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Abstract—Vision Transformers (ViTs) that leverage self-
attention mechanism have shown superior performance on many
classical vision tasks compared to convolutional neural networks
(CNNs) and gain increasing popularity recently. Existing ViTs
works mainly optimize performance and accuracy, but ViTs
reliability issues induced by soft errors in large-scale VLSI
designs have generally been overlooked. In this work, we mainly
study the reliability of ViTs and investigate the vulnerability from
different architecture granularities ranging from models, layers,
modules, and patches for the first time. The investigation reveals
that ViTs with the self-attention mechanism are generally more
resilient on linear computing including general matrix-matrix
multiplication (GEMM) and full connection (FC) and show a
relatively even vulnerability distribution across the patches. ViTs
involve more fragile non-linear computing such as softmax and
GELU compared to typical CNNs. With the above observations,
we propose a lightweight block-wise algorithm-based fault tol-
erance (LB-ABFT) approach to protect the linear computing
implemented with distinct sizes of GEMM and apply a range-
based protection scheme to mitigate soft errors in non-linear
computing. According to our experiments, the proposed fault-
tolerant approaches enhance ViTs accuracy significantly with
minor computing overhead in presence of various soft errors.

Index Terms—Vision Transformers, ABFT, Vulnerability Anal-
ysis, Fault-Tolerance, Soft Errors.

I. INTRODUCTION

V ISION Transformers (ViTs) that take advantage of the
self-attention mechanism to model long-range dependen-

cies of input images achieve impressive accuracy in main-
stream computer vision tasks especially on large datasets
compared to CNNs, and attract considerable attentions of
researchers from both industry and academia recently. Moti-
vated by the success of ViT [1], numerous variants have been
proposed to improve ViTs from different angles such as novel
training strategies [2] [3], effective self-attention mechanisms
[4] [5], and combining with classical neural network layers
[6]–[8]. While these ViTs works mainly optimize performance
and accuracy [9] [10], reliability issues induced by soft
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errors remain overlooked generally. On the other hand, the
occurrence of soft errors per chip increases continuously [11]
[12] due to the increasing transistor density and shrinking
feature sizes of a single transistor, which makes soft errors
almost inevitable for large-scale VLSI designs supporting
ViTs. Hence, reliability of ViTs in presence of soft errors
needs to be explored especially for safety-critical applications
like autonomous driving, where reliability can even hinder the
adoption of the ViTs in practice.

The reliability of CNNs has been explored comprehensively
in prior works [13]–[15], there is still a lack of reliability
analysis of ViTs that are constructed with Transformer blocks
and differ substantially from CNNs. Specifically, ViTs [1]
[16] with the self-attention mechanism usually incorporate
global information of inputs, while CNNs [17] mostly extract
local features with sliding window computing over inputs.
Accordingly, soft errors on inputs of ViTs become less sig-
nificant and pose less influence on the model outputs. In
addition, ViTs involve more complex non-linear functions like
GELU and softmax in each layer, while CNNs usually have
simpler non-linear functions in a layer. Basically, non-linear
functions of ViTs take up much higher proportion of the entire
model computing. As a result, soft errors induced computing
variations in non-linear functions become non-negligible in
ViTs and comprehensive reliability analysis of ViTs remains
highly demanded.

To understand the influence of soft errors on ViTs, we
explore the vulnerability of ViTs in different granularities
including models, layers, modules, and patches. The vulner-
ability factor for the components of ViTs is defined to the
model accuracy increase between accuracy of model without
protection and accuracy of model with the component un-
der evaluation perfectly protected. It also reveals the model
accuracy penalty if the target component suffers soft errors.
While ViTs involve much more non-linear functions that are
not considered in prior fault injection frameworks [18] [19]
targeting on CNNs with much less and simpler non-linear
functions, we utilize a unique operation-wise fault injection
framework [20] rather than these neuron-wise fault injection
frameworks to obtain the vulnerability of all the different
components of ViTs.

Based on the vulnerability analysis of ViTs, we further
propose corresponding fault-tolerant approaches to protect the
linear functions including GEMM and FC, and non-linear
functions including GELU and softmax respectively. For the
linear functions of ViTs that are generally implemented with
GEMM, we propose a lightweight block-wise algorithm-based
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fault tolerance (LB-ABFT) approach to suit the GEMM with
different sizes in ViTs. For the non-linear functions, we apply
a range-based protection approach to avoid acute computing
results and alleviate the negative influence of soft errors.
The proposed fault-tolerant approaches show significant model
accuracy improvement with minor computing overhead.

