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Boson sampling is a sampling task proven to be hard to simulate efficiently using classical
computers under plausible assumptions, which makes it an appealing candidate for quantum
supremacy. However, due to a large noise rate for near-term quantum devices, it is still unclear
whether those noisy devices maintain the quantum advantage for much larger quantum systems.
Since the noise rate typically grows with the circuit depth, an alternative is to find evidence
of simulation hardness at the shallow-depth quantum circuit. To find the evidence, one way is
to identify the minimum depth required for the average-case hardness of approximating output
probabilities, which is considered a necessary condition for the state-of-the-art technique to prove
the simulation hardness of boson sampling. In this work, we analyze the output probability
distribution of shallow-depth boson sampling for Fock-states and Gaussian states and examine the
limitation of the average-case hardness argument at this shallow-depth regime for geometrically local
architectures. We propose a shallow-depth linear optical circuit architecture that can overcome the
problems associated with geometrically local architectures. Our numerical results suggest that this
architecture demonstrates possibilities of average-case hardness properties in a shallow-depth regime
through its resemblance to the global Haar-random boson sampling circuit. This result implies that
the corresponding architecture has the potential to be utilized for scalable quantum supremacy with
its shallow-depth boson sampling.

I. INTRODUCTION

We live in an exciting era with the emergence of noisy
intermediate-scale quantum (NISQ) devices [1]. Those
NISQ devices are expected to be able to outperform
classical computers in some computational tasks, which
refers to quantum advantage or quantum supremacy.
Various computational problems are proposed to be a
candidate for demonstrating quantum advantage with
NISQ devices, and the prominent candidates at the
present time are boson sampling (BS) [2–4] and random
circuit sampling (RCS) [5, 6]; both denote sampling
problems from the random quantum circuit instances
but in different systems. They have been complexity-
theoretically proven to be hard to efficiently simulate
with classical computers under plausible assumptions.
Ever since the theoretical foundation [2–5], there have
been plenty of experimental results claiming the first
realization of quantum advantage with BS [7–10] and
RCS [6, 11–13].
However, it is still unclear whether the quantum

advantage can be maintained for larger quantum systems,
and beyond that, for the asymptotic limits as system
size scales. The major obstacle to the scalability of the
quantum advantage is the uncorrected noise on near-term
quantum devices, which suppresses the quantumness and
may eventually allow efficient classical simulation. In
particular, as the noise rate typically grows with circuit
depth, the circuit depth should not be too large to
accomplish the hardness of classical simulation for noisy
devices. Otherwise, the accumulated noise induced by a

∗ changhun0218@gmail.com

large-depth circuit may result in the loss of quantumness
and classical intractability. On the other hand, the
circuit depth should also be large enough to achieve
the simulation hardness, as a shallow depth circuit
leads to the weakly entangled quantum state, which is
often efficiently simulable by classical algorithms [14–
20]. Therefore, to attain the scalable quantum advantage
with noisy quantum devices, it is necessary to identify an
appropriate regime, where the depth is large enough to
generate the quantumness and not too large to lose the
classical intractability by the uncorrected noise.

To be more specific about the effect of noise on
the complexity, there are many results proposing the
possibilities of the efficient classical simulation of noisy
BS and RCS as system size scales, hindering the
scalability of the quantum advantage. For the RCS
case, Refs. [21–25] suggested a probability distribution
of most quantum circuits of super-logarithmic depth
with a constant level of noise (depolarizing, Pauli, etc)
applied for each unit depth converges to a uniform
distribution. Similarly, for the BS case, there have been
many results [26–33] about efficient classical algorithms
to simulate noisy BS, with various noise models, such
as photon loss and partial distinguishability of photons.
Those results suggest that noisy BS can be efficiently
simulated if the noise rate is sufficiently large.

As an example, for photon loss, if the output photon
numbers are less than O(

√
N) for input photon number

N , BS becomes efficiently simulatable within a constant
total variation distance [34–36]. Since the output photon
number is given by Nout = NTD for circuit depth D and
a transmission rate T applied at each depth, it implies
the easiness of classical simulation for superlogarithmic
circuit depth unless the transmission rate per depth T
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increases with system size, which is typically unrealistic.
Therefore, according to the above discussions, circuit
depth superlogarithmic with system size would possibly
rule out the scalable demonstration of the quantum
advantage [35].

The above example clearly shows that as circuit depth
grows, more noises are accumulated in the system.
Hence, an obvious way to suppress the effect of loss is
to consider shallow-depth circuits and investigate if we
can still maintain hardness in shallow-depth circuits. A
crucial factor in proving the hardness of approximate
sampling, specifically additive-error sampling, using the
state-of-the-art proof technique is the average-case #P-
hardness of output probability approximation within
a certain additive imprecision (viz., on average over
possible outcomes) [2–5, 37–39]. Here, anti-concentration
property [2, 5, 40–43], which is a measure of the
flatness of probability distribution, comes into the
proof of the average-case hardness up to the additive
error. For the RCS case, recent results found that
the probability distribution of logarithm depth random
quantum circuit is anti-concentrated [43, 44], but poorly
anti-concentrated for sub-logarithm depth [25]. Those
results suggested hope that log-depth RCS may have
the average-case hardness property and thus may be
a suitable candidate for realizing scalable quantum
advantage even with noisy devices. However, more
recently, Ref. [45] presented a polynomial-time classical
simulation of noisy log-depth RCS with a constant level
of noise per depth using the anti-concentration property,
deflating the hope.

Meanwhile, for the BS case, output probability
distributions and their average-case approximation
hardness for shallow-depth BS have been less studied
compared to the RCS case, to the best of our knowledge.
There have been some results about efficient classical
algorithms to simulate shallow-depth BS, but they can
be applied only in particular circumstances. Specifically,
Ref. [19] suggested a classical algorithm that can simulate
1-dimensional logarithm depth BS efficiently. Also,
Refs. [18, 20] proposed classical algorithms which can
efficiently simulate BS for the higher dimensional local
circuits but on condition that input sources are well-
separated, under a certain depth such that the well-
separated input sources do not correlate much with
each other. Although those algorithms can clarify the
easiness of simulating shallow-depth BS for specific cases,
it remains an open question whether the simulation
hardness of shallow-depth BS exists with more general
setups, e.g., allowing different circuit architectures,
circuit ensembles, and input configurations. Hence,
the motivation of our work is to investigate the
possibility of shallow-depth BS that achieves simulation
hardness, by analyzing the behavior of output probability
distributions in low-depth regimes for general setups.

In this work, we find that the probability distribution is
too concentrated to achieve the average-case hardness of
probability approximation for local linear-optical circuits

under a certain polynomial depth, regardless of circuit
ensembles and input configurations, both for Fock-state
BS (FBS) and Gaussian BS (GBS) schemes. We prove
that from the structure of the local parallel circuit
architecture, a typical way to build a random linear-
optical network using geometrically local gates, most
of the outcomes are forbidden at the shallow depth
regime, i.e., have zero probability, regardless of circuit
ensembles. Besides, if we employ local random circuit
ensembles, their diffusive properties make probability
distribution concentrated even inside the permitted
outcomes, requiring additional circuit depth to get out
of the concentrated regime.
Following the above examination, we propose a

linear-optical circuit architecture that can resolve the
above issues within logarithm depth, using geometrically
non-local gates. We numerically examine that the
corresponding circuit architecture with each gate drawn
from the local random unitary can well imitate the
behavior of the global Haar random unitary, the
requirement to achieve evidence of the average-case
hardness, in a shallow depth regime. Specifically, output
probability distribution and entanglement generation of
the above random circuit setup show fast convergence
toward those of the global Haar random circuit with
increasing circuit depth. Those results highlight that the
corresponding circuit architecture shows a potential to
achieve the average-case hardness in the shallow depth
regime and be utilized as an architecture for scalable
quantum advantage with BS.
The paper is organized as follows. In Sec. II, we

begin with a brief introduction of the average-case
hardness of approximating output probabilities of BS
and discuss the possible issues that may arise when
we lower the depth. In Sec. III, we present problems
of geometrically local architectures, which hinder the
anti-concentration and thus do not allow the average-
case hardness below a certain polynomial depth. In
Sec. IV, we propose a geometrically non-local circuit
architecture that can resolve the problems we addressed
within logarithm depth. We numerically examine the
probability distribution and entanglement of the circuit
for various system sizes. In Sec. V, we conclude with a
few remarks.

