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Abstract

The study of large Condorcet domains (CD) has been a significant area of interest in voting
theory. In this paper, our goal is to search for large CDs that are hitherto unknown. With a
straightforward combinatorial definition, searching for large CDs is naturally suited for algorithmic
optimisations. For each value of n > 2, one can ask for the size of the largest CD, thus finding
the largest CDs provides an important benchmark for heuristic-based combinatorial optimisation
algorithms. Despite extensive research over the past three decades, the CD sizes identified in
1996 remain the best known for many values of n. When n > 8, conducting an exhaustive
search becomes computationally unfeasible, thereby prompting the use of heuristic methods. To
address this, we developed a novel heuristic search algorithm in which a specially designed heuristic
function, backed by a lookup database, directs the search towards promising branches in the search
tree. Our algorithm found new large CDs of size 1082 (surpassing the previous record of 1069) for
n=10, and 2349 (improving the previous 2324) for n=11. Notably, these newly discovered CDs
exhibit characteristics distinct from those of known CDs.

1 Introduction

In social choice theory, the study of preference aggregation and decision-making often grapples with
majority rule. For each value of n (representing the number of candidates or alternatives), a Condorcet
Domain (CD) is a collection of linear orders (permutations). Crucially, for a CD, every triple of
candidates satisfies a specific never condition. This condition, often represented symbolically as xNy,
stipulates certain forbidden rankings of candidates. This ensures that cyclical majorities, a situation
where no candidate can emerge as a consistent winner in pairwise comparisons, are avoided.

The investigation of CDs, sets of linear orders with an acyclic pairwise majority relation, has been a
subject of interest for mathematicians, economists, and mathematical social scientists since the 1950s
(Danilov and Koshevoy, 2013; Fishburn, 2002). CDs also have applications in the Arrovian aggregation
and social choice theory (Bruner and Lackner, 2014). In social choice theory, a Condorcet winner wins
the majority of votes against each of the other candidates in a pairwise comparison (Monjardet, 2005).
However, no such candidate exists, and this is where the CDs come into play.

In the 1970s and 1980s, researchers initiated studies into the potential magnitude of CDs (Fish-
burn, 1997). This exploration led to a significant breakthrough in 1996 when Fishburn discovered
many of the largest CDs, a record that has remained unchallenged for nearly three decades. Since
then, researchers have continued the quest to find large CDs (Danilov et al., 2012; Fishburn, 1997;
Galambos and Reiner, 2008; Karpov and Slinko, 2022a; Monjardet, 2009; Leedham-Green et al., 2024),
related to the goal of optimising personal preference freedom while adhering to the requirement of a
transitive majority relationship (Raynaud, 1982; Puppe and Slinko, 2024). In operations search, it is a
complex, unsolved combinatorial optimisation problem. Studying CDs has important implications for
voting systems and democratic decision-making processes. By identifying large CDs, researchers can
gain insights into the properties of voting systems that are more likely to produce outcomes that reflect
the electorate’s preferences, the strengths and weaknesses of different voting systems, and democratic
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decision-making processes (Lackner and Lackner, 2017). Thus, a key effort in the literature is iden-
tifying large Condorcet domains with a paramount objective to uncover the largest CDs (Puppe and
Slinko, 2024; Karpov, 2022; Leedham-Green et al., 2024). To this end, Fishburn (1996b) introduced
the size function to record the largest CDs on n alternatives

f(n) = max{|D| : D is a Condorcet domain on a set of n alternatives}.

Additionally, Karpov and Slinko (2023) introduced the following functions:

h(n) = max{|D| : D is a peak-pit Condorcet domain on a set of n alternatives}.

One important class of large CDs is based on Fishburn’s alternating scheme, which involves alter-
nating between two never rules 2N1 and 2N3 on 3-alternative subsets of candidates (commonly referred
as triples) and has been used to construct many of the largest known CDs. The domains built by the
alternating schemes are referred to as Fishburn domains (Leedham-Green et al., 2024) (see Sect. 2
for details). Subsequent research by Galambos and Reiner (2008); Danilov et al. (2012); Monjardet
(2009) and Karpov and Slinko (2022b) extended and refined this work. Despite extensive work, these
Fishburn domains and their design play a central role in constructing large CDs. For instance, the
approach introduced in Karpov and Slinko (2022a) was built upon the Fishburn domains to construct
new CDs of record-breaking CDs for n ≥ 13, but it does not apply for n < 13. Karpov et al. (2023)
introduced the set-alternating schemes that could construct CDs whose size is larger than the Fishburn
domains on n ≥ 16. Their new large CDs also improved the asymptotic lower bound for the size of
the largest Condorcet domains (Karpov and Slinko, 2023; Karpov et al., 2023).

Another line of studies focuses on developing efficient search algorithms to generate CDs. Akello-
Egwell et al. (2023) developed a custom search algorithm that generated all the maximal non-isomorphic
CD on seven alternatives and found the largest CD on eight alternatives (Leedham-Green et al., 2024)
but it does not scale to a larger number of alternatives. Markström et al. (2024) designed a depth-first
search algorithm to generate non-isomorphic maximal Arrow’s single-peaks domains on 9 alternatives.
On a higher number of alternatives, completing their search requires a prohibitively demanding amount
of computation. In contrast with these existing search algorithms, our algorithm is universal in the
sense that it is applicable to any number of alternatives, and it does not aim to compute a complete
set of CDs but focuses on the large ones.

Given the fact that Fishburn domains are not the largest domain on eight alternative (Leedham-
Green et al., 2024) and n ≥ 13 alternatives (Karpov and Slinko, 2023), it is a valid conjecture that
for 9 < n < 13 they are also not the largest. However, existing search algorithms failed to find such
CDs. One of our contributions is on the discovery of many CDs larger than the Fishburn domain on
n = 10 and 11 alternatives. It is worth noting that on n ≥ 9 alternatives, finding the largest Condorcet
domain remains an open problem.

In this paper, we present a heuristic search algorithm for generating and discovering large CDs on
n ≥ 6 alternatives. We first pinpoint the challenges associated with finding large CDs and demonstrate
that these challenges pose significant obstacles for common learning algorithms applicable to tackle
complex combinatorial optimization problems to find large CDs, especially when dealing with a sub-
stantial number of alternatives. This motivated us to develop a heuristic search algorithm tailored to
overcome these challenges. Our search algorithm employs an efficient heuristic function that evaluates
the goodness of partial CDs based on the size of restriction on 5 alternatives. This idea is grounded
on our empirical finding that many locally large restricted CDs also tend to be large, indicating the
existence of a linear relationship between the size of a CD and the size of its restriction. Our heuristic
function exploits this property and uses a database that contains a complete set of pre-calculated CD
restriction information on five alternatives. This idea resonates with the core concept in dynamic
programming (Bellman, 1966) where a problem is broken into smaller, overlapping subproblems, and
instead of solving each subproblem independently, solutions to these subproblems are pre-computed
and then stored, so they can be reused when the same subproblem arises.

We further report on new record-breaking CDs on n = 10 alternatives (size of 1082) and n = 11
alternatives (size of 2349). This discovery has further improved the largest CD since 1996 and opens
new directions for research in the theory of CDs, with implications for the theoretical study of voting
systems.

The largest domains our search algorithm found on the number of alternatives ranging from 6 to 11
are presented in Table 1. It is worth noting that along with the new improved lower bound CDs on 10
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and 11 alternatives, it also discovered some CDs whose size is larger than those of Fishburn domains
for n = 10 and n = 11 that were the largest known CDs on these number of alternatives.

Table 1 The largest domains discovered by our search al-
gorithm. Our work found new improved lower bound CDs of
size 1082 and 2349 on 10 and 11 alternatives, respectively and
rediscovered the largest CD of size 224 on eight alternatives.

n Fishburn domain f(n) h(n)

6 45 45 45
7 100 100 100
8 222 224 224
9 488 488 488
10 1069 1082 1082
11 2324 2349 2349

This paper is organised as follows. In Sect. 2 we provide the preliminary and background knowl-
edge about Condorcet domains from the operations research perspectives, along with defining and
explaining the notions and terminologies used throughout this paper. Sect. 3 illustrates the challenges
facing a wide range of existing learning algorithms in finding large CDs and analyses their strengths
and weaknesses in addressing this problem. Sect. 4 introduces a heuristic function and shows its ef-
fectiveness in establishing a linear relationship between a CD and restrictions, and further elaborates
on integrating it into the heuristic search algorithm. In Sect. 5, we demonstrate the importance of the
ordering of triples by which they are assigned and propose a new triple order that contributes partially
to the success of the search algorithm. Its detailed configurations, along with an approach that enables
it to run on thousands of CPU cores in parallel, are also discussed here. Sect. 6 contains a detailed
analysis of the restrictions of the new large CDs we discovered on 10 and 11 alternatives, where we
found Ramsey’s Theorem (Ramsey, 1930) applies. We conclude our work in Sect. 7.

2 Preliminaries and background

Let Xn = [n] = {1, . . . , n} be a finite set of numbers, in which each element in the set is referred to as
an alternative or candidate in voting theory. A linear order is a set of alternatives with an ordering,
where the comparability and transitivity hold. Here the comparability property ensures that any pair
of alternatives can be compared, and the transitivity property ensures that the ordering of alternatives
is consistent. Let L(Xn) denote the set of all linear orders over Xn. In voting theory, voters have to
make a collective choice of which alternative to choose. Each voter can be referred to as an agent.
Given N agents, each agent i ∈ N has a preference order Pi in Xn (each preference order is a linear
order and can also be viewed as a permutation). For brevity, we represent a preference order as a
string, e.g. 12 . . . n means 1 is the most favoured alternative, and n is the least. Note that in this
paper, we use preference order, linear order and permutation interchangeably.

