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Abstract—Reinforcement learning agents are susceptible to
evasion attacks during deployment. In single-agent environments,
these attacks can occur through imperceptible perturbations in-
jected into the inputs of the victim policy network. In multi-agent
environments, an attacker can manipulate an adversarial oppo-
nent to influence the victim policy’s observations indirectly. While
adversarial policies offer a promising technique to craft such
attacks, current methods are either sample-inefficient due to poor
exploration strategies or require extra surrogate model training
under the black-box assumption. To address these challenges, in
this paper, we propose Intrinsically Motivated Adversarial Policy
(IMAP) for efficient black-box adversarial policy learning in both
single- and multi-agent environments. We formulate four types
of adversarial intrinsic regularizers—maximizing the adversarial
state coverage, policy coverage, risk, or divergence—to discover
potential vulnerabilities of the victim policy in a principled
way. We also present a novel bias-reduction method to balance
the extrinsic objective and the adversarial intrinsic regularizers
adaptively. Our experiments validate the effectiveness of the
four types of adversarial intrinsic regularizers and the bias-
reduction method in enhancing black-box adversarial policy
learning across a variety of environments. Our IMAP successfully
evades two types of defense methods, adversarial training and
robust regularizer, decreasing the performance of the state-of-
the-art robust WocaR-PPO agents by 34%-54% across four
single-agent tasks. IMAP also achieves a state-of-the-art attacking
success rate of 83.91% in the multi-agent game YouShallNotPass.
Our code is available at https://github.com/x-zheng16/IMAP.

Index Terms—Reinforcement learning, black-box evasion at-
tack, adversarial policy, intrinsic motivation

I. INTRODUCTION

A. Background

Reinforcement Learning (RL) agents are susceptible to a
variety of attacks due to the vulnerabilities of their func-
tion approximators or policies themselves [1]. The growing
application of RL agents in safety-critical systems, such as
robotics and autonomous vehicles [2]–[5], underscores the
need for the development of both certification methods [6]–
[9] and empirical evaluation methods [10]–[13] to measure the
robustness of deployed RL agents. Adversarial Policy (AP),
a type of test-time evasion attack, has emerged as a crucial

∗Corresponding author.

technique for assessing the robustness of the deployed RL
engines or models [1], [11], [14]–[17].

In single-agent environments, AP is developed to generate
imperceptible perturbations on the inputs of the victim policy
network. Sun et al. [14] proposed generating action pertur-
bation via AP first and then crafting the corresponding state
perturbation via the Fast Gradient Sign Method (FGSM). Mo
et al. [17] suggested using two APs to select the attack timing
and determine the worst-case victim action separately. Apart
from these white-box methods, Zhang et al. [1] introduced
SA-RL to learn the optimal black-box AP in dense-reward
locomotion tasks. However, SA-RL requires knowledge of the
victim policy’s training-time rewards, which are difficult for
the adversary to obtain under the black-box threat model.

In multi-agent competitive environments, AP is used to
control an opponent agent to interact with the victim agent
and indirectly influence the observation of the victim. Gleave
et al. [11] first discovered this type of AP in two-player
zero-sum competitive games, denoted as AP-MARL. Wu et
al. [15] suggested training an extra surrogate victim model by
imitation learning first and then using an explainable Artificial
Intelligent technique to identify the attack timing. Guo et
al. [16] developed AP learning for non-zero-sum games by
simultaneously maximizing the adversary’s and minimizing
the victim’s value functions. However, training an additional
surrogate victim model yields only a marginal improvement in
the attacking success rate [15]. Moreover, all these AP learning
methods are sample-inefficient due to their trivial dithering
exploration methods.

B. Motivations and Design Rationale

a) Motivations: In this work, we explore and propose
Intrinsically Motivated Adversarial Policy (IMAP) for efficient
black-box AP learning in both single- and multi-agent environ-
ments. There are three main challenges. Firstly, efficient ex-
ploration is known to be critical for RL algorithms to improve
performance and reduce sample complexity. However, existing
AP learning methods all suffer from poor exploration in both
single- and multi-agent environments as they all explore in
an ad-hoc and trivial manner by heuristically perturbing the
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outputs of the AP with Gaussian noise. To address this, we de-
sign four types of adversarial intrinsic regularizers to enhance
the exploration of the AP in a principled way. Adversarial
intrinsic regularizers encourage the AP to explore novel states
more efficiently so as to uncover potential vulnerabilities of
the black-box victim policy. Secondly, the incorporation of
adversarial intrinsic regularizers presents a new challenge: how
to effectively balance the original extrinsic objective and the
newly introduced adversarial intrinsic regularizers. To sim-
plify the hyperparameter search for the optimal temperature
parameter that controls the strength of the regularization, we
employ constrained policy optimization to develop an adaptive
balancing strategy. Thirdly, existing AP methods, except for
AP-MARL, all follow a relaxed black-box threat model or
require extra surrogate victim model training. One of the key
assumptions on the knowledge of the adversary made by AP-
MARL is that the adversary against the deployed victim policy
does not have access to the training-time rewards and the value
function of the deployed victim agent. To address this, we stick
to the (unrelaxed) black-box assumptions on the knowledge of
the adversary to design our IMAP and do not rely on extra
surrogate victim models.

b) Design Rationale: To encourage the exploration of the
AP, we design four types of adversarial intrinsic regularizers
for IMAP that maximize the adversarial State Coverage (SC),
Policy Coverage (PC), Risk (R), and Divergence (D). All
four types of adversarial intrinsic regularizers are designed for
the AP to uncover the potential vulnerabilities of the victim
policy efficiently and have solid theoretical support, includ-
ing state entropy [18], policy cover [19], constrained policy
optimization [20], and policy diversity [21], [22]. Intuitively,
efficient exploration for black-box AP learning can involve
either uniform state visitation (maximizing the adversarial SC)
or maximizing deviation from explored regions (maximizing
the adversarial PC). Further, the R- and D-driven adversarial
intrinsic regularizers are also well-motivated, with the former
encouraging the AP to lure the victim policy into adversarial
states and the latter encouraging the AP to keep deviating
from its past policies to be diverse. In addition to promoting
the exploration of the AP, the inductive bias introduced by
adversarial intrinsic regularizers may distract the adversary
from its objective—decreasing the performance of the victim
policy—in the final stage of AP learning. We find that such
a distraction phenomenon exists in sparse-reward tasks and
design a novel bias-reduction method to enhance the perfor-
mance of IMAP further.
Summary of Contributions. Our main contributions are
summarized as follows:
• We propose IMAP—a general regularizer-based black-box

AP learning method—and design four types of novel, well-
motivated, and principled adversarial intrinsic regularizers,
i.e., SC-, PC-, R-, and D-driven, in both single- and multi-
agent environments.

• In single-agent environments, our IMAP outperforms the
baseline SA-RL in four dense-reward locomotion tasks and
nine sparse-reward tasks, including six locomotion, two

SA-RL: fail to make the robust agent fall or slow down

IMAP (ours): successfully make the robust agent fall

Fig. 1: The robust victim agent—trained with the state-of-
the-art defense method WocaR [24]—is attacked by (top) the
state-of-the-art AP method SA-RL and (bottom) our IMAP
in the single-agent environment Walker. Though the WocaR
Walker learned to lower its body to be robust, our IMAP can
find its vulnerable states and successfully lure the victim to
lean forward and fall.

navigation, and one manipulation tasks.
• In single-agent environments, our IMAP successfully evades

two types of state-of-the-art defense methods, including ad-
versarial training (e.g., ATLA and ATLA-SA [1]) and robust
regularizer (e.g., SA [8], RADIAL [23], and WocaR [24],
shown in Fig. 1). We empirically show that a defense method
that successfully defends one type of IMAP attack can fail
against another type of IMAP, raising a new challenge for
developing robust RL algorithms.

• In multi-agent environments, our IMAP achieves a state-
of-the-art attacking success rate of 83.91% in the com-
petitive game YouShallNotPass, outperforming the baseline
AP-MARL [11]. The adversary learns a natural blocking
skill with the policy-coverage-driven adversarial intrinsic
regularizer, shown in Fig. 2. IMAP also outperforms AP-
MARL in another competitive game, KickAndDefend.

