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Non-stabilizerness - also colloquially referred to as magic - is a resource for advantage in quantum
computing and lies in the access to non-Clifford operations. Developing a comprehensive under-
standing of how non-stabilizerness can be quantified and how it relates to other quantum resources
is crucial for studying and characterizing the origin of quantum complexity. In this work, we estab-
lish a direct connection between non-stabilizerness and entanglement spectrum flatness for a pure
quantum state. We show that this connection can be exploited to efficiently probe non-stabilizerness
even in the presence of noise. Our results reveal a direct connection between non-stabilizerness and
entanglement response, and define a clear experimental protocol to probe non-stabilizerness in cold
atom and solid-state platforms.

Introduction.— Simulating quantum states is in gen-
eral very hard for classical computers. It is expected
that the exact classical simulation of arbitrary quantum
systems is inefficient, as the resource overhead exponen-
tially grows with the size of the system [1]. For this
reason, Feynman put forward the notion of a quantum
computer [2] as only a quantum device would be able to
simulate a generic quantum system efficiently, as later
proven in [3].

Entanglement - one of the defining characteristics and
essential resources for quantum processing and quantum
technology - has been thoroughly studied [4–12]. How-
ever, probing entanglement is insufficient for quantum
advantage, nor it is enough to characterize entanglement
by a single number [13–17]. For instance, one can ob-
tain highly entangled states by Clifford circuits [18] that
can be efficiently simulated classically [19–22]; more-
over, entanglement complexity is revealed in the finer
structure of the entanglement spectrum statistics[23–
25]. Transitions between different classes of entanglement
complexity are driven by non-Clifford resources [26–31],
which are indeed also the necessary resources to quantum
advantage[32].

Any extension of Clifford circuits (that is, circuits only
containing the Hadamard gate, the π/2-phase gate, and
the controlled-Not gate)enables them to perform univer-
sal computation by allowing the input states to include
the so-called magic states [33–35]. The canonical magic-
state is |T ⟩ =

(
|0⟩+ eiπ/4|1⟩

)
/
√
2 which enables the ap-

plication of a single-qubit unitary T = diag(1, eiπ/4). A
circuit composed of elements from the Clifford and T
gate set acting on the standard computation basis in-
put suffices for universal quantum computation. Clas-
sical simulation of such circuits needs a run-time scal-
ing exponentially with the number of input magic-state

qubits, yet still polynomial in the number of stabilizer-
state qubits [21]: consequently, one can perform an effi-
cient classical simulation for any class of circuits that is
nearly stabilizer in the sense that they use only logarith-
mically many input magic-state qubits [36–38].

As explained above, non-Clifford resources are neces-
sary for any quantum advantage so they are a precious re-
source in quantum information processing, often dubbed
non-stabilizerness, or, more colloquially, magic [35]. The
resource theory for non-stabilizerness has been developed
in the last few years. Proposed measures of magic of-
ten incorporate the concept of quasi-probability, with
many of these measures relying on the discrete Wigner
formalism as a foundation[39–44]. Prominent examples
include the relative entropy of magic and the mana(for
qudit) [22], the stabilizer rank [36, 37, 45], the robust-
ness of magic [46, 47], the thauma(for qudit) [48], and
the stabilizer extent [49]. Most of these quantifiers of
non-stabilizerness are difficult to compute even numeri-
cally. One computable and remarkable measure of non-
stabilizerness has been introduced recently: the Sta-
bilizer Rényi Entropy (SRE) [50], which can be com-
puted efficiently for matrix product states [51–54], is
amenable to experimental measurement [55, 56] and has
tight connections with quantum verification and bench-
marking [57].

