

(B.3)

and thus Eq. (B.2) can be manipulated into the form∑
i

[−6Hρi(1− S + w)− ρ̇i(2(1− S) + 3wS)] = 0. (B.4)
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Since we have no mixing between the perfect-fluid constituents, the following
must therefore hold for all i

ρ̇i + 3H

(
2(1− S + w)

2(1− S) + 3wS

)
︸ ︷︷ ︸

≡f(w,S)

ρi = 0 (B.5)
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