• We develop a novel bias-reduction method for IMAP based
on the adversarial optimality constraint and empirically
demonstrate that it can effectively boost performance in both
single- and multi-agent environments.

II. PRELIMINARIES

We introduce the formulations of single- and multi-agent RL
tasks and the basic policy optimization method in this section.
In all tasks, the goal of the victim is to maximize its expected
episode rewards, while the adversary aims to minimize the
expected episode rewards of the victim.

a) Single-Agent RL Tasks: In single-agent tasks, the
agent interacts with the environment by taking sequential
actions according to the observed state at each step. This
process is usually modeled as a Markov Decision Process
(MDP) M = (S,A, P,RE , γ, µ). S and A are the state
space and action space. P : S × A → ∆(S) is a transition
function mapping state s and action a to the next state
distribution P (s′|s, a). RE : S × A × S → R is the bounded
extrinsic reward function. γ ∈ [0, 1) is the discount factor.
And µ ∈ ∆(S) is the initial state distribution.



AP-MARL: fail to cause the victim to take poor actions

IMAP (ours): successfully block the victim and make it fall

Fig. 2: The victim (in blue) is attacked by an adversarial oppo-
nent (in red) in the multi-agent environment YouShallNotPass.
The adversary is trained via (top) AP-MARL or (bottom)
IMAP. AP-MARL learns to statically collapse on the ground
and fail to block the victim. In contrast, our IMAP learns a
stronger adversarial skill to intercept the victim.

b) Multi-Agent RL Tasks: For multi-agent tasks, we focus
on two-player zero-sum competition games. A two-player
zero-sum competition game can be formulated as a Markov
Game M = ((Sν ,Sα), (Aν ,Aα), P, (RE ,−RE), γ, µ). S
and A stand for the state and action space repsectively.
Here, we use α to represent the adversary and ν the victim.
P : Sν×Sα×Aν×Aα → ∆(Sν ,Sα) is the transition funtion
where ∆(Sν ,Sα) is the probability distribution space over Sν

and Sα. RE : Sν × Sα × Aν × Aα × Sν × Sα → R is the
bounded instant extrinsic reward function for the victim policy,
and −RE is the corresponding extrinsic reward function for
the adversarial agent according to the zero-sum assumption.
γ ∈ [0, 1) is the common discount factor determining the
horizon of the Markov Game, and µ ∈ ∆(Sν ,Sα) is the initial
state distribution.

c) Policy Optimization: We use Proximal Policy Opti-
mization (PPO) [25] for AP learning. The objective function
of PPO is defined as:

JPPO(π) = Es,a min

{
π(a|s)
πk(a|s)

Â,

clip

(
π(a|s)
πk(a|s)

; 1− ϵ, 1 + ϵ

)
Â

}
,

(1)

where 1) the density ratio π(a|s)
πk(a|s) is the importance weight-

ing; 2) the clipping function clip(x; 1 − ϵ, 1 + ϵ) =
1− ϵ, x ≤ 1− ϵ

1 + ϵ, x ≥ 1− ϵ

x, otherwise
is to make sure that the policy gradient

is zero when |1− π(a|s)
πk(a|s) | ≥ ϵ; 3) the advantage function Â is

estimated by Generalized Advantage Estimation (GAE) [26]
to reduce the variance of policy gradient estimation, that
is, Â(st) =

∑∞
l=0(γλ)

l(RE(st, at, st+1) + γV πk(st+l+1) −
V πk(st+l)); and 4) the outer minimization operator ensures
the objective function JPPO is a lower bound of the objective
Es,aA. Intuitively, this objective function makes sure the new
and old policies are not so different. PPO then utilizes multiple
steps of mini-batch Stochastic Gradient Descent (SGD) on

JPPO with a dataset D = {(s, a, rE , s′)} collected by the old
policy πk and use regression to update the value function V π .

III. THREAT MODEL

We adopt a black-box threat model for AP learning in both
single- and multi-agent RL tasks. We describe the threat model
from three aspects: objective, knowledge, and capabilities of
the adversary.

A. Objective of the Adversary

In both single- and multi-agent RL tasks, the goal of the
attacker is to learn an optimal AP πα that can minimize the
test-time expected episode rewards of the deployed black-box
victim policy πν . We denote the adversarial state distribution
induced by both πα and πν as dπ

α

= dπ
α;πν

to make the
math notations concise since πν is held fixed. We define the
test-time expected episode rewards of the victim policy as

Jν
E(d

πα

) =
∑
s

dπ
α

r̂νE , (2)

where r̂νE is the surrogate reward of the victim policy since
we assume the adversary cannot access the training-time
reward rνE of the victim policy. rνE may contain complex
reward shaping terms, while r̂νE is a simple indicator that
the victim completes the task (e.g., runs far enough in lo-
comotion or reaches the target position in navigation and
manipulation) in the single-agent environment or win the
competitive game in the multi-agent environment, that is,
r̂νE = 1(the victim succeeds). The objective of the AP is then

JAP(πα) = −Jν
E(d

πα

). (3)

B. Knowledge of the Adversary

In both single- and multi-agent RL tasks, the knowledge
of the attacker is black-box, and the deployed victim policy
network is assumed to be held fixed. Specifically, we assume
that the adversary does not know the following information
of the victim policy πν : 1) training-time hyperparameters; 2)
training-time rewards rνE and the value function V πν

; 3) test-
time model architecture, parameters and activations.
Clarification. Here, we clarify the assumptions made above.
The first and third assumptions are typical black-box assump-
tions adopted by all existing back-box AP learning methods,
including SA-RL, AP-MARL, and Wu et al.’s method. For
the second assumption, it is worth noting that only the victim
policy network is utilized during the deployment phase in
RL tasks. Therefore, for evasion attacks against RL, it is
reasonable that both the training-time rewards rνE and the
value function V πν

—which are only used in the training
phase—are unknown to the adversary. SA-RL relaxed the
second assumption, resulting in a weaker threat model.

C. Capabilities of the Adversary

Here, we introduce the adversary’s capabilities separately in
single- and multi-agent tasks since their transition functions
are different, as stated in Section II.



a) Single-Agent RL Tasks: The attacker can add small
perturbations to the victim policy’s inputs. We model the
attacker as a state adversary πα(·|s), which can generate
an adversarial perturbation aα ∼ πα based on the victim’s
current state sν . The perturbation aα is bounded in an ℓp
norm ball with a constant small radius ϵ, that is, ∥aα∥p ≤
ϵ. The transition function under this threat model becomes
Pα(sνt+1|sνt , aαt ) = P (sνt+1|sνt , πν(sνt + aαt )).

b) Multi-Agent RL Tasks: We focus on two-player zero-
sum competitive games. The attacker can control an opponent
agent α to battle with the victim agent ν, as visualized
in Fig. 2. Since the victim policy is held fixed, the two-
player Markov game M reduces to a single-player MDP
Mα = ((Sν ,Sα),Aα, Pα, (RE ,−RE), γ, µ). The transition
function under this treat model becomes Pα(sαt+1|sαt , aαt ) =
P (sνt+1, s

α
t+1|sνt , sαt , πν(sνt , s

α
t ), a

α
t ). In each interaction step,

the victim agent takes its action πν(sνt , s
α
t ) based on the

current environment state (sνt , s
α
t ), and the adversarial agent

samples its action aαt ∼ πα(·|sνt , sαt ) simultaneously.
On the Adversary’s Capabilities. In sum, the attacker can ob-
tain the environment’s current state—sν in single-agent tasks
and (sνt , s

α
t ) in multi-agent tasks—and maliciously influence

the victim policy. In single-agent tasks, the adversary can
directly inject perturbations aαt to the inputs of the victim
policy, i.e., πν(sνt+aαt ); in multi-agent tasks, the adversary can
indirectly influence the victim policy by generating adversarial
observations sαt with an opponent agent, i.e., πν(sνt , s

α
t ).

