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Quantum error correcting code can diagnose potential errors and correct them based on mea-
sured outcomes by leveraging syndrome measurement. However, mid-circuit measurement has been
technically challenging for early fault-tolerant quantum computers and the readout-induced noise
acts as a main contributor to the logical infidelity. We present a different method for syndrome ex-
traction, namely Generalized Syndrome Measurement, that requires only a single-shot measurement
on a single ancilla, while the canonical syndrome measurement requires multiple measurements to
extract the eigenvalue for each stabilizer generator. As such, we can detect the error in the logical
state with minimized readout-induced noise. By adopting our method as a pre-check routine for
quantum error correcting cycles, we can significantly reduce the readout overhead, the idling time,
and the logical error rate during syndrome measurement. We numerically analyze the performance
of our protocol using Iceberg code and Steane code under realistic noise parameters based on super-
conducting hardware and demonstrate the advantage of our protocol in the near-term scenario. As
mid-circuit measurements are still error-prone for near-term quantum hardware, our method could
boost the applications of early fault-tolerant quantum computing.

I. INTRODUCTION

Recent experimental progress has demonstrated pow-
erful and scalable quantum computers with different
hardware like superconducting qubits [1–7], neutral
atoms [8–14] and trapped ions [15–17]. To release the full
quantum power, practical quantum hardware needs to
overcome various kinds of noise and neutralize their effect
on the quantum states storing information. Quantum er-
ror correcting (QEC) codes provide a general framework
to tackle noise by encoding a logical qubit into multiple
physical qubits [18, 19]. The extra Hilbert space allows
the detection and correction of quantum errors, providing
the possibility for large-scale quantum computing.

To diagnose physical errors in QEC codes, syndrome
measurement (SM) is required to gain the necessary in-
formation for identifying both the location and type of
errors. Let us consider a stabilizer code Q which has
a k-element stabilizer generator set {Si}. For each Si,
canonical syndrome measurement requires preparation
of an ancilla state in |+⟩, followed by applying a Pauli
Si gate controlled by the ancilla and final measurement
of the ancilla in the X basis (Fig. 1a). However, as
mid-circuit readouts have been extremely error-prone for
near-term quantum hardware, readout-induced noise sig-
nificantly affects the fidelity of the logical state after the
syndrome measurement. For superconducting qubits, the
state-of-the-art readout duration ranges from hundreds of
nanoseconds to several microseconds while the coherence
time for scalable near-term hardware is tens of microsec-
onds [4, 5]. When the ancilla qubit is being measured
out, all data qubits are idling and therefore suffer from
decoherence noise. Besides, the state-of-the-art readout
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assignment error is on the scale of 0.01, which cannot
be mitigated if no repeated readouts are performed. For
neutral atom arrays, onsite mid-circuit readouts are prac-
tically challenging and the ancilla qubit to be measured
must be moved to a separate zone by coherent trans-
portation to avoid unintended interaction on other physi-
cal qubits [8, 13, 14], which adds time overhead and might
be susceptible to unexpected errors.

Exploiting redundant ancilla qubits and measuring dif-
ferent stabilizers in parallel may alleviate the readout-
induced decoherence, but it poses a stricter requirement
for qubit control and connectivity and may bring further
space overhead for near-term quantum hardware. The
direct readout error, e.g. assignment error and crosstalk,
is still present even if every stabilizer is measured si-
multaneously with separate ancilla qubits. Therefore,
we consider it favorable to reduce the number of read-
outs for better performance on early fault-tolerant quan-
tum computers. Notably, there has been work regard-
ing measurement-free QEC protocols that could achieve
fault-tolerant quantum computing without ancilla read-
out [20–23]. However, these protocols require the abil-
ity to reset the qubits, which is generally as noisy as
readout in the near-term quantum hardware [13, 24, 25].
Therefore, it in principle just transfers the overhead from
readout to resetting and only works for limited quantum
hardware where resetting is much less error-prone than
readout.

In this work, we propose a different method to ex-
tract syndrome information, namely Generalized Syn-
drome Measurement (GSM), that requires only single
measurement on a single ancilla regardless of the num-
ber of stabilizer generators. As such, our protocol would
minimize the time of readout for syndrome check. Specif-
ically, we check the encoded states by directly measuring
the eigenvalue of the code-space projector instead of the
eigenvalue of each stabilizer generator, which allows us to
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FIG. 1. (a) Circuit scheme for canonical syndrome measurement (SM). A total number of k (the number of stabilizer generators
in the code) readouts are required to diagnose the error syndrome and apply proper correcting operations. While the ancilla
qubit is being measured, all data qubits are subjected to decoherence due to idling. (b) Circuit scheme for (one-shot) generalized
syndrome measurement (GSM). Only a single readout is needed to extract the partial information and detect the error, and
the readout-induced idling error is minimized. (c) QEC cycle with generalized syndrome measurement. We divide the cycle
into two stages: detection and correction. We first use the GSM method to check whether an error has occurred or not. If no
error is detected, we skip the correction stage while ensuring that the logical state is in the codespace. If an error is detected,
we follow the GSM routine by the canonical SM, extracting the full syndrome information and correcting the detected error.
(d) A two-stabilizer code example illustrates the difference between the SM method and the GSM method. The value within
the box denotes the measured eigenvalue for Si (SM) or the code-space projector P̄ (GSM).

