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We aim to address the following question: if we start with a quantum state with a spontaneously
broken higher-form symmetry, what is the fate of the system under weak local quantum measure-
ments? We demonstrate that under certain conditions, a phase transition can be driven by weak
measurements, which suppresses the spontaneous breaking of the 1-form symmetry and weakens the
1-form symmetry charge fluctuation. We analyze the nature of the transitions employing the tool
of duality, and we demonstrate that some of the transitions driven by weak measurement enjoy a
line of fixed points with self-duality.

I. INTRODUCTION

Quantum measurement lies at the heart of the fun-
damental interpretation of quantum mechanics. Mea-
surement is one type of nonunitary process in con-
trast to the ordinary unitary evolution generated by a
Hamiltonian. It can fundamentally change the quan-
tum entanglement of the system. In the last few years,
measurement-induced entanglement phase transition1–15,
measurement prepared long-range entangled states16–22

(topological order) have all attracted enormous interests
and efforts. In particular, measurement-induced entan-
glement transition has been recently observed13–15 in the
Noisy Intermediate-Scale Quantum23 platform.

Symmetry is another pillar of modern physics. The
classic Landau’s paradigm of understanding phases of
matter is based on the notion of symmetry and spon-
taneous symmetry breaking (SSB). For decades “non-
Landau” physics, such as topological order and spin liq-
uid, has been one of the most active directions of con-
densed matter physics. However, in the last few years,
the generalized symmetries such as higher-form symme-
tries24–30 have made Landau’s paradigm much more in-
clusive and many non-Landau physics can be unified in a
generalized Landau’s paradigm. In particular, a topolog-
ical order can often be interpreted as the SSB phase of a
higher-form discrete symmetry, and the emergent photon
phase31–33 of (for example) the quantum spin ice34,35 can
be interpreted as the SSB phase of an (emergent) U(1)
1-form symmetry.

A higher-form symmetry can have a very different phe-
nomenology from an ordinary 0-form symmetry. For ex-
ample, the ground state degeneracy arising from SSB of a
1-form symmetry (which used to be interpreted as topo-
logical degeneracy) is robust against explicitly breaking
the 1-form discrete symmetry; the photon excitations
which correspond to the Goldstone modes36,37 arising
from spontaneous breaking of the U(1) 1-form symme-
try is also robust against the weak explicit breaking of
the 1-form symmetry38,39; the Goldstone modes can only
be gapped with strong enough breaking of the 1-form
symmetry, after a “Higgs transition”. All these are very
different from the phenomenology of 0-form symmetries.

For example, when we explicitly break a 0-form symme-
try, the Goldstone mode would immediately acquire a
mass gap and become a pseudo-Goldstone mode.
In this work, we will show that higher symmetry and

0-form symmetry also have very different behaviors un-
der weak quantum measurement. If we start with an SSB
phase of a 0-form symmetry, a weak measurement cannot
drive an intrinsic phase transition; while an SSB phase
of a higher-form symmetry can go through a phase tran-
sition driven by weak measurement. These transitions
have a natural description on a temporal defect of the
Euclidean space-time. We will demonstrate that weak-
measurement-driven transition for U(1) 1-form symme-
try may possess a line of fixed points connected through
self-duality; In an upcoming work, we will show that, un-
der weak measurements, the properties of quantum states
with discrete 1-form symmetries may be mapped to those
in a series of classical statistical mechanics models, some
of which have well-known phase transitions.

II. GENERAL FORMULA

Without loss of generality, a pure density matrix ρ̂0,
after going through a series of local weak measurements,
are transformed according to ρ̂0 → ρ̂ = E [ρ̂0], where E [ρ̂0]
is a composition of local measurements E [ρ̂0] = ⊗xEx[ρ̂0]
where

Ex[ρ̂0] = (1− p)ρ̂0 + p

(∑
m

pmP̂m,xρ̂0P̂m,x

)
. (1)

In this formula, p measures the strength of the system
being entangled with the ancilla qubits (please refer to

the suplementary material for an explicit example); P̂m,x

is a projection operator that projects the system to the
measurement outcomem, the measurement outcomes are
summed up with weight pm. When there is no “post-
selection” of the measurement outcomes, pm = 1, the
mapping E is a quantum channel in this case. With post
selections, pm can be more general. This work considers
the effect of weak measurements with and without post
selections. 40
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For a generic complicated quantum many-body sys-
tem, deriving the exact microscopic density matrix is
difficult and often unnecessary. The Euclidean space-
time path integral formalism allows us to use various
analytical techniques, such as coarse-graining and the
renormalization group (RG), to capture the physics in
the infrared limit. In this formalism, a density matrix
ρ̂0 of a pure state |Ψ⟩ is evaluated as [ρ̂0]ϕ1(x),ϕ2(x) ∼
limβ→∞

∫
Dϕ(x, τ) exp (−S), with the boundary condi-

tion ϕ(x, 0) = ϕ1(x) and ϕ(x, β) = ϕ2(x). Here S is the
action of the system whose ground state is the desired
pure state |Ψ⟩. After the weak measurements (with or
without post-selection), the density matrix becomes41

[ρ̂]ϕ1(x),ϕ2(x) ∼ lim
β→∞

∫
Dϕ(x, τ) exp

(
−S − S int

)
;

S int =

∫
dx Lint(ϕ(x, 0), ϕ(x, β)). (2)

