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Insights of quantum time into quantum evolution

Ngo Phuc Duc Loc∗

Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA

If time is emergent, quantum system is entangled with quantum time as it evolves. If the system
contains entanglement within itself, which we can call internal entanglement to distinguish it from
the “external” time-system entanglement, the speed of evolution is enhanced. In this paper, we
show the correlation between the novel time-system entanglement and the conventional internal
entanglement of a system that contains two entangled qubits. We consider two cases: (1) two
initially entangled qubits that evolve under local dynamics; (2) two interacting qubits such that
entanglement between them is generated over time. In the first case, we obtain the main result that
increasing internal entanglement speeds up the evolution and makes the system more entangled with
time. For both cases, we show the dependence of time-system entanglement entropy on the distance
of evolution which is characterized by fidelity. The interacting system can evolve faster than the
non-interacting system if the interaction is sufficiently strong, and thus it can be entangled with
time more efficiently.

I. INTRODUCTION

The nature of time is a big puzzle. Does time have
a quantum structure? Or, in other words, is it emer-
gent? The physics community recently is interested in
“extracting space” from entanglement [1–3], but what
about time? Given the fact that space and time are inti-
mately connected in relativity theory, it is therefore not
unreasonable to ask for the emergence of time, just like
the emergence of space. Unlike space, however, the arrow
of time must somehow emerge as well.
Entanglement is another mysterious feature of the

quantum world. While the nature of entanglement is
still an open question at the fundamental level [4], it
is both interesting and important to understand various
phenomenological aspects of entanglement. Entangle-
ment could be generated by interaction between systems,
or by interaction between a system and an environment
that is crucial to understand decoherence [5]. Entangle-
ment can also be “artificially felt” by different observers
when a quantum state is Wigner rotated due to a Lorentz
transformation [6, 7].
If time really has a quantum structure, another kind of

entanglement arises: quantum system is entangled with
quantum time as it evolves. For the classic works, see
[8–10]. There are some studies of quantum time in spe-
cial relativity [11, 12], in quantum field theory [13–15],
in quantum gravity [16–18], in cosmology [19], and in
the context of decoherence [20]. For the experimental
prospects of this quantum time idea, see [21–23].
In this so-called Page-Wootters formalism (PaW), the

global state of the Universe, |Ψ〉〉, is static and lives in
the total Hilbert space Htot. The quantum state of the
system, |ψ(t)〉, evolves as time passes and lives in the
system Hilbert space HS . The quantum state of time,
|t〉, lives in the time Hilbert space HT . Schematically,
one has Htot = HT ⊗ HS and |Ψ〉〉 ∝

∫

|t〉 ⊗ |ψ(t)〉 dt.

∗ locngo148@gmail.com

In the PaW formalism, the main spirit is that: the more
the system evolves, the more it becomes entangled with
time.

The quantum system itself may also contain entangled
subsystems. Besides the relevance in quantum informa-
tion protocols, this is also typical in nature. For example,
a quantum state of black hole describes entanglement be-
tween interior and exterior degrees of freedom [24]. An-
other example is a quantum state that describes entan-
glement between subhorizon and superhorizon modes of
cosmological perturbations [25, 26]. This motivates us
to study the connection between the conventional entan-
glement within the system, which we will call “internal
entanglement” from now on, and the novel “external”
time-system entanglement mentioned above. As we will
show, this connection is possible due to the fact that in-
creasing internal entanglement speeds up the evolution
and thus enhances the time-system entanglement. As
a first step to flesh out the idea, we will consider two
simplified cases: (1) two initially entangled qubits that
evolve under some local dynamics; (2) two interacting
qubits such that their internal entanglement is generated
as time passes.

This paper is organized as follows. In Sec. II, we
consider the case of two initially entangled but non-
interacting qubits. We first show that increasing internal
entanglement can make the state vector travel further
and faster. We then compute the time-system entan-
glement measures when there is a single qubit clock. We
show that increasing internal entanglement speeds up the
evolution and thereby makes the system more entangled
with time. We then generalize our results to the con-
tinuous limit. In Sec. III, we study time-system entan-
glement for a system containing two interacting qubits,
focusing on computing the time-system entanglement en-
tropy in the continuous limit. We show that the inter-
acting system can evolve faster than the non-interacting
system if the interaction is sufficiently strong, and thus
it can be entangled with time more efficiently. Summary
and possible further developments are presented in Sec.
IV.