check whether an error occurred or not at a single-shot
readout overhead. Further, we propose to exploit the
GSM method as a pre-check routine for canonical syn-
drome measurement in QEC cycles, which may render
the following canonical routine unnecessary depending
on the GSM readout outcome. As a result, our method
can reduce the average number of readouts for quantum
error correction, given that the input logical state only
suffers from low level of noise. We numerically demon-
strate the performance of our protocol with Iceberg code
[26] and Steane code [27], and show that our method
outperforms the canonical method in the practical noisy
scenario. As long as mid-circuit readouts are still a main
infidelity source for quantum hardware, we believe our
method can reduce the impact of readout-induced noise
and enhance the performance of quantum applications in
early fault-tolerant quantum computing.

II. PROTOCOL DESCRIPTION

We first introduce the idea of the GSM method.
For a QEC code Q with stabilizer generator {Si}(i =
1, 2, ..., k), each stabilizer generator Si has an associate
projector Pi = (I + Si)/2. We can define the code-space

projector of Q

P̄ =

k∏
i=1

Pi =
1

2k

k∏
i=1

(I + Si). (1)

Instead of measuring each stabilizer individually, we aim
to detect whether a given state is in the codespace or
not by measuring the eigenvalue of P̄ using controlled
unitary gates eiπP̄ . As shown in Fig. 1b, We start with
the noisy input logical state |ψ⟩ and an ancilla initiated
at |+⟩a

1√
2
(|0⟩a |ψ⟩+ |1⟩a |ψ⟩). (2)

Next, we apply a control-eiπP̄ gate triggered by the an-
cilla state |1⟩a, and the pre-measurement state becomes

1√
2
(|0⟩a |ψ⟩+ |1⟩a e

iπP̄ |ψ⟩). (3)

Rewriting the ancilla state in the X basis, we have

(|+⟩a (I − P̄ ) |ψ⟩+ |−⟩a P̄ |ψ⟩), (4)

where we used the fact that P̄ 2 = P̄ and eiβP̄ = I +
(eiβ − 1)P̄ for any angle β. If we measure the ancilla
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qubit to be |−⟩a, the logical state will be projected to the
state proportional to P̄ |ψ⟩, which lies in the code space
of Q, and we assure there is no detectable error within
the ability of code Q. Otherwise, the post-measurement
state lies outside of the codespace, implying that at least
one detectable error has occurred in the logical state.

Compared with the GSM method, the canonical SM
method projects the input state to the codespace (+1
eigenspace of all Si) by measuring the ancilla qubits se-
quentially. As each stabilizer Si requires an ancilla read-
out, at least k readouts are required to tell whether the
state is in the codespace or not and the readout-induced
idling time will be ktm given tm is the time for a physical
readout. The direct readout errors, like assignment er-
rors and crosstalk errors, may also affect the fidelity of the
logical state by k times. In the GSM method, we require
only a single measurement to extract partial syndrome
information and diagnose if an error exists, at the cost
of losing the specific information of which kind of error
exists. Therefore, the GSM method can take the place
of the SM method for quantum error detection (QED),
where we post-select logical states based on readout out-
comes. Fig. 1d provides an illustrative example of a code
containing two stabilizer generators. For the purpose of
QEC, the GSM method cannot completely replace the
canonical SM method as all syndrome information is nec-
essary. However, the GSMmethod can still bring benefits
for QEC cycles: In a fault-tolerant quantum computing
regime, The logical error rate of the input state is gen-
erally very low to ensure that we are under the noise
threshold where logical qubits would outperform physi-
cal qubits. Therefore, the main purpose of a QEC cycle
is to assure that no error has occurred in the input log-
ical state, rather than revealing the specific information
about the presented errors. Based on this assumption,
we can integrate the GSM method in QEC cycles in an
adaptive way and divide a cycle into two stages as pre-
sented in Fig. 1c: In the first stage, we detect if there is
an error in the logical state using the GSM method. If
no error is detected (in a more probable case), we assure
the logical state is in the codespace, skip the next stage,
and finish this QEC cycle. If at least an error is indeed
detected (in a less probable case), we follow up with the
canonical SM method to extract the full syndrome infor-
mation and correct all detected errors. As long as the
input state has sufficiently high fidelity, we can lower the
average time of ancilla readouts by introducing the GSM
method in such a combined way. For example, if the
input state (encoded in a k-stabilizer code) is the ideal
state with 99% probability or a fully erroneous state with
1% probability, the average readout-induced idling time
for a noiseless QEC cycle with the GSM method can be
approximated by [0.99·1+0.01·(1+k)]tm = (1+0.01k)tm,
which is much shorter than the time ktm for the canonical
method even if k = 2.