A subset of preference orders D ⊆ L(X) is called a domain of preference orders or permutations.
A domain D is a Condorcet domain if whenever the preferences of all agents belong to the domain, the
majority relation of the preference profile with an odd number of agents is transitive. Thus a Condorcet
domain is essentially a set of permutations where there is always a clear majority preference for any
pair of alternatives.

Sen (1966) proved that for each Condorcet domain, restriction of it to each triple of alternatives
satisfies a never condition iNj, i, j ∈ [3]. A never condition is also called a never rule or simply a rule.
A triple consists of 3 alternatives (x, y, z) where x < y < z and x, y, z ∈ [n]. iNj dictates that ith

alternative from the triple does not fill in jth place within this triple in each order from the domain.
i takes on the value 1, 2, or 3, representing the smallest, middle, or largest alternatives in the triple,
respectively. Similarly, the j can be the value 1, 2, or 3, corresponding to the first, second, or last
position in the triple. For instance, triple (3, 4, 5) on five alternatives with rule 1N3 dictates that the
smallest alternative, 3, cannot present at the last position, forbidding the permutation [4, 2, 5, 1, 3]
from presenting in the resulting CD. There are, in total, nine never rules (1N3, 3N1, 2N1, 2N3, 1N2,
3N2, 1N1, 2N2, 3N3).
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A CD’s size is defined by the number of permutations contained within it. For any n ∈ Z≥3

alternatives, a CD is associated with a set of m =
(
n

3

)
triples, all of which must be assigned with one

of the nine rules. A domain is not a CD if there are unassigned triples from which it is created, and we
instead call it a partial CD. To avoid repetition, we use the acronym TRS to refer to a list of triples
and their assigned rule. A TRS produces a CD if all its triples are assigned with a rule. Otherwise, it
is a partial CD.

A domain which satisfies a never condition of the form xN3 for every triple is called Arrow’s single-
peaked domain (Arrow, 1963). A domain D is a peak-pit domain if, for each triple of alternatives, the
restriction of the domain to this triple is either single-peaked (satisfying never rules iN3 ) or single-
dipped (satisfying never rules iN1). A Condorcet domain D is unitary if it contains order 123 . . . n.
Since the focus of most of the studies is on unitary CDs, it is sufficient to consider the six rules 1N3,
3N1, 2N1, 2N3, 1N2, and 3N2.

Furthermore, using the complete set of maximal unitary CDs on four to seven alternatives from
Akello-Egwell et al. (2023), we calculated the size of the largest CDs where one of their triples uses
one of these six rules and the results are displayed in Table 2. It shows that applying the rule 1N2 or
3N2 typically leads to poor results in the sense that none of the triples in the largest CDs satisfy either
of these two rules. Besides, the largest CDs on 8 alternatives whose size is 224 also do not use any of
these two rules. Thus, we narrow the available rules in our search down to four, which are 1N3, 3N1,
2N1, and 2N3 in our construction. Unless specified, the CDs we will discuss in the following sections
are constructed by these four rules. These CDs are by definition peak-pit domains.

Table 2 The size of the largest CDs with at least one of its triples
satisfying each specified rule, on the number of alternatives ranging
from 4 to 7.

Rules

n 1N3 3N1 2N3 2N1 1N2 3N2

4 9 9 8 8 8 8
5 20 20 20 20 19 19
6 45 45 45 45 42 42
7 100 100 100 100 97 97

Two CDs are isomorphic if the alternatives can be re-enumerated in a way that they consist of
the same set of permutations (Leedham-Green et al., 2024). Given two linear orders P1 and P2,
a transformation π is the application of a mapping that converts P1 to P2, denoted as P2 = π(P1).
Given a permutation P ∈ D, a transformation πP converts it to its identity form, i.e. 123...n and we use
πP (D) to denote a domain obtained from converting all the permutations in D by the transformation
πP .

Any non-empty CD D is isomorphic to a unitary CD because we can always select a permutation
P ∈ D and then enumerate the alternatives according to the transformation πP such that the permu-
tation P becomes the identity permutation. Thus, we do not lose any generality by assuming all the
CDs we discussed in this paper are unitary.

To further illustrate the concept of isomorphism on CDs, here we provide an example. Table 3
presents 6 CDs on three alternatives. Three alternatives can only construct one triple, and thus,
each rule assigned to it corresponds to a CD. Three pairs of them are isomorphic. For instance,
D1 = {123, 132, 213, 312} and D2 = {123, 213, 231, 321} are isomorphic because if we define π132

that maps 132 to the identify permutation 123 (i.e π132(1) = 1, π132(2) = 3, π132(3) = 2), then
π132(D1) = D2, thus D1 and D2 are isomorphic.
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Table 3 The Condorcet domains for three alternatives. Each rule assigned to
the triple (1, 2, 3) is associated with a CD. The resulting CDs fall into three
isomorphic classes.

Triple Rule assigned Condorcet domains

(1, 2, 3)

1N3 123 132 213 312

123 213 231 321

}

isomorphic
2N3

3N1 123 132 213 231

123 132 312 321

}

isomorphic
2N1

1N2 123 132 231 321

123 213 312 321

}

isomorphic
3N2

The restriction of a domain D to a subset A ⊂ X is a domain with the set of linear orders from
L(A) obtained by restricting each linear order from D to A (Karpov et al., 2024). Given k ∈ [3, n− 1]
alternatives, a CD on n alternatives can have restrictions on k alternatives by removing the alternatives
in every linear order (permutation) within the CD that are not these k alternatives and retaining only
one of the duplicated resulting liner orders. The resulting restrictions contain the linear orders that
only contain these k alternatives.

Analogously, given k ∈ [3, n − 1] alternatives, a TRS for n alternatives can also be restricted to
k ∈ [3, n− 1] subset triples by retaining the triples that are included in these k alternatives, which is
equivalent to removing the triples that include least one of (n − k) alternatives that are not in these
k alternatives. The rules are transferred from the original triples to the subset triples. A set of triples
for n alternative, when restricted to k alternatives subset, produces

(
n
k

)
sets of subset triples, each of

which corresponds to one combination of k alternatives from n alternatives. For example, a set of 11
alternatives produces 10 sets of subset triples when restricted to 10 alternative subsets and 55 sets of
subsets when restricted to 9 alternative subsets.

Before our results, the largest CDs for 10 and 11 alternatives were Fishburn domains. A domain
D is called Fishburn domain if it satisfies the alternating scheme (Fishburn, 1996a): there exists a
linear ordering of alternatives a1, . . . , an such that for all i, j, k with 1 ≤ i < j < k ≤ n the restriction
of the domain to the set {ai, aj , ak} is single-peaked if j if is even (odd), and it is single-dipped
if j is odd (even). The alternating scheme explicitly uses the parity function. When applying the
alternating scheme to the list of triples (xi, yi, zi), it dictates that if the middle alternative yi in a
triple is even, it is assigned with rule 2N1, otherwise 2N3. Despite its simplicity, it turned out that
the list of generated rules built large CDs that had held the records for almost three decades until
recent studies discovered some new large CDs on eight alternatives (Leedham-Green et al., 2024) and
n ≥ 13 alternatives (Karpov and Slinko, 2022a).

CDs on five alternatives are constructed on 10 triples, as demonstrated in Table 4, where their rules
are assigned by applying the alternating scheme. The resulting Fishburn domain on five alternatives
has size 20. The permutations inside the CD are presented in Table 5. It is the largest CD on five
alternatives.

Table 4 The list of triples for five alternatives and their
rules are assigned according to the alternating scheme.

Triples Rules

(1, 2, 3) 2N3
(1, 2, 4) 2N3
(1, 2, 5) 2N3
(1, 3, 4) 2N1
(1, 3, 5) 2N1

Triples Rules

(1, 4, 5) 2N3
(2, 3, 4) 2N1
(2, 3, 5) 2N1
(2, 4, 5) 2N3
(3, 4, 5) 2N3

The Fishburn domain on five alternatives has five restrictions on four alternatives, whose sizes are
9, 9, 8, 9, 9 as demonstrated in Table 6 where each restriction has one alternative removed from the
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Table 5 The Fishburn domain on five alternatives.
It consists of 20 permutations built from the triples
and rules in Table 4.

Fishburn domain on five alternatives

12453 12435 12345 54321
45321 54231 45231 42531
24531 54213 45213 42513
42153 42135 24513 24153
24135 21453 21435 21345

original CD. For example, the restriction on four alternatives produced by removing alternative one
from these 20 permutations in this Fishburn domain contains nine permutations.

Table 6 The 4 alternative restrictions from the Fishburn domain on 5 alternatives.

Removed alternative Restrictions

1
4253 4523 5432 2345 5423
2453 4532 4235 2435

2
4531 5413 4513 5431 4135
1453 4153 1345 1435

3
4521 4215 2145 2415 1245
4251 5421 2451

4
1235 2513 2153 2135 2531
1253 5213 5231 5321

5
2143 2134 1234 2431 4213
4231 2413 1243 4321

There is a positive correlation between the size of a CD and the size of its restrictions (Karpov
et al., 2024), and to illustrate we use the lattice structure to show the size of a Fishburn domain on five
alternatives and the sizes of their restrictions when restricted to 4 alternatives in Fig. 1. The number
sitting aside the arrows is an alternative and indicates that the restriction is built by eliminating that
alternative from permutations in the original CD. The largest CD on four alternatives is of size 9.
Four restrictions are of the maximum size for four alternatives, and only one CD is of size 8. To make
a comparison, we also show in Fig. 2 a CD on five alternatives of size 17 and its restriction sizes on 4
alternatives. Two of the restrictions are of size 7. It is evident that, in this case, a larger CD leads
to a set of larger restrictions. We further discovered that this holds true for many CDs in general.
Based on this finding, we constructed a heuristic function that captures this correlation. We show in
Sect. 4 that this heuristic function establishes a nearly linear relationship between the size of a CD
and a value calculated from an aggregation of its five alternative restriction sizes.