The contributions can be summarized as follows:
• We perform a comprehensive reliability analysis of ViTs

from different granularities including models, layers,
modules, and patches in presence of various soft errors
for the first time, which can be potentially utilized to
guide fault-tolerant design of ViTs.

• With the reliability evaluation, we compare the fault
tolerance of CNNs and ViTs in detail and observe that
linear functions in both ViTs and CNNs are more fragile,
but the non-linear functions in ViTs pose more negative
influence on the model accuracy in presence of soft errors
than in CNNs. In addition, vulnerability factors across the
inputs of ViTs are generally evenly distributed, which
differs substantially from that of CNNs.

• Based on the reliability analysis, we propose a LB-ABFT
and a range-based approach to mitigate soft errors in
linear functions and non-linear functions of ViTs respec-
tively. Our experiment results show that the proposed LB-
ABFT approach generally enhances the model accuracy
significantly and particularly reduces the computing over-
head considerably when compared to the standard ABFT
implementation. The hybrid approach shows significant
accuracy improvement and can almost fully recover the
accuracy even when the accuracy drops by 50%.

II. BACKGROUND AND RELATED WORK

In this section, we provide a brief description of ViTs and
review prior work about neural network vulnerability analysis
and fault-tolerant neural network design against soft errors.

A. Vision Transformers

Transformer architecture that leverages self-attention mech-
anism to capture non-local relationships between all input
sequence elements effectively achieves state-of-the-art per-
formance and has become the de-facto standard for typical
natural language processing (NLP) tasks. Inspired by the great
success of the Transformer architecture in NLP, researchers
also applied Transformer to computer vision tasks including
classification, detection, segmentation, and demonstrated su-
perior performance of ViTs [1]. A typical ViT architecture as
presented in Figure 1 is composed of multiple Transformer
encoders and each encoder consists of a set of connected
modules including multi-head attention module (MHA), feed-
forward module (FF), residual connections, and layer normal-
ization. MHA is utilized to model long-range dependencies
of inputs, mainly including GEMM, FC, softmax, and some
simple layers like scale and concat. It can be formalized as
Equation 1 where dk stands for the dimension of query and
key vectors. FF usually consists of two linear FC layers and a
nonlinear activation function i.e. GELU. In addition, another

Norm

Multi-Head

Attention

Feed Forward

Norm

Linear

Q K V

Scale

Softmax

Concat

L X

MatMul

MatMul

Linear

L X

GELU

Linear

Linear

Linear Linear

Fig. 1. Typical Vision Transformer Architecture.

major difference compared to typical CNNs is the image pre-
processing layer. As for the residual connections and layer
normalization, they are the same with that in typical CNNs.
In addition, ViTs need to split input images into a sequence
of non-overlapped patches with linear projection.

Attention (Q,K, V ) = Softmax

(
QKT

√
dk

)
V (1)

In the past few years, a variety of different models of ViTs
have been proposed. [1] is the pioneering work of vision Trans-
former and demonstrates that pure Transformer architectures
are capable to outperform state-of-the-art CNN models on
typical vision tasks with large datasets. Swin Transformer [16]
is a hierarchical Transformer that has representation computed
with shifted windows to provide a flexible modeling at various
scales with linear computational complexity of image sizes.
Deeper Vision Transformer (DeepViT) [21] proposed to re-
generate the attention maps to increase their diversity at
different layers and enable deeper scaling. Class-Attention
in Image Transformers (CaiT) [22] proposed to utilize class
attention in the last few layers and insert CLS (classes token)
as part of the class attention in the later stage of the network.
DeiT [2] investigated several training strategies to learn on
smaller datasets. T2T-ViT [23] proposed a Tokens-to-Tokens
module (T2T module) to learn patch partitioning and reduce
model size. Despite the tremendous efforts on ViTs, prior work
mainly focus on the Transformer architecture design for the
sake of higher performance and prediction accuracy, reliability
of ViTs is generally overlooked.