Notably, the idea of adaptive syndrome measurement
has already been used for Shor-style error correction
[28, 29], but we are using it here in a different way:

The first measurement is for the whole codespace pro-
jector, and the following measurements are for each sta-
bilizer generator. Our method could also be further made
in Shor-style fault-tolerant way (see Appendix F). As
mid-circuit readouts are still very error-prone for current
large-scale quantum hardware, we expect our method
could significantly reduce the noise originating from read-
outs and benefit early fault-tolerant quantum applica-
tions.
In addition to the one-shot GSM method shown in

Fig. 1(b) where we just use one ancilla readout, one
can also use a few more ancilla readouts (but still less
than the canonical SM method) for a more reduced gate
complexity and relaxed connectivity requirement. This
trade-off can be achieved by splitting the code-space pro-
jector P̄ into several subprojectors {P̄1, P̄2, ..., P̄m}(m <
k) such that

P̄ =

m∏
i=1

P̄i (5)

and

P̄i =
∏
{j}i

Pj , (6)

where {j}i is an index set associated with each subpro-
jector and

⋃m
i=1{j}i = {x ∈ Z|0 ≤ x ≤ k}. By measuring

these subprojectors P̄i separately, we can achieve an m-
shot GSM protocol where the total readout time is still
less than the canonical SM method. For example, a four-
stabilizer code (e.g. the five-qubit [[5, 1, 3]] code) with
S1, S2, S3, S4 can exploit a two-shot GSM by splitting the
general projector into two subprojectors, one containing
S1 and S2 while the other containing S3 and S4. We give
a more detailed explanation in the Appendix B.

III. GATE IMPLEMENTATION OF eiπP̄

In the GSM method, we demand the implementation
for the controlled projector gates eiπP̄ , which is a highly
non-local unitary and requires to be decomposed into el-
ementary gates to be implemented in near-term quantum
hardware. Here, we provide two different methods of im-
plementation.

In the first method of decomposition, we expand the
expression of P̄ in Eq. (1) into a sum of stabilizer oper-
ators Mi:

P̄ =
1

2k

k∏
i=1

(I + Si) =
1

K

K∑
i=1

Mi, (7)

where K = 2k for simplicity. As Si commutes with each
other, Mi is also commutable with each other. Thus, an
eiπP̄ gate can be written as

eiπP̄ =

K∏
i=1

eiπMi/K =

K∏
i=1

Mi(π/K), (8)
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FIG. 2. Gate Implementation of eiπP̄ . (a) Sandwich imple-
mentation. UP̄ is the circuit decoding the code with projector
P̄ back to the trivial code state, and there is a multi-qubit
control phase gate sandwiched in the middle between UP̄ and

its conjugate U∗
P̄ . (b) The eiπP̄ can also be implemented by

a sequence of control multi-qubit Pauli rotation gates.

where Mi(θ) = eiθMi are multi-qubit Pauli phase gates
with angle θ. The controlled projector gates are there-
fore rearranged in the gate sequences as shown in Fig. 2b.
As the identity gate I is also among Mi, there are K − 1
non-trivial gates that need to be implemented in practice.
This kind of implementation is particularly suitable for
systems with globally tunable Hamiltonian, like trapped
ions [31] or neutral atoms [32], but can also be decom-
posed into local Clifford and single-qubit phase gates [33].
Notably, although the number of multi-qubit Pauli gates
grows exponentially with k, the total physical Hamilto-
nian evolution time is bounded as the rotation angle for
each Mi also decays exponentially with k.

In the second method, we can construct the controlled
eiπP̄ using a multi-qubit control phase gate sandwiched
by a Clifford unitary UP̄ and its conjugate as shown in
Fig. 2a. The unitary UP̄ always exists as any [[n, k, d]]
stabilizer codes can be encoded by a Clifford unitary from
the trivial code state

|ψ⟩data ⊗ |1⟩k+1 ⊗ ...⊗ |1⟩n , (9)

where Zk+1, ..., Zn is the stabilizer generator of the trivial
code [34]. Therefore, only logical states in the codespace
will be decoded into the trivial code state with all non-
data qubits remaining in the |1⟩. A multi-qubit control
phase gate will therefore gain the necessary information
to detect if the logical state has left the codespace. For
arbitrary stabilizer codes, the general decomposition of
UP̄ can be found by Gottesman’s algorithm [35].