II. AVERAGE-CASE HARDNESS AND

ANTI-CONCENTRATION

We first briefly recall the average-case hardness of
BS and investigate if a similar hardness still holds in
the low-depth regime, examining potential issues that
may arise when we lower the depth. There are two
major schemes of BS, which are FBS and GBS, and we
consider the average-case hardness of FBS first. The
output probability of FBS is expressed as permanent,
which is worst-case #P-hard to compute [2, 46]. To
achieve simulation hardness of additive-error sampling,
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whose error is bounded by total variation distance with
its size at least inverse polynomial order, additively
approximating most of the output probabilities of the
sampler should be #P-hard (i.e., average-case #P-
hardness). This comes from the fact that a sampler with
total variation distance error can have a large additive
error for a single output probability, but still have a small
additive error on average over all possible outcomes due
to Markov’s inequality. Here, to get the average-case
hardness of the output probability approximation, the
implementation of random circuit instances is required.
Specifically, the current proof technique requires that
unitary matrices corresponding to the random circuits
must be drawn from Haar measure on U(M), where
M corresponds to the total mode number. Under
some plausible assumptions (see [2] for more details),
approximating most of the output probabilities of FBS on
average over random linear-optical circuits is #P-hard,
which can be represented as follows.

Conjecture 1. For mode number M and photon
number N , approximating most output probabilities
of most linear-optical circuits within additive error
poly(N )−1 N !

MN is #P-hard.

The above problem is solvable within a finite level of
polynomial hierarchy using the additive-error sampler,
which implies that efficient classical simulation of the
corresponding sampler implies polynomial hierarchy
collapses to the finite level, which is highly unlikely.

Also, a similar argument has been established for GBS
in [3, 4], whose output probability is now expressed
as hafnian, which is at least as hard as permanent to
compute. Those results suggest that for fixed output
photon number N , approximating most of the output
probabilities of GBS on average over random linear-
optical circuits is #P-hard, under plausible assumptions.

Accordingly, implementing M -mode random linear
optical circuits corresponding to M -dimensional Haar
random unitary matrices is necessary to find evidence
of the average-case hardness of BS using the current
techniques (both for FBS and GBS schemes). However,
the exact implementation of Haar random unitary
matrices requires at least polynomially large circuit depth
(e.g., results in Ref. [47]). More precisely, as the space of
M dimensional unitary matrices is determined by M2

independent parameters [48], Ω(M2) number of local
random unitary gates are required to implement global
Haar random unitary, which can only be accomplished
by Ω(M) circuit depth.

One way to find evidence of the average-case hardness
of approximating output probabilities in the low-depth
regime, as we introduced in the previous section, is
by investigating the anti-concentration property of the
corresponding output probability distribution. More
formally, for the output probability of boson sampling
ps and for ξ > 0, the anti-concentration property can be

FIG. 1. Schematics of (a) 1-dimensional and (b) 2-
dimensional local parallel circuit. Unitary gates with the same
colors are applied in parallel, and the sequence is 2 steps of the
parallel application of local gates for each dimension. Here,
such application of gates with the same color implies the unit
depth.

expressed as

Pr
U

[

ps <
poly(N, 1/ξ)−1

(

M+N−1
N

)

]

< ξ, (1)

where the probability is over the unitary matrix U
drawn from Haar measure on U(M) that corresponds
to the circuits. Note that because of the symmetry
from the Haar measure, the choice of the outcome s

may be arbitrary. Anti-concentration plays a key role
in proving the current average-case hardness of various
circuit families, and accordingly, there have been many
efforts to show whether there exists anti-concentration
for various circumstances [2, 4, 25, 40, 41, 43, 49, 50].
Although anti-concentration itself does not guarantee the
classical hardness of sampling, it has been shown that
classical simulation of certain circuit families becomes
easy if the output probability distribution is sparse
enough (namely, overly concentrated) [51–53]. Those
results indicate that concentrated output probability
distribution makes classical simulation easier for such
cases, demonstrating that anti-concentration is a crucial
step in establishing the simulation hardness.

Moreover, anti-concentration proposes the minimum
depth required for the current average-case hardness
proof, as the lack of anti-concentration directly ruins the
proof technique even though it does not necessarily rule
out the classical hardness of boson sampling. Specifically,
when the output probability distribution is concentrated
such that most of the output probabilities are very close
to zero and easy to approximate within additive error
by a trivial algorithm that always outputs the value
“0”, there is no average-case hardness of approximating
output probabilities. Hence, if the output probability
of BS below a certain depth is poorly anti-concentrated
as described above, the corresponding depth suggest
a prerequisite for the average-case hardness of output
probability approximation, as we cannot achieve the
average-case hardness below the depth.
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III. LIMITATIONS OF GEOMETRICALLY

LOCAL ARCHITECTURES

We consider an M -mode linear optical circuit
characterized by unitary operator Û . After the
evolution, input mode operators of the system are
linearly transformed by a unitary matrix U defined as

âi =⇒ Û†âiÛ =
M
∑

j=1

Uij âj (2)

The probability of each outcome of BS is represented by
a function of the unitary matrix U , which corresponds to
permanent and hafnian for FBS and GBS, respectively.
A typical way to construct an M -mode random linear-

optical network is a local parallel circuit architecture, a
parallel array of geometrically local beam splitters that
can interact with only nearest-neighbor modes [54]. The
corresponding circuit architecture has often been used
both for theoretical [20, 47, 55] and experimental [7, 8, 56,
57] studies, as a building block for random linear-optical
circuits. There are schematics of the 1-dimensional and
2-dimensional local parallel circuits in Fig. 1, and we can
easily generalize those circuits to a d-dimensional local
parallel circuit. More formally, the d-dimensional local
parallel circuit with depth D consists of D/2d rounds,
where a single round consists of 2d steps, 2 steps of the
parallel application of local gates for each dimension.
Here and throughout, we emphasize that a unit depth
in our work refers to a single step of parallel application
of gates at a fixed dimension, to avoid any confusion.
With a given linear optical circuit architecture, circuit

lightcones can be determined by the gates composing the
circuit. We define LD(i) as a forward lightcone, which is
a set of all modes at depth D connected with input mode
i via the gates of the architecture. Similarly, backward

lightcone L†
D(i) is a set of all input modes connected

with mode i at depth D along the gates. Intuitively, the
lightcone indicates a set of modes photons can spread
from a mode via the gates within a finite depth.
To specify the circuit ensemble for random circuit

instances, we also define the d-dimensional local parallel
random circuit, which is d-dimensional local parallel
circuit with each gate drawn from the Haar measure on
U(2) independently. Such configurations are motivated
by recent experimental setups [7–10]. For the following
sections, we consider the d-dimensional local parallel
(random) circuit as default and prove that the probability
distribution is poorly anti-concentrated under a certain
polynomial circuit depth, both for FBS and GBS
schemes, implying the lack of the average-case hardness
for shallow depth circuits.

A. Fock-state boson sampling

For FBS, we set the basic parameters as follows. The
system is composed of totalM modes, and the input state

is composed of N single-photon states and vacuum states
for the rest modes where M and N are polynomially
related by M = c0N

γ with γ ≥ 1. We use the notation
t as the position of input single photons, where t ∈ Z

N
≥0

with 1 ≤ ti ≤ M and t1 < t2 < · · · < tN such
that each element ti denotes a mode where a photon is
injected. Also, s denotes the output photons’ position,
where s ∈ Z

N
≥0 with 1 ≤ si ≤ M and s1 ≤ s2 ≤ · · · ≤ sN

(equality denotes collision outcomes), so each element si
corresponds to a mode where a photon is measured. Here,
the number of possible patterns of s is given by

(

M+N−1
N

)

.
Using those notations, the output probability of FBS

to obtain the outcome s is expressed as [2]

ps =
|Per (Us,t)|2

s!
=

1

s!