In this path integral, the aforementioned boundary con-
dition ϕ(x, 0) = ϕ1(x) and ϕ(x, β) = ϕ2(x) still holds.
Hence the effect of weak measurements is represented by
extra terms on the two temporal boundaries τ = 0 and
τ = β, including the interaction between the two tem-
poral boundaries. The form of Lint can be determined
by the symmetry condition of the density-matrix trans-
formation E induced by measurements, either a “dou-
bled” (or strong) symmetry condition or a “diagonal”
(or weak) symmetry condition42,43. Suppose we always
look at quantities linear with the density matrix such as
tr{ρ̂Ô}, the temporal boundaries τ = 0 and τ = β are
“glued” together. Our system is mapped to a problem in
Euclidean space-time with a defect at the temporal slab
τ = 0, β (Fig.1a). If the system has a Lorentz invari-
ance in the infrared, after the space-time rotation, the
temporal defect will become the physical spatial defect
in space-time41,44.
In this work, we consider systems with an n-form sym-

metry G(n). We will always use d to label the spa-
tial dimension and D to label the space-time dimension.
There are several different questions that one can ask.
The first potential question is that if we start with a
d−dimensional state |Ψ⟩ that is a gapped disordered state
and also symmetric under symmetry G(n), what can hap-
pen to the system under weak measurements that pre-
serve G(n)? In our space-time picture, this question is
equivalent to asking what happens to the boundary or de-
fect of the system with d−1 spatial dimensions under the
extra defect Hamiltonian. Since the bulk is disordered
and gapped, we can often integrate out the bulk to renor-
malize the defect Hamiltonian. The IR physics of our
problem is often identical to a local (d − 1)-dimensional
system. Some examples of this sort were discussed in
Ref. 41, 45, and 46. If we start with a 2d Ising disor-
dered phase |Ψ⟩, weak measurement can drive a phase
transition which belongs to the (2 + 0)d Ising or equiv-
alently (1 + 1)D Ising universality class, rather than a
(2+1)D Ising universality class which corresponds to an
equilibrium quantum phase transition for a 2d quantum

Ising system. This transition is also dual to an informa-
tion transition of the toric code topological order under
dephasing47.
Hence in this paper, we focus on another class of ques-

tions that are of potentially greater interest: we consider
a system with a symmetry G(n), but we start with a state
|Ψ⟩ with spontaneous symmetry breaking (SSB) of G(n),
then what can happen to the system under weak mea-
surements? Though the boundary-defect mapping is still
valid, in this case, the bulk could have gapless Goldstone
modes arising from the SSB and interfere with the defect
physics in a much more nontrivial way.
If our system has only a 0-form symmetry, the an-

swer to the question above is straightforward: A spon-
taneous breaking of a 0-form symmetry with true long-
range order cannot be qualitatively altered by any local
finite-strength weak measurement with or without post-
selection; the SSB can only be destroyed with “strong”
projective measurements, i.e. p = 1. The physical pic-
ture of this conclusion is that there is a strong “proxim-
ity effect” from the bulk, which breaks the 0-form sym-
metry on any defect with one lower dimension. More
formally, for a true long-range order that spontaneously
breaks a 0-form symmetry, the state can be exemplified
as a simple product state. For example, for an Ising sys-

tem whose global Z(0)
2 charge is

∏
j Xj , an Ising-ordered

state has the following wave function at its fixed point:
|Ψ⟩ =

∏
j |Zj = 1⟩. Now on every site, we perform a

weak measurement on operator Xj with probability p,
namely, there is a probability p that the qubit on the
site j is being measured for each j. The density matrix
takes the following form when the measurement outcome
Xj = 1 is selected

ρ = ⊗jρj , ρj = (1− p)
I + Zj

2
+ p

I +Xj

2
. (3)

Then as long as p < 1, the expectation value of Zj is al-
ways nonzero. And there is no intrinsic phase transition
driven by the weak measurements as the system essen-
tially reduces to a 0-dimensional problem. This conclu-
sion holds with or without post-selecting the measure-
ment outcomes.
We will show that higher-form symmetries lead to

much more interesting consequences, as the SSB phase of
the higher-form symmetry is not a simple product state
in space, and an intrinsic phase transition can be driven
by weak measurements.

III. HIGHER-FORM SYMMETRIES

This section starts with SSB phases of U(1) higher-
form symmetries. Let us first list our main conclusions:
1. SSB of a U(1) 1-form symmetry (U(1)(1)-SSB) in

spatial dimension d ≥ 3 (space-time dimension D ≥ 4)
can be qualitatively suppressed by finite strength weak
measurements through a phase transition. In particular,
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FIG. 1. The Euclidean space-time picture of quantities
tr{ρ̂ Ô} (a), and the 2nd Rényi entropy (b).

at d = 3 the phase transition driven by weak measure-
ments at the critical strength has a line of fixed points
with self-duality. Here, the suppression of SSB is signified
by the qualitatively weakened fluctuation/correlation of
the 1-form symmetry charges.

2. U(1)(2)-SSB can be suppressed in spatial dimension
d ≥ 4 through a phase transition driven by weak mea-
surements. A similar pattern continues to higher-form
symmetries at higher dimensions.

For lower dimensional systems, the fate of U(1)(n)-
SSB phases under weak measurements can be perceived
through duality. A U(1)(1)-SSB phase in 2d, and a
U(1)(2)-SSB phase in 3d are both dual to a superfluid
phase, i.e. they are dual to phases with SSB of a 0-form
symmetry. And as we argued in the previous section, a
generic SSB phase of a 0-form symmetry cannot be qual-
itatively altered by finite-strength weak measurements.

A. U(1)(1) 1-form symmetry in 3d

In this section, we consider a 3d system with a U(1)
(1)
m

symmetry, and this U(1)
(1)
m is spontaneously broken in

state |Ψ⟩. In the traditional language, the state |Ψ⟩ has
gapless photon excitations described by a gauge field aµ.

A U(1)
(1)
m symmetry implies that there is no dynamical

Dirac monopole in the system. We also assume that the
electric charges that couple to aµ are bosonic and gapped.
Hence, below the gap of the electric charges, there is also

an emergent U(1)
(1)
e symmetry in the infrared. Both the

exact U(1)
(1)
m symmetry and the IR-U(1)

(1)
e symmetry are

spontaneously broken in the state |Ψ⟩.
For a quantum system at equilibrium, the quantum

phase transition from a phase with U(1)
(1)
m and IR-

U(1)
(1)
e SSB to the U(1)

(1)
m symmetric phase is a Higgs

transition driven by the condensation of the electric
gauge charge in the (3 + 1)D space-time, by gradually
increasing the kinetic energy of the electric charges. This
transition is likely a weak first-order phase transition48.