20

9 9 8 9 9

1
2 3 4

5

Fig. 1 The restriction sizes for the Fishburn domain on five
alternatives when restricted to 4 alternatives.
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17

9 9 9 7 7

1
2 3 4

5

Fig. 2 The size of 5 restrictions on 4 alternatives from a five
alternative CD of size 17.

3 Suboptimality of existing learning algorithms

The search for large CDs is a challenging discrete combinatorial optimisation problem that requires
significant effort and faces several challenges where many common learning algorithms struggle. While
learning algorithms like reinforcement learning algorithms, genetic algorithms, and local search al-
gorithms have proven their effectiveness in solving some combinatorial optimisation problems (Fawzi
et al., 2022; Mankowitz et al., 2023; Radhakrishnan and Jeyakumar, 2021; El-Shorbagy and Hassanien,
2018; Lauri et al., 2023), they encounter immense difficulty in finding large CDs for n ≥ 8 alternatives.
We tested a range of algorithms that can solve discrete combinatorial optimisation problems on finding
large CDs. All the programs we used are publicly available1 and their execution was terminated when
no improvement was seen after a reasonable amount of time. The large CDs they found on four to
eight alternatives are presented in Table 7. Apart from the simple hill climbing algorithm, all the
tested learning algorithms found the largest CD on four and five alternatives. But on seven and eight
alternatives, none of them found the largest known CDs. This indicates that while these algorithms
can find large CDs, there are challenges for them in finding higher lower bounds for CDs on a higher
number of alternative alternatives. We summarize these challenges as follows.

The most prominent difficulty facing them is the exponential growth of the search space. As the
number of alternatives increases, the number of potential solutions expands exponentially, making
exhaustive exploration impractical or computationally infeasible for n ≥ 6 (Leedham-Green et al.,
2024). To overcome this issue, prior works have designed search algorithms capable of significantly
reducing the search space. Akello-Egwell et al. (2023) released complete sets of isomorphic CDs on
4 ≤ n ≤ 7 alternatives, which were obtained from a search algorithm they developed that produces
all the maximum CDs on a given number of alternatives whose size is larger than or equal to a cutoff
value. Using a paralleled version of this algorithm on a supercomputer, Leedham-Green et al. (2024)
found the largest CDs on eight alternatives. However, their algorithms are not practically applicable
to finding the maximal CD for n ≥ 9 as the search tree that the algorithm needs to build is too large.
For a full peak-pit CD of 9 alternatives, there are 84 triples, and thus, when each of them is assigned a
rule chosen from a list of 4 never rules, it results in a search space of size 484. In practice, though their
algorithm can reduce the search space, it is still impossible to search through the reduced search space
exhaustively. Additionally, although many structures in the search space could be exploited (Puppe
and Slinko, 2024), greedy strategies that reduce the search space by narrowing the search to focus
solely on large partial CDs failed miserably.

Consequently, these algorithms often use approximate methods to navigate the vast solution space
efficiently. However, the intricate interdependencies among these triples exacerbate the problem. The
presence of complex relationships significantly restricts the feasible search space, making it challenging
for algorithms to explore all potential solutions effectively. A mistake at any step is likely to spoil the
whole solution.

The existence of many local optima corresponding to suboptimal solutions poses another significant
hurdle for these algorithms. Local search algorithms and evolutionary techniques, including genetic
algorithms, are particularly prone to getting trapped in local maxima due to their reliance on iterative
refinement processes. Escaping these local optima and effectively exploring the entire solution space to
converge to the global optimum is a challenging task. From a general understanding of the complete set
of CDs on seven alternatives (Akello-Egwell et al., 2023), many large domains have sizes that are close
to the maximum possible, but they represent different local optima. Thus, many learning algorithms
get trapped in the swamp of the large domains, making it hard to escape and find the largest domain.

1GitHub. https://github.com/sagebei/cdl/tree/main/algorithms/benckmarking
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Calculating the size of the CD on the large number of alternatives is computationally heavy and
time-consuming (Zhou et al., 2023), leading to another major issue where it is computationally de-
manding to compute the resulting CD sizes millions of times needed for the learning algorithms to
improve on the feedback.

Table 7 The largest CDs found by a range of learning algorithms. Common learning algorithms are
vulnerable to local traps and victims of huge search space in finding large CDs. (DQN: Deep Q learning;
PPO: Proximal Policy Optimisation; A2C: Advantage Actor-Critic; EC: Evolutionary Computation;
GA: Genetic Algorithms; ES: Evolutionary Strategies; PSO: Particle Swarm Optimisation; HC: Hill
Climbing; SA: Simulated Annealing).

Deep RL EC Local Search

n Largest size DQN PPO A2C GA ES PSO HC SA

4 9 9 9 9 9 9 9 9 9
5 20 20 20 20 20 20 20 16 20
6 45 44 45 41 44 41 45 41 45
7 100 86 94 85 96 81 92 71 97
8 224 180 199 181 194 162 182 145 216

Finding large CDs can be naturally cast as a reinforcement learning problem where it can be
modelled as a single-player game. The game starts with an initial position, a list of empty triples with
no rule assigned. In each game step, the player assigns a rule to the next triple in the sequence. It
ends when all the triples are assigned. There are no intermediate rewards, and the final reward is in
proportion to the size of the constructed Condorcet game at the end of the game. In this setting, an
RL agent sequentially assigns a rule to the list of ordered triples and gets a reward.

Deep reinforcement learning (DRL) algorithms, while powerful, still have limitations when it comes
to solving hard combinatorial optimisation problems (Mazyavkina et al., 2021; Barrett et al., 2020).
Deep Q learning algorithms (Mnih et al., 2015), Proximal Policy Optimisation algorithms (Schulman
et al., 2017) and Advantage Actor-Critic algorithms (Mnih et al., 2016) in their original form are prone
to converge to local optima as Barrett et al. (2020) described. In our experiments, they all failed at
finding the largest CDs on n ≥ 7 alternatives.

Given these identified challenges, we analyze the following factors contributing to this issue. One
of the main limitations is the curse of dimensionality, which refers to the exponential increase in the
number of possible solutions as the problem size grows, which is the exact problem facing finding the
largest CDs. This can make it difficult for DRL algorithms to search through all possible solutions
and find the optimal one in a reasonable amount of time. Another limitation is the presence of local
optima, which traps the algorithm in a sub-optimal solution. This is particularly true in our case
where the reward function is sparse (i.e. a reward is given only at the end of the game), making it
difficult to differentiate between good and bad solutions. While the size of the partial CDs is a good
choice for intermediate rewards, they do not strongly correlate with the size of the resulting full CD and
sometimes can be misleading. DRL algorithms also require a lot of computational power, memory, and
data to train effectively, which can be a challenge for working with large alternative CDs. Additionally,
finding the set of rules that constructs a large CD requires a high degree of precision, which is difficult to
achieve with reinforcement learning algorithms. Despite these limitations, DRL algorithms have shown
promising results in various applications, and researchers are working to overcome these challenges to
improve their performance on hard combinatorial optimisation problems (Mazyavkina et al., 2021;
Bello et al., 2016).

The AlphaZero-style algorithms, one of the deep reinforcement learning algorithms, has achieved
remarkable success on board games like Chess and Go by utilizing a value function2 that evaluates
the current board position without waiting for the game’s completion, as described by Silver et al.
(2018). The AlphaZero algorithm and its variations do not only apply to board games but are also
applicable to solving combinatorial optimisation problems (Laterre et al., 2018). For example, Fawzi
et al. (2022) applied a variation of AlphaZero called AlphaTensor to improve the best-known matrix
multiplication algorithms, and Mankowitz et al. (2023) developed AlphaDev that found fast sorting

2Note that AlphaZero algorithms also use policy function to cut off poor branches, but it is out of the scope of this

paper to discuss the details
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algorithms, further showcasing the algorithm’s potential on tackling hard combinatorial optimisation
problems.

Conceptually, the value function, commonly denoted as Vπ(s) where s is the state the agent is
visiting, specifies how good it is in that state when following the policy π. During the tree search,
the search space can be reduced by discarding the branches regarded as unfavourable by the value
function.

However, training or building an accurate optimal value function is challenging. A recent study
has shown that when the estimations of the value function are not accurate, i.e., it fails to predict
the precise optimal value of states, the direction of the search could be misled to the points where the
algorithm fails to learn to play the child game of Nim, one of the classic impartial games (Zhou and Riis,
2022). That and some of the literature it referred to also show that modelling parity function by neural
networks on long bitstrings is a non-trivial task. To some extent, the parity issue that characterizes
the challenge of learning Nim-like games also arises in CDs. Their study also highlights the difficulty
of modelling the parity function using neural networks on long bitstrings, which characterizes the
challenges of learning Nim-like games and CDs. As discussed in Sect. 2 all previously known CDs have
utilized the alternating scheme, which explicitly employs the parity function.

Overcoming this fundamental difficulty for neural networks is crucial to improve their performance
in such domains. While the potential of reinforcement learning algorithms like AlphaZero is promising,
the challenges of training accurate value functions must be carefully considered. Our search algorithm
circumvents these challenges by applying a handcrafted heuristic (value) function.