∣

∣

∣

∣

∣

∣

∑

σ∈SN

N
∏

j=1

Usσ(j),tj

∣

∣

∣

∣

∣

∣

2

, (3)

where Us,t is a submatrix of circuit unitary matrix U
such that (Us,t)i,j = Usi,tj . Also, s! denotes a product
of the multiplicity of all possible values in s, and σ ∈ SN

denotes permutations along N modes.
As mode interactions cannot occur outside the circuit

lightcone, we have Uij = 0 for i /∈ LD(j). Hence, if
the size of the lightcone is small such that for given s,
sσ(j) /∈ LD(tj) for all σ ∈ SN and at least one j ∈ [N ],
this implies that the given outcome s is unphysical,
suggesting ps = 0. We can check a simple example of
a forbidden outcome of FBS in Fig. 2(b). Intuitively,
the number of unphysical outcomes would increase if the
lightcone size gets smaller, as photon propagation along
different modes becomes more restricted.
From the structure of the local parallel architecture,

we find that the size of the lightcone |LD(i)| grows as

|LD(i)| ≤
(

2D

d

)d

, (4)

where D denotes circuit depth and d denotes circuit
dimension. The right-hand side of Eq. (4) comes from
the fact that the size of the lightcone is 2D/d for each
dimension as we defined a unit depth as a single step
of parallel application of gates (see Fig. 2(a)). Equality
holds when the lightcone does not meet geometrical
boundaries.
As we can see, for local parallel architecture, lightcones

grow polynomially with depth by Eq. (4). Hence, a
large portion of outcomes might be unphysical and thus
have zero output probability for the low-depth regime
(e.g., logarithm depth), as photons are localized inside
lightcones of each input mode, whose sizes are very small
in this regime. Following the above intuition, we first
prove that only an exponentially small portion of the
outcomes of FBS is allowed under a certain polynomial
depth, regardless of input configurations and ensembles
of gates composing the circuit.

Theorem 1. (Any circuit ensemble) For d-dimensional

local parallel circuit of depth D ≤ κ0N
γ−1
d and arbitrarily
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FIG. 2. (a) A schematic of the forward lightcone of a 1-dimensional parallel circuit. We employ a paradigmatic scheme such
that the left side denotes the input and the right side denotes the output. From the parallel architecture, the size of the
lightcone for each dimension is twice of depth for each dimension. (b) An example of a forbidden outcome for FBS, which does
not satisfy the constraint (5): input and output photons are not connected by the lightcone. (c) An example of a forbidden
outcome for GBS, which does not satisfy the constraint (11): a pair of output photons must be originated from a single source.

chosen input mode configuration, most of the outcomes
of FBS have zero output probability for a constant κ0 =

e
1
d c

1
d

0 d/2.

Proof. From Eq. (3), the probability is non-zero only if
at least one path exists between each input and output
mode within each lightcone, and this statement can be
written as

∃σ ∈ SN ∀j ∈ [N ] such that sσ(j) ∈ LD(tj). (5)

Let M be the number of outcomes s satisfying the
constraint (5). Then M is bounded by

M ≤
N
∏

i=1

|LD(ti)| . (6)

The right-hand side of Eq. (6) counts the outcome by
one-to-one correspondence from the input to the output,
so at least one output photon is present at each input
lightcone, satisfying the constraint (5). Clearly, it is an
upper bound for any input configuration t, because it
double-counts the output photon distribution inside the
overlapping region of lightcones as photons in the region
are indistinguishable. In addition, the inequality at
Eq. (6) becomes tighter as the more LD(ti) do not overlap
each other, which corresponds to input configurations
that photon sources are far from each other (e.g., setups
from Refs. [18, 20]).

Here we note that M can be exponentially large in
terms of system size, but still, it can be much smaller
than all possible output patterns (i.e.,

(

M+N−1
N

)

). The
ratio of permitted outcomes over all possible outcomes,

which we will denote as ∆, is bounded by

∆ =
M

(

M+N−1
N

) (7)

≤
√
2πNe

1
12N

(

2dDdN

eddM

)N

(8)

< 3
√
N

(

2dDdN1−γ

eddc0

)N

, (9)

where we used Stirling’s formula and the fact that
N is larger than the unity. Here, we only employed
the structure of the local parallel architecture (viz.,
maximal lightcone size), and did not take into account
the ensemble the circuit follows. Therefore, the result

shows that for depth D ≤ κ0N
γ−1
d with a constant

κ0 = e
1
d c

1
d

0 d/2, asymptotically ∆ is exponentially small
with system size, regardless of input configuration t and
circuit ensemble.

Theorem 1 implies that for circuits with a depth
below a certain threshold, most output instances have
zero probabilities for any circuits. Therefore, most of
the output probabilities are easy to approximate for
any circuit instance, which undermines the average-case
hardness of the output probability approximation for any
circuit ensemble.
Furthermore, many current experiments compose their

circuits by choosing local beam splitters randomly, i.e.,
the local parallel random circuit we introduced. In that
case, we find that most photons propagate in a region
smaller than the actual lightcone, requiring additional
circuit depth to get out of the easiness regime.

Theorem 2. (Local random ensemble) For d-
dimensional local parallel random circuit of depth

D ≤ α0N
2(γ−1)

d
−λ with a constant α0 = e

2
d c

2
d

0 βd/2, for
any λ > 0, 0 < β < 1, and input mode configuration, it
is easy to estimate the output probabilities of FBS within
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additive error ǫ = poly(N )−1 N !
MN , for 1 − ξ portion of

output instances with probability 1 − δ over the random
circuit instances, where ξ and δ are exponentially small
with system size.

The term ‘easy’ means that we can approximate the
probability well within allowed additive error ǫ by a
trivial algorithm that outputs the value “0”. From the
diffusive properties of the local parallel random circuit
studied by Ref. [20, 55], we find that the probability
distribution is still poorly anti-concentrated below a

certain depth which is larger than κ0N
γ−1
d .

To sketch the proof of Theorem 2, we define the
‘effective’ lightcone such that truncating the outcomes
that at least one photon propagates outside this lightcone
results in exponentially small total variation distance
from the original distribution, below a certain polynomial
depth. In this regime, most of the probability instances
are easy to estimate, including the unphysical outcomes
and the truncated outcomes (though not unphysical)
outside the effective lightcones.

Proof. See Appendix A.

B. Gaussian boson sampling

In this section, we consider an M -mode GBS with
a product of K single-mode squeezed vacuum (SMSV)
states with equal squeezing and vacuum states for the
rest modes. We focus on the output photon number 2n,
i.e., there are n pairs of output photons. Now M and
n are polynomially related by M = c1n

γ where γ ≥ 1,
and let K be any number satisfying n ≤ K ≤ M . For
convenience, we adjust the squeezing parameter such that
the mean photon number for our setup is also 2n, which
implies 2n = K sinh2 r. Similarly from the FBS case, we
use the notation t as the input vector, where t ∈ Z

K
≥0

with 1 ≤ ti ≤ M and t1 < t2 < · · · < tK such that
each element ti denotes a mode where SMSV is injected.
Also, s denotes an output vector, where s ∈ Z

2n
≥0 with

1 ≤ si ≤ M and s1 ≤ s2 ≤ · · · ≤ s2n.
Using the above conventions, the probability of

obtaining outcome s for GBS is proportional to

ps ∝
∣

∣Haf
((

UIKUT
)

s

)∣

∣

2

=

∣

∣

∣

∣

∣

∣

∑

µ∈PMP

n
∏

j=1

(

M
∑

k=1

M
∑

l=1

Usµ(2j−1)k(IK)k,lUsµ(2j)l

)

∣

∣

∣

∣

∣

∣

2

,

(10)

where IK denotes the projection matrix to the input K
modes, and PMP denotes all possible perfect matching
permutations along 2n modes.
Similar to the FBS case, unphysical outcomes are

naturally forbidden as ps = 0. More precisely, If the
size of the lightcone is small such that for given s,
∑

k

∑

l Usµ(2j−1)k(IK)k,lUsµ(2j)l = 0 for all µ ∈ PMP and

at least one j ∈ [n], then the outcome s is forbidden.
This phenomenon comes from the fact that the input
state is a product of SMSV which is a superposition
of even number Fock-states, i.e., photons are always
generated as a pair. Therefore, if there exists an output
photon such that its backward lightcone does not share
the input source with backward lightcones of the other
photons, the corresponding outcome is unphysical and
thus prohibited. We can check an example of a forbidden
outcome of GBS in Fig. 2 (c).
Following the intuition, we prove that only an

exponentially small portion of the outcomes of GBS is
allowed under a certain polynomial depth, regardless of
input configurations and ensembles of gates composing
the circuit.

Theorem 3. (Any circuit ensemble) For d-dimensional

local parallel circuit of depth D ≤ κ1n
γ−1
d , arbitrary K

within n ≤ K ≤ M and arbitrarily chosen input mode
configuration, most of the outcomes of GBS have zero

output probability for a constant κ1 = c
1
d

1 e
1
d d/2

1
d
+2.