http://arxiv.org/abs/2306.11675v4
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II. TWO NON-INTERACTING QUBITS

A. Speed of evolution

Consider the initial quantum state of two entangled
qubits [27]:

|ψ(0)〉 = α |00〉+ β |11〉 , (1)

where α and β are complex numbers satisfying the nor-
malization condition |α|2 + |β|2 = 1. The basis vectors
are energy eigenstates of the local Hamiltonians:

HA |0〉A = 0, HA |1〉A = ǫ |1〉A , (2)

HB |0〉B = 0, HB |1〉B = ǫ |1〉B , (3)

where the subscripts indicate the corresponding subsys-
tems and ǫ > 0. The total Hamiltonian is given by

Htotal = HA ⊗ IB + IA ⊗HB . (4)

This Hamiltonian acts locally on each subsystem and
therefore entanglement measures are preserved through-
out the state’s evolution.
The entanglement entropy of the quantum state in Eq.

1 is

S(A) = −Tr(ρA log2 ρA)

= −
(

|α|2 log2 |α|2 + (1− |α|2) log2(1 − |α|2)
)

.
(5)

Another useful entanglement measure is the quadratic
entanglement entropy which is determined from the pu-
rity of the state instead of its eigenvalues. This quantity
may be more easily accessible experimentally [33]. It is
given by

S2(A) = 2(1− Tr(ρ2A)) = 4|α|2(1− |α|2). (6)

The state vector at time t is

|ψ(t)〉 = α |00〉+ βe−2iǫt/~ |11〉 . (7)

The fidelity (or overlap) between the initial and final
states is

∆ψ ≡ | 〈ψ(t)|ψ(0)〉 |

=

√

1 + 2|α|2(1− |α|2)
(

cos
2ǫt

~
− 1

)

.
(8)

Smaller fidelity means larger distance, so it can also be
thought of as a distance measure. We define τ to be
the amount of time for the state to travel through the
distance ∆ψ. For convenience, it is given in units of ~/ǫ:

τ

~/ǫ
=

1

2
arccos

(

(∆ψ)2 − 1

2|α|2(1− |α|2) + 1

)

. (9)

Using Eqs. 5 and 9, we plot in the upper panel of Fig.
1 the evolution time τ as a function of S(A) for different
values of ∆ψ. Similarly, using Eqs. 6 and 9, we plot
in the lower panel of Fig. 1 the evolution time τ as a
function of S2(A) for different values of ∆ψ. From Fig.
1, we see that the more internal entanglement the system
has, the further and faster its state vector can evolve.
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FIG. 1. Upper panel: Evolution time τ (in units of ~/ǫ) as a
function of entanglement entropy S(A) for different distances
∆ψ. Lower panel: Evolution time τ (in units of ~/ǫ) as a
function of quadratic entanglement entropy S2(A) for differ-
ent distances ∆ψ.

B. A single qubit clock

To gain some initial intuition, we first consider the sim-
plest case of a qubit clock that is entangled with the sys-
tem as follows [28]:

|Ψ〉〉 = 1√
2
(|0〉T |ψ0〉S + |1〉T |ψ1〉S) . (10)

The system evolves from the initial state |ψ0〉S to the
final state |ψ1〉S while the qubit clock ticks from |0〉T to
|1〉T . The double ket notation of |Ψ〉〉 is just to remind
us that it is the static “global state” and not the evolving
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state of the system. The reduced density matrix of the
system is

ρS = TrT (|Ψ〉〉 〈〈Ψ|) = 1

2
(|ψ0〉 〈ψ0|+ |ψ1〉 〈ψ1|), (11)

whose the nonzero eigenvalues are

p± =
1± | 〈ψ1|ψ0〉 |

2
, (12)

which can also be obtained from Eq. 22 below by substi-
tuting N = 2. The time-system entanglement entropy is
then

E(T, S) = −Tr(ρS log2 ρS) = −
∑

k=±

pk log2 pk. (13)

The quadratic time-system entanglement entropy is

E2(T, S) = 2(1− Tr(ρ2S)) = 4p+p−. (14)

From Eq. 12, we see that the more the system evolves,
the more it becomes entangled with time. From Eq. 8, we
see that, for a given state with a fixed |α|2, the minimum
time at which the fidelity is minimum is [29]

tNI
∗ =

π~

2ǫ
. (15)