In this letter, we establish a deep connection between
the SRE and the flatness of the entanglement spectrum
associated to a subsystem density operator. At the con-
ceptual level, this connection shows clearly how this re-
source is associated with entanglement structure: non-
stabilizerness is directly tied to entanglement response, a
quantum analogue of ’heat capacity’ for thermodynamic
systems. At the very same time, it opens the door for im-
portant practical applications. We present a simple prac-
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FIG. 1. Summary of the results: (a) A schematic of the method to quantify the non-stabilizerness of a pure state. We start
from a product state and then we apply random Clifford gates (both single and two-qubit gates, see text). After NLayers, the
state is fully entangled. Checking the entanglement spectrum in any bipartition, we can distinguish whether the initial state
possesses non-stabilizerness. (b) In the upper panel, a sketch of the Clifford orbit of a pure state is shown. In the lower panel,
we show the relation between anti-flatness FA and non-stabilizerness, quantified by c(d, dA)Mlin. We initialize the system as a
product state |ψ(0)⟩ = ⊗n

i=1|ψi⟩, where |ψi⟩ = 1√
2

(
|0⟩+ eiθ|1⟩

)
and n = 14, for different values of θ. Then we apply several

random Clifford layers NLayers. In the limit of a very deep circuit, the ratio approaches 1 as predicted by the theorem as
shown in the inset. (c) Algorithm to determine if a state is a stabilizer state or possesses some non-stabilizerness. We show
the pseudocode in the upper part of the panel. In the lower part, we show the probability of catching a non-stabilizerness. We
generate product states |ψ(0)⟩ = ⊗n

i=1|ψi⟩, where |ψi⟩ = 1√
2

(
|0⟩+ eiθ|1⟩

)
for n = 12 qubits, and, we fix the number of Clifford

layers NLayers = 100. After performing NR = 1000 realizations, we compute the probability of success Psuc for different values
of threshold, as a function of the initial value of non-stabilizerness in the initial state calculated using the second SRE.

tical protocol for experimentally probing this quantity
efficiently using randomized measurement techniques.

Our main findings are summarized in Fig. 1. In Fig.
1 (a), we show the set-up that we use to make the con-
nection between nonstabilizerness and entanglement re-
sponse concrete: we prepare initial states as a product
states and evolve them using random Clifford gates, fol-
lowed by the measurement of the entanglement spectrum
flatness. We find that a state possesses non-stabilizerness
if and only if its entanglement spectrum is not flat. In the
second panel (Fig. 1 (b)), we illustrate the Clifford orbit
of a pure state: its non-stabilizerness is proportional to
its average flatness over the orbit. Finally, in the third
panel (Fig. 1 (c)), we present an algorithm for detecting
non-stabilizerness and show the probability of success as
a function of their degree of non-stabilizerness.

Stabilizer Rényi entropy and the flatness of entangle-
ment spectrum.— In this section, we define the SRE and
its connection with the flatness of the entanglement spec-
trum. In particular, we will show that we can quantify

the non-stabilizerness of an arbitrary pure state by taking
the average of the flatness along its Clifford orbit.
Consider the d = 2n−dimensional Hilbert space of n

qubits H ≃ C⊗2n. A subset Λ of the n qubits with
|Λ| = nΛ defines a subsystem that is obviously rep-
resented by the dΛ = 2nΛ−dimensional Hilbert space
HΛ ≃ C⊗2nΛ . Let Pi ∈ {I,X, Y, Z} be the Pauli opera-
tors on the i−th single qubit space C2. Pauli operators
on the full H have the form P = ⊗ni Pi and local Pauli op-
erators can be written also as PX = ⊗i∈ΛPi. Let us call
Pn the group of all n-qubit Pauli operators with phase 1,
and define Ξψ(P ) = d−1 Tr(Pψ) as the squared (normal-
ized) expectation value of P in the pure state ψ ≡ |ψ⟩⟨ψ|
with d = 2n the dimension of the Hilbert space of n
qubits. Moreover, Ξψ is the probability of finding P in
the representation of the state ψ. Now we can define the
SREs as:

Mα (|ψ⟩) = Eα(Ξψ)− log d (1)

where Eα(Ξψ) is the α-Rényi entropy of the probabil-
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FIG. 2. Numerical simulations of shallow circuits: We
prepared the initial state in the volume law phase and we plot
the ratio FA/c(d, dA)Mlin as a function of number of Clifford
layers NLayers of shallow circuit. As shown in the plot, the
ratio approaches 1 very fast verifying Eq. (5).

ity distribution Ξψ. The SRE is a good measure from
the point of view of resource theory: it tells how many
magic states can be distilled, and it is, as such, an im-
portant resource for quantum information algorithms[50].
The SRE has the following properties: (i) faithfulness
Mα (|ψ⟩) = 0 iff |ψ⟩ ∈ STAB, otherwise Mα(|ψ⟩) > 0,
(ii) stability under Clifford operations: ∀Γ ∈ Cn we
have that Mα (Γ|ψ⟩) = Mα (|ψ⟩) and (iii) additivity
Mα (|ψ⟩ ⊗ |ϕ⟩) = Mα (|ψ⟩) +Mα (|ϕ⟩) (the proof can be
found in [50]).