IV. PROPOSED ATTACK

In this section, we introduce the detailed techniques of
IMAP. We start with the design of its regularizer-based
optimization objective and the resulting RL problem for
regularizer-based black-box AP learning. We then introduce
four types of principled and well-motivated adversarial in-
trinsic regularizers as particular design cases. Following this,
we derive the details of how to solve the policy optimization
problem of IMAP. Finally, we introduce a novel bias-reduction
mechanism for IMAP to relieve the potential distraction caused
by adversarial intrinsic regularizers.

A. Optimization Objective of IMAP

Under the black-box threat model, as discussed in Sec-
tion III, maximizing the objective of the AP JAP(πα) with
trivial exploration methods like SA-RL and AP-MARL suffers
from sample inefficiency and suboptimal solutions. To address
these issues, we propose adversarial intrinsic regularizers,
which intrinsically motivate the AP to explore novel states
so as to uncover the potential vulnerabilities of the victim
policy and learn stronger attacking skills. To make a trade-off
between exploration (i.e., maximizing the adversarial intrinsic
regularizer) and exploitation (i.e., maximizing the objective
of the AP), we introduce a regularization approach by in-
corporating the adversarial intrinsic regularizer JI(d

πα

) into
the objective of the AP JAP(πα). The resulting optimization
objective of IMAP is formulated as follows:

J IMAP(πα) = JAP(πα) + τkJI(d
πα

), (4)

where τk represents the temperature parameter that determines
the strength of the regularization.

It is worth noting that our formulation for the optimization
objective of IMAP J IMAP(πα) is general. The adversarial
intrinsic regularizer JI(d

πα

) can be a general function de-
pending on the current adversarial state distribution dπ

α

and
all past adversarial state distribution {dπα

i }ki=0. The adversarial
intrinsic regularizer is designed to encourage the exploration
of the AP in a principled manner. We present four types of
adversarial intrinsic regularizers for IMAP as specific design
cases in the following section.

Based on Eq. (4), the resulting policy optimization problem
of IMAP becomes

max J IMAP(πα), s.t. πα ∈ argmaxJAP(πα). (5)

The constraint is necessary so as to ensure that, at convergence,
the optimal AP for J IMAP(πα) is optimal for the objective of
the adversary JAP(πα). We name this constraint the adversarial
optimality constraint.
Uncovering Potential Vulnerabilities of the Victim Policy.
Before delving into the design of adversarial intrinsic regu-
larizers, it is crucial to define the potential vulnerabilities of
a victim policy. Formally, what we are looking for is a state
region in the victim policy’s state space, that is, Wν ∈ Sν ,
where r̂νE is small or zero. In other words, Wν is the state
region that all sub-optimal trajectories of the victim policy
pass through. Thus, uncovering the potential vulnerabilities of
the victim policy entails diverting the victim policy from its
optimal trajectories. This definition is consistent with the ob-
jective of the AP. In single-agent tasks, since Sα = Sν ∋ Wν

and ∥aα∥p ≤ ϵ, we can encourage the adversary to directly
explore Sα to find Wν . On the contrary, in multi-agent tasks,
Sν ̸= Sα, and the victim’s and the adversary’s states sν and
sα are coupled by the transition function Pα(sαt+1|sαt , aαt )
derived in Section III. Thus, we can design adversarial intrinsic
regularizers in Sα, Sν , or (Sα,Sν), to encourage the AP to
uncover Wν .

B. Adversarial Intrinsic Regularizer Design

We now introduce how to design appropriate adversarial
intrinsic regularizers for black-box AP learning. Recall the
objective of the adversary is to maximize the objective of
the AP JAP(πα). Existing black-box AP learning methods in
both single-agent and multi-agent RL tasks typically rely on
the heuristic exploration technique, which involves random
perturbation on the outputs of the AP without considering
the learning process of the AP. However, these methods
have been shown to be sample-inefficient and are prone to
converging towards suboptimal solutions due to premature
exploitation, particularly in sparse-reward tasks. To overcome
these limitations, we design four types of adversarial intrinsic
regularizers to stimulate the exploration of the AP, including
SC-driven, PC-driven, R-driven, and D-driven regularizers.

1) State-Coverage-Driven Regularizer: The first type of ad-
versarial intrinsic regularizer we design is the State-Coverage-
driven (SC) regularizer. The SC-driven regularizer aims to



encourage the AP to maximize the adversarial SC by maximiz-
ing the entropy of the adversarial state distribution dπ

α

. For
instance, in a single-agent navigation RL task, the AP learned
via IMAP-SC can disrupt the victim policy by enticing it to
move randomly in the whole map. The SC-driven regularizer
for single-agent tasks can be defined as follows:

JSC
I (dπ

α

) = −
∑

sd
πα

ln dπ
α

. (6)

For multi-agent RL tasks, to uncover potential vulnerabil-
ities Wν of the victim policy, we can 1) lure the victim
policy into uniformly covering Sν , and 2) encourage the
adversary itself to uniformly cover Sα. To accomplish this,
we define the marginal state distribution dπZ(z) = (1 −
γ)

∑∞
t=0 γ

tP (ΠZ(st) = z|µ, π), where ΠZ is an operator
mapping the full state into a projection space Z . The SC-
driven regularizer for multi-agent tasks is then formulated as

JSC-M
I (dπ

α

) = (1− ξ)JSC
I (dπ

α

Sα) + ξJSC
I (dπ

α

Sν ), (7)

where ξ is a constant for balancing the two sub-objectives.
2) Policy-Coverage-Driven Regularizer: Next, we intro-

duce the Policy-Coverage-driven (PC) adversarial intrinsic
regularizer, which aims to intrinsically motivate the adversary
to divert the victim policy from its past (optimal) trajectories so
as to uncover its potential vulnerabilities efficiently. We define
the adversarial explored regions, or adversarial PC, as the sum
of all historical adversarial state distributions ρα =

∑k
i=1 d

πα
i .

For single-agent tasks, we design the PC-driven adversarial
intrinsic regularizer as follows:

JPC
I (dπ

α

) = −
∑

sρ
α ln ρα. (8)

This regularizer can be regarded as the entropy of the adver-
sarial PC. It encourages the adversary to visit novel regions
where ρα is small.

With the definition of the marginal state distribution in
the previous section, we can design the novel PC-driven
regularizer for multi-agent tasks

JPC-M
I (dπ

α

) = (1− ξ)JPC
I (dπ

α

Sα) + ξJPC
I (dπ

α

Sν ). (9)

Here, the first term encourages the adversary to visit novel
states beyond the explored regions, while the second term aims
to derail the victim from its optimal trajectories. The parameter
ξ is used to balance the two sub-objectives.

3) Risk-Driven Regularizer: Besides the SC- and PC-driven
adversarial intrinsic regularizers, we propose a novel Risk-
driven (R) adversarial intrinsic regularizer for black-box AP
learning. The concept of the risk is inspired by safety RL [20],
where a cost function c(s) is designed to constrain the behavior
of the agent. For instance, when there exists a dangerous state
sd in the state space, the cost function can be designed as
c(s) = −∥s− sd∥, penalizing the agent when it is close to sd.
By minimizing the expected cost function, the agent can be
guided to stay away from sd. In the context of evasion attacks,
the attacker can maliciously select a potentially vulnerable
state of the victim and lure the victim to approach this state.
We refer to the state strategically selected by the adversary

α for the victim ν as the adversarial state sν(α) ∈ Wν .
The corresponding cost function for the AP is then cα(s) =
−∥ΠSν (s)− sν(α)∥. Here, we use the projector ΠSν (s) ∈ Sν

to project the environment’s full state s into the victim policy’s
state space Sν since R only concerns the victim’s states. The
R-driven adversarial intrinsic regularizer for both single- and
multi-agent tasks is then

JR
I (d

πα

) = −
∑

sd
πα

∥ΠSν (s)− sν;α∥. (10)

Since all trajectories of the victim start from its initial state
sν0 , we have sν0 ∈ Wν . Thus, a natural choice of sν(α) is sν0 .