Evolutionary algorithms, including genetic algorithms (GA), evolutionary strategies (ES), and par-
ticle swarm optimisations (PSO), though they have achieved notable success in solving combinatorial
optimisation problem (Radhakrishnan and Jeyakumar, 2021; Oliveto et al., 2007; Papadrakakis et al.,
1998; Calégari et al., 1999; Casas et al., 2022), also face specific challenges when applied to finding large
CDs. While genetic algorithms (GAs) are a popular optimisation technique, they too have limitations
when it comes to solving hard combinatorial optimisation problems (Khuri et al., 1994). GAs are prone
to converge prematurely, meaning the search may stop before the optimal solution is found. This can
happen when the search space is too large and the population is not diverse enough (Elsayed et al.,
2014). GAs also require several parameters to be set, such as the population size, crossover probability,
and mutation rate. Finding the right set of parameters can be difficult, and small changes in these
parameters can significantly affect the quality of the solutions. GAs can struggle with scalability when
the problem size grows too large. As the search space expands, the time required to evaluate each
solution increases, and the population size required to obtain diverse solutions increases exponentially.

Evolutionary strategy algorithms are often used to solve continuous optimisation problems. Still,
they can also be applied to solve discrete combinatorial optimisation problems by optimizing the
weights of a neural network that generates the solutions (Salimans et al., 2017; Papadrakakis et al.,
1998). To this end, they are strong alternatives to reinforcement learning algorithms (Salimans et al.,
2017; Majid et al., 2023). Particle swarm optimisation algorithms are also designed to solve optimi-
sation problems whose solution space is continuous (El-Shorbagy and Hassanien, 2018; Tchomté and
Gourgand, 2009; Selvi and Umarani, 2010), but this limitation can be overcome by using a neural
network.

Local search algorithms are also good candidates for solving hard combinatorial optimisation prob-
lems (Johnson et al., 1988). One of the typical local search algorithms is Simple Hill Climbing (SHL),
where the current solution is iteratively modified by making small changes. If the modified solution
is better than the current solution, it is accepted as the new current solution. This process continues
until no further improvement can be made. It is not hard to see that it is susceptible to getting
stuck in local optima. Random Restart Hill Climbing overcomes the limitation by performing multiple
hill-climbing searches from different random starting points. Each search is run until it reaches a local
optimum, and the best solution among all searches is selected as the final result.

Simulated annealing is a variant of hill climbing that allows for occasional ”downhill” moves to
avoid getting trapped in local optima (Kirkpatrick et al., 1983). It uses a temperature parameter
that controls the probability of accepting worse solutions at the beginning of the search but reduces
this probability as the search progresses. This allows the algorithm to explore a wider search space
before converging to the optimal solution. Simulated annealing can be computationally expensive, and
the time required to evaluate each solution increases as the problem size grows. As a result, SA can
struggle with scalability when the problem size becomes too large.
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We experimented with these two local search algorithms, random-restart Hill Climbing and Simu-
lated Annealing with Restarts. As expected, they struggled. On four, five, and six alternatives, the
latter found the maximal size of 9, 20, and 45 (both when searching with the four pit-peak rules and
all six rules). For seven alternatives, the largest CD size it found was 97, and for eight alternatives, it
found a CD of size 216. A major issue is that it is computationally demanding to compute CD sizes
the millions of times needed for the algorithm to get enough feedback to efficiently explore the search
space and escape from the local trap to reach the global optima.

The fact that the GA and SA found relatively larger CD for seven and eight alternatives in com-
parison with other algorithms shows that focusing on a small population of good solutions and further
exploring them is a good strategy, and on the contrary, striving to build a good solution from scratch
tends to end up in local traps. The utility of value functions in RL algorithms in solving mathemati-
cal problems (Fawzi et al., 2022) and combinatorial optimisation problems (Mazyavkina et al., 2021),
along with the benefit of focusing on a set of good candidate solutions as in GA and SA inspired our
heuristic search method in which we designed a handcrafted heuristic function to calculate a value
estimating the goodness of a set of partially assigned triples, and the search further explores the ones
that have high evaluations.

4 The algorithm

Using the partial CD size as a measure to evaluate it leads to two issues. Calculating the size of a partial
CD on a large number of alternatives entails prohibitively costly computation. More importantly, there
is no guarantee that a large partial CD could lead to a large full CD, which is why the greedy algorithms
stumble, indicating that using the size of a partial CD as a measurement to rank them is erroneous.
This promotes the need to develop heuristic functions to evaluate them. A best heuristic function
establishes a strong linear relationship between the size of a CD and its value for all the CDs where
for any two CDs, A and B if the size of A is larger than that of B, the value of A is also higher than
that of B. However, training or building a best heuristic function is challenging. In this section, we
present a search algorithm that applies a manually designed heuristic function using a database that
could capture the positive relationship.

4.1 Database construction

The fact the size of a CD and the sizes of its restrictions are linearly correlated suggests that the sizes
of the restrictions of two CDs can be utilised to measure their relative size. To extrapolate, the largest
full CD size reachable from a partial CD is also correlated with the sizes of the largest full restrictions
reachable from its restrictions. On a small number of alternatives, we designed an efficient algorithm
to find out the size of the largest CD any partial CD can end up with, and store them in a database
to enable fast look-up.

The database contains a set of precomputed (key: value) pairs where the keys are the states of
fully and partially assigned triples for all combinations of rule assignment on five alternatives and
their corresponding value is the largest possible full CD size obtainable from a partial CD or the
actual CD size for a full CD. The TRS state conception was proposed in Zhou et al. (2023), which
refers to the string representation of the rules assigned to a list of triples in an order. This database
enables swiftly obtaining the largest possible size of any five alternative CDs given their state by
simply looking it up. An efficient algorithm that constructs the database on 3 ≤ n ≤ 5 is given in
Algorithm 1. Considering the exponentially growing computation complexity of building the database
as n grows larger and the memory needed to store the dataset, it is impractical to construct it on
n ≥ 6 alternatives.
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Algorithm 1 Construct the database

Input: The number of alternatives n where n ≥ 3
A set of rules R: 2N1, 2N3, 1N3, 3N1 by default

Output: A key-value database D on n alternatives
Add |R|m pairs of (state of full TRS with R : their resulting CD size) to D
for i = 1, 2, . . . ,m− 1 do

j ← m− i

k ←
(
j

m

)

Rj ← Cartesian product of R×R× . . .×R
︸ ︷︷ ︸

j

TRS ← a list of k TRSs each with j triples assigned with 3N1 ⊲ This rule can be any.
for each TRS in TRS do

Ti ← unassigned triples in TRS
Tj ← assigned triples in TRS
for each Rj in Rj do

Reassign Rj to Tj for TRS
largest size ← 0
for each unassigned triple t in Ti do

for each rule r in R do
Assign r to t for TRS
size ← look up TRS state in D
if size > largest size then:

largest size ← size
Assign empty rule to t for TRS ⊲ leave t unassigned

Add (TRS state : largest size) pair to D

4.2 The heuristic function

The main objective of a heuristic function is evaluating partial CDs. For a partial CD, the heuristic
function should calculate a value in proportion to the largest possible full CD size obtainable from it.
That is, for any given CD, the heuristic function should establish a trend in which the larger the full
CD that a partial CD can be, the larger its value. Given that all the CDs for n ≤ 7 have been studied,
we aim to develop the heuristic function that applies to the CDs on n ≥ 8 alternatives.

For any TRS on n alternatives where n ≥ 6, the heuristic function given in Equation (1) takes as
input a set complete set of s(=

(
n
5

)
) subset states and look them up in the database to fetch their values

v = [v1, v2, . . . , vs] where vi ∈ [1, 20]. They are then aggregated to obtain a single value estimating the
goodness of this TRS. The aggregation is a linear weighted combination of the number of occurrences
of the size of each of the five alternative CDs.

f(w,v) =







−1 if min(v) ≤ 15
20∑

i=16

mi · wi otherwise
(1)

where mi denotes the number of occurrences for five alternative CDs of size i, and wi is its corre-
sponding weight. To lead the search to find the largest CDs possible, the heuristic function does not
account for the 5 alternative restrictions whose size is less than 16 because the size of the 5 alternatives
restrictions on the largest CDs on n ≤ 8 alternatives is larger than or equal to 16 (Karpov et al., 2024;
Leedham-Green et al., 2024). We conjecture that this also applied for n > 8. Considering that the
larger CDs should, in general, contain more number of larger restrictions, we set the weights with
increment values [1, 2, 3, 4, 5], i.e w16 = 1, w17 = 2, w18 = 3, w19 = 4, w20 = 5.

Akello-Egwell et al. (2023) released two complete sets of unitary non-isomorphic CDs for six and
seven alternatives. These CDs enabled us to evaluate the heuristic functions by examining the rela-
tionship they give rise to between their sizes and their values. Using these CDs, we show in Fig. 3
two scatter plots for six and seven alternatives, demonstrating the relationship between the size of the
CDs and their values from our heuristic function. It is conspicuous that for n = 6 CDs whose size is
larger than 28 and for n = 7 CDs whose size is larger than 44, the heuristic function builds a linear
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relationship between the size and the values of CDs. The fact that the correlation is not strong on
small CDs is not problematic as this issue can be resolved by the prioritisation strategy employed in
the search algorithm that could rule them out. Overall, our heuristic function, though not perfect, can
serve its purpose well.
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(a) The values of all the n=6 non-isomorphic CDs on the heuristic function (1)
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(b) The values of some the n=7 non-isomorphic CDs for every size on the
heuristic function (1)

Fig. 3 The correlation between the sizes of domains and their values evaluated by the value
function for six and seven alternative CDs. Plot (a) includes all the six alternative isomorphic
CDs; plot (b) uses 100000 randomly sampled n = 7 CDs for each size if the number of CDs
is too many.