B. Reliability Analysis of Deep Learning

Soft errors become inevitable with the growing transistor
density and continuously lowering voltage of large-scale VLSI
designs. Soft errors, also called transient faults, are failures
caused by high-energy neutron or alpha particle strikes in
integrated circuits, which may be originated from packaging
materials or cosmic rays. Soft errors typically will result in
a bit flip from 0 to 1 or 1 to 0, so bit-flip error is usually
utilized to model soft errors in fault simulation. We will
utilize soft errors or bit-flip errors interchangeably across this
paper. The soft errors can propagate along with the deep
learning computing data flow, spread to more operations,
and generate incorrect computing results, which may induce
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considerable prediction accuracy loss of deep learning models
that eventually rely on the silicon-based computing engines
such as deep learning accelerators, GPUs, and CPUs.

Quantifying the influence of soft errors and understanding
the reliability of deep learning is an essential step to protect
against the soft errors especially for safety-critical applications
like autonomous driving and robotics. There have been many
prior works that evaluated the reliability of CNNs subjected
to soft errors from different angles. For example, [24] studied
the resilience of CNNs with different data types, values, data
reuses, and types of layers to guide the fault tolerance design.
[18] explored the relationship between fault rate and model
accuracy under various setups such as quantization, layer type,
and network structure. [25] mainly evaluated the impact of
model compression especially pruning and quantization on the
resilience of CNNs. The authors in [14] and [26] leveraged
FPGA based fault injection to evaluate the influence of persis-
tent faults on neural network models and particularly investi-
gated the faults on both control path and data path to obtain the
reliability from a system point of view. [27] proposed a new
reliability evaluation framework that brings both deep learning
accelerator architectural and compilation details to the high
level deep learning processing for more accurate reliability and
model accuracy evaluation. Some of the reliability evaluation
work further explored the reliability difference among compo-
nents of deep learning models such that they can be utilized to
guide selective protection with less protection overhead [28]–
[31]. For instance, [20] investigated the reliability difference
among the different operations and layers, [32] explored the
reliability difference among the different channels, and [33]
explored the reliability difference among the different neurons
with a classical layer-wise relevance propagation technique.
These approaches generally enable more fine-grained selective
protection compared to prior layer-wise protection in [34]–
[36]. More reliability evaluation study of deep learning can be
found in recent surveys [15] [37].

C. Fault Tolerance of Deep Learning

To protect deep learning processing against errors in silicon,
many fault-tolerant approaches have been extensively stud-
ied. Classical redundancy approaches such as dual modular
redundancy (DMR) and triple modular redundancy (TMR)
can potentially alleviate the influence of soft errors, but
straightforward DMR or TMR require substantial computing
overhead and they are usually combined with vulnerability
analysis such that fragile components can be selectively pro-
tected to reduce the overhead [33]–[35]. Algorithm-based fault
tolerance (ABFT) techniques [38]–[41], originally developed
for matrix-matrix multiplication based on checksum, have also
been explored to detect and recover faults in deep learning
without model modification, which are particularly suitable for
commercial-off-the-shelf computing engines. Different from
the above approaches that usually keep deep learning models
intact, many prior approaches explored the inherent fault
tolerance of deep learning models with distinct strategies such
as model architecture design [42], model parameter retraining
[43]–[45], and quantization restriction [46]–[48].

In summary, we notice that deep learning models must be
aware of the errors in silicon to ensure resilient and safety
processing, and reliability evaluation as well as fault-tolerant
design of neural networks have been intensively explored.
However, it will be inefficient if these works are applied to
ViTs directly. For instance, the completely different trans-
former blocks in ViTs compared to CNNs can probably affect
the fault tolerance of models. Thereby, rather than reusing
prior fault-tolerant approaches developed for CNNs directly,
we need a comprehensive investigation of the fault tolerance
of ViTs and decide the appropriate fault-tolerant approaches
for ViTs. At the same time, prior ViTs works mainly focused
on design for the performance and prediction accuracy, the
reliability of ViTs remains generally overlooked, which can be
a key barrier that hinders the adoption of ViTs on reliability-
sensitive applications.

III. VITS RELIABILITY EVALUATION

We mainly quantify the reliability of ViTs from the perspec-
tive of network architectures and investigate the vulnerability
of ViTs from different granularities including models, layers,
modules, and patches respectively.