Proof. The probability of GBS is non-zero only if 2n
output photons are paired up and share the input source
inside their backward lightcones, and this statement can
be written as

∃µ ∀j ∃i such that ti ∈ L†
D(sµ(2j−1)) ∩ L†

D(sµ(2j)).

(11)

Since we want to upper-bound the number of permitted
outcomes, we alleviate the constraint (11) by taking
K = M , which denotes the full-mode input. Then,
from (11), the constraint for the index i vanishes and

the last term reduces to L†
D(sµ(2j−1)) ∩ L†

D(sµ(2j)) 6= ∅ .
Then we can approximately count the number of possible
outcomes as follows: (i) Pick n pairs over M modes with
replacement. (ii) Count all possible alignment for each
n pair connected by lightcones.
Let M be the number of outcomes s satisfying the

constraint (11). Then M is bounded by

M ≤ 1

2n

∑

r

n
∏

i=1

∣

∣

∣
LD ◦ L†

D(ri)
∣

∣

∣
, (12)

where r ∈ Z
n
≥0 with 1 ≤ ri ≤ M and r1 ≤ r2 ≤ · · · ≤ rn

denotes the possible mode selection at step (i) so the

number of possible alignment of r is
(

M+n−1
n

)

. The factor
1
2n comes from the indistinguishability of the photons
between step (i) and (ii). As we allowed double counting
at overlapping regions and weakened the constraint (11)
by taking K = M , the right-hand side of Eq. (12)
certainly implies an upper bound.
From the structure of d-dimensional parallel circuit

architecture, with generalization of Eq. (4), |LD ◦L†
D(ri)|

has the corresponding bound

∣

∣

∣
LD ◦ L†

D(ri)
∣

∣

∣
≤
(

4D

d

)d

, (13)
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where equality holds when lightcones do not meet
geometrical boundaries. Now ∆ is the ratio of outcomes
satisfying (11) over all possible output distributions, and
it is bounded by

∆ =
M

(

M+2n−1
2n

) (14)

≤ 1

2n

[

4d
(

D

d

)d
]n (

M+n−1
n

)

(

M+2n−1
2n

) (15)

≤
√
2e

1
24n

(

22d+1Dd

edd
n

M

)n

(16)

< 2

(

22d+1

eddc1
Ddn1−γ

)n

. (17)

We used Stirling’s formula and the fact that n is larger
than the unity. This result shows that for depth D ≤
κ1n

γ−1
d with κ1 = c

1
d

1 e
1
d d/2

1
d
+2, ∆ is exponentially small

with system size, regardless of K in n ≤ K ≤ M and
distribution of t. Also, as we only used the structure of
the local parallel architecture, the result holds for any
circuit ensemble.

Theorem 3 states that regardless of the number of
input SMSV states and their configuration, most of the
outcomes of GBS have zero probabilities which are easy
to approximate under a certain degree of polynomial
depth, for any circuit instances. Moreover, for the case
of the local parallel random circuit, we prove that the
argument from the proof of Theorem 2 holds even for
the GBS scheme, requiring additional depth to get out
of a poorly anti-concentrated regime.

Theorem 4. (Local random ensemble) For d-
dimensional local parallel random circuit of depth

D ≤ α1n
2(γ−1)

d
−λ with α1 = c

2
d

1 e
2
d βd/2

2
d
+3, for

any λ > 0,0 < β < 1, n ≤ K ≤ M and input
mode configuration, it is easy to estimate the
output probabilities of GBS within additive error

ǫ = poly(n)−1 (2n)!
M 2n for 1− ξ portion of output instances

with probability 1 − δ over the random circuit instances,
where ξ and δ are exponentially small with system size.

Proof. See Appendix B.

We remark that since the anti-concentration property
is a necessary condition for the existing simulation
hardness proof technique, the lack of anti-concentration
itself does not guarantee the classical simulability of
shallow-depth boson sampling in the local parallel
architecture. Although there exist efficient classical
algorithms that can simulate sparse output probability
distribution of some circuit families [51–53], they cannot
be directly applied to our cases. Hence, our future
work would be to demonstrate how the lack of anti-
concentration in the local parallel architecture leads
to the classical simulability of the shallow-depth boson
sampling.

IV. GEOMETRICALLY NON-LOCAL

ARCHITECTURE: HYPERCUBIC STRUCTURE

So far, we have shown that the d-dimensional local
parallel circuit is faced with the limit for achieving
sampling hardness at shallow depth. As the size of the
lightcone of the local architecture grows polynomially
with depth, a mode connectivity issue arises below a
certain polynomial depth, which leads to the prohibition
of most of the outcomes and thus undermines the
average-case hardness. Also, as the random instances
of the circuit are characterized by diffusive dynamics,
most of the photon propagation is determined by the
effective lightcone whose size is smaller than the original
one, which requires additional depth to resolve the mode
connectivity issue. The problem is that from the photon
loss model for each unit depth, polynomial depth entails
large noise that disturbs classical intractability.
Since the problems we addressed come from circuit

architecture which allows only local interactions, an
obvious way to resolve those problems is to consider
non-local interactions along modes, i.e., for the case
that geometrically non-local unitary gates are available.
Allowing the non-local interactions, we find a circuit that
can mitigate the issues about connectivity and diffusive
property within logarithmic circuit depth, where the
architecture of the circuit has been used in numerical
linear algebra in order to construct structured matrices
efficiently [58–60]. Throughout this section, we refer to
the circuit as a non-local hypercubic structure (NLHS)
circuit for simplicity, and an example of the circuit
architecture for mode number M = 16 is illustrated in
Fig. 3.

A. Structure of the circuit

Let the total mode number be M = 2p (for some
integer p) for convenience. The sequence for the
construction of a one-cycle of NLHS circuit is simple:
for each D = 1, 2, · · · , p, apply unitary gates between
mode number 2D(j − 1) + k and 2D(j − 1) + k + 2D−1,
for all j = 1, 2, · · · , 2p−D and k = 1, 2, · · · , 2D−1. Here,
we point out that each D implies the unit depth in terms
of our standard, as unitary gates are applied in parallel
for all j and k indices (e.g., all of the unitary gates with
the same color in Fig. 3 are applied in unit depth). The
corresponding circuit architecture has a well-spreading
property such that photons departed from any mode can
spread 2D modes for depth D, and thus fully connected
for the one-cycle of the circuit, viz., at least one path
exists from any input mode toward any output mode.
Additionally, even for arbitrary M , we can still achieve
full mode connection in O(logM) depth by iterating the
above process (e.g., by stacking one-cycle of the circuit
with depth ⌊logM⌋ on the left side and right side of the
modes, alternatively). Even so, to simplify the analysis,
we only consider the case ofM = 2p with a fixed p ∈ N for
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FIG. 3. A Schematic of a one-cycle of NLHS circuit for total mode number M = 24. In this case, the architecture of the circuit
can be interpreted as a 4d hypercube, also known as a tesseract. Here, each color implies a depth unit, as all of the unitary
gates with the same color are applied in parallel.

the rest of the section and define a single round of NLHS
circuit as the one-cycle of the sequence we introduced,
i.e., the procedure up to circuit depth D = p.

The NLHS circuit architecture indeed satisfies
the minimum requirement for achieving average-case
hardness in a low-depth regime, namely, having
accessibility to all outcomes in a single round of the
circuit. Now we consider the case that the circuit is
randomly drawn from a specific circuit ensemble, to
examine whether the probability distribution can satisfy
the condition of average-case hardness. Specifically, we
use a typical setup such that all unitary gates composing
the NLHS circuit as independently chosen random beam
splitters, each drawn from Haar measure on U(2), similar
to the local parallel random circuit case. From now on,
we define the corresponding circuit as random NLHS
circuit.