IV. ERROR DETECTION WITH ICEBERG
CODE

[[2m + 2, 2m, 2]] Iceberg code is named by its pla-
nar connectivity requirement (Fig. 3a) and has stabilizer
generators {X⊗2m+2, Z⊗2m+2}. Although this kind of
distance-2 codes cannot correct any errors but only de-
tect a single error, the large encoding rate and loose
connectivity requirements render great practical inter-
est in near-term algorithm application [26, 36, 37]. To
demonstrate the performance of the GSM method, we
numerically simulate the state in density matrix formal-
ism using qiskit.quantum info [38]. We take the noise
parameters from the latest Sycamore Processor [4] (with
tunable couplers) and the ibm brisbane Processor [30]
(with fixed-frequency couplers). We consider initializa-
tion noise, gate noise, idling decoherence, and readout
assignment error. Particularly, we model the two-qubit
gate noise as a combination of a depolarizing channel
and an idling decoherence channel with duration equal
to the gate time to fully reflect the effect of gate time on
the performance. We discuss our simulation in more de-
tails in the Method section. Although we only simulate
the case when m = 1 and m = 2, we expect larger Ice-
berg code should exhibit similar numerical behavior as
the number of stabilizer generators doesn’t increase with
the code size.
We first use noisy gates to prepare the physical qubits

in the GHZ state

1

2
(|0⟩⊗2m+2

+ |1⟩⊗2m+2
), (10)

which is the logical |+⟩⊗2
for [[4, 2, 2]] code and |+⟩⊗4

for
[[6, 4, 2]] code up to local transversal Hadamard. Next,
we apply a varying period of idling noise on every physical
qubit to mimic realistic noise. We then separately use the
canonical SM or the GSM method to detect the error and
post-select the state without triggered syndrome. We
adopt the sandwich implementation of the control pro-
jector gate and the decomposed circuit for the four-qubit
code is shown in Fig. 3c, which requires the implemen-
tation of physical CCZ gates or further decomposition.
This implementation suits better for quantum hardware
with less flexible qubit connectivity. The general imple-
mentation of the GSM method on the Iceberg code is
discussed in Appendix E. We plot the logical error rate
against the idling time in Fig. 3d as well as the raw phys-
ical state prepared in |+⟩⊗2m

under idling noise for ref-
erence. We also plot the logical error rate when the gate
noise is fully dominated by gate-induced decoherence as
the dashed curve with the same colors.
For all four simulations shown in Fig. 3d, the GSM

method outperforms the canonical SM method by a sig-
nificant gap. The amount of error rate improvement for
the GSM method is barely affected by the idling time
applied to the input logical state. In the case of state-
of-the-art quantum hardware, the canonical SM method
doesn’t even have a better performance than the unen-
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FIG. 3. (a) Planar connectivity structure of Iceberg codes. All physical qubits are placed in an iceberg-like shape and the
bottom/up qubit is connected to every other qubit. (b) The [[4, 2, 2]] code with the required ancilla connectivity for GSM. (c)
Decomposed circuit for GSM on the [[4, 2, 2]] code. (d) Numerical simulation of four-qubit and six-qubit Iceberg code, with
noise parameters of Sycamore [4] and ibm brisbane processor [30]. The dashed curve indicates error rate when the gate control
is perfect and all gate noise is gate-induced idling noise.

coded physical state, i.e. in a regime where the logical
error rate is lower than the raw error rate. Nevertheless,
the GSM method can achieve break-even and outperform
the unencoded physical state after a certain idling time.
The advantage of GSM is even larger when the control
is perfect and gate noise is fully dominated by the gate-
induced decoherence. As the gate control techniques are
consistently improving while the gate time is limited by
physical constraints in many hardware implementations,
such as the state leakage in superconducting qubits [1]
or the operating laser power [13] for neutral atoms, we
anticipate the gate noise in the future quantum hardware
to be more dominated by gate-induced decoherence and
our protocol could therefore bring further advantage over
the canonical protocol.

V. ERROR CORRECTION WITH STEANE
CODE

Although quantum error detection can bring benefits
for very near-term scenario, the post-selection routine
introduces sampling overhead and quantum error correc-
tion is needed from a scalable viewpoint. To demonstrate
the advantage of the GSM method for quantum error
correction, we choose the [[7, 1, 3]] Steane code to numer-
ically compare the logical performance of the GSM with
canonical SM method. The Steane code is the small-
est two-dimensional color code that is able to correct a
single error, and has weight-four stabilizer XXXX and
ZZZZ on each of the three color plaquettes shown in

Fig. 4a. Rather than using the one-shot GSM method
that projects the logical state onto the code space with a
single readout, we choose to use the three-shot GSM to
alleviate the connectivity requirement for planar layout of
physical qubits. Specifically, we use three ancilla qubits,
each to measure the projector of stabilizer XXXX and
ZZZZ on its color plaquette. As all the three ancilla
can be measured out simultaneously, the three-shot GSM
method can still reduce the readout time as the canonical
SM require two readouts on each ancilla qubit. In princi-
ple, we can use the circuit implementation for four-qubit
Iceberg code shown in Fig. 3c for each plaquette check as
the stabilizer set is the same. However, we use an alterna-
tive implementation (Fig. 4c) here to avoid the excessive
connection on any single qubits such that each physical
qubit is connected to at most four other physical qubits.
In such a way, our GSM method should be exploited in
state-of-the-art superconducting hardware without any
further physical modification.