4.3 The heuristic search algorithm

In the selection phase of genetic algorithms, solutions in the population are evaluated using a fitness
function, which measures how well they solve the problem and the ones that perform have higher
fitness are more likely to be selected for the next generation. Owing to its effectiveness, we employ the
same strategy in ruling out inferior TRSs that are not likely to end up producing a large CD.

An exhaustive search algorithm that builds an entire search tree begins with a root node corre-
sponding to an empty TRS where the triples are all unassigned. The root node is expanded by adding
four child nodes, representing 4 TRSs where the first triple is assigned to one of the four rules, 2N1,
2N3, 1N3, and 3N1. Each child node will then be expanded, and this process continues iteratively until
all the triples are assigned. To avoid building an enormous search tree, at each search step our heuristic
search algorithm keeps N high-ranking nodes for the next step. The heuristic search algorithm that
uses the heuristic function with access to the database is given in Algorithm 2.
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Algorithm 2 The heuristic search algorithm

Input: The number of alternatives n where n ≥ 6
A set of rules R: 2N1, 2N3, 1N3, 3N1 by default
The number of top TRSs kept in the search N where N ≥ 1
The heuristic function f

Output: TRSN (N full TRSs with the highest values)
Create an empty list TRSN

Initiate a TRS where all the triples are unassigned and added it to TRSN

T ← a list of m triples
for each triple t in T do

for each TRS in TRSN do
for each rule r in R do

Assign r to t for TRS
Add TRS to TRSN

Assign an empty rule to t for TRS
Calculate the value for every TRS in TRSN using heuristic function f

Remove the TRSs from TRSN on which the heuristic function returns -1
TRSN ← Top N TRSs with the highest values

Choosing a larger value of N may not always lead to better search results. In fact, due to the
nonmonotonicity of the heuristic function, increasingN with the same heuristic function can sometimes
result in worse search results. This happens because, at the early stage of the search, many TRSs with
higher values that lead to smaller CDs outcompete the ones with lower values that could construct
larger CDs. Thus, retaining more TRSs could potentially introduce more inferior TRSs.

In such cases, adjusting the parameters in the heuristic function to build a stronger correlation
may be necessary. However, our aim is to provide a new paradigm to search for large CDs and we
do not presume the heuristic function we developed is optimal. To find better parameters, simply
testing out various weight combinations does not help significantly as our experiences indicate. We
instead propose to utilise machine learning techniques to find better parameters using the data in
(Akello-Egwell et al., 2023). Another example suggesting the non-monotonic property is that the
search algorithm using a heuristic function calculating the value from restrictions on 6 alternatives
did not find any larger CDs than the Fishburn domains. Here, as it is prohibitively impractical to
build the dataset for 6 alternatives, we computed the largest possible restriction sizes using the process
described in Algorithm 1.

Searching for large CDs entails a significant amount of computation, especially on CDs with many
alternatives. One of the advantages of our algorithms is that the computation needed to evaluate
each partial CD by the value function is much less than calculating its actual size, and the overhead
of working with a larger number of alternatives only increases slightly. While our search algorithms
have discovered new unknown large CDs for 10 and 11 alternatives, we conjecture there are larger
CDs for n = 9 that our search algorithms have not found, indicating that there is still some room for
further improvement. The heuristic function we developed, based on the 5 alternative restriction sizes,
is practically accurate, but it is by no means perfect. Its success shows a strong correlation between
the actual CD size and its corresponding subset sizes, and exploiting this feature in more innovative
ways opens a door for future research. At least, given the current construction, many other weight
combinations can also be tested out.

5 Experiments

All our experiments were built on top of the CDL library (Zhou et al., 2023) which provides a wide
range of functionalities for CD-related calculations. This library was initially developed to support
this work. It has underpinned some research studies (Karpov et al., 2023; Akello-Egwell et al., 2023;
Karpov et al., 2024; Markström et al., 2024) since its initial release due to its flexibility and fast
execution speed. The fast computation enabled by this library contributes significantly to the success
of our algorithm. Especially, the subset states function it provided, which converts a TRS to its
subset states for n ≥ 6 alternatives, facilitated the implementation of our search algorithms.
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Our search algorithm found the largest CD for n = 6 within a second, as shown in Table 8. As the
number of alternatives increased, the time it took to find a large CD skyrocketed not only because the
search space was growing exponentially but because more high-value nodes were needed to participate
in the search to get good results. It is worth noting that this heuristic search algorithm has been
integrated into the CDL library. The codes are available at the CDL GitHub repository3.

Table 8 The time consumption of our method on redis-
covering the known largest CD for n ≤ 9 on a Macbook
Air with 1.1 GHz Dual-Core Intel Core i3 and 8 Gigabyte
memory.

n Size of largest CDs found Time Consumption

6 45 0.605 second
7 100 1.31 second
8 222 93 seconds
9 488 31 minutes

On more than nine alternatives, the order of the triples by which they are assigned with a rule
is crucial and has a non-negligible impact on the CDs found by our search algorithm. A well-chosen
ordering helps cut off unfruitful branches at the early search stage. To verify this, we developed an
approach that selects the next triple to be assigned a rule dynamically, aiming to find the triple among
all the unassigned ones that reduce the size of the CD the most once assigned. This approach records
the size of a partial CD for each unassigned triple when assigned with one of the 4 rules that maximize
the size of this partial CD and choose the one with the lowest value. Dynamically selecting the next
triple gives good results, but it requires a large amount of calculation to access all the unassigned
triples, and it is prohibitively expensive to employ this strategy when working on n ≥ 8 alternatives.

We experimented with different static triple orders where the triples were listed randomly or sorted,
and the order was fixed throughout the search once determined. One of our special static orders based
on various mathematical heuristics and proprieties stood out and led to the discovery of record-breaking
CDs. The ordering of the triples we used is a type of static ordering and is defined such that triple
(x1, y1, z1) is before (x2, y2, z2) if x1 < x2 or (x1 = x2 and z1 < z2) or (x1 = x2 and z1 = z2 and
y1 < y2). This choice of triple order is a contributing factor that enables our method to find the
existing large CDs constructed by alternating schemes quickly. We call this ordering RZ-ordering,
where RZ is the authors’ initials.

One major benefit brought by RZ-order is that the order of the list of triples in a TRS on n ≥
6 alternatives when restricted to five alternatives remains unchanged, which is to say that when
the triples in the five alternatives database are in RZ-order, for n ≥ 6 alternatives the restricted
triples to five alternatives are also in RZ-order, meaning that they can be looked up in that database
without reordering. However, for other orders of triples that do not hold this property, like the
lexicographic order, many of the orders of triples restricted to five alternatives are not in lexicographic
order. They have to be reordered before being able to be looked up in the dataset where triples are
also in lexicographic order, incurring extra cost of computation.

In the experiments where the new CDs are found, we kept the top N = 200000 and N = 100000
high-value nodes for 10 and 11 alternatives, respectively. Table 9 displays the size and their counts
of the CDs that are larger than the Fishburn domains which are the largest known CDs on 10 and
11 alternatives. The largest CDs we found on 10 alternatives have size 1082, while the size of other
smaller CDs ranges from 1070 to 1079. On 11 alternatives, there are CDs of 5 different sizes larger
than the Fishburn domain discovered by the search algorithm, with the largest one being 2349.

It is sensible to claim that the larger the size of CDs, the harder they are to be discovered. However,
our method found more (isomorphic) CDs of size 1072 than those of size 1071 for 10 alternatives and
more CDs of size 2337 than those of size 2334 for 11 alternatives. This reflects one of the challenges
mentioned above in the search where designing a successful heuristic function that prioritizes the large
CD is challenging. It also insinuates that the heuristic function we crafted, although with significant
efforts, is imperfect. We see it as an open research problem to design an efficient and effective heuristic

3GitHub. https://github.com/sagebei/cdl/tree/main/python

14

https://github.com/sagebei/cdl/tree/main/python


function that distinguishes the CDs of different sizes with a large margin such that the unpromising
partial CDs can be ruled out with high confidence.

Table 9 The sizes and counts of new large CDs on 10 and 11 alterna-
tives, discovered by the heuristic search algorithm.

n New large CD sizes and their count

10
size 1070 1071 1072 1074 1078 1079 1082
count 80 29 70 37 13 8 5

11
size 2328 2329 2334 2337 2349
count 330 16 8 67 122

This search algorithm, though relying on access to a database, can be scaled to run on thousands of
CPU cores on parallel, each of which independently starts a search on a partial CD. We experimented
with this technique by starting 1000 searches on 1000 CPU cores on QMUL HPC machine (King et al.,
2021), and found CDs whose size is 224 for eight alternatives, the largest CD for n = 8 (Leedham-Green
et al., 2024).

The whole search was split into two stages. In the first stage, the search began with a TRS with no
rule assigned and stopped after a given triple (the 15th triple in our experiment) in TRSs was assigned,
resulting in a large collection of TRSs where the top triples above that triple (the first 15 triples in our
case) were all assigned. The first stage ended with evenly splitting the list of TRSs into 1000 chunks.
They were shuffled before splitting to ensure that the TRSs in one chunk were not similar. In the
second stage, we resumed the search on 1000 CPU cores with the N , the number of high-value CDs
kept being 10000, each of which searched for a chunk independently. When they were finished, the
size of all the CDs found by the search was calculated, and we found 17 CDs of size 224.