This time corresponds to the maximum time-system en-
tanglement. The superscript “NI” indicates the non-
interacting case to distinguish it from the interacting case
discussed later in Sec. III. Using Eqs. 13 and 5, we can
plot E(T, S) as a function of S(A). Similarly, using Eqs.
14 and 6, we can plot E2(T, S) as a function of S2(A).
These two plots are shown in Fig. 2.
From Fig. 2, we have the following remark. For a

given time interval, we see that if the system has more
entanglement within itself, then it becomes more entan-
gled with time as it evolves. Combining this result with
Fig. 1, we can now see the whole picture: the more
internal entanglement the system has, the faster it can
evolve. Therefore, during a fixed time interval, the state
vector can travel through a larger distance in Hilbert
space and thus becomes more entangled with time. Both
E(T, S) and E2(T, S) have these features, though they
have slightly different scales.

C. Continuous quantum time

We now generalize our results to the continuous limit
where there are infinitely many steps of evolution be-
tween the initial and final states. A useful procedure is
to consider the global state [28]

|Ψ〉〉 = 1√
N

N−1
∑

t′=0

|t′〉T ⊗ |ψ(t′)〉S , (16)

and then take the limit N → ∞ in the end. The normal-
ization factor here indicates that each moment of time is
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FIG. 2. A single qubit clock. Upper panel: Time-
System entanglement entropy, E(T, S), as a function of inter-
nal entanglement entropy, S(A), for different values of time.
Lower panel: Quadratic time-system entanglement entropy,
E2(T, S), as a function of internal quadratic entanglement
entropy, S2(A), for different values of time.

equally likely to be occupied by the system’s evolution.
By taking the limit N → ∞, it is also true to say that
the system’s evolution generates an infinite-dimensional
Hilbert space of quantum time. The state vector at time
t is

|ψ(t)〉 = α |00〉+ βe−iθt |11〉 , (17)

where θt ≡ 2ǫt/~ for brevity. Note that |ψ(t′)〉 = α |00〉+
βe−iθt

t
′

N−1 |11〉, so the state vector moves from the initial
state |ψ(0)〉 to the target state |ψ(t)〉 in N − 1 steps.
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The reduced density operator of the system is

ρS = TrT (|Ψ〉〉〈〈Ψ|) = |α|2 |00〉 〈00|+ γ(t) |00〉 〈11|+ γ(t)∗ |11〉 〈00|+ |β|2 |11〉 〈11| , (18)

where

γ(t) ≡ αβ∗ 〈T1|T0〉 , (19)

|T0〉 ≡
1√
N

N−1
∑

t′=0

|t′〉 , (20)

|T1〉 ≡
1√
N

N−1
∑

t′=0

e−iθt
t
′

N−1 |t′〉 . (21)

The nonzero eigenvalues of the reduced density matrix
ρS are

p± =
1±

√

1− 4(|α|2(1− |α|2)− |γ(t)|2)
2

, (22)

where

|γ(t)|2 =
|α|2(1− |α|2)

N2

∣

∣

∣

∣

∣

N−1
∑

t′=0

eiθt
t
′

(N−1)

∣

∣

∣

∣

∣

2

=
|α|2(1− |α|2)

N2

cos
(

Nθt
N−1

)

− 1

cos
(

θt
N−1

)

− 1
.

(23)

In the continuous limit, this reduces to

lim
N→∞

|γ(t)|2 = 2|α|2(1− |α|2)1− cos θt
θ2t

. (24)

The entanglement measures can then be calculated as
usual by taking the continuous limit N → ∞:

E(T, S) = lim
N→∞

(

−
∑

k=±

pk log2 pk

)

, (25)

E2(T, S) = lim
N→∞

(4p+p−) . (26)

Using Eqs. 25 and 5, we can plot E(T, S) as a func-
tion of S(A). Similarly, using Eqs. 26 and 6, we can plot
E2(T, S) as a function of S2(A). These plots are shown
in Fig. 3. From Fig. 3, we have two remarks: (1) Similar
to the single qubit clock case, increasing internal entan-
glement speeds up the evolution and makes the system
more entangled with time; (2) In the continuous limit,
we see that the time-system entanglement entropies are
smaller than that of the single qubit clock case. In other
words, if the state vector has to travel through more in-
termediate steps between the initial and final states, it
becomes less entangled with time [28].
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FIG. 3. Continuous quantum time. Upper panel: Time-
System entanglement entropy, E(T, S), as a function of inter-
nal entanglement entropy, S(A), for different values of time.
Lower panel: Quadratic time-system entanglement entropy,
E2(T, S), as a function of internal quadratic entanglement
entropy, S2(A), for different values of time.