A. Evaluation Setups

The major experiment setups include datasets, ViTs models
benchmark, fault models, and fault injection framework.

Dataset. We take the well-known ImageNet-1K as the
dataset [49] and randomly select 10000 images for the ac-
curacy evaluation. The resolution of each image in the dataset
is 256× 256.

TABLE I
MAJOR PARAMETERS OF THE VITS BENCHMARK

Network Layer Num Head Num eDima Patch Size
ViT-B 12 12 768 16× 16

Swin-T [2, 2, 6, 2] [3, 6, 12, 24] 96 4× 4
DeepViT-S 16 12 396 16× 16

CaiT-XXS-24 24+2 4 192 16× 16

aeDim refers to embedding dimension.

ViTs Models. We select four representative ViTs models as
the benchmark for reliability evaluation, and select ResNet18
and ResNet50 [17] for comparison. The detailed configurations
of these models such as the number of layers, number of
heads, embedding dimension, and patches are summarized
in Table I. ViTs include ViT-B [1], Swin-T [16], DeepViT-
S [21], and CaiT-XXS-24 [22]. All the neural network models
are quantized with int8. Top-1 accuracy is utilized as the
evaluation metric.

Fault Models. We utilize bit flip model to characterize typ-
ical soft errors. Particularly, following prior reliability analysis
works [18] [20] [24] , we also use bit error rate (BER), which
represents the ratio of bit flip errors over the total number
of bits of operations in the model as the soft error intensity
metric. It ranges from 1E-11 to 1E-7 which can cover the
major model accuracy degradation curve.
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Fig. 2. Top-1 model accuracy under different BER setups.
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Error Injection. We adopt an operation-wise error injection
method proposed in [20] for the reliability evaluation. It is
essentially an approximate implementation of bit-flip or soft
errors. We have it verified with both prior neuron-wise fault
injection frameworks and a fault-injection framework with
architecture details [50]. It is built on top of PyTorch and
injects random bit flip errors to outputs of the major arithmetic
operations i.e. multiplication and addition in each model,
which focuses on the computing of the models rather than a
specific computing engine. It covers both linear and non-linear
functions in the models.

Vulnerability Factor. To differ the reliability of different
ViTs components, we utilize vulnerability factor as the metric,
which refers to the model accuracy difference between model
with only the target component perfectly protected and the
model without any protection.

Hardware Platforms. All the evaluation experiments are
performed on a server equipped with two 24-core@2.5GHz
Intel Xeon processors, 512GB memory, and four PH402 SKU
200 GPU cards.

B. Model-wise Reliability Evaluation

In this sub section, we evaluate the Top-1 accuracy of
benchmark models under different BER setups ranging from
1E-11 to 1E-7, and utilize the accuracy degradation curves to
characterize the resilience of the models subjected to bit flip er-
rors. The results is shown in Figure 2. It reveals that the general
trend of the accuracy curves of different models are similar.
Basically, most of the computing errors can be tolerated and
the model accuracy generally remains steady or drops slightly
when the BER is low. When the BER further increases, the
model accuracy drops sharply as the distributed errors reach
certain threshold and corrupt the models. In addition, although
the general trend of the accuracy curves of different models

are similar, model architecture poses substantial influence and
results in different accuracy degradation.

Specifically, we observe that the model accuracy of en-
hanced ViTs models starts to drop at higher BER than ResNet.
For instance, ResNet18 starts to drop when the BER is
at 3E-10, while ViTs models such as Swin-T and CaiT-
XXS-24 start to drop when the BER is at round 9E-10. In
addition, the accuracy degradation curve of ResNet18 and
ResNet50 are sharp and the accuracy drops to zero very fast.
While the accuracy degradation curves of ViTs models are
relatively more smooth in general, which demonstrates that
ViTs models are more resilient when subjected to the same
bit error rate. Nevertheless, due to the much higher computing
overhead, straightforward redundancy based protection can
incur considerable overhead. Hence, more fine-grained fault
analysis is required to understand the fault tolerance of ViTs
comprehensively.