Paralleling the search algorithm in this way undoubtedly accelerates the computation by engaging
in many CPU cores, but it has one drawback. As the list of TRSs is segregated into isolated blocks,
and the search is conducted within each block, each block is only aware of the values of the TRSs in
itself.

6 Analysis on discovered new large CDs

As the restrictions of a CD reveal its inner local structure and their application plays a central role
in the heuristic function employed in the search algorithm, we use the size of restrictions and their
counts as a measure of the CD structure. On 11 alternatives, the search algorithms found five CDs
of different sizes larger than the Fishburn domain. Table 10 shows that each of these large CDs when
restricted to 10 alternative subsets, produces at least one restriction larger than the Fishburn domain.
Still, they were all found by our method, indicating our method is consistent across different numbers
of alternatives. It is also worth pointing out that none of the restrictions is identical to the Fishburn
domain, showing that the inner structure of these new CDs differs fundamentally from that of the
Fishburn domain.

Table 10 The 10 alternative restriction sizes of these n = 11 CDs larger than the Fishburn
domain. Each contains at least one n=10 CD larger than the Fishburn domain when restricted
to some 10 alternatives. These CD sizes are highlighted in bold.

CD size for n=11 Restriction sizes on 10 alternatives

2328 1003 1005 1022 1043 1053 1072 1074 1079
2329 1013 1028 1039 1040 1041 1044 1057 1058 1063 1079
2334 1021 1030 1035 1039 1043 1057 1063 1064 1078
2337 1017 1022 1031 1045 1053 1062 1072 1074
2349 1021 1026 1035 1045 1053 1068 1074 1078

On 10 and 11 alternatives, the Fishburn domains had the largest size before our results. Here we
compare the largest CDs found by the search algorithms with them. We calculated the restriction

15



sizes for the largest CD we found on n = 10 and 11 alternatives when restricted to a range of 4 to
n−1 alternatives. Their sizes and counts are listed in Table 11 and Table 12 for 10 and 11 alternatives
respectively. At least one of the restrictions on the 10 alternative Fishburn domain is also a Fishburn
domain. However, for the largest CD on 10 alternatives our algorithm found, the size of the largest
restriction on nine alternatives is 485, which is smaller than the Fishburn domain. We thus speculate
that the chance that it is not the largest is high. It provides an improved low bound, but there is no
evidence showing that it is the high bound on the domain size.

Furthermore, the restrictions from Fishburn domains generally have a larger number of large CDs
than the ones from the CD of size 1082. For example, when restricted to eight alternatives, only
one restriction is of size 222, in contrast to the ones from the Fishburn domain, which contain 15
restrictions whose size is 222. This shows that larger CDs do not always produce larger restrictions
or a higher number of larger restrictions compared to those from smaller CDs. This aligns with the
conclusion in Karpov et al. (2024) that suggests CDs that have the largest restriction might not be
the largest.

Table 11 The restriction sizes and their count for the 10 alternative CD of size 1082 when
restricted to 4 to 9 alternative subsets.

Subset n Restriction sizes and their count

4
size 8 9
count 90 120

5
size 16 17 18 19 20
count 6 30 6 162 48

6
size 36 39 40 41 42 43 44 45
count 6 6 2 44 86 40 6 20

7
size 87 89 91 92 93 94 95 96 97 98 100
count 6 2 4 16 22 18 8 16 6 16 6

8
size 200 204 205 209 211 212 214 216 218 219 222
count 2 4 4 4 3 2 7 10 4 4 1

9
size 473 481 485
count 4 2 4

We observed a similar pattern with the restrictions on the 11 alternative CD of size 2349. As shown
in Table 12, some of these restrictions on the 5, 6, and 7 alternatives, have the same size as the the
Fishburn domains. But it also has relatively small restrictions, especially on seven alternatives where
the size of the smallest restriction is 74. All the restrictions on 9 alternatives are smaller than Fishburn
domains.

We also noticed that these new large CDs have some relatively small restrictions of sizes 8 and 16
when restricted to four and five alternatives, respectively. This was not a surprise to us as it generally
follows Ramsey’s Theorem (Ramsey, 1930), which in the context of graph colouring states that given
a positive integer k there exists a complete graph with n(n > k) coloured edges where a subset of k
connected edges have the same colour. We will show that Ramsey’s Theorem also applies to analysing
the pattern of the rules assigned to the triples for the restrictions of a CD. We state that:

Corollary. For any positive integer k, there exists a positive integer n(n > k), such that any CD on
n alternatives has a restriction to k alternatives where the rules on them are the same.

Proof (outline). The proof comes with a direct application of Ramsey’s Theorem if we consider the
triples as edges of a graph and the rule assigned to them as their colour.

Corollary. For any positive integer k, there exists a positive integer n(n > k), such that any CD on
n alternatives has a restriction to k alternatives of size 2k−1.

Proof (outline). A CD on n alternatives created by a list of triples where all the rules assigned to
them are the same, i.e. all 1N3, 3N1, 2N3, 2N1, 1N2 or 3N2 has size 2n−1 (Raynaud, 1981).

Our finding here shows that on this n = 10 CD there exist restrictions on 4 and 5 alternatives with
size 8 and 16 respectively, meaning that for k values of 4 and 5, n value of 10 already satisfies the
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Table 12 The restriction sizes and their count for the 11 alternative CD of size 2349 when
restricted to 4 to 10 alternative subsets.

Subset n Restriction sizes and their count

4
size 8 9
count 143 187

5
size 16 17 18 19 20
count 28 46 5 279 104

6
size 32 35 36 39 40 41 42 43 44 45
count 3 10 9 35 2 73 164 79 35 52

7

size 74 79 85 86 87 88 89 91 92 93 94 95
count 3 3 12 3 9 3 15 19 44 39 12 16
size 96 97 98 100
count 39 52 42 19

8

size 179 184 187 192 194 196 200 201 202 204 205 207
count 3 1 1 1 3 8 3 2 8 6 2 7
size 209 210 211 212 213 214 215 216 217 218 219 222
count 10 3 12 17 11 2 8 13 2 30 8 4

9

size 415 426 431 448 451 452 457 460 466 468 470 473
count 1 1 1 2 2 1 1 1 4 2 2 4
size 475 478 479 480 481 484 485
count 3 4 3 4 11 4 4

10
size 1021 1026 1035 1045 1053 1068 1074 1078
count 1 1 1 2 1 1 2 2

condition. On the 11 alternatives CD of size 2349, the condition for k = 6 is satisfied on the largest
CD we discovered on n = 11 alternatives where some of the restrictions on 6 alternatives have size 32.

7 Conclusion

In this paper, we present a heuristic search algorithm capable of generating large CDs on any number
of alternatives, which also has the potential to discover unknown larger CDs. This is evidenced by the
fact that the large CDs it found on the 10 and 11 alternatives improved the existing lower bounds. The
success of our algorithm lies chiefly in its utilisation of human domain knowledge on this subject which
existing learning algorithms for general combinatorial optimisation problems have no apparent way to
assimilate. Our results were obtained without applying any statistic planning approaches, like Monte
Carlo Tree Search, but by traversing the tree using a purely manually designed heuristic function to
guide the search. The way we traversed the search tree only used a pure heuristic function but did
not explicitly use any reinforcement learning techniques like Q-learning (Watkins and Dayan, 1992).
Despite having access to limited computational resources, our algorithm found many new large CDs.

Although the application of the database does cut away a large part of the search tree at a cheap
cost, it has certain limitations. With a reasonable amount of computations, the algorithm could not
find a new lower bound for CDs on 12 alternatives, suggesting that the CDs with a larger number of
alternatives have more non-local implications, and the upper bound given by the database will more
often differ from the actual size of the local restriction.

Finding the largest CDs is a challenging yet unsolved problem. Many existing algorithms can be
applied to finding large CDs. We tested various standard approaches, including reinforcement learning
algorithms, evolutionary algorithms and local search algorithms. In our preliminary experiments,
they only managed to find local maxima solutions and had great difficulties in finding the largest
known domains for low values of n, such as n = 7 and n = 8. The new CDs we report suggest that
there may be more complex mathematical patterns underlying the CDs than previously thought. Our
results indicate that the maximal size of CDs on n ≥ 8 alternatives can serve as a benchmark for
heuristic search algorithms. The problems are challenging because the search space is enormous on
large alternatives, and there are no obvious, simple criteria for searching. Still, at the same time, there
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are a lot of structures in the CD as the restrictions to each subset of alternatives also form a CD. An
efficient search algorithm should be able to exploit this rich underlying structure to guide the search.
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Appendix

The triples and their rule for the n=10 CD of size 1082

Table 13 The TRS that led to the CD of size 1082 on 10 alternatives. The ordering of the triples
displayed is another static ordering that differs from the ordering used in the search algorithm and
is defined such that (x1, y1, z1) is before (x2, y2, z2) if x1 ≤ x2 and y1 ≤ y2 and z1 ≤ z2 out of
consideration for the ease of looking up the table manually. There are 1082 isomorphic versions of this
CD. The 10 alternative CD built by these rules is presented in Sect. 7.