We use a projective noise parameter set for Steane code
simulation because the state-of-the-art quantum hard-
ware is still too noisy for logical qubits to outperform
physical qubits see Appendix C. We initialize the logical
qubit in |+̄⟩ with noisy circuits, apply idling noise to ev-
ery physical qubit, and perform quantum error correction
on the noisy logical state. We compare the performance
of the QEC cycle with GSM (Fig. 1c) and without GSM
(Fig. 1a), and plot the logical error rate and the average
number of readout in Fig. 4d. More simulation details
can be found in the Method section as well.

With the help of the GSM method, the logical error
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FIG. 4. (a) Planar connectivity structure of Steane code for the GSM method. On each color plaquette, the ancilla qubit is
only required to connect two neighboring physical qubits on the edge. (b) Circuit scheme for three-shot GSM on Steane code.
The check on each plaquette is performed sequentially but the ancilla qubits are measured in the same time. (c) Detailed
implementation for plaquette check. (d) Logical error rate under idling noise after performing QEC cycle with (without) GSM
and the corresponding number of average readout required. The inset figure is the logical error rate after just performing
post-selection with quantum error detection (y axis label in the unit of 0.001).

rate after a QEC cycle is significantly reduced when the
applied idling noise is low. We attribute the advantage
of GSM to the reduced average time of readout: When
there is little idling noise, the input state is nearly perfect
and the pre-check routine can assure the correctness of
the input state with only a single-shot readout, leading
the average number of readout close to one. In contrast,
the canonical SM method always needs to measure twice
and the readouts itself introduce additional noise to the
logical state. When the idling noise increases and the
input state becomes noisier, the average time of read-
out is increased as the GSM routine has more chance to
detect an error and trigger the following correction pro-
cess. However, even when the average time of readout
is the same for QEC with or without GSM, we still see
non-zero advantage in the QEC process with GSM. We
attribute this advantage to the higher robustness of the
GSMmethod on false-positive readout assignment errors:
When the logical state is in the codespace but the read-
out outcome wrongly indicates there is an error in the
detection stage, the QEC cycle with the GSM method
will not be affected as the following correction routine
will not detect any error and assure that the logical state
is in the codespace.

VI. DISCUSSION

A natural question arise from our work is: Does there
exist a range where the GSM method doesn’t bring ad-

vantage on the logical fidelity? As the GSM method
trades additional gate overhead for reduced readout over-
head, the ratio between readout time and gate time can
be used as the criterion. We numerically study the effect
of readout time and gate time on the relative performance
of the SM method and the GSM method in the supple-
mental material in Appendix D and find out the parame-
ter of practical superconducting quantum hardware falls
in the regime where the GSM method is advantageous.
Therefore, unless there is a technical breakthrough that
shortened the physical readout time drastically, we be-
lieve the GSM method will bring practical advantage for
near-term quantum applications.

Besides using the GSM method as a pre-check rou-
tine, fault-tolerant quantum computing can also benefit
from GSM by exploit concatenated codes and treat de-
tected physical errors as logical erasure errors [39], which
doesn’t require explicit quantum error correction in the
inner code but only need to correct logical erasure in the
outer loss-tolerant codes (see Appendix G). In such a
case, our GSM method can be exploited to improve the
robustness against readout-induced error.

Notably, as the eiπP̄ gate used in the GSM method
needs to be decomposed into elementary gates, local er-
rors might propagate to other physical qubits and pro-
duce correlated errors. However, as long as readout-
induced idling error, which is a global noise channel, still
serves as the main noise contributor in the near-term sce-
nario, the correlated errors won’t weigh over the readout-
induced errors and pose a critical threat to the validness
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of our proposed method. Moreover, we may also use the
idea of Shor-style syndrome measurement, which rely on
pre-entangled ancilla qubits and native multi-qubit Pauli
gates to achieve gate-level fault tolerance at the cost of
more ancilla qubits and time overhead. (see Appendix
F)

Although we only simulate the performance of the
GSM method using noise parameters from superconduct-
ing hardware, the GSM method can generally be applied
to various kinds of quantum hardware where mid-circuit
readouts are error-prone. For neutral atoms, state-of-the-
art readout time is on the scale of tens of milliseconds
and the best reachable coherence time is on the scale
of seconds [8, 40]. In particular, mid-circuit measure-
ments for neutral atoms rely on coherently transporting
the atoms to a separate area as shown in [8], or need to
shelve the data qubits to magnetic-sensitive states with
reduced coherence time [41]. Our protocol can therefore
be employed to provide advantages for scalable neutral
atoms quantum computers as well.
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Appendix A: Simulation details