4) Divergence-Driven Regularizer: We now introduce the
fourth type of adversarial intrinsic regularizer, the D-driven
adversarial intrinsic regularizer. The design of the D-driven
regularizer is based on policy diversity [21] and [22]. The
objective of the D-driven regularizer is to intrinsically motivate
the AP πα to continuously deviate from its past policies
{πα

i }ki=1, promoting diversity of the AP’s behaviors and
preventing the AP from being trapped in a local sub-optimal
strategy. Note that we design the D-driven regularizer solely
from the adversary’s perspective, aiming to investigate whether
this proprioceptive design can also help the AP discover
potential vulnerabilities of the victim policy. Instead of ran-
domly selecting an old policy from {πα

i }ki=1, we introduce
one adversarial mimic policy πα;m which has the same neural
architecture as the AP πα and imitates the behaviors of
these past policies {πα

i }ki=1 by minimizing their average KL-
divergence over all states, i.e., min

∑
s DKL(π

α;m, {πα
i }ki=1).

We then define the D-driven regularizer for both single- and
multi-agent tasks as follows:

JD
I (d

πα

) =
∑

sd
πα

DKL (π
α, πα;m) . (11)

By maximizing JD
I (d

πα

), the AP is encouraged to constantly
deviate from its past policies to explore novel states in Sν to
uncover Wν in a proprioceptive manner.
Relationships Between the Four Types of Adversarial
Intrinsic Regularizers. Here, we clarify the relationships
between the four types of adversarial intrinsic regularizers,
i.e., SC-, PC-, R-, and D-driven adversarial intrinsic regular-
izers. They can be classified into two major categories, i.e.,
knowledge-based and data-based, depending on whether the
regularizer involves only the agent’s latest experiences (i.e.,
dπ

α

) or the whole historical knowledge (i.e., {dπα
i }ki=1 or

{πα
i }ki=1). Thus, it is clear that SC- and R-driven regularizers

belong to data-based since they only involve the adversary’s
latest state distribution dπ

α

. In contrast, PC- and D-driven reg-
ularizers belong to knowledge-based because they both employ
the adversary’s all historical knowledge ρα or {πα

i }ki=1.
State Density Approximation. To solve the optimization
problem of IMAP, it is crucial to approximate the adversarial
state density dπ

α

that all four regularizers we design involve.
In the existing literature, there are two main types of methods
for approximating state density, i.e., prediction-error-based
and K-nearest-neighbour (KNN) estimation. Prediction-error-
based methods, such as ICM [27] and RND [28], directly esti-
mate the inverse of state density using the prediction errors of a



neural network. However, these methods suffer from forgetting
problems [29], [30]. We thus turn to the KNN method, a
more efficient and stable nonparametric technique [31]. KNN
estimates the state density via the inverse of the distance
between a state and its K-nearest neighbor. Intuitively, the
larger the distance, the smaller the state density (the sparser
the samples). To estimate dπ

α

, we cannot directly sample
trajectories using the unsolved new policy πα. In turn, we use
the old policy πα

k to sample trajectories since PPO guarantees
that DKL(P

πα
k ∥Pπα

) ≤ δ. Thus, the estimated adversarial SC
is given by dπ

α

(s) ≈ 1/∥s−s∗Dk
∥. Here, Dk is a replay buffer

containing trajectories sampled by only the latest old policy
πα
k , and s∗D ∈ D is the K-nearest state of s in D. Similarly,

the adversarial PC can be estimated via ρα(s) ≈ 1/∥s− s∗B∥,
where B =

⋃k
i=1 Di is the union replay buffer that contains

all historical sampled trajectories. Note that one does not need
to maintain the functional forms of all the old APs to estimate
ρα. Instead, it is sufficient to sequentially store the trajectories
sampled by the old policy πα

i at the i-th iteration of the policy
optimization into B and use the replay buffer B to estimate
the policy cover ρα based on the KNN method.

C. Solving the IMAP Optimization Problem

We now present how to solve the policy optimization
problem of IMAP defined in Eq. (5). It is easy to verify that
J IMAP(πα) is a concave function of dπ

α

. Thus, we can leverage
the Frank-Wolfe algorithm to solve this problem. Specifically,
it iteratively solves the following problem

πα
k+1 ∈ argmax

〈
dπ

α

,∇J IMAP(πα
k )
〉

(12)

to constructs a sequence of πα
0 , π

α
1 , ... that converges to an

optimal AP πα∗. The right-hand side of Eq. (12) is also
known as the Frank-Wolfe gap [32]. Maximizing the Frank-
Wolfe gap is equivalent to finding a policy πα that maximizes
the expected episode rewards, which is in proportion to
∇J IMAP(πα

k ). Hence, we can obtain the adversarial intrinsic
bonus as follows:

rαI = ∇JI(d
πα

), (13)

and can derive the objective of IMAP based on Eq. (1)

J IMAP(πα) = Es,a min

{
πα(a|s)
πα
k (a|s)

(
ÂE + τkÂI

)
,

clip

(
πα(a|s)
πα
k (a|s)

; 1− ϵ, 1 + ϵ

)(
ÂE + τkÂI

)}
,

(14)

where ÂE and ÂI are the estimated extrinsic and intrinsic
advantage functions.

D. Reducing Bias in IMAP

Though adversarial intrinsic regularizers can intrinsically
motivate the AP to uncover the potential vulnerabilities of the
victim policy, they may introduce bias to the optimal AP. In
other words, the adversarial optimality constraint in Eq. (5)
may not hold, i.e., argmaxJ IMAP(πα) ̸= argmax JAP(πα).
One common practice to reduce this bias is to perform

Algorithm 1 IMAP

Initialize the AP πα

Initialize replay buffers B and D
Initialize counters t = 0 and k = 0
Initialize the temperature parameter τ0 = 1
Choose an adversarial intrinsic regularizer JI(dπ

α

)
while t < T do

# Sampling Stage
Collect D = {(s, a,−r̂νE , s

′)} using πα
k against πν

Update the replay buffer B = B ∪ D
Update the sample counter t = t+ len(D)
# Optimizing Stage
Compute the intrinsic bonus rαI via Eq. (13)
Estimate advantages ÂE and ÂI via GAE
Update the AP πα via Eq. (14)
Update value functions V α

E and V α
I via regression

if use BR then
Update τk via Eq. (16) and Eq. (17)

end if
Update the iteration counter k = k + 1

end while

a hyperparameter search to find the best sequences of the
temperature parameter {τi}Ti=0 for different tasks. However,
an exhaustive hyperparameter search is computationally ex-
pensive and sample-intensive.
On Hyperparameter Search. Task-dependent temperature
schedulers commonly utilize hyperparameter search to gen-
erate a sequence of the temperature parameter {τi}Ti=0 in
advance, e.g., the exponentially decreasing scheduler τk =
β(1 − ρ)k where both β and ρ are the hyperparameters to
control the shape of the exponential function. Determining
the optimal hyperparameters requires an expensive grid search.
As the number of hyperparameters increases, the cost of the
hyperparameter search grows exponentially. Conversely, our
BR is a task-independent self-adaptive temperature scheduler
that contains only one hyperparameter.

To address this challenge, we propose a novel adaptive Bias-
Reduction (BR) method to ensure the adversarial optimality
constraint. It is essential to balance the extrinsic objective
and the intrinsic regularizer to ensure the maximization of
the extrinsic objective (i.e., meeting the adversarial optimality
constraint) rather than prioritizing the intrinsic regularizer at
the end of the training process. Specifically, we propose an
approximate adversarial optimality constraint, that is,

max JAP(πα) + JI(d
πα

)

s.t. JAP(πα) >= JAP(πα
k ).

(15)

Once the approximate adversarial optimality constraint is
satisfied, we have JAP(πα

k+1) ≥ JAP(πα
k ), that is, the objective

of the AP JAP monotonically increases.
To solve this soft-constrained optimization problem, we

leverage the Lagrangian method to convert it into an uncon-
strained min-max optimization problem. The Lagrangian of
Eq. (15) is L(πα, λ) = JAP(πα) + JI(d

πα

) + λ(JAP(πα) −
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Fig. 3: Rendered pictures of typical MuJoCo environments. (a)
the locomotion environment Ant; (b) the navigation environ-
ment AntUMaze where the red point is the goal position; (c)
the manipulation environment FetchReach where the red point
is the goal position; (d) the two-player zero-sum competitive
game YouShallNotPass where the blue human is the victim
and the red is the adversary.