C. Layer-wise Reliability Evaluation

To gain insight of the reliability of ViTs, we take Trans-
former blocks as layers, and investigate layer-wise vulnerabil-
ity factors in this sub section. Specifically, we utilize the model
accuracy difference between model without any protection and
the same model that only has the target layer set to be fault-
free as the metric to quantify the vulnerability of the layer.
Larger vulnerability factors indicate that the corresponding
layers are more sensitive to the bit-flip errors and need to be
protected with higher priority in general. Since vulnerability
factor is closely related with BER, we set BER to be the
value that leads to moderate accuracy loss i.e. 10%, 20%
and 30% accuracy loss, which can be potentially addressed
with reasonable overhead. The layer-wise vulnerability factor
of the different ViTs models is shown in Figure 3. It reveals
that the variation of the layer-wise vulnerability factors vary
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across the layers. However, the vulnerability factor variation
across different layers of ViTs models are lower than that
of ResNet, which is probably caused by the global feature
extraction based on the self-attention mechanism in ViTs and
insignificant FLOPs difference between different layers.

D. Module-wise Reliability Evaluation

Different from the layer-wise reliability analysis, we also
explore the reliability of ViTs models from the perspective of
operation modules. ViTs can be roughly divided into linear
functions such as GEMM and FC, and non-linear functions
(NLF) such as softmax and GELU. Particularly, we denote
linear functions in MHA and FF as MHA-LF and FF-LF,
respectively. In contrast, ResNet18 and ResNet50 are divided
into convolution modules (Conv), FC modules and NLF mod-
ules like ReLU. For the error injection to non-linear functions,
we inject random bit-flip errors to the basic multiplication and
addition operations. Similar to prior layer-wise vulnerability
factors, we also utilize the vulnerability factors to characterize
the sensitivity of the different modules to the bit flip errors.
As for the BER used in the evaluation, we set BER to be the
same as that used in layer reliability analysis.

The experiment result is shown in Figure 4. It can be seen
that the module-wise vulnerability factors vary substantially
across the different modules. Particularly, FF with a large
number of operations in ViTs model turns out to be the
most fragile part, which indicates that FF is generally more
sensitive to bit-flip errors. In contrast, MHA generally has
much lower vulnerability factor than FF, despite the non-trivial
amount of operations. This is mainly because that the softmax
limits the output value within the range between 0 to 1 and
suppresses the influence of errors substantially. For ResNet,
the vulnerability factors of Conv are significantly higher as
expected because they take up the majority of operations in
ResNet. In addition, NLF that takes up only a fraction of the
overall operations of ViTs, but it still shows some vulnerability
in ViTs models. As for ResNet, the proportion of NLF is much
smaller, exhibiting a relatively low vulnerability factor.

E. Patch-wise Reliability Evaluation
To study the influence of soft errors on input images, we

follow the ViTs patch setups and investigate the patch-wise
vulnerability factors of the ViTs models. To compare with
convolutional neural network models, we also analyze the
inputs of ResNet18 and ResNet50 with the granularity of
patches and the patch is set to be 16 × 16. Similar to the
layer-wise vulnerability factor, we take the accuracy difference
between models with the target input patch perfectly pro-
tected and models without input protection as the patch-wise
vulnerability factor. Since the vulnerability is closely related
with the error rate, we set BER to be the value that leads
to 10% accuracy loss. The patch-wise vulnerability factor is
presented with heatmap as shown in Figure 5. It shows that the
distribution of the vulnerability factors of ViTs and ResNet are
quite different. Since objects in ImageNet are usually located
in the center of input images, errors on pixels located in the
center pose more negative influence on ResNet model accuracy
as expected. The patch vulnerability factors of ViTs show a
relatively even distribution and vulnerable patches can scatter
across the input images. This is because that ViTs leverage the
self-attention mechanism to obtain global information rather
than local features.

IV. FAULT-TOLERANT APPROACHES FOR VITS

According to the analysis in Section III, we notice that
the major reliability challenges of ViTs models for linear
operations and non-linear operations differ substantially. For
linear operations that are typically implemented with GEMM
take up considerable computing overhead, so they need to be
protected with a lightweight approach. NLF involves much
less computing but still has influence on the model reliability,
so NLF protection needs to emphasize more on the accuracy
rather than computing overhead. In this work, we propose
an adaptive yet lightweight block-wise ABFT (LB-ABFT)
approach to protect the linear operations in ViTs and we adopt
a range-based approach to explicitly suppress the outputs of
NLFs that can vary considerably in presence of bit-flip errors.
Details about the fault-tolerant approaches will be illustrated
as follows.
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A. Fault-tolerant Approach for Linear Operations