The condensation of the electric charge in the (3 + 1)D

system will restore the U(1)
(1)
m symmetry, and renders

the IR-U(1)
(1)
e symmetry absent.

In the supplementary material49 we will devise an ex-
plicit measurement protocol that can drive a charge con-
densation (at the temporal slab τ = 0, β), for both a
discrete gauge theory and a U(1) gauge theory. Here we
focus on the infrared universal physics of the condensa-
tion transition of the electric charges through weak mea-
surements. We will first evaluate quantities linear with
ρ̂, with the form tr{ρ̂ Ô}. This Higgs transition on the
(3 + 0)d defect is described by the following “nonlocal”
bosonic QED

S =

∫
d3x |(∇− ia)ϕ|2 + r|ϕ|2 + g|ϕ|4 + 1

2e2
f · 1

|∂|
f ,(4)

where f = da. Here a is the three spatial components
of aµ along the (3 + 0)d defect; ϕ describes the electric
charge that couples to gauge field a. The nonlocal action
of a in the last term of Eq. 4 arises from the fact that aµ
lives in the entire (3+1)D bulk with an ordinary Maxwell
action Sbulk ∼

∫
d4xfµνfµν/(4e

2). After integrating the
momentum orthogonal to the defect plane, we obtain the
nonlocal action of aµ in Eq. 450.
The reason Eq. 4 is interesting is that the coupling

constant e of the nonlocal QED is exactly marginal, and
Eq. 4 enjoys a self-duality50–52. We can perform the stan-
dard particle-vortex duality for the ϕ field in (3 + 0)d
through the following duality relation53–55: ∗Jϕ ∼ db,
where Jϕ is the charge current on the (3 + 0)d defect;
and b is the dual gauge field that couples to the vortex
field ϕv of ϕ. After integrating out a, Eq. 4 is transformed
into its dual form

Sd =

∫
d3x |(∇− ib)ϕv|2 − r|ϕv|2 + g̃|ϕv|4 +

1

2ẽ2
f̃ · 1

|∂|
f̃ ,(5)

where f̃ = db. Notice that Eq. 5 takes the same form as
Eq. 4, and the dual coupling constant ẽ ∼ 4π/e.

A U(1)
(1)
m -SSB phase is a condensate of the magnetic

flux (the 1-form charge of the U(1)
(1)
m symmetry). The

condensation of the electric charge (r < 0 in Eq. 4) would
drive the magnetic flux into an uncondensed phase on
the (2 + 1)D defect. In the dual theory, the vortex ϕv
carries a magnetic flux orthogonal to the defect plane.
Hence when the vortex condenses (r > 0), it drives the
magnetic flux back into the condensate. Hence the vortex
condensate with r > 0 in Eq. 5 corresponds to the original

U(1)
(1)
m -SSB phase.

The condensation of ϕ at the defect will lead to certain
boundary conditions for the bulk gauge field aµ. At the
(3 + 0)d temporal defect a will acquire a Higgs mass in
the condensate of ϕ, which becomes relevant and enforces
a Dirichlet boundary condition for a, analogous to the
“ordinary boundary condition” in the context of bound-
ary criticality, near the temporal defect. This boundary
condition implies that a should be replaced by ∂⊥a near
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the defect, and hence acquires a larger scaling dimension
than the bulk. This also leads to the Dirichlet boundary
condition for the magnetic field B = ∇×a. Then if one
measures the correlation of B after the phase transition
driven by the weak measurements, it will scale as

tr{ρ̂ B(0) ·B(x)} ∼ 1

|x|6
, (6)

rather than 1/|x|4 as in the bulk of the system with SSB

of U(1)
(1)
m and IR-U(1)

(1)
e . If B and a are periodically

defined, we can compute the following quantity

log
(
tr{ρ̂ eiB(0)ae−iB(x)b}

)
∼ 1

|x|6
. (7)

Hence the condensation of charges induced by weak mea-
surement still weakens the correlation of the magnetic

field, which is the charge of U(1)
(1)
m ; but unlike the con-

densation of charges in equilibrium, the correlation of
magnetic field is not rendered fully short-ranged.

After a Wick-rotation, the condensate of ϕ in the
(3+0)d defect becomes a thin-film superconductor in the
2d space (the XY plane), or (2 + 1)D space-time. Then
it is known that the in-plane components of the elec-
tric field (Ex, Ey) of the gauge field aµ must vanish due
to screening from the condensed charges, and the out-of-
plane magnetic field Bz is zero inside the superconductor
due to the Meissner effect. These are equivalent to the
Dirichlet boundary conditions for Ex, Ey, and Bz. Then
after a space-time rotation in the (z, τ) plane, (Ex, Ey)
becomes (By, Bx). Hence the boundary condition im-
posed by a physical thin film superconductor precisely
becomes the Dirichlet boundary condition mentioned in
the previous paragraph.

Since the condensate of electric charges at the (3+0)d
defect does not impose the Dirichlet boundary condition
for the electric field, the electric field E correlation func-
tion is expected to be qualitatively similar to the original

pure state of the U(1)
(1)
m -SSB phase. The correlation ofE

and B under weak measurement can also be derived us-
ing the explicit wave functional of the U(1)

(1)
m -SSB state,

which will be presented in the appendix.
Another quantity of interest is the ’t Hooft loop oper-

ator exp
(
i
∮
C dl · b

)
with E = ∇ × b, whose expectation

value decays as a perimeter law in the U(1)
(1)
m -SSB pure

state. It turns out that the weak measurement won’t
qualitatively alter the perimeter law of the ’t Hooft loop
expectation value, even if the charges condense on the
(3 + 0)d defect in the Euclidean space-time, which is in
stark contrast to the Higgs phase in the entire (3 + 1)D
bulk. The physical picture of this result is that the ’t
Hooft loop operator is also a membrane operator with∮
A dσ ·E, with C = ∂A. When we evaluate the ’t Hooft
loop C on the (3 + 0)d defect, the most favorable mem-
brane A to choose is not the one that is strictly localized
on the defect, but the one that “leaks” into the bulk,
which still yields a perimeter law decay rather than area

law. In the appendix, we will show that the condensate of
charges on the (3 + 0)d defect driven by weak measure-
ment leads to a larger coefficient of the perimeter-law,

which also means that the SSB of U(1)
(1)
m is suppressed.