Another useful measure of non-stabilizerness is given
by the stabilizer linear entropy, defined as

Mlin(|ψ⟩) = 1− d∥Ξψ∥22, (2)

which obeys the following properties: (i) faithfulness
Mlin (|ψ⟩) = 0 iff |ψ⟩ ∈ STAB, otherwise Mlin(|ψ⟩) > 0,
(ii) stability under Clifford operations: ∀Γ ∈ Cn we
have that Mlin (Γ|ψ⟩) =Mlin (|ψ⟩) and (iii) upper bound

Mlin < 1 − 2 (d+ 1)
−1

. The relationship between the
second SRE M2 and the linear non-stabilizing entropy
follows easily from the equation below

M2(|ψ⟩) = − log [1−Mlin(|ψ⟩)] . (3)

Let us now discuss the relationship between the SRE
and the flatness of the entanglement spectrum. Consider
a pure state ψ in a bipartite systemH = HA⊗HB and its
reduced density operator ψA = TrBψ. The (anti-)flatness
of its entanglement spectrum is defined as

FA(ψ) := Tr
(
ψ3
A

)
− Tr2

(
ψ2
A

)
(4)

One can easily check that FA(ψ) = 0 if the entanglement
spectrum is flat, i.e. if the spectrum λα = 1/χ for some
integer 1 ≤ χ ≤ min (dA,dB), whereas FA (|ψ⟩) > 0
in other cases. Notice that in order for FA(ψ) ̸= 0
the state must be either not entangled or without any
magic. While every linear combination of different mo-
ments would be a sensible measure of (anti-)flatness,
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FIG. 3. Algorithm sensitivity: Probability of success
PSuc, for a fixed threshold ϵ = 0.005 and for different NLayers.
After collectingNR = 1000 realizations, we compute the prob-
ability of success PSuc, as a function of the initial value of non-
stabilizerness calculated using the second SRE M2 (|ψ0⟩).

the one proposed above is the most natural one as it
is the variance of the corresponding probability distribu-
tion according to itself: if a state σ is given in its spec-
tral resolution σ =

∑
i piσi, then F(σ) = Var({pi}) :=

⟨(pi − ⟨p⟩p)2⟩p.
In this paper, we use the flatness of the entanglement

spectrum to quantify or witness non-stabilizerness of a
pure state.

Theorem: The Stabilizer Linear Entropy Mlin of a
pure state |ψ⟩) is proportional to the anti-flatness of the
entanglement spectrum averaged over the Clifford orbit:

⟨FA(Γ |ψ⟩)⟩Cn = c(d, dA)Mlin(|ψ⟩) , (5)

where ⟨·⟩Cn
denotes the average over the Clifford orbit

Γ |ψ⟩ and the proportionality constant c(d, dA) ∼ (d2 −
d2A)d

−3 for large d, see [58] for the proof.

Notice that the above result holds true for any bipar-
tition of the system, which is reflected in the constant
c(d, dA). We see that a pure stabilizer state possesses a
flat entanglement spectrum over all its Clifford orbit and
anti-flatness is stable under Clifford operations. More-
over, one can utilize a measurement of anti-flatness to
measure Mlin. The theorem above poses also a relation-
ship between entanglement and magic. Indeed, without
entanglement, there is no anti-flatness in the reduced
density operator. Along the Clifford orbit, entangle-
ment is near-maximal and this is reflected in c(d, dA).
It would be interesting to see whether (for an equal
bipartition) anti-flatness assumes the form FA(|ψ⟩) ∼
g(dA)Pur

β(ψA)Mlin(|ψ⟩) or if this relation only holds for
highly entangled states.