JAP(πα
k )) ∝ JAP(πα) + (1 + λ)−1JI(d

πα

) where λ is the
Lagrangian multiplier, and the corresponding dual problem is
minλ≥0 maxπα L(πα, λ). By defining the temperature param-
eter τk as

τk = (1 + λk)
−1, (16)

we have J IMAP(πα) = L(πα, λk). We alternatively update πα

and λ, that is,

πα
k+1 ∈ argmaxJ IMAP(πα)

λk+1 = λk − η(JAP(πα
k+1)− JAP(πα

k )),
(17)

to ensure that J IMAP and JAP are monotonically increased.
The form of the Lagrangian implies an interpretation for

balancing the objective of the AP JAP and the adversarial
intrinsic regularizer JI . At the beginning of training, λ0 =
0 and τ0 = 1, the AP focuses on exploring novel states to
discover the potential vulnerabilities of the victim policy Wν

via maximizing the sum of the objective of the AP JAP and
the adversarial intrinsic regularizer JI . When λ grows as the
training progresses, the AP pays more attention to exploiting
the uncovered states in Wν via directly maximizing JAP.

V. EXPERIMENTS

We conduct comprehensive experiments in various types of
RL tasks to evaluate our IMAP’s attacking capacity and gen-
eralization with four types of adversarial intrinsic regularizers
and verify the effectiveness of our bias-reduction method.

A. Task Descriptions

In this section, we describe the details of the selected
tasks. We evaluate our IMAP on both single- and multi-
agent RL tasks. All environments are implemented based
on the OpenAI Gym library and MuJoCo. For single-
agent environments, we choose 1) four dense-reward lo-
comotion tasks, including Hopper, Walker2d, HalfCheetah,
and Ant [1], [8], [23], [24]; 2) six sparse-reward lo-
comotion tasks, including SparseHopper, SpasreWalker2d,
SparseHalfCheetah, SparseAnt, SparseHumaonidStandup, and
SparseHumanoid [18], [33]; 3) two sparse-reward navigation
tasks, AntUMaze and Ant4Room [34], [35]; and 4) one
sparse-reward manipulation task, FetchReach [36]. We choose

two challenging two-player zero-sum competitive games,
YouShallNotPass and KickAndDefend [11], [15], [16], [37]–
[39], as our multi-agent environments.

a) Criteria for Task Selection: The selection of tasks
in our experiments is based on two main criteria. First,
all tasks must be typical and have been adopted in former
AP- and RL-related research works. This ensures that our
evaluation is based on well-established benchmarks and allows
for meaningful comparisons with existing methods. Second,
the types of tasks must be diverse to evaluate the attack
capacity and generalization of our IMAP comprehensively.
In total, we selected 13 single-agent tasks and 2 multi-agent
tasks that meet these criteria. Notably, tasks such as Ant,
SpasreAnt, and YouShallNotPass have been used in multiple
attacking and defense methods, making them suitable for
comparative evaluations. The selected single-agent tasks cover
three types: locomotion, navigation, and manipulation. We
specifically include a manipulation task to demonstrate that our
IMAP can efficiently learn optimal black-box APs to attack
agents in tasks other than locomotion tasks. To further increase
task diversity and evaluate IMAP’s efficacy in multi-agent en-
vironments, we include two competitive games. These games
involve victim agents with diverse skills, such as running and
kicking. Moreover, the dimension of the environment state
varies across the single-agent tasks, ranging from 11 (Hopper)
to 378 (Humanoid). In the multi-agent tasks, the dimension of
the environment state grows to 378x2. This variation in the
state space dimension allows us to assess the performance of
IMAP across tasks with different levels of complexity. Overall,
our selected tasks ensure a comprehensive evaluation of IMAP.

b) Evaluation Metrics: In our evaluation of single-agent
tasks, we use the average episode rewards of the victim
policy under attacks as the primary evaluation metric. This
is a common metric used to assess the performance of the
victim policy. A lower average episode reward indicates a
more successful evasion attack, as the victim policy is less
effective in achieving its intended goals. For multi-agent tasks,
we follow the previous works and report the attacking success
rate of the AP. The attacking success rate is defined as
ASR = # of episodes where the adversary wins

# of total episodes . It is easy to observe
that ASR = JAP +1. A higher ASR indicates a stronger AP.

c) Single-Agent Tasks: In dense-reward single-agent
tasks, the victim agent is expected to run as fast as possible
and live as long as possible. According to the threat model in
Section III, the adversary cannot access the victim’s training-
time reward rνE which contains complex reward shaping terms
like −ων

a∥aν∥2 and −ων
f∥fν∥2. Instead, the adversary uses

the surrogate reward r̂νE . In sparse-reward single-agent tasks,
the victim agent is required to reach a certain goal at the
end of the episode. In four locomotion tasks, the victim agent
starts from the initial position and must move forward across
a distant line to complete the task. The Ant environment is
rendered in Fig. 3a. The episode is terminated once the victim
agent gets the extrinsic reward or enters an unhealthy state. In
two navigation tasks, the victim agent must navigate an Ant
on different maps to reach a target region instead of always



moving forward. This kind of task is thus known as more
challenging than locomotion tasks like Ant and SparseAnt
[34]. The environment AntUMaze is shown in Fig. 3b. In
the manipulation task FetchReach, the robot arm is reset to
an initial posture in each episode, and the victim agent is
demanded to control the arm to move the end effector to a
target position. FetchReach is visualized in Fig. 3c.

d) Multi-Agent Tasks: In YouShallNotPass, two hu-
manoid robots are initialized facing each other. The victim
policy controls the runner (in blue), while the AP controls the
blocker (in red), as visualized in Fig. 3d. The victim wins if
it reaches the finish line within 500 timesteps, whereas the
adversary wins if the victim does not. KickAndDefend is a
soccer penalty shootout between two humanoid robots. The
victim policy controls the kicker (in blue), and the AP controls
the goalie (in red). The victim wins if it shoots the ball into the
red gate; otherwise, the adversary wins. The victim policies
were trained via self-playing against random old versions of
their opponents.

B. Baselines and Implementation

We now introduce the baselines used in our experiments.
a) Single-Agent Tasks: We select SA-RL [1], the state-

of-the-art black-box AP learning method for single-agent
tasks, as the baseline. The original SA-RL relaxes the black-
box assumption and requires the training-time reward rνE
to learn the optimal AP. To ensure a fair comparison, we
implement both SA-RL and IMAP with the same simple
surrogate reward −r̂νE defined in Section III-A across all
tasks. Moreover, all evasion attack methods for single-agent
tasks in our experiments use the same attacking budget ϵ
in each task. To justify the choice of the baseline, here we
discuss other related AP methods for single-agent tasks. Yu
et al.’s method [40] is tailored for video games. Sun et al.’s
method [14] and Mo et al.’s method [17] fall under the
category of white-box AP methods, as they necessitate access
to the accurate model architecture and parameters of the victim
policy. What is more, SA-RL outperforms MaxDiff and Robust
Sarsa in their original paper [1]. Thus, SA-RL is the most
suitable choice for our baseline in single-agent tasks.

b) Multi-Agent Tasks: We choose AP-MARL [11] as the
baseline, which is recognized as the state-of-the-art black-
box AP learning method for multi-agent tasks. To justify this
choice, we mention here other existing AP methods for multi-
agent tasks. As highlighted in Section III, our threat model
is the same as that of AP-MARL. Wu et al.’s method [15],
while adopting the same threat model, introduces the require-
ment of training an extra surrogate victim model. This added
complexity, however, results in only a marginal improvement
when compared to AP-MARL. As reported in their original
paper, Wu et al.’s method achieves an ASR of only 60% in
YouShallNotPass, while AP-MARL achieves an ASR of 59%
in our experiments. Gong et al.’s method [38] demands access
to the training-time value function V πν

of the victim policy,
thereby violating our threat model. In addition, Gong et al.’s
method reports an ASR of only 76% in YouShallNotPass. In

contrast, our method, IMAP-PC+BR, achieves a substantially
higher ASR of 83.91% in the same environment without
any relaxation of the black-box assumptions. Guo et al.’s
method [16] extends AP-MARL to non-zero-sum competitive
games and is the same as AP-MARL in zero-sum competitive
games. Thus, AP-MARL is the ideal baseline for two-player
zero-sum competitive games, which are our primary focus.