We first find that a single round of the random NLHS
circuit has evenly spreading property in terms of single-
photon propagation, compared to the localized property
(i.e., diffusive dynamics) of the local parallel random
circuit. We can check this property with an absolute
squared unitary element averaging over random circuit
instances, which corresponds to the average of single-
photon transition amplitude between modes. Let UD

i,j be
a unitary element for the circuit with depth D. Using
properties of random beam splitters each drawn from
Haar measure on U(2), an average of an absolute squared
unitary element becomes

E[|Up
i,j |2] =

1

2
E[|Up−1

i,j |2] + 1

2
E[|Up−1

i,j±2p−1 |2]

=
1

4
E[|Up−2

i,j |2] + 1

4
E[|Up−2

i,j±2p−2 |2]

+
1

4
E[|Up−2

i,j±2p−1 |2] +
1

4
E[|Up−2

i,j±2p−1±2p−2 |2]
= · · ·

=
1

2p

M
∑

j=1

E[|U0
i,j |2]

=
1

2p
(18)

by averaging over the beam splitters for each depth,
where ± signs behind index j are determined by the
binary notation of j. Interestingly, the result shows that
a single round of random NLHS circuit can mimic the
Haar unitary up to the first moment.
Also, if we repeat a single round of random NLHS

circuit C times (i.e., total C logM depth, iteratively
stacking a single round of NLHS circuit of depth D =
logM), the number of paths between arbitrary modes
scales as MC−1. To be more detailed, as a path between
arbitrary modes is uniquely determined for a single round
of NLHS circuit, the number of paths between arbitrary
modes grows as 1,M,M2, · · · by repeating the circuit.
This exponential growth of possible paths motivates us
to elucidate the properties of the random NLHS circuit
and how the repetition of the corresponding circuit works
on those properties.
For the following sections, we propose numerical

evidence that the random NLHS circuit quickly converges
to the global Haar random unitary (i.e., random unitary
drawn from Haar measure on U(M)) by repeating a single
round of the random circuit drawn independently for
each repetition. Specifically, we examine the probability
distribution and entanglement generation of the random
NLHS circuit with different repetition numbers and their
convergence behavior toward the global Haar random
unitary circuit.

B. Probability distribution of random NLHS

circuit

We investigate the output probability distribution
of FBS and GBS over the random NLHS circuit
(with repetitions) instances and its resemblance to
the distribution from the global Haar random unitary.
To statistically analyze the output probabilities over
the randomly chosen circuit instances, we employ the
probability density function, which is a modified version
of the histogram and employed by Ref. [2] to numerically
show evidence of the anti-concentration property of FBS
(for more details, see Fig. 5 in Ref. [2]). The reason
we use the probability density function is for enhanced
visibility, as we observed that the degree of concentration
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FIG. 4. Probability density function for output probabilities of (a) FBS and (b) GBS with M = 64 and N = 8, for random NLHS
circuit with different repetition numbers and 2-dimensional local parallel random circuit with different depths. The distribution
corresponding to the global Haar unitary circuit is also displayed as an ideal case. The x-axis is for the (unnormalized) output
probability values, and the y-axis is for the corresponding densities along the samples. Input t and output s are chosen randomly
along possible configurations of N photons along M modes, without collision.

of output probability distribution dramatically changes
with circuit depth.
The difference from the histogram is, instead of using

equal intervals on the density axis, each interval now
contains equal numbers of samples. Specifically, samples
sorted in ascending order are divided into each bucket,
containing an equal number of samples. Next, the density
of each bucket is determined by the fraction of samples
it contains divided by its width, where the width of
the bucket is the difference between the maximum and
minimum value of samples in the bucket. The probability
density function is a plot of those densities corresponding
to each bucket, where the x-axis represents the value
of each sample. Throughout this section, we fix the
number of output probability instances for each unitary
circuit as 10000 and fix the number of buckets as 20, so a
single point of the density function contains 500 output
probability instances.
For output probabilities, we use |Per(Us,t)|2 for the

FBS scheme, which corresponds to the output probability
of FBS to get output s from input t. Also, we use
|Haf((UUT )s)|2 for the GBS scheme, which corresponds
to the unnormalized output probability of GBS to get
output s from full-mode SMSV input state with equal
squeezing. To simplify the analysis, we fix the output
photon number of GBS.

1. Comparison with the local parallel circuit

Using the probability density function, we first
compare the performance of the random NLHS circuit
and typical 2-dimensional local parallel random circuit,
for fixed mode number M = 64 and photon number
N = 8. In this case, a single round of random NLHS

circuit can be implemented with circuit depth D =
logM = 6, and thus C repetition of the circuit requires
6C depth. Here, we consider the repetition number C
up to three (i.e., up to D = 18), with the random
circuit drawn independently for each repetition. Also,
for the 2-dimensional local parallel random circuit, we
consider circuit depth from D = 16, not to restrict
photon propagation between arbitrary modes.

We randomly sample 10000 unitary matrices for
each circuit with different depths and calculate the
output probability of randomly chosen collision-free
input/output (only random collision-free output for
GBS) for each unitary matrix we sampled. Here, we can
focus on collision-free cases if M is much larger than N
such thatN = O(

√
M) [2], which fits well with our setup.

Using those probability values, we plot the probability
density function in Fig. 4, for random NLHS circuits
with different repetition numbers, and for 2-dimensional
local random circuits with different depths. We also
plot the function corresponding to M dimensional Haar
random unitary circuit, as an ideal case. The dispersion
of the distribution along the x-axis implies a variance
of output probability values over the random instances,
such that the less dispersed the distribution implies the
more the corresponding output probability distribution
is anti-concentrated.

We find that distributions from both circuits converge
to a distribution from M dimensional Haar random
unitary as increasing depth, which is predictable from
the convergence properties studied at [61, 62]. However,
their convergence behavior toward global Haar random
unitary is different. Specifically, although a single round
of random NLHS circuit has poor performance in terms
of anti-concentration, an iteration of the random NLHS
circuit makes quick convergence to the distribution of the
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FIG. 5. Probability density function for (a-d) FBS and (e-h) GBS, with M = 32, 64, 128, 256 and N = 6, 8, 12, 16 each. For each
figure, the distributions corresponding to the random NLHS circuit, with repetition numbers up to three, are presented. Also,
the distribution of the Haar unitary is displayed as an ideal case. Input t and output s are chosen randomly along possible
configurations of N photons along M modes, without collision.

Haar random unitary, both for FBS and GBS schemes.

2. Convergence to the behavior of the global Haar measure,
for different system sizes

To identify how the convergence behavior varies as
system size scales, we further investigate the number
of repetitions of the random NLHS circuit required for
the convergence to the global Haar random unitary
with increasing system size. Here, we also examine
the repetition number up to three with the random
circuit drawn independently for each repetition. We
set mode numbers M = 32, 64, 128, 256 and randomly
sample 10000 unitary matrices for each repetition of
the random NLHS circuit and for M dimensional Haar
random unitary circuit. Then we calculate the output
probability of randomly chosen input/output for each
matrix, both for FBS and GBS schemes, given output
photon number N around

√
M . We plot the probability

density function for those values in Fig. 5.
Interestingly, the number of repetitions required to

imitate the distribution from the global Haar random
unitary is insensitive to system size. More specifically,
stacking the random NLHS circuit twice dramatically
changes its distribution, showing a close resemblance
to the distribution from the global Haar unitary, which
implies the existence of critical behavior between stacking
the circuit once and twice. Here, the mode numbers we
used (up to 256 modes) cover all recent experimental

results of GBS [7–9], even though the photon numbers
we used are small compared to those results. Therefore,
up to the system size covered by near-term experiments,
the random NLHS circuit can imitate output probability
distributions of fixed photon number N ∼

√
M from

the global Haar random unitary circuit with considerably
low depth. Also, as the required repetition number for
imitation is insensitive to the system size, the result gives
hope that the low-depth circuit (a few repetitions of the
random NLHS circuit) can well approximate the Haar
unitary and thus suggests evidence of the average-case
hardness for larger quantum systems.

We also examine the scaling behavior of Haar measure
convergence in terms of photon numberN , for fixed mode
number M . We plot the probability density function
for fixed mode number M = 32 with output photon
numbers N = 8, 16 both for FBS and GBS schemes,
which can be checked in Appendix C. The result shows
similar behavior, i.e., the number of repetitions required
does not change a lot as the output photon number
increases. Hence, the result suggests a possibility such
that a low-depth random NLHS circuit can even imitate
output probability distributions from the global Haar
random unitary for output photon number much larger
than O(

√
M), which is also remarkable.
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3. Hiding property

Additionally, we investigate if hiding property holds
for the random NLHS circuit. The hiding theorem of
BS shows two properties [2, 4]. One is that probability
distribution is output independent, i.e., the probability
of any outcome instances follows the same distribution
over random circuit instances. The other is that
the corresponding output probability is similar to the
quantity which is conjectured to be hard to estimate on
average, viz., squared permanent (hafnian) of random
Gaussian matrices. We numerically investigate both
of the above properties using the probability density
function; readers who are interested in this subject can
see the result in Appendix D.