Quantities nonlinear with the density matrix, such
as the 2nd Rényi entropy S(2) = − log

(
tr{ρ̂2}

)
is of

information-theoretic interests, and it can potentially
also go through a phase transition under weak measure-
ment, with or without post-selection. In particular, when
there is a phase transition induced by weak measure-
ment, we expect to see singularity in the second Rényi
entropy. The second Rényi entropy amounts to perform-
ing path integral of fields in the duplicated space-time,
with τ ∈ [0, 2β], and weak measurement is mapped to
the nonlocal interaction between the 3d temporal slabs
τ = 0 and τ = β (Fig. 1b).
Ref. 41, 45, and 46 showed that when we consider the

2nd Rényi entropy, quantum decoherence (or weak mea-
surement without post-selection) can drive the condensa-
tion of “paired” objects, which is a nonlocal bound state
of objects on τ = 0 and τ = β slabs in Fig. 1b. In
the supplementary material we will also discuss a simi-
lar transition in the 2nd Rényi entropy for systems with
U(1) 1-form symmetries.

B. Higher dimensions and higher-form symmetries

In general dimension d > 3, if there is an exact U(1)
(1)
m

symmetry in the D = d + 1 dimensional bulk, the elec-
tric charge field ϕ is now a (d − 3)-dimensional mem-

brane in space, which couples to a (d−2)-form U(1)
(d−2)
e

electric gauge field a. If we still start with a U(1)
(1)
m -

SSB phase, through measurement on the kinetic energy
of ϕ membrane, a transition of ϕ condensation can be

driven to Higgs the (d − 2)-form U(1)
(d−2)
e gauge field

a. Condensation of a membrane-like object can be te-
dious to describe, but fortunately this transition can still
be described conveniently in the dual picture, through
a similar dual relation: ∗Jϕ ∼ db on the D = d di-
mensional defect. Here Jϕ is a (d − 2)-form current of
the ϕ-membrane on the defect, and b is always a 1-form
gauge field. The 1-form gauge field b is still coupled to a
scalar matter field ϕv. The transition we are after is still
described by the same action as Eq. 5, with dimension
D = d. ϕv always describes a segment of 1-form charge

of the original U(1)
(1)
m symmetry, which is a vector (anal-

ogous to the magnetic field B) that orthogonally pierces
through the defect. When ϕv condenses (r > 0), the ϕ
membrane is suppressed; and when ϕv is gapped (r < 0),
the ϕ membrane condenses.
But we can see that when d > 3, the coupling constant

ẽ is irrelevant at the critical point r = 0, more precisely
the scaling dimension of ẽ2 is ∆ẽ2 = 3 − d. Hence the
transition described by Eq. 5 would be at the Gaussian
fixed point for general spatial dimension d > 3.

In spatial dimension d > 3, if there is an exact
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U(1)
(d−2)
m -form symmetry in the bulk in its SSB phase,

weak measurements can drive a transition to suppress
the SSB. This transition is also described by Eq. 4 on
the defect with D = d dimensional space-time. Here a is

the dual 1-form gauge field of the (d− 2)-form U(1)
(d−2)
m

symmetry that is spontaneously broken in the bulk, and
the ϕ field is the charge of the 1-form gauge field aµ, or

the “Dirac monopole” of the U(1)
(d−2)
m gauge field in spa-

tial dimension d. Now the coupling constant e is again
irrelevant at the Gaussian fixed point of ϕ. Hence, the
transition driven by weak measurements is also “mean-
field” like.

IV. SUMMARY AND DISCUSSIONS

In this work, we discuss the fate of higher-form symme-
try under weak quantum measurements. In particular,
we demonstrate that a pure state with SSB of higher-
form symmetry can go through a phase transition driven
by weak measurements. This starkly contrasts with the
SSB state of a 0-form symmetry whose fate under weak
measurements reduces to a (0 + 1)d problem and hence
won’t have an intrinsic phase transition. Some of the
phase transitions driven by weak measurement can be
mapped to a mixed-dimensional QED, with a line of fixed
points mapped to each other under self-duality.

There is another ingredient of the mixed dimensional

QED that plays a nontrivial role in the duality, i.e., the
topological Θ−term in the bulk. In our current set-up,
the effect of the Θ−term likely cancels out at the tempo-
ral defects due to the trace of the density matrix. But the
Θ−term can make nontrivial contributions to quantities
such as the strange correlator56, which involves temporal
interfaces between two different states. It is worth explor-
ing weak-measurement-driven transitions of strange cor-
relators of systems with higher-form symmetries, which
we expect to have an even richer structure of duality due
to the nontrivial role of the Θ−term.

In this work, we focused on SSB states of continu-
ous higher-form symmetries. In another work57, we will
demonstrate that, if one starts with an SSB state at d-
spatial dimension ((d + 1)D space-time) with a discrete
higher-form symmetry, under different conditions various
classical statistical mechanics models can be engineered
through weak measurement.

C.X. acknowledges support from the Simons Founda-
tion through the Simons Investigator program. C.-M.J.
is supported by a faculty startup grant at Cornell Uni-
versity. Research at Perimeter Institute (C.W.) is sup-
ported in part by the Government of Canada through the
Department of Innovation, Science and Industry Canada
and by the Province of Ontario through the Ministry of
Colleges and Universities. This research was supported
in part by grant NSF PHY-2309135 to the Kavli Institute
for Theoretical Physics (KITP).