C. Evaluation Results

In this section, We report our main results. At a high level,
our experiments reveal the following set of observations:
IMAP vs. SA-RL: IMAP dominates SA-RL against most (15
out of 22) models and is comparable in the reset across all
dense-reward single-agent tasks. Among all types of IMAP
attacks, IMAP-PC achieves the best average performance.
Generalization: IMAP excels in terms of generalization,
surpassing SA-RL across diverse types of tasks, including
locomotion, navigation, and manipulation tasks.
Choice of Adversarial Intrinsic Regularizers: IMAP-PC
is a suitable choice for a novel task since it exhibits superior
generalization across our proposed four types of IMAP attack.
Effect of BR in IMAP: The use of the balancing method
BR in IMAP proves effective in enhancing the attacking per-
formance, particularly when the adversarial intrinsic bonuses
strongly distract the adversary.
IMAP vs. AP-MARL: IMAP-PC+BR significantly outper-
forms AP-MARL in two zero-sum competitive games.
Hyperparameter Sensitivity: IMAP displays resilience to
variations in two newly introduced hyperparameters within
reasonable bounds, i.e., ξ in Eq. (9) and η in Eq. (17).
Evading Defense Methods: IMAP successfully evades two
different types of robust training defense methods, namely,
adversarial training and robust regularizer.

1) Performance in Dense-Reward Tasks: We first discuss
the results of IMAP v.s. SA-RL in dense-reward tasks shown
in Table I.

a) IMAP Outperforms SA-RL: As shown in Table I,
IMAP performs the best against most (15 out of 22) models
(bolded results in each row) and is comparable to SA-RL
in the rest. Here are some points that need to be explained.
Firstly, when attacking the vanilla PPO models, IMAP sig-
nificantly outperforms SA-RL in Walker (895 vs. 1253) and
Ant (188 vs. 351) and performs equally in Hopper (both
80) and HalfCheetah (both 0). This underscores that when
the victim policy has evident vulnerabilities, both SA-RL,
utilizing the ad-hoc dithering exploration method, and IMAP,
employing principled adversarial intrinsic regularizers, can
readily identify and exploit these vulnerabilities to disrupt the
victim. However, when there are more subtle vulnerabilities
that elude trivial exploration methods, IMAP remains capa-
ble of efficiently discovering such vulnerabilities and further
compromising the performance of the victim policy. Secondly,
it is reasonable that there is no big difference between the
performance of IMAP and SA-RL against certain models (e.g.,
7 comparable cases beyond the 15 of 22 outperforming cases),
such as 4377 vs. 4376 against Walker RADIAL and 4202 vs.



TABLE I: Average episode rewards Jν
E ± standard deviation of one vanilla model trained via PPO and five robust models

trained using various defense methods over 300 episodes in four dense-reward locomotion tasks under no attack, random attack,
SA-RL, and our four types of IMAP attacks. We bold the best attack result (the lowest value) in each row and also report
the average Attack Performance across all models. IMAP—the best of the four types of IMAP attacks—outperforms SA-RL
against most (15 out of 22) models and exhibits similar performance in the reset across all dense-reward single-agent tasks.
Among all attacks, IMAP-PC performs the best regarding the average performance.

Env. Victim No Attack Random SA-RL IMAP-SC IMAP-PC IMAP-R IMAP-D

Hopper
11D
0.075

PPO (va.) 3167± 542 2101± 793 80± 2 80± 2 80± 2 80± 2 80± 2

ATLA 2559± 958 2153± 882 875± 145 689± 132 639± 48 672± 120 808± 170
SA 3705± 2 2710± 801 1826± 897 1282± 68 1346± 85 1714± 1176 2278± 1144

ATLA-SA 3291± 600 3165± 576 1585± 469 1685± 512 1536± 392 1807± 642 1823± 527
RADIAL 3740± 44 3729± 100 1622± 408 2194± 672 1647± 398 1871± 498 1895± 551
WocaR 3616± 99 3633± 30 1850± 530 2140± 612 1646± 337 2917± 495 1832± 493

Average Across Victims 3346 2915 1306 1345 1149 1510 1452

Walker
17D
0.05

PPO (va.) 4472± 635 3007± 1200 1253± 468 1002± 391 895± 450 2966± 956 947± 160

ATLA 3138± 1061 3384± 1056 1163± 464 1035± 614 991± 500 1599± 742 1385± 590
SA 4487± 61 4465± 39 3927± 162 4196± 231 3072± 1304 4083± 155 3820± 39

ATLA-SA 3842± 475 3927± 368 3508± 66 3144± 995 2868± 1145 3620± 143 3469+650
RADIAL 5251± 12 5184± 42 4376± 1229 4562± 941 4377± 1147 4584± 1021 4474± 1187
WocaR 4156± 495 4244± 157 2871± 1153 3178± 1168 2874± 1085 2740± 1162 2859± 1078

Average Across Victims 4224 4035 2850 2853 2513 3265 2826

HalfCheetah
17D
0.15

PPO (va.) 7117± 98 5486± 1378 0± 0 0± 0 0± 0 56± 147 0± 0

ATLA 5417± 49 5388± 34 1696± 1352 2451± 1352 1711± 1357 1996± 965 1765± 1357
SA 3632± 20 3619± 18 2997± 22 2996± 24 2984± 20 3390± 62 3000± 27

ATLA-SA 6157± 852 6164± 603 4170± 664 4311± 412 4202± 726 4395± 728 4231± 681
RADIAL 4724± 14 4731± 42 1654± 1312 1669± 1326 1641± 1298 1791± 1278 2563± 1496
WocaR 6032± 68 5969± 149 4257± 1254 3734± 1512 4026± 1374 4782± 105 4759± 487

Average Across Victims 5513 5226 2462 2433 2427 2730 2720

Ant
111D
0.15

PPO (va.) 5687± 758 5261± 1005 351± 110 310± 184 212± 244 188± 135 284± 195

ATLA 4894± 123 4541± 691 0± 0 428± 63 70± 128 696± 24 0± 0
SA 4292± 384 4986± 452 2698± 822 2720± 879 2643± 851 2722± 994 2746± 831

ATLA-SA 5359± 153 5366± 104 3125± 207 3228± 190 3156± 302 2611± 213 3125± 182
Average Across Victims 5058 5039 1544 1672 1520 1554 1539

4170 against HalfCheetah ATLA-SA. This can be attributed to
three factors: 1) the victim agent’s strong robustness, making
its vulnerabilities difficult to detect even with adversarial
intrinsic regularizers; 2) the potential distraction introduced
by the adversarial intrinsic regularizers, which may divert the
adversarial policy from maximizing its core objective; 3) the
worst cases in these 7 comparable tasks are easier to uncover
compared to the other 15 outperforming tasks, causing that
both IMAP and SA-RL can successfully discover the worst
cases in these tasks and exhibit similar performances. Note
that the distraction phenomenon is more apparent in sparse-
reward tasks. We delve deeper into it in the following section.

b) Choice of Adversarial Intrinsic Regularizers: Black-
box robustness evaluation of the RL agent is a trial-and-
error process where the agent knows nothing about the black-
box victim model, including the training method, as stated
in Section III. We thus recommend starting the evaluation
of a new black-box victim agent with IMAP-PC as the first
trial since the experiments show it behaves well on average.
As evident from Table I, IMAP-PC demonstrates the best
average performance among all types of IMAP attacks. It
notably reduces the average performance of all victim models
by 65.66%, 40.52%, 55.97%, and 69.94% in Hopper, Walker,

HalfCheetah, and Ant, respectively. For a comprehensive
assessment of the robustness of a black-box victim policy,
it is reasonable to explore multiple types of IMAP attacks.
An essential insight from the results in Table I is that the
type of potential vulnerabilities of the victim policy is not
tied to the training method of that policy. For instance, the
vulnerabilities of the ATLA-SA model in Ant can be identified
via IMAP-R (reducing performance from 5359 to 2611), while
the vulnerabilities of the ATLA-SA model in Walker can be
exposed through IMAP-PC (reducing performance from 3842
to 2868). This pattern holds for other victim policy training
methods as well. Therefore, it is advisable to try all adversarial
intrinsic regularizers to discover potential vulnerabilities of the
victim policy thoroughly. Additionally, we do not recommend
combining multiple adversarial intrinsic regularizers since they
may violate each other and make the adversary struggle.