All of our numerical results are obtained from simula-
tion using qiskit.quantum info [38]. The quantum states
are simulated in density matrix formalism and all er-
ror channels are implemented as Kraus superoperators.
All physical qubits are prepared in (1 − ϵinit) |0⟩ ⟨0| +
ϵinit |1⟩ ⟨1| where ϵinit is the initialization error. For
single-qubit (1Q) gates, we only consider the control error
and model the noise by following a depolarizing channel
after the ideal gate operation. For two-qubit (2Q) gates,
we consider both the control error and the gate-induced
decoherence. We follow a two-qubit depolarizing chan-
nel after the ideal 2Q gate operation, and a global idling
channel to all physical qubits after a layer of 2Q gates.
In such a way, we ensure the total infidelity of a 2Q gate
under control noise and the idling noise equals to the
median error rate reported in [4] and [30]. For the Tof-
foli gate used in the GSM method, we model the noise
by follow a three-qubit depolarizing channel with dou-
ble error rate of 2Q gate and double gate-induced idling
duration. Although most large-scale quantum hardware
by far doesn’t support native Toffoli gates and require
further decomposition into five two-qubit gates, we are
taking an optimistic consideration as native multi-qubit
gates have been demonstrated on various kinds of quan-
tum hardware [13, 42]. For noisy readout, we model it

- Sycamore ibm brisbane projective

T1(µs) 20 217 1000

T2(µs) 30 130 1000

readout time(ns) 660* 4000 200

1Q gate error 1e-3 2.2e-4 0

2Q gate time(ns) 34 600 20

2Q gate error 3e-3 7.5e-3 1e-4

initialize error 1e-2 1e-2 1e-3

readout error 2e-2 1e-2 1e-3

*including time for qubit resetting

TABLE I. Noise parameter for numerical simulation

by inserting an idling channel whose duration is equal to
readout time before measurement. We also considered
the readout (assignment) error that read |0⟩ as |1⟩ and
vice versa. The specific noise parameters can be found
in Table. I.
For the Iceberg code simulation, we initialize the logi-

cal state by preparing a multi-qubit GHZ state. We start
with a physical qubit in |+⟩ and all others in |0⟩ and apply
CNOT gates sequentially. The depth of initialization for
four(six)-qubit code is 2(3) and can be achieved with the
iceberg-like connectivity. We assume only one available
ancilla, which connects to every other physical qubit in
the SM method but only require connection to two phys-
ical qubits in the GSM method. The gate depth of a
cycle of the GSM method is 4(8) plus a Toffoli depth for
the 4(6)-qubit Iceberg code. Comparatively, the depth
for the SM method is 8(12).
For the Steane code simulation, we prepare the logical

state by applying nine CZ gates (depth 3) on physical
qubits all prepared in |+⟩ and Hadamard gates on four
of them [8]. We use three ancilla qubits, one for each color
plaquette. In the QEC cycle without the GSM method,
we first perform the X check on each plaquette, then the
Z check on each plaquette. In the QEC cycle with the
GSMmethod, we apply the partial projector gate on each
ancilla sequentially (Fig. 4b) before reading out all three
ancilla qubits. The gate depth for the GSM method is 12
plus 3 Toffoli depth. In contrast, the canonical SM has 8
depth of 2Q gates.

Appendix B: m-shot Generalized Syndrome
Measurement with subprojectors

In the main text, we introduced the generalized syn-
drome measurement (GSM) which only requires a single
readout to detect the error. The GSM method requires
the ability to implement controlled projector gates eiπP̄ ,
which could bring large computational overhead when
decomposed into elementary gates and the connectivity
requirement could be very strict. Here we introduce the
modified method by exploiting a bit more ancilla qubits,
which could help reach a smooth trade-off between the
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gate complexity/connectivity and the readout complex-
ity in the GSM method.

For code Q with stabilizer generator {Si}, the general
projector for one-shot GSM method is

P̄ =

k∏
i

Pi =
1

2k

k∏
i

(I + Si) =
1

K

K∑
i

Mi. (B1)

As we showed in the main text, we can use a control-eiπP̄

gate and a single-shot measurement on the ancilla qubit
to act the projector on the noisy state nondeterministi-
cally. Instead of using only one projector, we can group
several subprojectors P̄i such that their product is still
P̄ :

P̄ =

m∏
i

P̄i, (B2)

where

P̄i =
∏
{j}i

Pj (B3)

and {j}i is an index set associated with each subprojector
and

⋃m
i=1{j}i = {x ∈ Z|0 ≤ x ≤ k}. As we have m

subprojectors, we need m (1 ≤ m ≤ k) readouts for
partial syndrome extraction here. We can use the circuit
show in Fig. 5 to extract the partial syndrome in a QEC
cycle.