Appendix A: Weak-measurement on Z2 gauge theory

Before discussing our measurement protocol on systems with U(1) gauge fields, we first discuss a simpler example of
weak-measurement driven phase transition on the Z2 gauge theory. More examples of measurement-driven transitions
on systems with discrete higher form symmetries (discrete gauge theories) are discussed in Ref.57. We take the 3d
toric code Hamiltonian as a starting point, which is defined on the 3d cubic lattice

HTC = −
∑
v

Av −
∑
p

Bp (A1)

where v denotes vertices on the cubic lattice and p denotes plaquettes on the cubic lattice. The local Hilbert space is
made of qubits that reside on the links. Av is then the product of σx operators connected to the vertex v; Bp is the
product of σz operators along the edge of plaquette p. σx

ij is the analogue of the electric field of the U(1) gauge field,

and σz
ij is the analogue of eiaij of the lattice U(1) gauge field.

The initial state is prepared to be the tensor product between the ground state of HTC and |0⟩a of the ancilla
qubits. We then evolve the system qubit and ancilla qubit via the following unitary operator

U =
1√
2

[
cos t+ σz sin t, − cos t+ σz sin t
cos t− σz sin t, cos t+ σz sin t

]
(A2)

Here, the 2× 2 matrix structure of U is associated with the 2-fold Hilbert space of the ancillary qubit. When t = 0,
U takes the form

U0 =
1√
2

[
1 −1
1 1

]
(A3)

The general U(t) can be implemented via the following procedure

U = e−itH · U0 (A4)
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with

H = iσzσ+
a − iσzσ−

a (A5)

where σa denotes the Pauli operator acting on the ancilla qubit. We then measure the ancilla in its computational
basis which gives us an ensemble of states labeled by measurement outcome s, a string that records the measurement
outcomes on each link

|ψ(s)⟩ ∝
∏
link

1√
2
(cos t+ sij sin tσ

z
ij) |ψ⟩ (A6)

To calculate expectation values of quantities of this ensemble, we need to evaluate

¯⟨O⟩ =
∑
s

P (s)
⟨ψ(s)|O |ψ(s)⟩
⟨ψ(s)|ψ(s)⟩

(A7)

By Born’s rule (no bias), this is equivalent to

tr

(∏
link

1√
2
(cos t+ sin tσz

ij)ρ̂0
1√
2
(cos t+ sin tσz

ij)O +
∏
link

1√
2
(cos t− sin tσz

ij)ρ̂0
1√
2
(cos t− sin tσz

ij)O

)
(A8)

Assuming O commute with σz
ij , the equation above is equivalent to∏

link

tr(ρ̂0O) (A9)

hence the measurements without post-selection does not change the expectation value of O.
We now consider a biased selection, meaning we collect all measurement outcomes but we give a higher weight to

the outcome with sij = +1. Now the expectation of O becomes (again we consider quantity O that commutes with
σz
ij)

tr

(∏
link

(
1

2
+ x)(cos t+ sin tσz

ij)(cos t+ sin tσz
ij)ρ̂0O +

∏
link

(
1

2
− x)(cos t− sin tσz

ij)(cos t− sin tσz
ij)ρ̂0O

)

=tr

(∏
link

(1 + (4x cos t sin t)σz
ij)ρ̂0O

)

=tr

(∏
link

(1 + (tanh β̃)σz
ij)ρ̂0O

)

Here, we make the identification 4x cos t sin t = tanh β̃. We can reorganize the mixed density matrix into the following
form:

ρ̂ ∼ e−
1
2 I({σ

z
ij})ρ̂0e

− 1
2 I({σ

z
ij}), tr (ρ̂O) ∼ tr

(
ρ̂0e

−I({σz
ij})O

)
(A10)

We also note that ρ̂ can be expressed in a form compatible with what we have in the main text

Ex[ρ̂0] = (1− p)ρ̂0 + p

(∑
m

pmP̂m,xρ̂0P̂m,x

)
. (A11)

if we make the identification

p = 2 cos t sin t, p+ = 1 + 2x, p− = 1− 2x

P̂m,x =
I +mσz

ij

2
.

Here m = ±1, and x corresponds to the link < i, j > on the lattice.
We can view tr(ρ̂) as a partition function of a 3d classical Ising model from which one can extract tr(ρ̂O). To

see this, we note that the expectation of a string of Pauli-σz
ij operators with respect to ρ̂ is 1 when the string is
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closed and 0 when the string is open. This is because the wave function of the 3d toric code is a superposition of
loop-configurations generated by the product of Bp, which only involves closed loops. There are additional subtleties
caused by logical operators, but there are only a finite number of them and will not affect the partition function in
the thermal dynamic limit. Therefore, the partition function becomes∑

C
(tanh β̃)|C| (A12)

where C denotes closed loops formed by links of 3d cubic lattice, and this partition function is exactly the high-
temperature expansion of a 3d classical Ising model.
Physically, the operator σz

ij enables the “hopping” of the charges of the Z2 gauge theory, hence at larger β̃ > β̃c
(which can be tuned by choosing x and t), the partition function of the 3d classical Ising model enters the “low
temperature ordered” phase, i.e. the condensate of the electric charge of the Z2 gauge theory. It is important to note
that this transition belongs to the 3d Ising universality class, which is consistent with the picture described in the
main text that weak measurement drives the electric charges to condense on the temporal slab (which is a 3d space)
τ = 0 in the path-integral formalism (Fig. 2).

In Ref.57 it is also shown that measurement without post-selection can drive a phase transition in the 2nd Renyi
entropy of the Z2 gauge theory, which is consistent with the physical picture that weak-measurement can drive
condensation of the bound state of gauge charges on the two temporal slabs in the path integral formalism (Fig. 2).

Appendix B: Weak-measurement on the lattice model and its field theory description

In this section we explicitly formulate the weak-measurement driven phase transition discussed in the main text on
a lattice model. We take the 3d cubic lattice as an example. The local operators consist of rotors θi defined on the
sites, and aij defined on the links of the lattice, along with their canonical conjugates ni and Eij[

Eij , e
iai′j;

]
= δij,i′j′e

iaij ,
[
ni, e

iθi′
]
= δi,i′e

iθi (B1)

Note that the rotors θi and aij are periodically define, i.e. θi = θi + 2π, aij = aij + 2π, while their conjugates ni and
Eij take discrete integer eigenvalues.