Numerical experiments.— As it was shown in [56],
SRE can be experimentally measured via randomized
unitaries [59], providing an important handle on the qual-
ity of a quantum circuit. However, SRE is a very expen-
sive quantity to measure, requiring in general exponential
resources (though better than state tomography). The
result of the theorem opens the way to a very efficient
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way to measure SRE. However, things are not so sim-
ple. In the best case scenario, c(d, dA) = O(d−1), which
means that one needs to resolve an exponentially small
quantity, thereby requiring again exponential resources
- even if with the considerable advantage that opera-
tions on a small subset are needed, thus relaxing one of
the most challenging requirements of previous methods.
This is because ψA is typically very entangled over Cn
and therefore FA is very close to be flat. Another issue
is that, for weakly entangled states, direct exploitation
of the theorem is extremely challenging in practice, as
we shall demonstrate numerically in the following. One
can intuitively understand that as for very weakly en-
tangled states there are very few eigenvalues at all in
the entanglement spectrum. As an extreme example, the
entanglement spectrum of a product state is absolutely
flat, regardless whether the state possesses any degree of
non-stabilizerness. A very long circuit (inevitably, very
sensitive to noise) will thus be required in those cases.

The key insight is that we can get around the require-
ment of a full Clifford orbit by (numerically) analyzing
the intermediate regime. Approaching volume law one
might be able to see a deviation from a flat spectrum
without having to resolve an exponentially small quan-
tity. If this is true, one would have found a witness for
non-stabilizerness that is efficiently computable and mea-
surable. Moreover, as one gets into the volume law for
the entanglement phase, one should be able to evaluate
accurately the actual value of Mlin, even without aver-
aging over all the Clifford orbit. Of course, in this case,
one still needs to resolve a very small quantity.

We consider an initial state that is a product state of
n qubits with linear topology |ψ0⟩ = ⊗ni=1|ψi⟩, where
|ψi⟩ = 1√

2

(
|0⟩+ eiθ|1⟩

)
. This state has initially com-

putable non-stabilizerness (vanishing for θ = 0, π/2).
Note that θ = π/4 corresponds to the canonical T-state.
The state |ψ0⟩ is then evolved under a random Clifford

circuit of depth NLayers denoted by UCl =
∏NLayers

k Uk,
where Uk contains n−1 Clifford gates (Hadamard, phase
eiπ/2 gate and CNOT)[18] between nearest neighbors.

We are interested in how the entanglement spectrum,
that is, the eigenvalues of the reduced density matrix
ρA = TrB |ψ⟩⟨ψ| (for dA = dB = 2n/2 and n = 14 qubits)
evolves under random Clifford circuit evolution. In Fig. 1
(b), we present the average of the anti-flatness ⟨FA⟩ as
a function of the circuit depth NLayers. The average is
obtained from NR = 1000 different realizations and it is
calculated for various values of θ. For a small number of
Clifford layers, the anti-flatness increases and exhibits a
sharp dependence on θ. When the circuit is very deep,
the system explores a very large portion of its Clifford
orbit, and the ratio between average anti-flatness ⟨FA⟩
and c(2n, 2n/2)Mlin approaches 1 (the solid red line in
the inset of Figure 1), as predicted by the Theorem.

In Fig. 2, we show that one can accurately estimate

Mlin even by shallow Clifford circuits provided one starts
with volume law entanglement. We again consider a
n = 14 qubit system in a volume law phase by sub-
jecting the initial state |ψ0⟩ to NLayers = 1500 Clifford
layers, for various values of θ. We then plot the ratio
⟨FA⟩/c(2n, 2n/2)Mlin as a function of the number of Clif-
ford NLayers. The theoretical line predicted by the theo-
rem is shown as a solid red line. Notably, we observe that
even for circuits as short as NLayers = 7 Clifford layers,
the average anti-flatness reaches the value predicted by
the theorem [60].

Probing non-stabilizerness through flatness. — As we
discussed above, one could probe non-stabilizerness by
probing flatness, which is amenable to be measured in
experiments [61–63]. However, a näıve application of the
theorem would result in a very costly procedure. We
present an algorithm that can efficiently witness magic
by exploring the Clifford orbit in the intermediate region
between weak and volume-law entanglement [60]. Since
measuring non-stabilizerness can be resource-intensive,
the concept of witness provides a scalable approach to as-
sess the accurate implementation of stabilizer operations
or evaluate the fit of quantum hardware for preparing
magic states.