Standard ABFT algorithm essentially leverages a checksum
mechanism to obtain sum of outputs with different approaches
such that they can be utilized for both the fault detection
and recovery. Standard ABFT can be divided into an error
detection stage and an error recovery stage. Take an n × n
GEMM as an example, error recovery requires 2n2 MACs and
it is more expensive compared to error detection that requires
only n MACs. Error recovery is invoked only when computing
errors are detected, but it is beneficial only when there is only
one output error in each row or column due to the limited error
correction capability. Thereby, it is inefficient to adopt standard
ABFT when multiple computing errors occur in a single row or
column at higher BER. Additionally, we observe that the sizes
of GEMM in ViTs models can vary dramatically, and direct
implementation of standard ABFT without being aware of the
matrix sizes or the error rate can induce frequent error recovery
procedures and low reliability. Meanwhile, layer vulnerability
factors can vary, which further complicates the protection.

To address the problem, we propose a LB-ABFT approach
as shown in Algorithm 1, which selects the most vulnerable
layer based on layer vulnerability factors (lines 1-3), and
then prioritizes the most vulnerable GEMM in this layer for
protection (lines 6-8). For the specified GEMM, we adopt a
LB-ABFT strategy and divide a large GEMM into multiple
sub GEMMs. As shown in Figure 6, we show the flow and
diagram of LB-ABFT, which consists of three processing
stages. It performs the error detection of the entire GEMM
first. If an error is detected, it further invokes the block-
wise error detection such that faulty blocks can be deter-
mined. Finally, block-wise error recovery is performed on
only faulty blocks. Among, we use the analytical algorithm
OptBlockSizeSelection in Algorithm 2 to adaptively select
the most suitable block size for GEMM of different sizes
under different BER setups and different models, instead of
choosing a fixed block size to split all GEMMs (line 10).
Note that the optimized block size setup is determined offline
in advance. When the optimized block size is determined,
we can apply the LB-ABFT strategy on the GEMM and
estimate if the accuracy and computing overhead meet user
requirements (lines 11-17). By iterating the above processing
steps as shown in Algorithm 1, we can achieve the specified
model accuracy with minimum computing overhead. When the

Algorithm 1 LB-ABFT Algorithm
Input: A model with L layers and each layer involves N matrix multipli-

cations, the target model accuracy is set to be ACC under bit error rate r.
Output: Determine the LB-ABFT protection strategy that minimizes the LB-

ABFT computing overhead and fulfills the specified model accuracy ACC
as well as computing overhead limit C0.
1: Optimize LB-ABFT protection operation sequence S ← ∅, where

(mi,j , pi,j) ∈ S, mi,j refers to the jth GEMM in ith layer of the
model and pi,j stands for the partition setups of the GEMM. Note that
i ∈ (1, ..., L), and j ∈ (1, ..., N).

2: Obtain the vulnerability factors LV of all the layers.
3: Sort LV with descending order and obtain the protection order LR of

the layers.
4: i ← 1, C ← 0
5: while (acc < ACC and C < C0) do
6: LRi refers to the layer ID that ranks at ith in vulnerability factor.
7: obtain the vulnerability factors MV of all the matrix in LRith layer.
8: Sort MV with descending order and obtain the protection order MR

of all the GEMMs in this layer.
9: for j = 1 to N do

10: pLRi,MRj
, c ← OptBlockSizeSelection(mLRi,MRj

, r).
11: Apply LB-ABFT based on pLRi,MRj

to the GEMM
mLRi,MRj

.
12: Append pLRi,MRj

to S.
13: Obtain model accuracy acc.
14: Computing overhead C ← C + c
15: if (acc > ACC or C > C0) then
16: break;
17: end if
18: end for
19: i ← i+ 1
20: end while
21: return LB-ABFT protection sequence S, model accuracy acc, and

computing overhead C.

overall computing overhead exceeds the computing overhead
limit, we optimize the model accuracy under the computing
overhead limit. The accuracy optimization is similar to the
above computing overhead optimization procedure. At the
end of this algorithm, we can obtain optimized LB-ABFT
strategies for ViTs under various BER setups.