c) On the Large Standard Deviation in the Performance
of AP Attacks: The presence of substantial variance in the
performance of reinforcement learning algorithms is a well-
acknowledged phenomenon. This variability primarily stems
from the inherent variance in policy gradient estimation [25],
[41]. Given that the objective of the AP is maximized by
PPO, it is unsurprising that the results exhibit large standard
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Fig. 4: Curves of test-time attacking results of SA-RL and four
types of IMAP attacks on six sparse-reward locomotion tasks.
IMAP-R significantly outperforms SA-RL in SparseHopper
and SpareWalker2d; IMAP-PC significantly surpasses SA-RL
in SparseHalfCheetah and SparseHumanoidStandup.

deviations. It is noteworthy that this phenomenon of significant
standard deviation is not exclusive to IMAP but has also
been reported in the original papers of SA-RL [1] and AP-
MARL [11]. Importantly, variances do not significantly affect
the application of AP methods. In practice, attackers have the
flexibility to train multiple APs using various seeds and select
the best one to attack the victim.

2) Performance in Sparse-Reward Tasks.: We now discuss
the results in spares-reward single-agent tasks shown in Fig. 4
and Table II.

a) Attacking Capacity and Generalization: The results
presented in Table II underscore IMAP’s superior perfor-
mance, outperforming SA-RL across all sparse-reward tasks.
Additionally, as shown in Fig. 4, IMAP exhibits a significant
advantage over SA-RL. In particular, SA-RL struggles to learn
any effective attacking strategy with the trivial exploration
method in SparseWalker2d. In contrast, IMAP-R efficiently
discovers an optimal AP, leading to a remarkable reduction
in the victim’s average episode rewards, from 0.95 to -0.04,
using only 0.5M samples (10× less than the 5M training
sample budget). In SparseHumanoidStandup, SA-RL costs 5M
samples to decrease the victim’s performance from 0.99 to
0.88, while our IMAP-PC decreases the victim’s performance
to 0.4 within 2.5M samples (2× less). In terms of generaliza-
tion, IMAP consistently diminishes the performance of victim
agents across all three types of tasks, including locomotion,
navigation, and manipulation tasks. Moreover, IMAP surpasses
SA-RL in terms of the average performance across tasks (in
the last line of Table II). These findings highlight the superior
attacking capacity and generalization of IMAP compared to
the baseline SA-RL.

b) Choice of Adversarial Intrinsic Regularizers: Again,
we discuss the choice of the adversarial intrinsic regularizers in
sparse-reward tasks. From Table II, we observe that IMAP-PC
mainly excels in locomotion and manipulation tasks; IMAP-D
performs the best in navigation tasks; and IMAP-R stands out
in partial locomotion tasks. These findings lead us to conclude
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Fig. 5: Learning curves of AP-MARL and IMAP-PC+BR
in two-player zero-sum competitive games. IMAP-PC+BR
outperforms AP-MARL by a large margin.

that the suitability of an adversarial intrinsic regularizer is
closely tied to the type of task. It is expected that different
types of victim agents possess distinct potential vulnerabilities.
For instance, in locomotion tasks like SparseHopper and
SparseWalker, where the victim policy is dynamically unstable
and prone to fall into unhealthy states under perturbations,
the R-driven adversarial intrinsic regularizer is more likely
to reveal these vulnerabilities. Considering that the average
performance of IMAP-PC is the best, one may try IMAP-PC
first and then other types of IMAP.

c) Effect of Bias-Reduction: The results presented in
Table II reveal that bias-reduction (BR) yields notable perfor-
mance improvements for IMAP in several sparse-reward tasks.
Specifically, in Ant4Rooms, IMAP-R is heavily distracted
by the R-driven regularizers. With the incorporation of BR,
IMAP-R’s performance is substantially enhanced, elevating
it from 0.74 to 0.22. Note that 0.22±0.48 (R) indicates that
this result is achieved by IMAP-R+BR. Similarly, IMAP-PC
benefits from BR, improving its performance from 0.37 to
0.22 and emerging as the top-performing attack in AntUMaze.
These outcomes underscore the efficacy of BR in augmenting
the performance of IMAP in sparse-reward tasks.

3) Performance in Competitive Games: In this section, we
discuss the results of IMAP v.s. AP-MARL in multi-agent
tasks, as shown in Fig. 5.

a) IMAP-PC+BR Outperforms AP-MARL: Building
upon the insights gained from single-agent tasks, we delve
into the performance of IMAP-PC+BR in two-player zero-
sum competitive games in comparison to AP-MARL. Remark-
ably, IMAP-PC+BR consistently outperforms AP-MARL by
a substantial margin. As illustrated in Fig. 5, IMAP-PC+BR
consistently surpasses AP-MARL, substantially elevating the
ASR from 59.64% to an impressive 83.91%. This remarkable
enhancement can be attributed to the acquisition of more
natural attacking behavior in YouShallNotPass, as evidenced
in Fig. 2. In KickAndDefend, the game imposes constraints
on the adversary (the goalie), confining it to a square region
before the gate. Even within these constraints, IMAP manages
to enhance the ASR from 47.02% to 56.96%. These results



TABLE II: Average episode rewards Jν
E ± standard deviation of the victim policies over 1000 episodes across nine sparse-

reward tasks, including six locomotion tasks (starting with ’S.’), two navigation tasks AntUMaze and Ant4Rooms, and one
manipulation task, under nine attacks, including one baseline attack SA-RL, four types of IMAP attacks, and four types
of IMAP+BR attacks. We bold the best attack performance under each row. IMAP dominates SA-RL across all nine tasks
(highlighted by ). BR improves the attack performance of IMAP further in (4 out of 9) tasks.

Env. No Attack Random SA-RL IMAP-SC IMAP-PC IMAP-R IMAP-D IMAP+BR

S.Hopper 0.95± 0.00 0.95± 0.00 0.01± 0.32 0.00± 0.30 0.16± 0.45 -0.03± 0.00 -0.02± 0.28 -0.05± 0.22 (PC)
S.Walker 0.95± 0.00 0.94± 0.11 0.85± 0.23 0.66± 0.44 0.63± 0.45 -0.04± 0.01 0.91± 0.06 0.80± 0.32 (R)
S.HalfCheetah 0.98± 0.00 0.98± 0.00 0.30± 0.51 0.17± 0.45 0.04± 0.35 0.98± 0.00 0.33± 0.51 0.06± 0.37 (SC)
S.Ant 0.99± 0.00 0.98± 0.10 0.12± 0.42 0.23± 0.48 0.27± 0.49 0.43± 0.49 0.12± 0.42 0.10± 0.40 (D)
S.HumanStand 0.99± 0.00 0.99± 0.00 0.88± 0.32 0.99± 0.05 0.23± 0.50 0.99± 0.00 0.80± 0.42 0.36± 0.54 (PC)
S.Humanoid 0.96± 0.00 0.93± 0.21 0.49± 0.50 0.46± 0.50 0.40± 0.49 0.24± 0.44 0.45± 0.5 0.35± 0.48 (PC)

AntUMaze 0.98± 0.00 0.98± 0.00 0.32± 0.52 0.30± 0.51 0.37± 0.52 0.97± 0.10 0.28± 0.51 0.19± 0.47 (PC)
Ant4Rooms 0.91± 0.23 0.91± 0.00 0.34± 0.51 0.32± 0.51 0.40± 0.52 0.74± 0.43 0.24± 0.48 0.22± 0.48 (R)

FetchReach 0.99± 0.00 0.99± 0.00 0.31± 0.50 -0.10± 0.00 -0.10± 0.00 0.73± 0.42 0.51± 0.49 -0.10± 0.00 (PC)

Average 0.97 0.96 0.40 0.34 0.28 0.56 0.40 0.21

reinforce the superior efficacy of IMAP-PC+BR in multi-agent
tasks compared to AP-MARL, highlighting the effectiveness
of the PC-driven regularizer in uncovering potential vulnera-
bilities in the victim policy.