The procedure works as follows: (1) Start with |ψ0⟩,
a pure state. (2) Draw a random Clifford gate Γ and
apply it to the initial state: |ψΓ⟩ ≡ Γ|ψ0⟩. (3) Measure
the entanglement spectrum anti-flatness FA(ψΓ)

1. If the
original state |ψ0⟩ is a stabilizer state, the output of the
circuit is still a stabilizer state with zero anti-flatness. On
the contrary, if |ψ0⟩ has a non-vanishing amount of non-
stabilizerness, we expect that even a modest exploration
of the Clifford orbit will result into a non-flat entangle-
ment spectrum. Therefore, if after a number of Clifford
unitaries we measure FA > 0 we can establish that the
initial state possesses non-stabilizerness. The resulting
algorithm is summarized in Fig. 1 (c). In this algorithm,
we set both the number of iterations (which determines
the number of Clifford layers) and the threshold for mea-
suring flatness.

Notably, our proposed protocol does not demand an
exhaustive exploration of the Clifford group, which is
exponentially large. Instead, our findings in the pre-
vious section demonstrate that a shallow quantum cir-
cuit generated by fixing the number of Clifford layers to
a reasonably small value is sufficient for detecting non-
stabilizerness with a high probability. This is illustrated
in Fig. 1 (c): we show the probability of success PSuc (for
n = 12 qubits) as a function of the initial value of non-
stabilizerness calculated using the second SRE defined
in Eq.(1). In order to address the role of errors in the

1 For small partitions, this can be done either via state tomogra-
phy, or utilizing the random unitary toolbox [59]
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FIG. 4. Flatness in noisy circuit: (a) We show the av-
erage of the anti-flatness, over NR = 1000 realizations, as
a function of NLayers. We start from an initial STAB state
|ψ0⟩ = 1√

2
(|0⟩+ |1⟩). We inject magic using a modified

CNOT gate and the average of the anti-flatness FA increases
after few layers of our circuit. (b) We show the average of
flatness, over NR = 1000 realizations, as a function NLayers.
We initialize the system in the ground state of Toric code,
that is a STAB state, on a 4 × 2 unit cell (16 spins). We
show that the anti-flatness increases almost linearly with the
number of Clifford layers NLayers. Error bars correspond to a
95% confidence interval.

measurement of FA, we introduce a threshold value ϵ for
our test. The success probability is defined as the num-
ber of times in which the algorithm gives True as output,
thus detecting the non-stabilizerness of the initial state
normalized to the total number of iterations.

Fig. 1 panel (c) displays a knee point effect of the
probability of success PSuc as a function of the non-
stabilizerness calculated using the second SRE M2, de-
pending on the threshold value ϵ. While, as argued ear-
lier, away from volume law, the general behavior of this
algorithm requires a numerical analysis, the knee-point
can be explained analytically in a rigorous way:

Proposition: Define Smax(ψ) := maxσ | ⟨σ|ψ⟩ |2 the
stabilizer fidelity with σ a stabilizer state. Then, if
Smax(ψ) > 1 − ϵ2/7, i.e. if the state is too close to a
stabilizer state, the success probability is zero, that is,
PSuc(ϵ) = 0.

The above proposition provides insight into the sensi-
tivity of the algorithm shown in Fig. 1 with respect to
the stabilizer fidelity Smax, which is closely linked to the
stabilizer entropy Mlin. See [58] for the proof.

In Fig. 3, we present the probability of success PSuc

(for n = 12 qubits) for a different maximum number of
Clifford layers NLayers. We fix the threshold ϵ = 0.005
and we compute the probability as a function of non-
stabilizerness calculated by M2 (|ψ0⟩) of the initial state.
The plot shows that increasing the number of algorithmic
iterations NLayers push the probability of success to 1 for
any fixed values of non-stabilizerness.