C. Entanglement generation of random NLHS

circuit

In this section, we investigate how entanglement along
the modes varies with the repetition of the NLHS circuit,
to show the simulation hardness and the convergence
behavior toward the global Haar measure from another
perspective. Entanglement is considered necessary for
the hardness of classical simulation of a quantum state,
as various tensor network methods can approximate the
low entangled state efficiently [14–16]. Rényi entropies
are often cited as a measure of entanglement, and
possibly indicate the feasibility of simulating the given
quantum state via those methods [63, 64]. Specifically,
restricting to bosonic Gaussian states, many results [65–
67] suggested that Rényi-2 entropy is a good measure
of entanglement. Moreover, Ref. [68] recently proposed
the Rényi-2 Page curve of pure Gaussian state evolved
by the global Haar random unitary, exactly the output
state of the ideal GBS scheme. Hence, to examine the
entanglement behavior, we focus on the Rényi-2 entropy
of reduced states of the output states of GBS, each
evolved by different repetitions of random NLHS circuits
or global Haar random unitary. Our goal is to examine
the entanglement generation of the random NLHS circuit
with increasing depth and investigate if the circuit with
increasing depth can reproduce the Rényi-2 Page curve,
to propose evidence of the simulation hardness of GBS for
the corresponding circuit and its convergence behavior
toward the global Haar random unitary.
For mode numbers M = 64, 128, 256, we randomly

sample 10000 unitary matrices from each repetition of
the random NLHS circuit, and also from the global Haar
measure as an ideal case. Then the M product of SMSV
with equal squeezing parameter r = 0.4 is evolved with
those unitary matrices. To calculate the entropy of the
output states, M modes are partitioned into two groups,
one for k modes and the other forM−k modes, where the
mode selection is completely random along MCk possible
combinations. For all k ∈ [M − 1], we calculate the
entropy of a reduced state and average over the unitary

matrices, while the Rényi-2 entropy takes the form of
S2 = 1

2 log detσ, where σ is the covariance matrix of the
reduced state [69].
In Fig. 6, we plot the average of Rényi-2 entropy

with respect to different subsystem sizes, for each mode
number we fixed. The result shows the entanglement
generation of the random NLHS circuit with an
increasing stacking number, where the distribution
converges to the Rényi-2 Page curve (i.e., distribution
from the global Haar random unitary) as circuit depth
increases. It is notable that the required number
of repetitions for the convergence is insensitive to
system size, similar to previous results we addressed.
Specifically, stacking the random NLHS circuit twice or
more resembles the behavior of the global Haar measure,
and the absolute difference of the entropy values between
them varies very slowly with system size, which is also
remarkable.

D. Unitary design of random NLHS circuit

We also investigate the convergence behavior of the
random NLHS circuit toward global Haar random
circuits from a different perspective, which is unitary
design. As we can see in Eq. (18), even a single
round of random NLHS circuit can mimic the Haar
random unitary up to the first moment. Based on
this understanding, we aim to explore if the random
NLHS circuit can still mimic the Haar random unitary
for the higher moments, i.e., if it has a unitary design
property. Among the various measures of unitary design
as in [70, 71], we focus on the frame potential [72]
of the random NLHS circuit, which is suitable for
numerical evaluation and often cited as evidence of
the unitary design property [73–76]. Here, we also
calculate the frame potential for the local parallel random
circuits with various circuit dimensions to compare their
convergence behaviors with the random NLHS circuit.
We find that the random NLHS circuit shows fast
convergence behavior with increasing circuit depth for
higher moments k = 2, 3, 4, and its convergence behavior
is faster than those of other local circuits. This suggests
evidence of the unitary design property of the random
NLHS circuit within a few repetitions. The details are
provided in Appendix E.

E. Experimental realization of NLHS circuit

Throughout the previous sections, we have numerically
shown that the random NLHS circuit shows quick
convergence behavior toward Haar unitary distribution
by a few repetitions, which gives a possibility for the
average-case hardness of BS with shallow-depth quantum
circuits. In this section, we discuss the experimental
feasibility of the random NLHS circuit. Experimental
realization of the random NLHS circuit (with repetitions)
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FIG. 6. The average of Rényi-2 entropy with respect to different subsystem sizes, for mode number (a) M = 64, (b) M = 128,
(c) M = 256. For each figure, the average of entropy values corresponding to the Gaussian state evolved by various repetitions
of random NLHS circuits and M mode Haar random unitary circuits, are presented.

requires a geometrically non-local setup or a high-
dimensional architecture with its dimension up to d =
logM .
Considering photonic systems, Ref. [77] implemented

integrated photonic chips for 2d modes with dimensions
up to d = 3, where the interaction along modes occurs
in hypercubic sequence, precisely the circuit architecture
of the NLHS circuit. Hence, implementation of the
random NLHS circuit would be feasible if the dimension
of those devices can be increased in a scalable manner
and if the gates composing the devices are programmable.
Additionally, we can employ high-dimensional photonic
architecture used in [4, 9] but in a different gate sequence,
i.e., the hypercubic sequence we used. Optical frequency
crystals, as demonstrated in [78, 79], would be a viable
alternative, which can also suggest high-dimensional
photonic architecture as the NLHS circuit.
We can also consider phononic systems, such as

trapped ions, which can be utilized as alternative bosons
to construct linear-optical circuits [80–82]. Specifically,
recent works from [83] have experimentally demonstrated
a programmable all-to-all setup for four modes of
phononic network with trapped ions, using collective-
vibrational modes of ions. Although architectures based
on trapped ions might face the limitation of long-
range interaction due to spectral crowding when system
size scales, employing modular architecture would help
overcome this problem. Therefore, this setup may
also offer a promising candidate for the experimental
realization of the random NLHS circuit in the near future.

V. DISCUSSION

In this work, we examined that for local circuit
architecture, the depth of the linear optical circuit
should be large enough to satisfy the conditions for
the sampling hardness based on the currently available
proof technique. More precisely, for depth under

the degree of O(M
(γ−1)

γd ), most of the probabilities

are zero regardless of circuit ensemble and input
configuration. Besides, for local random ensemble, most
of the probabilities are too small and easy to estimate

for depth under O(M
1
γ
[ 2(γ−1)

d
−λ]). We interpreted

that this problem comes from the properties of the
local parallel architecture, where the circuit lightcone
grows polynomially with depth, and the circuit is
characterized by the diffusive property, which hinders
anti-concentration. We proposed the circuit architecture
using non-local interactions, which can restrain the issues
we addressed at logarithm circuit depth. Also, the
repetition of the random NLHS circuit shows quick
convergence behavior toward the global Haar random
unitary, where the speed of convergence is insensitive
to the system size. Hence, we conclude that the
corresponding circuit can be used for approximate Haar
measure with shallow depth circuit, and has the potential
to be utilized as an architecture for scalable quantum
advantage with BS.

Here are a few remarks about our results and related
open questions:

1. As we have described in Sec. II, anti-concentration
is a necessary condition for the “current” average-case
hardness proof technique. This means that the lack of
anti-concentration in Sec. III does not directly imply
the classical simulability of boson sampling in shallow-
depth local parallel architecture. Accordingly, it does not
completely rule out the classical intractability of boson
sampling in local shallow-depth architecture, although a
new proof technique for the simulation hardness has to
be developed in this case. To fully investigate whether
the classical simulation in local shallow-depth circuits
is easy or hard, we can take two different approaches:
(i) demonstrate how the lack of anti-concentration leads
to the classical simulability of the shallow-depth boson
sampling, or (ii) find average-case hardness inside the
exponentially small portion of outcomes. We leave those
problems as open questions.

2. It is worth emphasizing the difference of our result
from the one in Ref. [4], which provides evidence of the
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hardness of sampling from the high dimensional circuit
of constant depth. We stress that our depth unit is
different from the depth definition in Refs. [4, 9], where
the difference comes from the structural difference of the
circuit architecture. Specifically, they denote unit depth
by one cycle of serial application of gates along the modes
for each dimension, which translates to depth O(M) from
our standard such that only parallel implementation of
gates is allowed for unit depth.