Before weak measurement or decoherence, the pure quantum state |Ψ⟩ we start with is the ground state of the
following lattice Hamiltonian

H =
U

2

∑
i

n2i − J
∑
i,µ

cos(θi − θi+µ + ai,i+µ) +
Ũ

2

∑
i,µ

E2
i,i+µ −K

∑
i,µ

cos(∇× a). (B2)

The system is also subjected to a local “Gauss law” constraint

ni −∇ ·E = 0. (B3)

One can verify that the local operator ni −∇ ·E commutes with the Hamiltonian. The phase diagram of the lattice
gauge theory is well-understood: we choose that U/J and K/Ũ to be greater than a critical value, so that the system
is in its Coulomb or photon phase, i.e. Physically this means that the rotor charge is gapped, and the gauge field a
is in its deconfined phase with gapless photon excitations. The structure of the spatial lattice is shown in fig.2.

1. Biased Selection

We now describe a quantum channel that couples the system operator exp(i(θi − aij − θj)) to an auxiliary qubit
(one can consider more general ancilla degrees of freedom such as qudit or rotor but ancilla qubits suffice for our
discussion). The initial state is again prepared to be a tensor product between ground state of H and |0⟩a of all the
ancilla qubits. First, we have the qubit and θi, aij , θj undergo a collective unitary of the following form (in what
follows we denote Θij = θi − aij − θj).

U =
1√
2

[
cos t+ eiΘij sin t, − cos t+ eiΘij sin t
cos t− e−iΘij sin t, cos t+ e−iΘij sin t

]
(B4)
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FIG. 2. The upper left panel shows the protocol of our quantum operation with a biased selection process. This can be
formulated as a defect insertion at a particular temporal slice in the Euclidean space-time path-integral (red line). The lower
left panel shows the protocol that considers the 2nd Rényi entropy under decoherence, which becomes defect insertion at two
temporal slices separated by β where β → ∞. The right panel shows the spatial lattice structure. The red vertex stands for
the Gauss law constraint operator, the blue plaquette stands for the plaquette term which controls pure gauge fluctuations,
and the orange link is the coupling of the gauge field to the rotor matters.

One can verify this operator is unitary. When t = 0, U takes the simple form

U0 =
1√
2

[
1 −1
1 1

]
(B5)

We can also rewrite U in the following form

U = e−itH · U0 (B6)

where

H = ieiΘijσ+ − ie−iΘijσ−. (B7)

The density matrix we start with is

ρ̂total = ρ̂0 ⊗ |0⟩ ⟨0| . (B8)

Evolution with U will generate an entangled state between the system and ancilla

1√
2
(cos t+ sin teiΘij ) |ψ⟩ |0⟩+ 1√

2
(cos t− sin te−iΘij ) |ψ⟩ |1⟩ (B9)

We then measure the ancilla in its computational basis which gives us an ensemble of states labeled by measurement
outcome s, a string that records the measurement outcomes on each link

|ψ(s)⟩ ∝
∏
link

1√
2
(cos t+ sij sin te

isijΘij ) |ψ⟩ (B10)

To evaluate an average quantity of this ensemble, we need to investigate

¯⟨O⟩ =
∑
s

P (s)
⟨ψ(s)|O |ψ(s)⟩
⟨ψ(s)|ψ(s)⟩

(B11)

By Born’s rule (no bias), this is equivalent to

tr

(∏
link

1√
2
(cos t+ sin teiΘij )ρ̂0

1√
2
(cos t+ sin te−iΘij )O +

∏
link

1√
2
(cos t− sin te−iΘij )ρ̂0

1√
2
(cos t− sin teiΘij )O

)
(B12)
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Assuming O commute with eiΘij , the equation above is equivalent to∏
link

tr(ρ̂0O) (B13)

hence the measurements without post-selection does not change the expectation value of O.
We now consider a biased selection, meaning we collect all measurement outcomes but we give a higher weight to

the outcome with sij = +1. This is equivalent to

tr

(∏
link

(
1

2
+ x)(cos t+ sin te−iΘij )(cos t+ sin teiΘij )ρ̂0O +

∏
link

(
1

2
− x)(cos t− sin teiΘij )(cos t− sin te−iΘij )ρ̂0O

)

=tr

(∏
link

(1 + 4x cos t sin t cosΘij)ρ̂0O

)

We can again reorganize the mixed density matrix into the following form:

ρ̂ ∼ e−
1
2 I({Θij})ρ̂0e

− 1
2 I({Θij}), tr (ρ̂O) ∼ tr

(
ρ̂0e

−I({Θij})O
)

(B14)

In the path integral language this is equivalent to increasing the weight for the configurations with Θij = 0 on a 3d
slice at τ = 0 of the Euclidean space-time. By choosing x and t, we can see that the weight of configurations with
Θij = 0 can be arbitrarily larger than the weight of configurations with Θij = π, i.e. the measurement followed by
selection can strongly prefer θi to order (charge condensation) at the temporal slab τ = 0, similar to the previous
section on the Z2 gauge theory.

2. Field theory description

For a (classical) XY model defined on the lattice, the partition funciton reas

Z =

∫ 2π

0

Dθi exp (−I ({Θij})) , (B15)

where Θij = θi − θj , and I (Θij) is a periodic function of Θij . The simplest choice of I({Θij}) is a nearest neighbor
XY model:

I({Θij}) =
∑
n.n.

−(J/T ) cos(θi − θj). (B16)

On a 3d lattice, by tuning J/T there is a phase transition between a condensate of eiθi (for J > Jc), and a disordered
phase with J < Jc. The 3d XY model is not soluble exactly, but its infrared physics can be studied reliably using
field theory. In the field theory formalism, we need to use the “coarse-grained” complex field ϕ(x) rather than the
lattice operator exp(iθi). The partition function is now mapped to a field theory

Z ∼
∫
Dϕ(x) exp

(
−
∫
ddx |∇ϕ|2 + r|ϕ|2 + g|ϕ|4

)
. (B17)

It is important to note that this field theory corresponds to a large class of lattice models with U(1) variables. For
example one can add further neighbor interactions in the partition function, the change of the microscopic parameters
will change the UV values of the parameters in the field theory, e.g. r and g. But the specific values of the field theory
are not so important for the “universal” physics in the infrared we are concerned about, because the physics in the
infrared limit is controlled by the fixed point values of these parameters under renormalization group flow, regardless
of the values in the microscopic (UV) scale. Hence the physics described by the fixed points of the field theory is a
very generic description of a large class of models with U(1) variables.