Triples Rules

(1, 2, 3) 2N3
(1, 2, 4) 2N3
(1, 2, 5) 1N3
(1, 2, 6) 1N3
(1, 2, 7) 1N3
(1, 2, 8) 3N1
(1, 2, 9) 2N3
(1, 2, 10) 2N3
(1, 3, 4) 2N3
(1, 3, 5) 1N3
(1, 3, 6) 1N3
(1, 3, 7) 1N3
(1, 3, 8) 3N1
(1, 3, 9) 3N1
(1, 3, 10) 3N1
(1, 4, 5) 1N3
(1, 4, 6) 1N3
(1, 4, 7) 1N3
(1, 4, 8) 3N1
(1, 4, 9) 3N1
(1, 4, 10) 3N1
(1, 5, 6) 3N1
(1, 5, 7) 3N1
(1, 5, 8) 1N3
(1, 5, 9) 1N3
(1, 5, 10) 1N3
(1, 6, 7) 3N1
(1, 6, 8) 1N3
(1, 6, 9) 1N3
(1, 6, 10) 1N3

Triples Rules

(1, 7, 8) 1N3
(1, 7, 9) 1N3
(1, 7, 10) 1N3
(1, 8, 9) 2N1
(1, 8, 10) 2N1
(1, 9, 10) 3N1
(2, 3, 4) 2N3
(2, 3, 5) 1N3
(2, 3, 6) 1N3
(2, 3, 7) 1N3
(2, 3, 8) 1N3
(2, 3, 9) 3N1
(2, 3, 10) 3N1
(2, 4, 5) 1N3
(2, 4, 6) 1N3
(2, 4, 7) 1N3
(2, 4, 8) 1N3
(2, 4, 9) 3N1
(2, 4, 10) 3N1
(2, 5, 6) 3N1
(2, 5, 7) 3N1
(2, 5, 8) 3N1
(2, 5, 9) 1N3
(2, 5, 10) 1N3
(2, 6, 7) 3N1
(2, 6, 8) 3N1
(2, 6, 9) 1N3
(2, 6, 10) 1N3
(2, 7, 8) 3N1
(2, 7, 9) 1N3

Triples Rules

(2, 7, 10) 1N3
(2, 8, 9) 1N3
(2, 8, 10) 1N3
(2, 9, 10) 3N1
(3, 4, 5) 1N3
(3, 4, 6) 1N3
(3, 4, 7) 1N3
(3, 4, 8) 1N3
(3, 4, 9) 1N3
(3, 4, 10) 1N3
(3, 5, 6) 3N1
(3, 5, 7) 3N1
(3, 5, 8) 3N1
(3, 5, 9) 1N3
(3, 5, 10) 3N1
(3, 6, 7) 3N1
(3, 6, 8) 3N1
(3, 6, 9) 1N3
(3, 6, 10) 3N1
(3, 7, 8) 3N1
(3, 7, 9) 1N3
(3, 7, 10) 3N1
(3, 8, 9) 1N3
(3, 8, 10) 3N1
(3, 9, 10) 1N3
(4, 5, 6) 3N1
(4, 5, 7) 3N1
(4, 5, 8) 3N1
(4, 5, 9) 1N3
(4, 5, 10) 3N1

Triples Rules

(4, 6, 7) 3N1
(4, 6, 8) 3N1
(4, 6, 9) 1N3
(4, 6, 10) 3N1
(4, 7, 8) 3N1
(4, 7, 9) 1N3
(4, 7, 10) 3N1
(4, 8, 9) 1N3
(4, 8, 10) 3N1
(4, 9, 10) 1N3
(5, 6, 7) 3N1
(5, 6, 8) 1N3
(5, 6, 9) 2N1
(5, 6, 10) 1N3
(5, 7, 8) 1N3
(5, 7, 9) 2N1
(5, 7, 10) 1N3
(5, 8, 9) 2N1
(5, 8, 10) 2N1
(5, 9, 10) 3N1
(6, 7, 8) 2N1
(6, 7, 9) 2N1
(6, 7, 10) 2N1
(6, 8, 9) 2N1
(6, 8, 10) 2N1
(6, 9, 10) 3N1
(7, 8, 9) 2N1
(7, 8, 10) 2N1
(7, 9, 10) 3N1
(8, 9, 10) 3N1
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The triples and their rule for the n=11 CD of size 2349

Table 14 The TRS that constructed CD of size 2349 on 11 alternatives. The 11 alternative
CD built by these rules is presented in Sect. 7.

Triples Rules

(1, 2, 3) 1N3
(1, 2, 4) 2N3
(1, 2, 5) 2N3
(1, 2, 6) 2N3
(1, 2, 7) 3N1
(1, 2, 8) 1N3
(1, 2, 9) 1N3
(1, 2, 10) 1N3
(1, 2, 11) 1N3
(1, 3, 4) 1N3
(1, 3, 5) 1N3
(1, 3, 6) 1N3
(1, 3, 7) 1N3
(1, 3, 8) 3N1
(1, 3, 9) 2N3
(1, 3, 10) 3N1
(1, 3, 11) 2N3
(1, 4, 5) 3N1
(1, 4, 6) 3N1
(1, 4, 7) 3N1
(1, 4, 8) 1N3
(1, 4, 9) 1N3
(1, 4, 10) 1N3
(1, 4, 11) 1N3
(1, 5, 6) 3N1
(1, 5, 7) 3N1
(1, 5, 8) 1N3
(1, 5, 9) 1N3
(1, 5, 10) 1N3
(1, 5, 11) 1N3
(1, 6, 7) 3N1
(1, 6, 8) 1N3
(1, 6, 9) 1N3
(1, 6, 10) 1N3
(1, 6, 11) 1N3
(1, 7, 8) 1N3
(1, 7, 9) 1N3
(1, 7, 10) 1N3
(1, 7, 11) 1N3
(1, 8, 9) 2N1
(1, 8, 10) 2N1
(1, 8, 11) 2N1

Triples Rules

(1, 9, 10) 3N1
(1, 9, 11) 3N1
(1, 10, 11) 2N1
(2, 3, 4) 1N3
(2, 3, 5) 1N3
(2, 3, 6) 1N3
(2, 3, 7) 3N1
(2, 3, 8) 3N1
(2, 3, 9) 2N3
(2, 3, 10) 3N1
(2, 3, 11) 2N3
(2, 4, 5) 3N1
(2, 4, 6) 3N1
(2, 4, 7) 1N3
(2, 4, 8) 1N3
(2, 4, 9) 1N3
(2, 4, 10) 1N3
(2, 4, 11) 1N3
(2, 5, 6) 3N1
(2, 5, 7) 1N3
(2, 5, 8) 1N3
(2, 5, 9) 1N3
(2, 5, 10) 1N3
(2, 5, 11) 1N3
(2, 6, 7) 1N3
(2, 6, 8) 1N3
(2, 6, 9) 1N3
(2, 6, 10) 1N3
(2, 6, 11) 1N3
(2, 7, 8) 2N1
(2, 7, 9) 2N1
(2, 7, 10) 2N1
(2, 7, 11) 2N1
(2, 8, 9) 2N1
(2, 8, 10) 2N1
(2, 8, 11) 2N1
(2, 9, 10) 3N1
(2, 9, 11) 3N1
(2, 10, 11) 2N1
(3, 4, 5) 3N1
(3, 4, 6) 3N1
(3, 4, 7) 3N1

Triples Rules

(3, 4, 8) 3N1
(3, 4, 9) 1N3
(3, 4, 10) 3N1
(3, 4, 11) 1N3
(3, 5, 6) 3N1
(3, 5, 7) 3N1
(3, 5, 8) 3N1
(3, 5, 9) 1N3
(3, 5, 10) 3N1
(3, 5, 11) 1N3
(3, 6, 7) 3N1
(3, 6, 8) 3N1
(3, 6, 9) 1N3
(3, 6, 10) 3N1
(3, 6, 11) 1N3
(3, 7, 8) 3N1
(3, 7, 9) 1N3
(3, 7, 10) 3N1
(3, 7, 11) 1N3
(3, 8, 9) 1N3
(3, 8, 10) 3N1
(3, 8, 11) 1N3
(3, 9, 10) 1N3
(3, 9, 11) 3N1
(3, 10, 11) 1N3
(4, 5, 6) 3N1
(4, 5, 7) 1N3
(4, 5, 8) 1N3
(4, 5, 9) 2N1
(4, 5, 10) 1N3
(4, 5, 11) 2N1
(4, 6, 7) 1N3
(4, 6, 8) 1N3
(4, 6, 9) 2N1
(4, 6, 10) 1N3
(4, 6, 11) 2N1
(4, 7, 8) 2N1
(4, 7, 9) 2N1
(4, 7, 10) 2N1
(4, 7, 11) 2N1
(4, 8, 9) 2N1
(4, 8, 10) 2N1

Triples Rules

(4, 8, 11) 2N1
(4, 9, 10) 3N1
(4, 9, 11) 2N3
(4, 10, 11) 2N1
(5, 6, 7) 2N1
(5, 6, 8) 2N1
(5, 6, 9) 2N1
(5, 6, 10) 2N1
(5, 6, 11) 2N1
(5, 7, 8) 2N1
(5, 7, 9) 2N1
(5, 7, 10) 2N1
(5, 7, 11) 2N1
(5, 8, 9) 2N1
(5, 8, 10) 2N1
(5, 8, 11) 2N1
(5, 9, 10) 3N1
(5, 9, 11) 2N3
(5, 10, 11) 2N1
(6, 7, 8) 2N1
(6, 7, 9) 2N1
(6, 7, 10) 2N1
(6, 7, 11) 2N1
(6, 8, 9) 2N1
(6, 8, 10) 2N1
(6, 8, 11) 2N1
(6, 9, 10) 3N1
(6, 9, 11) 2N3
(6, 10, 11) 2N1
(7, 8, 9) 2N1
(7, 8, 10) 2N1
(7, 8, 11) 2N1
(7, 9, 10) 3N1
(7, 9, 11) 2N3
(7, 10, 11) 2N1
(8, 9, 10) 3N1
(8, 9, 11) 2N3
(8, 10, 11) 2N1
(9, 10, 11) 1N3

The Condorcet domains

The large Condorcet domains we discovered for 10 and 11 alternatives are demonstrated here. We use
hexadecimal numbers A and B to represent the domain’s decimal numbers 10 and 11.