3. The key difference between RCS and BS with
shallow-depth quantum circuits lies in the accessibility of
outcomes, which comes from a systematic difference. In
RCS, as each outcome is obtained through measurement
on a computational basis, the local Pauli-X operator on
each qubit gives access to all possible outcomes. Hence,
when a circuit for RCS is constructed using local Haar
unitaries, all of the outcomes are accessible regardless of
the circuit depth, and output symmetry from random
circuit instances is easily established by the translation
invariance of the Haar measure over the local random
unitary gates. However, in the case of BS, each outcome
is obtained through measurement on a photon number
basis; the accessibility of outcomes can be restricted in
low-depth regimes as we have shown. Since the current
proof of the sampling hardness requires the usage of
all possible outcomes (as the allowed error is given by
total variation distance), we emphasize that the circuit
architecture for BS must be carefully designed. In this
regard, the NLHS circuit we proposed may play an
important role in the shallow-depth hardness argument
as it gives access to all possible outcomes at logarithm
depth.

4. As we discussed in Sec. II, the measure
over M mode random NLHS circuits with a few
repetitions cannot strictly imitate the Haar measure
on U(M) unless the repetition number satisfies Ω(M).
However, even though there is only numerical evidence
yet, the repetition of the random NLHS circuit can
well approximate certain properties (output probability
distribution, entanglement generation) of the global Haar
random unitary. This implies that approximating Haar
measure might be possible only with a few repetitions of
the circuit [61, 62]. Our results raise an open question of
how much the measure over the random circuit matrices
can imitate the global Haar measure, with increasing
repetition numbers.

5. A few repetitions of the random NLHS circuit show
global randomness for fixed-size numerical experiments,
which gives a possibility to show the average-case
hardness of output probability approximation at a
shallow depth regime, for the asymptotic limit. As
we discussed in the introduction, there is a possibility
that a constant number of repetitions of the random
NLHS circuit (i.e., logarithm depth circuit) may enable
us to avoid the classically simulable regime of noisy BS
with photon loss. Specifically, as the output photon
number is given by Nout = NTD for circuit depth
D, asymptotically Nout can be larger than O(

√
N) for

D = O(logN). Therefore, another open problem would
be to show the average-case hardness of approximating
output probabilities from a few repetitions of the random
NLHS circuit, for the case that noises are applied at each
depth.
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Appendix A: Proof of Theorem 2

In this Appendix, we provide the proof of Theorem 2.

Proof. We first follow the process of approximating
the output probability distribution of the local parallel
random circuit using unitary matrix truncation; more
details can be found in Refs. [20, 55]. It is known
that photons follow classical random walk behavior on
average in the local parallel random circuit. From this
behavior, they are effectively localized in a regime even
smaller than a given lightcone; we can find a bound of
the regime such that the probability of leakage from this
regime is exponentially small. In this case, truncation of
the circuit unitary matrix by discarding matrix elements
outside the regime results in an exponentially small total
variation distance from the original output distribution.
This implies that the summation of output probabilities
that at least one photon propagates outside the regime
would also be exponentially small.
To be more specific, we define a leakage rate from the

input mode i as ηi(l) :=
∑

′

j |Uj,i|2, where the summation
is over the all possible modes that are geometrically away
from the mode i more than length l for each dimension.
From the classical random walk behavior, when the
length l satisfies the corresponding bound

l ≥
√

2NλD

βd
, (A1)

with any constant λ > 0 and 0 < β < 1,
then Pr

[

ηi(l) ≤ exp
(

−Nλ
)]

≥ 1 − δ where δ ≤
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FIG. 7. Probability density function for (a-b) FBS and (c-d) GBS, with M = 32 and N = 8, 16 each, Input t and output s are
fixed at first N modes over M modes. The distributions corresponding to the random NLHS circuit, with repetition numbers
up to three, are presented. Also, the distribution of the Haar unitary is displayed as an ideal case.

2d exp
[

(1 − 1
β
)Nλ

]

, and the probability is over the

random instances of the circuit.

We define a matrix Ũ , a truncated version of a
unitary matrix U , by discarding the matrix elements
that are farther than l for each dimension from the
given column index. From this definition, Ũ ≡ U − dU
with ‖dU‖2F =

∑

i ηi(l), where the summation is over
all possible column indices. If l satisfies Eq. (A1),
then ‖dU‖2F ≤ poly(N) exp

(

−Nλ
)

with probabilty 1 −
δ over the circuit instances. Using this fact with
results from [84], we can deduce that the total variation

distance between distributions from U and Ũ is bounded
by poly(N)‖dU‖2F which is exponentially small with
system size for our case. Hence, the summation of
probabilities of outcomes corresponding to the discarded
elements, i.e. the outcomes that at least a single
photon propagates from the source more than l satisfying
Eq. (A1), is bounded by the total variation distance
which is exponentially small with high probability.

However, as Ũ is not a unitary matrix, the output
distribution of the matrix cannot be determined. We
can resolve this issue by first extending Ũ to a unitary
matrix in 2M × 2M , which contains normalized Ũ at
first M modes, and post-selecting the outcomes only
at the first M modes. This way, we can get the
probability distribution corresponding to Ũ (see [20]
for more details). To summarize, the summation of
probabilities of the outcomes outside the regime l has the
order of maximally poly(N) exp

(

−Nλ
)

with probability
1− δ over the circuit instances.

We define an effective lightcone L
′

D such that the size
of the lightcone for each dimension has a minimum value
satisfying Eq. (A1). Following the above discussions,
the summation of probabilities of the outcomes outside
the effective lightcone is exponentially small with high
probability. Hence, if the portion of outcomes inside
the effective lightcone is exponentially small, the output
probability distribution is concentrated on the small
portion of the outcomes.

Let M′ number of outcomes s satisfying the constraint
(5), but now the lightcone term is replaced by the

effective lightcone L
′

D(ti). Upper bound of |L′

D(ti)| is

∣

∣

∣
L

′

D(ti)
∣

∣

∣
≤
(

2NλD

βd

)

d
2

, (A2)

where equality holds when the effective lightcone does
not meet geometrical boundaries. The ratio of outcomes
inside the effective lightcone over all possible outcomes
∆′ is

∆′ =
M′

(

M+N−1
N

) (A3)

≤
√
2πNe

1
12N

[

N

eM

(

2NλD

βd

)

d
2

]N

(A4)

< 3
√
N

[

1

ec0

(

2

βd

)
d
2

D
d
2 N1−γ+λd

2

]N

. (A5)

Indeed, for the depth D ≤ α0N
2(γ−1)

d
−λ with a constant

α0 = e
2
d c

2
d

0 βd/2, most of the probability distribution is
concentrated inside the exponentially small portions of
outcomes.

Our proof of Theorem 2 is not completed yet
because the statement that the summation of truncated
probabilities is smaller than poly(N) exp

(

−Nλ
)

does
not guarantee that all single truncated probabilities are
small enough to estimate easily. There may exist some
truncated probabilities larger than the allowed additive
error ǫ, which we cannot safely estimate as zero.

Nevertheless, we can verify that the truncated
outcomes outside the effective lightcones having
probabilities larger than given ǫ cannot occupy
large portions of outcomes. Let Γ be the ratio of
truncated outcomes having probabilities larger than
ǫ over all possible outcomes of FBS. Also, let S ′

set of outcomes outside the effective lightcone, so
|S ′| = (1 −∆′)

(

M+N−1
N

)

.
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FIG. 8. Probability density function for (a) FBS and (b) GBS with M = 128 and N = 10 each, for fixed (first N modes over
M modes) and random input t and output s without collision. The distributions corresponding to the random NLHS circuit,
with repetition numbers up to three, are presented. Also, the distributions of the Haar random matrices and random Gaussian
matrices are displayed, to check if there exists the hiding property.

We find the upper bound of Γ as

Γ ≤ Pr
s∈S′

[ps ≥ ǫ] (A6)

≤ 1

ǫ
E

s∈S′

[ps] (A7)

=
1

ǫ

∑

s∈S′ ps

(1−∆′)
(

M+N−1
N

) (A8)

≤ 1

ǫ

N !

MN
poly(N) exp

(

−Nλ
)

, (A9)

where we used Markov’s inequality for Eq. (A7) and the
inequality Eq. (A9) holds with probability 1− δ over the
circuit instance. Therefore, for ǫ = poly(N)−1 N !

MN , Γ ≤
poly(N) exp

(

−Nλ
)

with probability 1−δ over the circuit
instances.
In summary, for depth D ≤ α0N

2(γ−1)
d

−λ with a

constant α0 = e
2
d c

2
d

0 βd/2, the ratio of outcomes we
cannot easily estimate their probabilities within additive
error ǫ, which can be characterized by ξ ≡ ∆′ + Γ, is
exponentially small with probability larger than 1 − δ
over the circuit instances. This completes the proof.