Before moving on to the interacting case, some com-
ments are in order. It is interesting to note that the elaps-
ing time itself is not the factor to enhance time-system
entanglement, but it is the “distance of evolution”. Al-
ternatively, we can say that a faster-evolving state be-
comes more entangled with time as it evolves. A gen-
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eral state without internal entanglement can still evolve
faster under the influence of some non-trivial Hamilto-
nian. However, as we mentioned in the introduction,
quantum systems containing entangled subsystems are
abundant in nature and are typical in quantum informa-
tion protocols. A natural way to speed up the evolution
of such systems is either increasing the internal entangle-
ment within them for non-interacting systems (discussed
above) or increasing the strength of interaction for inter-
acting systems (discussed below in Sec. III). Thus, the
connection between the conventional internal entangle-
ment within the system and the novel time-system en-
tanglement is possible by using the speed of evolution as
a mediator.

III. TWO INTERACTING QUBITS

We now consider the case where entanglement between
two qubits is generated by interaction between them. We
focus on computing the time-system entanglement en-
tropy in the continuous limit. The total Hamiltonian is
given by

Htotal = HA ⊗ IB + IA ⊗HB +Hint, (27)

where the local Hamiltonians HA and HB were defined in
Eqs. 2 and 3 respectively. The interaction Hamiltonian

is

Hint = −λ(|1〉 〈0| ⊗ |1〉 〈0|+ |0〉 〈1| ⊗ |0〉 〈1|), (28)

where λ > 0 is a coupling constant that has dimension
of energy. This interaction Hamiltonian is capable of
generating entanglement between two qubits. One can
also add a constant term to the total Hamiltonian but
that will only introduce an irrelevant overall phase factor.
Consider the initial state to be a factorized state:

|ψ(0)〉 = |00〉 . (29)

The state vector at time t is given by the formal solution
to the Schrodinger equation and is an entangled state:

|ψ(t)〉 = e−i
∫
Htotdt/~ |00〉

= cos
λt

~
|00〉+ i sin

λt

~
|11〉

≡ cosφt |00〉+ i sinφt |11〉 ,

(30)

where we used the fact that HA |0〉A = HB |0〉B = 0,
Hint |00〉 = |11〉 and Hint |11〉 = |00〉. We also defined
φt ≡ λt/~ in the last line for brevity.
The global state is

|Ψ〉〉 = 1√
N

N−1
∑

t′=0

|t′〉 ⊗ |ψ(t′)〉 . (31)

Here, |ψ(t′)〉 = cos
(

φt
t′

N−1

)

|00〉+ i sin
(

φt
t′

N−1

)

|11〉, so
the state vector moves from the initial state |ψ(0)〉 to the
target state |ψ(t)〉 in N − 1 steps. The reduced density
operator of the system is

ρS = TrT (|Ψ〉〉〈〈Ψ|) = a(t) |00〉 〈00|+ c(t) |00〉 〈11|+ c∗(t) |11〉 〈00|+ b(t) |11〉 〈11| , (32)

where

a(t) ≡ 1

N

N−1
∑

t′=0

cos2
(

φt
t′

N − 1

)

, (33)

b(t) ≡ 1

N

N−1
∑

t′=0

sin2
(

φt
t′

N − 1

)

, (34)

c(t) ≡ − i

2N

N−1
∑

t′=0

sin

(

2φt
t′

N − 1

)

. (35)

The nonzero eigenvalues of the system density operator ρS are

p± = ± 1

4N
csc2

(

φt
N − 1

)

[

±N
(

1− cos

(

2φt
N − 1

))

+ 2

√

sin2
(

φt
N − 1

)

sin2
(

Nφt
N − 1

)

]

. (36)

In the continuous limit, this reduces to

lim
N→∞

p± =
1

2

(

1± sinφt
φt

)

. (37)

Time-system entanglement entropy is then

E(T, S) = lim
N→∞

(

−
∑

k=±

pk log2 pk

)

. (38)
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The fidelity between the initial and final states is

∆ψ = | 〈ψ(t)|ψ(0)〉 | = cosφt, (39)

and thus

φt = arccos∆ψ. (40)

The minimum time required for the initial state to evolve
to the orthogornal final state is

tI∗ =
π~

2λ
. (41)

The superscript “I” indicates the interacting case to dis-
tinguish it from the non-interacting case discussed above
in Sec. II B. Comparing Eq. 41 with Eq. 15, we see that
the speed of evolution of two interacting qubits is greater
than that of two non-interacting qubits if the interaction
is sufficiently strong compared to the energy scale of the
individual subsystems: λ > ǫ.