Noisy Clifford circuit.— So far we assumed that Clif-
ford unitaries are ideal. In reality, they have a residual
noise due to the fact that Clifford circuits are fine-tuned.
In this situation, it is more natural to perform error mit-
igation at the level of channels rather than states. Con-

sider a simple error model where each two-qubit Clifford
U(k) is independently affected by unitary noise. In par-
ticular, every two-qubit gate is transformed as follows:

Ũ(k) = e−i
∑

α ϵαP
α

U(k)ei
∑

α ϵαP
α

(6)

where ϵα is a random number chosen from a Gaussian
distribution with average zero and standard deviation σ
that represents here the strength of the noise (see [58] for
more details). The choice of coherent noise is due to the
fact that SRE is a proper measure of distillable magic
only for pure states. For mixed states, it still has an
important operational meaning in quantifying resources
beyond Clifford [50]: for example, it is the key resource
for establishing the cost of direct fidelity estimation [57],
cleansing algorithms and efficient purity estimation [64].
The study of the effect of incoherent noise is to be carried
out in future work.
Introducing noise to Clifford gates represents a magic-

state injection that can be accurately captured by mea-
suring the anti-flatness FA. In Fig. 4 (a) we present
the evolution of the average of the anti-flatness FA for
a noisy Clifford circuit with n = 14 qubits. We initial-
ize our system in a stabilizer state |ψ⟩ = 1√

2
(|0⟩+ |1⟩)

and then we measure the anti-flatness after every Clif-
ford layer. Moreover, we also investigate the effect of
noise starting from the ground state of the toric code -
a stabilizer code formulated on a square lattice [65–68].
The basic construction of the toric code is a square lat-
tice with a spin-1/2 degree of freedom on every bond,
the physical qubits. The model is given in terms of a
Hamiltonian Ĥ = −∑

ν Aν −
∑
pBp, where p runs over

all plaquettes and ν over all vertices (sites). The ground
state of the toric code is a stabilizer state of the sets {Aν}
and {Bp}. After applying a Clifford circuit with a trans-
formed CNOT gate, we measure the anti-flatness FA af-
ter every layer. In Fig. 4 (b) we show the evolution of
FA for different strengths of noisy σ. It increases almost
linearly with the number of Clifford layers. These results
quantify how, upon close inspection of the microscopic
imperfections, it is possible to define an error threshold
that is able to discriminate between magic injected by
errors along the Clifford orbit, and intrinsic magic of the
original state.

Conclusions.— We have demonstrated how non-
stabilizerness of quantum states, while completely un-
related to entanglement per se, is deeply and exactly
related to entanglement response, via the entanglement
spectrum flatness of arbitrary partitions. Leveraging on
this connection, we have formulated a simple protocol
to efficiently witness and quantify non-stabilizerness in
quantum systems, that is applicable to both atom and
solid state settings where local operations and probing
are available. The protocol is particularly efficient for
states with volume law entanglement, and can cope with
the inevitable presence of noise, as we demonstrate uti-
lizing both random states and toric code dynamics. Our
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results pave the way for witnessing non-stabilizerness in
large scale experiments - a pivotal step to demonstrate
computational advantage -, and motivate further study
of non-stabilizerness in quantum many-body systems, in
particular, in connection to critical behavior, where en-
tanglement response is expected to be particularly rele-
vant.
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Proof of Theorem

Let us recall the measure of entanglement spectrum
flatness for a pure state |ψ⟩ in the bipartition A ∪ B
defined in the main text

FA(|ψ⟩) = Tr(ρ3A)− Tr2(ρ2A) (S1)

where ρA = TrB |ψ⟩⟨ψ|. In this section, we compute the
average over the Clifford orbit Γ |ψ⟩ where Γ ∈ Cn, i.e.
⟨FA(Γ |ψ⟩)⟩Cn

. Note that we can write

⟨FA(Γ |ψ⟩)⟩Cn
= ⟨Tr(ρ3Γ,A)⟩Cn

− ⟨Tr2(ρ2Γ,A)⟩Cn
(S2)

where ρΓ,A = TrB(Γ |ψ⟩⟨ψ|Γ†). We can now use the
swap trick, i.e. Tr(O3) = Tr(T(123)O

⊗3) and Tr2(O2) =
Tr(T(12)(34)O

⊗4) to linearize the above averages over mul-
tiple copies of |ψ⟩

⟨FA(Γ |ψ⟩)⟩Cn
= Tr(TA(123) ⟨(Γ |ψ⟩⟨ψ|Γ†)⊗3⟩Cn

) (S3)