Appendix B: Proof of Theorem 4

In this Appendix, we provide the proof of Theorem 4.

Proof. We use the concept of effective lightcone as well for
GBS, except for the notation change fromN to n. Similar
to the FBS case, using truncation of unitary matrix by
the effective lightcone, summation of probabilities of the
outcomes outside the effective lightcone has the order of
maximally poly(n) exp

(

−nλ
)

with probability 1− δ over

the circuit instances. Here, δ ≤ 2d exp
[

(1− 1
β
)nλ
]

with

any λ > 0 and 0 < β < 1.

Here, the truncated outcomes can have any output
photon numbers, contrary to our scheme that focuses
on fixed output photon number 2n. Hence, the
summation of truncated probabilities can be enlarged
from poly(n) exp

(

−nλ
)

if we normalize the output
probability distribution in the 2n photon subspace.
However, it is not problematic if we also set the mean
photon number 2n, as the output probability of getting
the mean photon number is at least an inverse polynomial
of system size. Specifically, the probability of generating
2n output photon events is given by negative binomial
distribution [3]

P (2n) =

(

K/2 + n− 1

n

)

tanh2n r

coshK r
. (B1)

By applying 2n = K sinh2 r, the above probability
reduces to P (2n) = Ω(n− 1

2 ), which is indeed an inverse
polynomial. Hence, even considering only the 2n photon
outcomes, the summation of probabilities truncated by
effective lightcone still have the order of maximally
poly(n) exp

(

−nλ
)

.

From the above discussions, if the ratio of outcomes
inside the effective lightcone is exponentially small,
this means that the output probability distribution is
concentrated on the exponentially small portion of the
outcomes. Let M′ number of outcomes satisfying
(11), but now the lightcone is replaced by the effective

lightcone L
′

D. We can similarly use Eq. (12) but now
Eq. (13) is modified to

∣

∣

∣
L

′

D ◦ L′

D

†
(ri)
∣

∣

∣
≤ 2d

(

2nλD

βd

)

d
2

. (B2)

The ratio of outcomes inside the effective lightcone over
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FIG. 9. Normalized frame potential F
(k)
E

/F
(k)
Haar for the moment (a) k = 2, (b) k = 3 and (c) k = 4, with M = 64. The

distributions E corresponding to the random NLHS circuit, and the local parallel random circuits are presented. The error bars
at the plot correspond to the standard deviations induced by the bootstrapping method [85]. Also, the theoretical value for
the Haar random unitary is presented as a black horizontal line.

all possible outcomes ∆′ is

∆′ =
M′

(

M+2n−1
2n

) (B3)

≤
√
2e

1
24n

[

2d
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d
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(B4)

< 2

[
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ec1

(

8
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)
d
2

D
d
2 n1−γ+λd

2

]n

. (B5)

Therefore, for depth D ≤ α1n
2(γ−1)

d
−λ with a constant

α1 = c
2
d

1 e
2
d βd/2

2
d
+3, ∆′ is exponentially small, which

means that probability distribution is concentrated inside
the exponentially small portions of outcomes.
Also, using a similar analysis to the proof of the

Theorem 2, a ratio of truncated outcomes outside the
effective lightcones that can have probabilities larger

than ǫ = poly(n)−1 (2n)!
M2n over all possible outcomes,

which we previously denoted as Γ, is upper-bounded by
Γ ≤ poly(n) exp

(

−nλ
)

with probability 1 − δ over the
circuit instances. This claims that for GBS with depth

D ≤ α1n
2(γ−1)

d
−λ, we can well approximate 1 − ∆′ − Γ

of the output probability instances with 1 − δ over the
circuit instances, which completes the proof.

Appendix C: Probability distributions of random

NLHS circuit, for fixed mode number

To examine the scaling behavior of Haar measure
convergence only in terms of photon number, we set mode
number M = 32 and photon number N = 8, 16, and
sampled 10000 unitary matrices for each repetition of the
random NLHS circuit and global Haar unitary circuit.
Now we fix the input and output mode, as the photon
number is comparably large such that the condition
to get collision-free outcomes dominantly (i.e., N =

O(
√
M)) may no longer hold. We calculate probabilities

for fixed (first N modes overM modes) input and output
and plot the probability density function for those values
in Fig. 7. We find that the number of repetitions
required to imitate the distribution of Haar unitary is
insensitive to increasing photon number, even for the case
that output photon number is comparably larger than
O(

√
M).

Appendix D: Numerical evidence for hiding

The hiding theorem is necessary to prove the hardness
of the classical simulation of BS; to simplify, the theorem
states that hiding random output instances into random
circuit instances is possible. More specifically, for
the FBS case, the squared permanent of the N × N
submatrices randomly chosen from M ×M Haar random
unitary matrices is very similar to the squared permanent
of the random Gaussian matrices X ∼ N (0, 1)N×N

C
with

normalization factor 1
MN , if M = ω(N5) is satisfied

(conjectured that M = ω(N2) is enough) [2]. Also,
Ref. [4] suggested hiding property for GBS; for equal
squeezing input, the output probability distribution over
Haar random circuit instances is similar to the squared
hafnian of the product of random Gaussian matrices.

To gather numerical evidence about whether the
hiding property holds for the random NLHS circuit,
we compare the results between fixed and random
input/output configurations over the random NLHS
circuit instances and examine their converging behavior
to the distribution of Haar random matrices. We
also compare those results with the distribution from
random Gaussian matrices, that is, |Per(X)|2/MN with

X ∼ N (0, 1)N×N
C

for FBS [2], and |Haf(XXT )|2/MN

with X ∼ N (0, 1)N×M
C

for GBS [4]; they are believed
to be hard to additively estimate on average. If the
results for fixed and random input/output are close
enough to each other, and also close enough to the
distributions of Haar random matrices and random
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Gaussian matrices, it gives evidence that hiding random
output probabilities into average-case hard-to-estimate
quantity (conjectured) would be possible.
We set mode number M = 128 and photon number

N = 10, and sampled 10000 unitary matrices for each
repetition of the random NLHS circuit. We calculate
probabilities both for fixed and random input/output
for those matrices, where we fixed input and output
modes to the first N modes over M modes. Also, we
calculate probabilities from 10000 Haar unitary matrices
and random Gaussian matrices of size N×N (N×M for
GBS). We plot the probability density function for those
values, which can be checked in Fig. 8. We find that
the result demonstrates the manifestation of the hiding
property comparably after stacking the random NLHS
circuit twice, which is consistent with previous results.
Both fixed and random output probabilities of random
NLHS circuit instances converge to the distributions of
Haar random unitary and random Gaussian matrices,
suggesting numerical evidence of hiding property at the
low-depth regime.

Appendix E: Comparison of frame potential

For given circuit ensemble E , the frame potential F (k)
E

for k moment is given by [72]

F (k)
E =

∫

U,V ∈E

dUdV |Tr(U †V )|2k, (E1)

where the theoretical value of frame potential for the

Haar random unitary is F (k)
Haar = k!. By using the Monte-

Carlo method, the theoretical value in Eq. (E1) can be
approximated numerically by [76]

F (k)
E ≈ 1

Nsam

Nsam
∑

i=1

|Tr(U †
i Vi)|2k, (E2)

where the summation is over Nsam randomly generated
circuits Ui, Vi from the ensemble E .
We compare the frame potential of the random NLHS

circuit with the 2-dimensional local parallel random
circuit and the 3-dimensional local parallel random
circuit for a fixed mode number M = 64. In this case,
a single round of the NLHS circuit architecture can be
implemented with circuit depth D = 6, and a single
round of local parallel circuit for d = 2 (d = 3) can
be implemented with circuit depth D = 4 (D = 6). We
randomly sample Nsam = 50000 unitary matrices U and
V in Eq. (E2) for circuit depth starting from D = 4
(for d = 2 local circuit) and D = 6 (for NLHS circuit
and d = 3 local circuit). Using those unitary matrices,

we calculate normalized frame potential F (k)
E /F (k)

Haar via
Monte-Carlo approach as in Eq. (E2), for the moment
k = 2, 3, 4. In Fig. 9, we plot all evaluated values.
We find that all the circuits show the convergence to
the moments of Haar random unitary as circuit depth
increases. The random NLHS circuit clearly shows
faster convergence behavior with increasing circuit depth
compared to other local circuits, which is consistent
with the previous results. This result suggests numerical
evidence of the unitary design property of the random
NLHS circuit within a few repetitions.
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