E
(
T
,
S
)

Non-interacting, S(A)≈0.72

Non-interacting, S(A)≈0.92

Interacting

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Δψ

FIG. 4. Time-system entanglement entropy E(T,S) as a func-
tion of fidelity ∆ψ. Blue curve: two non-interacting qubits
with S(A) ≈ 0.72 corresponding to |α|2 = 1/5 or |α|2 = 4/5.
Red curve: two non-interacting qubits with S(A) ≈ 0.92 cor-
responding to |α|2 = 1/3 or |α|2 = 2/3. Dashed black curve:

two interacting qubits with time-dependent internal entan-
glement. The curve of two maximally entangled but non-
interacting qubits (S(A) = 1) coincides with the interacting
curve, though it should be noted that the speed of evolution
in the two cases is different (see Eqs. 15 and 41).

Using Eqs. 38 and 40, we can plot E(T, S) as a func-
tion of fidelity in Fig. 4. The interacting case is repre-
sented by dashed black curve. From Fig. 4, we see that
E(T, S) increases when fidelity decreases. That is be-
cause the more the system evolves, the more it becomes
entangled with time. When the state vector reaches its
maximum distance at ∆ψ = 0 (i.e. it evolves to an or-
thogonal state), the corresponding entropy it can acquire
is E⊥(T, S) ≈ 0.68.
Also in Fig. 4, we plot two solid colorful lines to rep-

resent the case of two non-interacting qubits by using
Eqs. 8 and 24. These curves are cut at the maximum
distances that the corresponding state vectors can travel.

Among the non-interacting cases, we see that increasing
internal entanglement speeds up the evolution, since the
state vector can travel further in a fixed time interval
and makes the system more entangled with time. If two
non-interacting qubits are maximally entangled, its curve
coincides with the interacting curve, though it should be
noted that the speed of evolution in the two cases, in gen-
eral, is different (see Eqs. 15 and 41). If the interaction is
sufficiently strong with λ > ǫ (i.e. tI∗ < tNI

∗ ), time-system
entanglement entropy of the interacting system is always
greater than that of the non-interacting system and we
say that it can be entangled with time more effectively.

IV. SUMMARY

Systems containing entangled subsystems are abun-
dant in nature and are typical in quantum information
protocols. At the fundamental level, the quantum nature
of time is also a pressing and interesting topic. In this pa-
per, we studied the entanglement between quantum time
and a quantum system containing two entangled qubits.
We considered the case of two initially entangled qubits
evolving under local dynamics, as well as the case of two
interacting qubits such that their internal entanglement
is generated over time. In the first case, we obtained the
main result that increasing internal entanglement speeds
up the evolution and makes the system more entangled
with time. For both cases, we showed the dependence
of time-system entanglement entropy on the distance of
evolution which is characterized by fidelity. We compared
the two cases with each other and found that the inter-
acting system can evolve faster than the non-interacting
system if the interaction is sufficiently strong, and thus
it is entangled with time more efficiently.

Besides the fundamental significance, our results could
be useful to gain new insights of quantum time into black
hole evaporation or cosmological perturbations in an ex-
panding Universe, since we also have an evolving entan-
gled bipartite system in those cases. For black hole, the
total Hilbert space is decomposed on a spatial slice as
Htot = Hin ⊗Hout, where Hin contains infalling degrees
of freedom and Hout contains outgoing Hawking quanta.
Interior and exterior degrees of freedom are entangled
with each other [24]. For cosmological perturbations, the
Hilbert space can be decomposed in momentum space as
Htot = Hk>aH ⊗Hk<aH , where Hk>aH contains subhori-
zon modes and Hk<aH contains superhorizon modes. Su-
perhorizon modes are entangled with subhorizon modes
[25, 26]. In both cases, the system can be an evolving
pure state that contains two entangled subsystems. It is
therefore interesting to see how our idea can be applied
to those cases and if quantum time can offer new insights
into the information paradox in each case. We plan to
investigate further along these lines.
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