As a convenience choice, we can choose to group stabi-
lizers pairwise as {S2i−1, S2i}, which allows us to define
the two-element subprojectors P̄ 2

i

P̄ 2
i = P2i−1P2i =

1

4
(I + S2i−1)(I + S2i), (B4)

and it’s easy to see

P̄ =

k/2∏
i

P̄ 2
i . (B5)

In such a way, we can halve the amount of readouts while

the implementation of the projector gates eiπP̄
2
i is still

not too complicated. For instance, the [[5, 1, 3]] code has
four stabilizer generators

S1 = ZXXZI S2 = IZXXZ

S3 = ZIZXX S4 = XZIZX,
(B6)

FIG. 5. Circuit scheme for m-shot generalized syndrome mea-
surement.

and we can just use a single readout to measure the pro-
jector

P̄ =
1

16
(I + ZXXZI)(I + IZXXZ)

(I + ZIZXX)(I +XZIZX). (B7)

This would require 18 two-qubit gates (depth 12) and a
five-qubit Toffoli gate in total to implement the projector
gate. Rather if we measure the following two subprojec-
tors

P̄1 =
1

4
(I + ZXXZI)(I + IZXXZ)

P̄2 =
1

4
(I + ZIZXX)(I +XZIZX),

(B8)

, we only need 12 two-qubit gates (depth 6) and a Tof-
foli gate for each subprojector gate and the overall gate
overhead is 24 two-qubit gates (depth 12) and two Toffoli
gates.
Importantly, the partial syndrome information ex-

tracted with the GSM method can be further used in
the correction stage in the QEC cycle. We only need to
perform canonical syndrome measurement for stabilizers
associated with triggered subprojectors, and stabilizers
associated with untriggered subprojectors doesn’t need
to be measured again. Taking the two-shot GSM method
on the [[5, 1, 3]] code as an example: If only the second
subprojector P̄2 is triggered, we only need to perform
canonical syndrome measurement for stabilizer ZIZXX
and XZIZX, and there is no need to measure ZXXZI
and IZXXZ again as we already assured that the logical
state is in the space of subprojector P̄1.
For another example, the two-dimensional color code

[43] has stabilizer {X⊗n, Z⊗n} supported on each n-edge
plaquette. We can use a subprojector associated with
each plaquette

P̄plaq =
1

4
(I +X⊗n)(I + Z⊗n) (B9)

to extract partial syndrome information (Fig. 6). For
this kind of code, a QEC cycle with our GSM method
only takes a single readout cycle when no error occurs,
and at most two readout cycles in total when at least
an error occurs. To be compared with, a canonical QEC
cycle without the GSM method always takes two readout
cycles. Therefore, our GSM method can always reduce
the time of readout for two-dimensional color code, pro-
viding a scalable option for fault-tolerant quantum com-
puting.
In general, there is no restriction on how to group the

stabilizer generators into subprojectors, and the subpro-
jectors can be chosen to mostly suit the connectivity and
practical limitation of quantum hardware. The number
of readouts can be chosen smoothly from 1, correspond-
ing to the one-shot GSM method proposed in the main
text with the largest gate overhead (minimum readout
overhead), to k, corresponding to the canonical syndrome
measurement with the minimum gate overhead (largest
readout overhead).
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FIG. 6. Adoption of the GSM method on scalable two-dimensional color codes (a) a QEC cycle with the GSM method. Yellow
dashed circles represent for the local GSM routine on each plaquette. When error rate is low, we will mostly end with just a
single-shot readout time. We follow with local stabilizer check when the location of error(s) is detected to correct the error(s),
and the time consumed is two-shot readout time. (b) a canonical QEC cycle without the GSM method. Whether an error is
detected or not, the time required is always two-shot readout time.

Appendix C: Steane code simulation with
state-of-the-art noise parameter

In the main text, we present numerical results for the
GSM method on the Steane code with projective noise
parameters. The main reason why we don’t stick with
state-of-the-art noise parameter is the current supercon-
ducting quantum hardware is still too noisy and not in
the regime where logical qubit would outperform phys-
ical qubit, as shown in Fig. 7. The logical error rate
after the encoding and decoding is much larger than the
physical error rate, which makes QEC not really mean-
ingful in such a regime. However, we still see some advan-
tage of the GSM method over the canonical SM method
when the input logical state doesn’t suffer too long idling
time. As longer idling noise is applied to the logical state,
the average number of readout of a QEC cycle with the
GSM method increases over two (canonical SM method)
and the GSM method start to lose its advantage. As
raw physical qubits dominates over the logical qubits,
this regime doesn’t post a critique to our proposed GSM
method.

Appendix D: benchmark the advantageous regime of
the GSM method

To understand the advantageous regime of the GSM
method, we ramp both the readout time and the gate
time for both the Sycamore and the ibm brisbane set-
ting within a practical range that might be reached in

the future, while keep other noise parameters fixed. We
compare the performance for both the GSM and the
canonical SM method and plotted the fidelity difference
Fgsm−Fsm regarding the gate time and the readout time.
We simulated both the [[4, 2, 2]] code in Fig. 8 and the
[[6, 4, 2]] code in Fig. 9 to explore the condition when the
GSM method is advantageous. The advantageous regime
for the GSM(SM) method is plotted with red(blue) area.
From the simulated results, we see the state-of-the-art
parameter is in a range where the GSM method will beat
the canonical SM method. Unless the readout duration is
significantly reduced in the scalable quantum hardware,
we will still stay in the advantageous regime for the GSM
method.