The Condorcet domain of size 1082 on 10 alternatives

123456789A 12345678A9 123456798A 12345679A8 123456978A 12345697A8 1234569A78 1234569A87 123459678A 12345967A8
1234596A78 1234596A87 123459A678 123459A687 123459A867 123459A876 123495678A 12349567A8 1234956A78 1234956A87
123495A678 123495A687 123495A867 123495A876 123496578A 12349657A8 1234965A78 1234965A87 123496758A 12349675A8
12349A5678 12349A5687 12349A5867 12349A5876 12349A8567 12349A8576 123546789A 12354678A9 123546798A 12354679A8
123546978A 12354697A8 1235469A78 1235469A87 123549678A 12354967A8 1235496A78 1235496A87 123549A678 123549A687
123549A867 123549A876 123564789A 12356478A9 123564798A 12356479A8 123564978A 12356497A8 1235649A78 1235649A87
123567489A 12356748A9 123567498A 12356749A8 123567849A 12356784A9 1235678A49 123945678A 12394567A8 1239456A78
1239456A87 123945A678 123945A687 123945A867 123945A876 123946578A 12394657A8 1239465A78 1239465A87 123946758A
12394675A8 12394A5678 12394A5687 12394A5867 12394A5876 12394A8567 12394A8576 125346789A 12534678A9 125346798A
12534679A8 125346978A 12534697A8 1253469A78 1253469A87 125349678A 12534967A8 1253496A78 1253496A87 125349A678
125349A687 125349A867 125349A876 125364789A 12536478A9 125364798A 12536479A8 125364978A 12536497A8 1253649A78
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1253649A87 125367489A 12536748A9 125367498A 12536749A8 125367849A 12536784A9 1253678A49 125634789A 12563478A9
125634798A 12563479A8 125634978A 12563497A8 1256349A78 1256349A87 125637489A 12563748A9 125637498A 12563749A8
125637849A 12563784A9 1256378A49 125673489A 12567348A9 125673498A 12567349A8 125673849A 12567384A9 1256738A49
125678349A 12567834A9 1256783A49 125678A349 129345678A 12934567A8 1293456A78 1293456A87 129345A678 129345A687
129345A867 129345A876 129346578A 12934657A8 1293465A78 1293465A87 129346758A 12934675A8 12934A5678 12934A5687
12934A5867 12934A5876 12934A8567 12934A8576 152346789A 15234678A9 152346798A 15234679A8 152346978A 15234697A8
1523469A78 1523469A87 152349678A 15234967A8 1523496A78 1523496A87 152349A678 152349A687 152349A867 152349A876
152364789A 15236478A9 152364798A 15236479A8 152364978A 15236497A8 1523649A78 1523649A87 152367489A 15236748A9
152367498A 15236749A8 152367849A 15236784A9 1523678A49 152634789A 15263478A9 152634798A 15263479A8 152634978A
15263497A8 1526349A78 1526349A87 152637489A 15263748A9 152637498A 15263749A8 152637849A 15263784A9 1526378A49
152673489A 15267348A9 152673498A 15267349A8 152673849A 15267384A9 1526738A49 152678349A 15267834A9 1526783A49
152678A349 156234789A 15623478A9 156234798A 15623479A8 156234978A 15623497A8 1562349A78 1562349A87 156237489A
15623748A9 156237498A 15623749A8 156237849A 15623784A9 1562378A49 156273489A 15627348A9 156273498A 15627349A8
156273849A 15627384A9 1562738A49 156278349A 15627834A9 1562783A49 156278A349 156723489A 15672348A9 156723498A
15672349A8 156723849A 15672384A9 1567238A49 156728349A 15672834A9 1567283A49 156728A349 156782349A 15678234A9
1567823A49 156782A349 213456789A 21345678A9 213456798A 21345679A8 213456978A 21345697A8 2134569A78 2134569A87
213459678A 21345967A8 2134596A78 2134596A87 213459A678 213459A687 213459A867 213459A876 213495678A 21349567A8
2134956A78 2134956A87 213495A678 213495A687 213495A867 213495A876 213496578A 21349657A8 2134965A78 2134965A87
213496758A 21349675A8 21349A5678 21349A5687 21349A5867 21349A5876 21349A8567 21349A8576 213546789A 21354678A9
213546798A 21354679A8 213546978A 21354697A8 2135469A78 2135469A87 213549678A 21354967A8 2135496A78 2135496A87
213549A678 213549A687 213549A867 213549A876 213564789A 21356478A9 213564798A 21356479A8 213564978A 21356497A8
2135649A78 2135649A87 213567489A 21356748A9 213567498A 21356749A8 213567849A 21356784A9 2135678A49 213945678A
21394567A8 2139456A78 2139456A87 213945A678 213945A687 213945A867 213945A876 213946578A 21394657A8 2139465A78
2139465A87 213946758A 21394675A8 21394A5678 21394A5687 21394A5867 21394A5876 21394A8567 21394A8576 215346789A
21534678A9 215346798A 21534679A8 215346978A 21534697A8 2153469A78 2153469A87 215349678A 21534967A8 2153496A78
2153496A87 215349A678 215349A687 215349A867 215349A876 215364789A 21536478A9 215364798A 21536479A8 215364978A
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931B2564A87 931B2A45678 931B2A45687 931B2A45867 931B2A45876 931B2A48567 931B2A48576 931B2A48756 931B2A48765
931B2A84567 931B2A84576 931B2A84756 931B2A84765 931B2A87456 931B2A87465 931BA245678 931BA245687 931BA245867
931BA245876 931BA248567 931BA248576 931BA248756 931BA248765 931BA284567 931BA284576 931BA284756 931BA284765
931BA287456 931BA287465 931BA824567 931BA824576 931BA824756 931BA824765 931BA827456 931BA827465 931BA872456
931BA872465 93B1245678A 93B124567A8 93B12456A78 93B12456A87 93B1245A678 93B1245A687 93B1245A867 93B1245A876
93B124A5678 93B124A5687 93B124A5867 93B124A5876 93B124A8567 93B124A8576 93B124A8756 93B124A8765 93B1254678A
93B125467A8 93B12546A78 93B12546A87 93B1254A678 93B1254A687 93B1254A867 93B1254A876 93B1256478A 93B125647A8
93B12564A78 93B12564A87 93B12A45678 93B12A45687 93B12A45867 93B12A45876 93B12A48567 93B12A48576 93B12A48756
93B12A48765 93B12A84567 93B12A84576 93B12A84756 93B12A84765 93B12A87456 93B12A87465 93B1A245678 93B1A245687
93B1A245867 93B1A245876 93B1A248567 93B1A248576 93B1A248756 93B1A248765 93B1A284567 93B1A284576 93B1A284756
93B1A284765 93B1A287456 93B1A287465 93B1A824567 93B1A824576 93B1A824756 93B1A824765 93B1A827456 93B1A827465
93B1A872456 93B1A872465 93BA1245678 93BA1245687 93BA1245867 93BA1245876 93BA1248567 93BA1248576 93BA1248756
93BA1248765 93BA1284567 93BA1284576 93BA1284756 93BA1284765 93BA1287456 93BA1287465 93BA1824567 93BA1824576
93BA1824756 93BA1824765 93BA1827456 93BA1827465 93BA1872456 93BA1872465 93BA8124567 93BA8124576 93BA8124756
93BA8124765 93BA8127456 93BA8127465 93BA8172456 93BA8172465 9B31245678A 9B3124567A8 9B312456A78 9B312456A87
9B31245A678 9B31245A687 9B31245A867 9B31245A876 9B3124A5678 9B3124A5687 9B3124A5867 9B3124A5876 9B3124A8567
9B3124A8576 9B3124A8756 9B3124A8765 9B31254678A 9B3125467A8 9B312546A78 9B312546A87 9B31254A678 9B31254A687

26



9B31254A867 9B31254A876 9B31256478A 9B3125647A8 9B312564A78 9B312564A87 9B312A45678 9B312A45687 9B312A45867
9B312A45876 9B312A48567 9B312A48576 9B312A48756 9B312A48765 9B312A84567 9B312A84576 9B312A84756 9B312A84765
9B312A87456 9B312A87465 9B31A245678 9B31A245687 9B31A245867 9B31A245876 9B31A248567 9B31A248576 9B31A248756
9B31A248765 9B31A284567 9B31A284576 9B31A284756 9B31A284765 9B31A287456 9B31A287465 9B31A824567 9B31A824576
9B31A824756 9B31A824765 9B31A827456 9B31A827465 9B31A872456 9B31A872465 9B3A1245678 9B3A1245687 9B3A1245867
9B3A1245876 9B3A1248567 9B3A1248576 9B3A1248756 9B3A1248765 9B3A1284567 9B3A1284576 9B3A1284756 9B3A1284765
9B3A1287456 9B3A1287465 9B3A1824567 9B3A1824576 9B3A1824756 9B3A1824765 9B3A1827456 9B3A1827465 9B3A1872456
9B3A1872465 9B3A8124567 9B3A8124576 9B3A8124756 9B3A8124765 9B3A8127456 9B3A8127465 9B3A8172456 9B3A8172465
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