− Tr(TA(12)(34) ⟨(Γ |ψ⟩⟨ψ|Γ†)⊗4⟩Cn
)

where TA(123) and TA(12)(34) are permutations acting non-
identically on the subsystem A only. For the first average
in the r.h.s. of Eq. (S3), we use the fact that the Clifford
group is a 3-design [S1, S2] and thus

⟨(Γ |ψ⟩⟨ψ|Γ†)⊗3⟩Cn
=

Π
(3)
sym

Tr(Π
(3)
sym)

(S4)

where Π
(3)
sym =

∑
π3∈S3

Tπ3/3! is the symmetric projec-
tor, S3 is the symmetric group acting on 3 copies of the
Hilbert space of n qubits and Tπ3

are unitary representa-
tions of permutations π3 ∈ S3. Therefore, the first term
in Eq. (S3) can be computed as

1

TrΠ
(3)
sym

Tr(TA(123)Π
(3)
sym) =

∑
π∈S3

TrΠ
(3)
sym

TrA(T
A
(123)T

A
π ) TrB(T

B
π )

(S5)
where we used the fact that any permutation operator Tπ
for π ∈ S3 obey Tπ = TAπ ⊗ TBπ . For the second average
of the r.h.s. of Eq. (S3), we use the technical results
presented in [S3, S4] that shows

⟨(Γ |ψ⟩⟨ψ|Γ†)⊗4⟩Cn
= αQΠ(4)

sym + βΠ(4)
sym (S6)

where Q = d−2
∑
P∈Pn

P⊗4 and Π
(4)
sym is the symmetric

projector on S4, defined as Π
(4)
sym ≡ ∑

π4∈S4
Tπ4

/4!. Then
we defined

α :=
||Ξψ||22

(d+ 1)(d+ 2)/6
− β

β :=
1− ||Ξψ||22

(d2 − 1)(d+ 2)(d+ 4)/24
(S7)

Therefore, the second term in Eq. (S3) can be computed
as

⟨Tr2(ρ2Γ,A)⟩Cn
= Tr[TA(12)(34)(αQ+ βI)Π(4)

sym]

=
∑

π∈S4

[αTrA(T
A
π T

A
(12)(34)Q

A) TrB(T
B
π Q

B)

+ β TrA(T
A
π T

A
(12)(34)) TrB(T

B
π )] (S8)

where we used the fact that Q = QA ⊗ QB and QX =
d−2
X

∑
P∈PX

P⊗4
X for X = A,B. Notice that Tr(QTπ) are

computed in [S3] and tabulated in [S5]. After a straight-
forward algebra, recalling that Mlin(|ψ⟩) = 1 − d||Ξψ||22,
one finds:

⟨FA(TrB(Γ |ψ⟩ ⟨ψ|Γ†))⟩Cn
=

(d2 − d2A)(d
2
A − 1)

(d2 − 1)(d+ 2)d2A
Mlin(|ψ⟩)

≡ c(d, dA)Mlin(|ψ⟩) (S9)

which concludes the proof.

Proof of Proposition

Let us recall the definition of stabilizer fidelity

Smax(ψ) = max
σ∈STAB

| ⟨σ|ψ⟩ |2 (S10)

and let us first prove the following lemma.
Lemma: Given a pure state |ψ⟩ and a bipartition A|B,

then we have that the flatness FA is upper bounded by

FA(ψ) ≤ 7
√

1− Smax(ψ) (S11)

Proof.— Notice that for every stabilizer state σ we have
FA(σ) = 0. Then, we have the following chain of inequal-



2

ities

FA(ψ) = FA(ψ)−FA(σ)
= Tr[T

(A)
123 (ψ

⊗3 − σ⊗3)]− Tr[T
(A)
(12)(34)(ψ

⊗4 − σ⊗4)]

≤ |Tr[T (A)
123 (ψ

⊗3 − σ⊗3)]|+ |Tr[T (A)
(12)(34)(ψ

⊗4 − σ⊗4)]|
≤ ∥TA(123)∥∞∥ψ⊗3 − σ⊗3∥1 + ∥TA(12)(34)∥∞∥ψ⊗4 − σ⊗4∥1
= 7∥ψ − σ∥1 = 7

√
1− | ⟨σ|ψ⟩ |2 (S12)

in the second line, we used the definition of Flatness used
in the paper. In the third line, we used triangle inequal-
ity. In the fourth line we used the bound of Schatten p-
norms, namely |Tr(AB)| ≤ ∥A∥p∥A∥q for p−1 + q−1 = 1
and chosen p = ∞ and q = 1. In the last line, we made
use of the following inequality multiple times