Appendix E: Projector gate implementation for
Iceberg code

Although the implementation of the projector gate is
not unique, here we present an implementation for gen-
eral Iceberg code in Fig. 10. In such an implementation,
the 2Q gate depth is only 4m. Comparatively, the over-
all 2Q depth of the canonical syndrome measurement is
4m+ 4.
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FIG. 7. Steane code simulation with state-of-the-art noise parameter.

FIG. 8. Fidelity difference Fgsm − Fsm with [[4, 2, 2]] code depending on various readout time and gate time when other noise
parameters are fixed. The yellow stars denote where the state-of-the-art operation time is.

Appendix F: Fault-tolerance in analog with
Shor-style syndrome measurement

In the long term, we have to consider the gate-level
fault tolerance of our method to avoid the impact of cor-
related errors. To achieve this in our method, we require
the quantum hardware to be able to implement native
multi-qubit (control) Pauli phase gates and does not rely
on decomposition into elementary gates. It’s reasonable
to make such an assumption as various quantum hard-

ware has demonstrated potential for native multi-qubit
gates [12, 42]. We also demand that the native global
gates don’t suffer from inner correlated errors. As such,
we only need to consider single Pauli errors induced by
the gate operations up to the main order.
By using the idea of Shor-style syndrome measure-

ment, i.e. preparing entangled ancilla states, we can
achieve a fault-tolerant circuit for our method. We plot-
ted the GSM circuit for [4, 2, 2] code as an example in
Fig. 11. The entangled ancilla states can prevent errors
occurred in any single ancilla qubit. For errors occurred
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FIG. 9. Fidelity difference Fgsm − Fsm with [[6, 4, 2]] code depending on various readout time and gate time when other noise
parameters are fixed. The yellow stars denote where the state-of-the-art operation time is.

FIG. 10. the projector gate implementation of for [[2m +
2, 2m, 2]] Iceberg code.

after the multi-qubit Pauli gates, they will either be de-
tected by the following Pauli gates or commute with the
following Pauli gates and will not be propagated to other
qubits (Fig. 11).

Importantly, we note this fault tolerance cannot be
achieved if we decompose the gate into elementary gates
(two-qubit gates). That’s because each Pauli phase gate
is mediating global interaction and an error occurred af-
ter a decomposed gate could propagate to every qubit at
the end of the Pauli phase gate. In early fault-tolerant
setting, this may not be a severe problem if the gain
from the reduced readout-induced noise is good enough,
as shown in our simulation results.

FIG. 11. Generalized Syndrome Measurement in analog with
Shor-style syndrome measurement for [[4, 2, 2]] code. An-
cilla qubits (green) are prepared in the GHZ state (|000⟩ +
|111⟩)/

√
2 and each ancilla qubit controls a multi-qubit Pauli

gate. An error occurred after the gates will either be detected
(left) or commute with the following gates and will not prop-
agate (right).

Appendix G: Quantum Error Correction with logical
erasure conversion

We can exploit the benefit of concatenated quantum
codes to correct the errors indirectly (Fig. 12). The idea
is initially proposed in [39] for cluster state generations.
The inner codes are set to be small-size quantum code
used to detect the physical errors, and the outer codes
are used to correct the loss (erasure) errors. Whenever we
detect an error in the inner level, we actively treat it as
a logical erasure error in the outer level. As outer codes
are loss-tolerant, we can restore the logical information
in the presence of logical erasures and thus correct the
physical errors indirectly. We do not need the syndrome
information and correct the Pauli errors directly, and the
GSM method can help reduce the readout-induced infi-
delity in such a scenario.
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FIG. 12. Scheme for concatenated codes with logical erasure
conversion. In such a scenario, the ability to detect the errors
is sufficient to correct physical errors.
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A quantum processor based on coherent transport of en-
tangled atom arrays, Nature 604, 451 (2022).

[9] K. Singh, S. Anand, A. Pocklington, J. T. Kemp, and
H. Bernien, Dual-Element, Two-Dimensional Atom Ar-
ray with Continuous-Mode Operation, Physical Review
X 12, 011040 (2022).

[10] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phutti-
tarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinke-
meyer, M. Kwon, M. Ebert, J. Cherek, M. T. Licht-
man, M. Gillette, J. Gilbert, D. Bowman, T. Ballance,
C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt,
B. Rogers, T. Noel, and M. Saffman, Multi-qubit en-
tanglement and algorithms on a neutral-atom quantum
computer, Nature 604, 457 (2022).

[11] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T.
Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler,
S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Mon-
tangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić,
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