b) Fundamental Reasons for Outperforming AP-MARL:
The primary distinction lies in their exploration strategies
employed during the training stage. AP-MARL utilizes a
heuristic dithering exploration strategy, while IMAP+PC is
intrinsically motivated by the PC-driven regularizer. The PC-
driven regularizer allows IMAP to uncover the vulnerabilities
of the victim Wν more efficiently through a larger coverage
on the victim and the adversary’s joint state space (Sν ,Sα).

c) Ablation Study on Hyperparameters: We conducted
an in-depth investigation into the impact of IMAP’s two
newly introduced hyperparameters: the updating step size η
of the Lagrangian multiplier in Eq. (17) and the constant
ξ for balancing the two sub-objectives in Eq. (9). Fig. 6
and Fig. 7 reveal the performance of IMAP-PC+BR under
different hyperparameter settings in single- and multi-agent
tasks separately. Fig. 6 demonstrates that IMAP is insensitive
to η when η ∈ {1, 5, 10, 50}. A larger updating step size
leads to better performance within this range. Fig. 7 shows
that IMAP is also robust to changes of ξ ∈ {0.5, 1}. Recall
that JSC-M

I (dπ
α

) = (1 − ξ)JSC
I (dπ

α

Sα) + ξJSC
I (dπ

α

Sν ). Fig. 7
indicates that JSC

I (dπ
α

Sα) is critical for the performance of
IMAP-PC. Note that when these hyperparameters go beyond
rational ranges (i.e., [1,50] for the updating step size η and
(0,1] for the balancing constant ξ), the performance of IMAP
may significantly deteriorate. For instance, when ξ = 0, the
ASR of IMAP drops from the optimum 83.91% to the baseline
ASR of 60%.

VI. DEFENSE METHODS AGAINST IMAP

In this section, we explore potential defense methods against
IMAP and evaluate IMAP’s effectiveness against two main
types of defense methods.
Possible Defense Methods Against IMAP. There are four
categories of methods for RL agents to defend against evasion
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Fig. 6: Ablation study on the hyperparameter η of IMAP.
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Fig. 7: Ablation study on the hyperparameter ξ of IMAP.

attacks: adversarial training, robust regularizer, randomized
smoothing, and active detection. Adversarial training in the
context of RL closely resembles its counterpart in DNN. It
involves optimizing the policy under either gradient-based
evasion attacks or the optimal AP. The adversary can have
various access rights in the environment to robustify the victim
agent against different types of uncertainties, e.g., directly
injecting perturbations to the state or action or reward [1],
[14], [42]–[45], adding disturbance forces or torques [12], or
even changing the layout or dynamic property of the environ-
ment [46]. Robust regularizer aims to enhance the smoothness



of the learned policy by upper-bounding the divergence of
the action distributions under state perturbations [8], [23],
[24], [47]. Randomized smoothing has been applied to analyze
the robustness of reinforcement learning from a probabilistic
perspective [9], [48]–[50]. Active detection strategies focus
on identifying malicious samples by comparing the KL-
divergence of the nominal action distribution and the predicted
one [51] or using explainable AI techniques to identify critical
time steps contributing to the victim agent’s performance [52].
Evaluating IMAP Against Defense Methods. There are two
types of defense methods based on the above analysis, i.e.,
robust training (adversarial training and robust regularizer)
and test-time defense mechanisms (randomized smoothing and
active detection). We focus on the first type of defense method
against IMAP and leave the second type of defense method for
future work. What is more, randomized smoothing and active
detection may sacrifice the victim’s test-time performance
since they operate on the original inputs of the deployed victim
policy. Robust regularizer methods include 1) SA [8], which
improves the robustness of the victim agent via a smooth
policy regularization (denoted as SA-regularizer for concision)
on the victim policy solved by the convex relaxation tech-
nique; 2) RADIAL [23], which leverages an adversarial loss
function based on bounds of the victim policy under bounded
l∞ attacks; and 3) WocaR [24], which directly estimates
and optimizes the worst-case episode rewards also based on
bounds of the victim policy under bounded l∞ attacks. Two
adversarial training methods include: 1) ATLA [1], which
alternately trains the victim agent and an RL attacker with
independent value and policy networks; and 2) ATLA-SA [1],
which combines the training procedure of ATLA with the
SA-regularizer and uses LSTM as the policy network. The
results in Table I demonstrate our IMAP is effective in evading
robust models trained by either adversarial training methods
or robust regularizer methods. All victim models we adopt
are publicly released. We report the average performance over
300 episodes to make the results statistically reliable. Notably,
even against the state-of-the-art robust WocaR models, our
IMAP can efficiently uncover their potential vulnerabilities via
proper adversarial intrinsic regularizers under the black-box
threat model, reducing their performance by 54.58%, 34.07%,
and 38.10% in Hopper, Walker, and HalfCheetah respectively.

VII. DISCUSSION

In this section, we provide an in-depth discussion of the
sample efficiency of IMAP and identify the specific reinforce-
ment learning engines or models that can benefit from the
proposal of the IMAP.
On the Sample Efficiency. There are three key insights
on the sample efficiency of IMAP. Firstly, the adversarial
intrinsic regularizers (i.e., SC, PC, R, D) contribute more to
the sample efficiency of IMAP compared to BR. Intuitively,
when the potential vulnerabilities of the victim policy are
extremely difficult to discover, it becomes challenging to learn
an optimal adversarial policy with an inappropriate or no in-
trinsic regulator. Secondly, there is a trade-off between sample

efficiency and performance. As shown in Table II, satisfactory
results can be achieved by using the adversarial intrinsic
regularizer PC alone, without the need for BR. Therefore,
unless ultimate performance is sought, it is not necessary
to increase the number of samples by 8x. Thirdly, IMAP-
PC is based on policy cover theory that enjoys polynomial
sample complexity [19]. Intuitively, it is aware of the agent’s
entire historical knowledge and explicitly deviates the victim
policy from its optimal trajectories. Hence, IMAP-PC is more
likely to discover the victim’s worst cases than SA-RL which
explores randomly.
RL Agents Benefiting From IMAP. There are various real-
world scenarios for RL agents, e.g., Large Language Models
(LLM) [53], autonomous driving [4], traffic control [54],
industrial automation and manufacturing [55], dynamic treat-
ment regimes [56], [57], and recommendation systems [58],
[59]. IMAP is promising to evaluate these deployed black-
box real-world RL engines or models. Here, we provide two
appropriate cases. Firstly, to evaluate the robustness of a
real-world victim autonomous driving RL agent, we can use
IMAP to either generate stealthy sensor noise to disrupt the
victim car [8] or control another malicious car to intercept
the victim car to make a traffic jam or even accident [60].
Secondly, we can formulate the red-teaming tasks for LLM
as a two-player competitive game, regarding the target LLM
as the victim agent and the red-teaming language model as
the adversarial policy [61]. In such a way, IMAP holds the
potential for learning a strong, intrinsically motivated red-
teaming adversarial policy to evaluate the robustness of the
real-world commercial black-box LLM, e.g., GPT-4.

VIII. CONCLUSION

In this paper, we proposed a new regularizer-based AP
learning method called IMAP to evaluate the robustness of
test-time RL agents in single- and multi-agent environments
under the black-box threat model. We presented four types
of adversarial intrinsic regularizers that encourage the AP to
explore novel states so as to uncover the potential vulner-
abilities of the victim policy. We also introduced a novel
balancing method, BR, to boost IMAP further. We conducted
extensive evaluation experiments of IMAP across various types
of tasks. The experimental results demonstrated that IMAP
outperformed existing methods, including SA-RL and AP-
MARL, in terms of attacking capability and generalization.
We also empirically showed that BR effectively boosted IMAP
in both single- and multi-agent environments. Moreover, we
demonstrated that IMAP successfully evaded state-of-the-art
defense methods, including adversarial training and robust
regularizer methods. Additionally, our ablation study showed
IMAP was insensitive to its main hyperparameters. Note that
though our proposed four adversarial intrinsic regularizers
covered the main branches of intrinsic motivation, one can
still design new adversarial intrinsic regularizers for IMAP as
needed. We leave this as future work.
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