∥ψ⊗4 − σ⊗4∥ = ∥ψ⊗4 − ψ ⊗ σ⊗3 + ψ ⊗ σ⊗3 − σ⊗4∥
≤ ∥ψ∥∥ψ⊗3 − σ⊗3∥+ ∥ψ − σ∥∥σ⊗3∥
= ∥ψ⊗3 − σ⊗3∥+ ∥ψ − σ∥
≤ 4∥ψ − σ∥ (S13)

Then choosing in Eq. (S13) minσ∈STAB, one obtain
Eq. (S11).

The proposition in the main text is now a corollary of
the above lemma. Indeed given the threshold ϵ for the
algorithm in Fig. 1 panel (c), then if Smax > 1 − ϵ2/7
then FA(ψ) < ϵ and thus PSuc(ϵ) = 0.

Stabilizer fidelity and stabilizer entropy

Let us now discuss the implications of the above result
and the relationship between the stabilizer fidelity and
the stabilizer entropy. The stabilizer fidelity and the sta-
bilizer entropy are interconnected through the inequal-
ity [S6]Mlin ≤ 1−S4

max(ψ), which presents an intriguing
relationship. However, for the purpose of the failure of
the algorithm and the proposition presented in the main
text earlier, this relationship does not provide significant
assistance. We can just infer that if Smax > 1 − ϵ2/7,
then Mlin ≲ 4

7ϵ
2.

Strong numerical evidence [S6] suggested that forMlin,
the following inequality holds:

1− Samax ≤Mlin, (S14)

for a ≃ 1.7. This finding provides a useful lower bound
for the linear stabilizer entropy. Therefore, these results
suggest a direct connection between the failures of the
protocol and the linear stabilizer entropy, as numerically
shown in the plot of Fig. 1 panel (c). Assuming (S14),

then we would have FA(ψ) ≤ 7
√

1− (1−Mlin)1/a, thus

providing a direct relationship between the failure of the
witness algorithm and the linear stabilizer entropy.

Clifford circuit

Let us start by describing the architecture of a ran-
dom Clifford circuit, both with and without noise. We
consider a system of n qubits with a Hilbert space
H =

⊗n
j=1 C2. The group Pn comprises all n-qubit Pauli

strings with phases ±1 and ±i. The Clifford group C(d)
consists of unitary operators that transform Pauli strings
into Pauli strings. In other words, for any Γ ∈ C(d), we
have ΓPΓ† ∈ Pn for all P ∈ Pn. The Clifford group can
be generated by three gates: the Hadamard gate, the
phase gate eiπ/2 (S gate), and the CNOT gate. Since the
phase and Hadamard gates can construct all Pauli ma-
trices, each Pauli gate is also an element of the Clifford
group.
In the case of a random Clifford circuit without noise,

the state |ψ0⟩ evolves under a random Clifford circuit of

depth NLayers denoted as UCl =
∏NLayers

k Uk. Here, Uk
contains n − 1 Clifford gates (Hadamard, S gate, and
CNOT) between nearest neighbors.
Additionally, the Clifford unitaries exhibit residual

noise due to the fine-tuning involved in constructing these
circuits. To account for this, we consider a simple error
model where each two-qubit Clifford gate Uk is affected
by unitary noise, as described in Eq. (6). Specifically,
only the CNOT gate is affected by the error. Utilizing
Eq. (6), the modified CNOT gate C̃NOT can be expressed
as:

C̃NOT = e−i
∑

α ϵαP
α

(
1 0
0 X

)
ei

∑
α ϵαP

α

(S15)

=

(
1 0
0 e−i

∑
α ϵαP

α

Xei
∑

α ϵαP
α

)
.

In the presence of noise, the state |ψ0⟩ undergoes evolu-
tion under a random circuit of depth NLayers, denoted as

Ũ =
∏NLayers

k Ũk. Here, Ũk comprises n−1 Clifford gates
randomly chosen from the set of the Hadamard gate, S
gate, and C̃NOT.
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