If the original lattice model also involves gauge fields defined on the links, i.e. Θij = θi − θj − aij , with a lattice
version of the Maxwell term of aij , the theory becomes an “Abelian Higgs” model and has attracted a lot of interests
in the past (see for example Ref.58,59). The field theory of this model is

Z ∼
∫
Dϕ(x)Da(x)e−S[a,ϕ], S[a, ϕ] =

∫
ddx |(∇− ia)ϕ|2 + r|ϕ|2 + g|ϕ|4 + LMaxwell (B18)
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The pure state density matrix ρ̂0 of a quantum system before weak-measurement or decoherence can be represented
in a standard path-integral form. If we are only interested in the physics in the infrared limit, the density matrix can
be represented in a field theory form in the continuum, without loss of generality. In our case, the density matrix
element between field configurations |a(x)1, ϕ(x1)⟩ and |a(x)2, ϕ(x)2⟩ reads

⟨a(x)2, ϕ(x)2|ρ̂0|a(x)1, ϕ(x)1⟩ =
∫
Daµ(x, τ)Dϕ(x, τ)e

−Sd+1[aµ,ϕ],

Sd+1[aµ, ϕ] =

∫
dτddx |(∂µ − iaµ)ϕ|2 + r′|ϕ|2 + g′|ϕ|4 + 1

4e2
(fµν)

2, (B19)

where fµν = ∂µaν − ∂νaµ, and we may introduce a0 as a Lagrange multiplier to enforce the Gauss law constraint
Eq. B3. In the path-integral above, we also need the following boundary conditions a(x, 0) = a(x)1, a(x, β) = a(x)2,
ϕ(x, 0) = ϕ(x)1, ϕ(x, β) = ϕ(x)2. In the bulk we need the system to be in the photon phase, hence we need r′ > 0,
i.e. the charged matter fields are gapped. For the physics in the infrared we can just focus on the last Maxwell term
1

4e2 (fµν)
2 which leads to gapless photons in the bulk.

After weak-measurement described in the previous section, the evaluation of an operator reduces to the following
path integral problem:

tr (ρ̂O) ∼
∫
Dϕ(x, τ)e−S[aµ,ϕ]+S[a,ϕ]τ=0Oτ=0. (B20)

Here in the path integral we need to identify τ = 0 and τ = β, due to the trace. The extra term in the action
S[a, ϕ]τ=0 is a coarse-grained version of e−I({Θij}) in Eq. B14, where Θij = θi − θj − aij on the lattice, and the form
of S[a, ϕ]τ=0 is given by Eq. B18.
In the d+ 1 dimensional space-time bulk, the charges are gapped out, and the low energy physics is controlled by

the Maxwell term only. But since the Maxwell term is a free theory, its effects on the temporal boundary can be
understood reliably. This was discussed in (for example) Ref. 50, and the effect from the bulk will turn S[a, ϕ]τ=0 in
Eq. B18 to a nonlocal QED in Eq.4 of the main text.

As we mentioned in the main text, weak-measurement with or without post-selection can also drive transition int
the 2nd Renyi entropy, which is mapped to a path-integral with interactions between the two temporal slabs τ = 0, β
(Fig. 2). In Ref.41,45,46,57, it was shown that weak-measurement can drive bound states of gauge charges on the two

temporal slabs to condense. In our current problem, if we start with a state with an exact U(1)
(1)
m symmetry, weak

measurements may potentially also drive a condensation of the bound state of electric charges ϕ on the τ = 0 and

τ = β slabs. This bound state condensation breaks the doubled IR-U(1)
(1)
e symmetry down to a diagonal IR-U(1)

(1)
e

symmetry, using the language developed in Ref. 41 and 43. This transition is described by the following effective
action:

S =

∫
d3x |(∇− ia1 − ia2)ϕ|2 + r|ϕ|2 + g|ϕ|4

+
1

2e2
f1 ·

1

|∂|
f1 +

1

2e2
f2 ·

1

|∂|
f2. (B21)

a1 and a2 are the gauge fields on the τ = 0 and τ = β interfaces respectively. ϕ is effectively coupled to one gauge
field a+ = a1+a2 with a nonlocal action, and the transition belongs to the same universality class as Eq.4 in the main
text. The 2nd Rényi entropy is the free energy for this transition, which should have a singularity at the transition.

In the condensate of ϕ, a+ = a1 + a2 acquires a mass and suppresses the correlation of field B+ = B1 +B2, i.e.,
a linear combination of fields on the two different temporal slabs. Hence we expect the following scaling:

log
(
tr{ρ̂ eiBa(0)e−iBb(x)ρ̂ eiBa(0)e−iBb(x)}

)
∼ 1

|x|6
, (B22)

as this is the quantity that encodes the correlation of field B+.

Appendix C: Calculation with explicit form of density matrix

In this section we compute quantities under weak measurement using the explicit form of density matrix. Let us
start with the Hamiltonian of the quantized electromagnetic field in the 3d space:

H =

∫
d3x

e2

2
E(x)2 +

1

2e2
B(x)2. (C1)
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The ground state wave functional of the EM field is

|Ψ⟩ ∼
∫
Da(q) exp (−S[a(q)]) |a(q)⟩ with S[a] = 1

2e2

∫
d3q

(2π)3
|q × a(q)|2

|q|
. (C2)

The correlation function between B fields in the ground state reads

tr{ρ̂0B(0) ·B(x)} ∼
∫

d3q

(2π)3
eiq·xϵaijϵamnqiqm⟨aTj (q)aTn (−q)⟩ (C3)

where ⟨aTj (q)aTn (−q)⟩ is the gauge-field propagator for the transverse modes of a computed according to the “action”

2S[a]. It is straight-forward to check that ⟨aTj (q)aTn (−q)⟩ = e2

2
δjn−qjqn/|q|2

|q| , hence

tr{ρ̂0B(0) ·B(x)} ∼ e2
∫

d3q

(2π)3
eiq·x|q| ∼ e2

|x|4
. (C4)

Suppose weak measurement drives electric charge to condense on the (3 + 0)d temporal defect which effectively
amounts to turning on a mass term for the gauge-field in the evaluation above, the correlation between magnetic
fields reads as Eq. C3 but with the propagator of the transverse components of the gauge-field computed according

to the modified “action” 2S[a] + 1
2m

2
∫

d3q
(2π)3 |a(q)|

2. This new propagator – in the presence of a gauge-field mass –

takes the form for the transverse components ⟨aTj (q)aTn (−q)⟩ = δjn−qjqn/|q|2
m2+2|q|/e2 . Hence, at momentum much less than

the scale set by the gauge-field mass

tr{ρ̂B(0) ·B(x)} ∼
∫

d3q

(2π)3
eiq·x

|q|2

m2 + 2
e2 |q|

∼
∫

d3q

(2π)3
eiq·x|q|2

(
1

m2
− 2|q|
e2m4

+O(|q|2)
)
. (C5)

Since the Fourier transformation of the quadratic piece q2 only leads to local correlations, the leading term that
contributes at long distance is O(|q|3) and yields

tr{ρ̂B(0) ·B(x)} ∼ 1

e2m4

1

|x|6
. (C6)

These evaluations are consistent with what we expected from the boundary criticality analysis. The evaluation of the
electric field is similar, but we need to treat E as δ/δa(x) in the evaluation with the wave functional. Then we shall
see that the extra mass term only causes some local correction to the correlation between electric fields.

We now turn to the evaluation of the ’t Hooft loop. We begin with the calculation in the pure state with U(1)
(1)
m

SSB. We may define the eigenstates of the E(x) field, which should obey the following relation

⟨a|E⟩ = e−
i

2π

∫
d3xa·E (C7)

The ’t Hooft loop we would like to evaluate is〈
ei

∫
C dl·b

〉
=
〈
ei

∫
A dσ·E

〉
=

∫
DE(x)

⟨Ψ|E⟩ ei
∫
A dσ·E ⟨E|Ψ⟩

⟨Ψ|Ψ⟩
, (C8)

where σ is a surface element on membrane A. For simplicity, we choose A to lie on the z = 0 XY -plane. We can
substitute in the ground-state wavefunction Eq. C2 to get

〈
ei

∫
dσ·E

〉
=

∫
DaDa′DE e−S[a]−S[a′]− i

2π

∫
d3x(a−a′)·E+i

∫
d3xδ(z)θ(

√
x2+y2<R)Ez∫

DaDa′DE e−S[a]−S[a′]− i
2π

∫
d3x(a−a′)·E

(C9)

Integrating out field E in the numerator gives

a(x)− a′(x) = 2πδ(z)θ(
√
x2 + y2 < R)êz = 2πT (x)êz = 2πT (x) (C10)
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while the integration of E in the denominator simply imposes constraint a(x) = a′(x). So the expectation value of
the ’t Hooft loop of Eq. C8 reduces to ∫

Da e−S[a]−S[a+2πT ]∫
Da e−2S[a]

(C11)

with

S[a] + S[a+ 2πT ] = 2S[a] + 1

2e2

∫
d3q

(2π)3
(q × 2πT (q)) · (q × a(−q)) + c.c.

|q|
+

2

e2

∫
d3q

(2π)3
π2|q × T (q)|2

|q|
(C12)

After shifting the gauge-field in the path integral by a(q) → a(q)− πT (q), we see that a(q) and T (q) decouple such
that the expectation value is now merely

⟨ei
∫
dσ·E⟩ = e

− 1
e2

∫ d3q

(2π)3

π2(q2y+q2x)T (q)2

|q| (C13)

The Fourier transform of T is

T (q) =

∫ R

0

drdθ reiq2r cos θ =
2πRJ1(q2R)

q2
(C14)

where q2 =
√
q2x + q2y is the magnitude of the in-plane component of the momentum, i.e. the Fourier distribution of

T is constant in qz. J1(x) is the Bessel function of the first kind. We impose a cutoff Λ for |q| so that the integralC13
is convergent. The integral in the exponential can be simplified to∫

d3q
q22T (q)

2

|q|
=

∫
d3q (2πR)2

J2
1 (q2R)

|q|
(C15)

A closed form expression is tedious, so we focus on the asymptotic behaviour of J1(q2R) which is

J1(q2R) ∼
√

2

πq2R
cos

(
q2R− 3π

4

)
+ ... (C16)

The large momentum integration would then roughly give∫
dqzq2dq2 (2πR)2

2

πq2qR
∼ 8πR

∫
dqzdq2

1

q
∼ 16π2RΛ

One therefore get a perimeter law for the ’t Hooft loop as expected:〈
ei

∫
dσ·E

〉
= e−

2πΛ
e2

P . (C17)

When the electric charges condense on the (3 + 0)d temporal defect due to weak measurement, the evaluation of
the ’t Hooft loop follows the same path integral on the (3 + 0)d as Eq. C11, but with a modified effective action

S =
1

2e2

∫
d3q

(2π)3
|q × a(q)|2

|q|
−m2

∫
d3x

∑
i

cos(ai) (C18)

In the limit of strong m2 (deep inside the Higgs phase) it suffices to take a(q) ∼ δ(q) (analogous to the derivation of
Ref. 44), which would make the second term in eq. C12 vanish. This leaves us with the third term which differs from
the massless case (eq. C13) by a factor of 2. In other words the ’t Hooft loop is now〈

ei
∫
dσ·E

〉
= e−

4πΛ
e2

P . (C19)

Hence the ’t Hooft loop still decays as a perimeter law as was expected from the argument in the main text, but with
a larger factor, i.e. the electric charge condensation on the (3 + 0)d temporal defect induced by weak measurement

still suppresses the SSB of the U(1)
(1)
m symmetry.
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