For the analytical algorithm OptBlockSizeSelection, we
have it detailed in Algorithm 2. Basically, we utilize LB-
ABFTOVERHEAD to estimate the LB-ABFT computing
overhead (lines 9-19), and utilize the computing overhead as
a guide to optimize the block size for each specific GEMM.
Since addition and multiplication generally dominate the
ABFT computing overhead of GEMMs, we utilize the number
of multiplication operations and addition operations induced
by ABFT as the computing overhead directly. The overhead
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Algorithm 2 OptBlockSizeSelection
Input: The dimensions of the two input matrices are m × n and n × p

respectively and the bit error rate is r
Output: Optimized block size b and computing overhead c.
1: B stands for all the possible block size setups.
2: C stands for the computing overhead with different block sizes.
3: for each possible block size setup in B do
4: C[i] ← LB-ABFTOVERHEAD(B[i], r)
5: end for
6: Find optimized block size b that leads to minimum computing overhead

c in C.
7: return b, c
8:
9: function LB-ABFTOVERHEAD(b, r)

10: Number of sub matrices blk ← ⌈m
b
⌉ × ⌈n

b
⌉ × ⌈ p

b
⌉

11: GEMM error probability EPM ← 1 - (1− r)m×n×p

12: Sub GEMM error probability EPSM ← 1 - (1− r)⌈
m
b
⌉×⌈n

b
⌉×⌈ p

b
⌉

13: GEMM error detection overhead Mdetection ← n
14: Sub GEMM error detection overhead SMdetection ← b
15: Sub GEMM error recovery overhead SMrecovery ← 2× b× b
16: Total error detection overhead Tdetection ← Mdetection + EPM ×

blk × SMdetection

17: Total error recovery overhead Trecovery ← EPM ×blk×EPSM ×
SMrecovery

18: return total computing overhead Tdetection + Trecovery

19: end function

can also be weighted depending on the target computing
engines. The total computing overhead of LB-ABFT consists
of error detection overhead and error recovery overhead in
general. Error detection further includes detection of the entire
GEMM and detection of all the sub GEMM blocks when the
overall GEMM is faulty. Error recovery is the accumulated
overhead of the error recovery of all the faulty sub GEMM
blocks. Larger GEMM blocks usually require less error de-
tection overhead but can incur more recovery overhead. In
contrast, smaller GEMM blocks pose more detection overhead
but less recovery overhead. Hence, optimized blocking setup
varies with the bit error rate that determines the activation
probability of the error recovery procedures and the total error
recovery overhead. Since the probability of the error recovery
will also be affected by the actual error distribution across the
GEMM, we assume an even error distribution and take the
expected computing overhead induced by both error detection
and error recovery into consideration for the LB-ABFT block-
ing optimization metric. Essentially, the blocking algorithm is
built on top of an analytical model that estimates the LB-
ABFT detection overhead and recovery overhead respectively,
and seeks to minimize the total computing overhead with the
basic brute-force search.

In order to verify the influence of block size on the
computing overhead, we take two typical GEMMs from ViT-
B as an example and evaluate the computing overhead using
the proposed LB-ABFT strategy under various bit error rate
setups. The experiment result as presented in Figure 7 confirms
that the optimized block size cannot neither be too big nor too
small as expected. In most cases, we notice that larger block
size setups can result in larger computing overhead because
of the frequent error recovery procedures. When the block
size is smaller especially when the error rate is relatively
lower, it also induces high computing overhead due to the
increased error detection. At the same time, we also observe
that optimized block size varies substantially over the different
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error rate setups. On top of the computing overhead, we utilize
MSE between GEMM with error injection and GEMM without
error injection as a typical computing accuracy metric and
investigate the influence of block size setups on the computing
accuracy. It can be seen that MSE increases relatively slow
when the block size ranges from 22 to 40. Basically, these
block size setups will not cause much computing accuracy
difference of the GEMM and computing overhead turns out
be more important for the block size selection in these cases.
When the block size gets higher, MSE increases rapidly and
may affect the resulting model accuracy. Hence, MSE may
also affect the block size selection. Fortunately, the proposed
block size optimization strategy based on computing overhead
minimization generally produces moderate block size setups
and shows competitive accuracy.

Based on the proposed block size optimization algorithm,
we further analyze the optimized block size selection at
different error rate. As shown in Figure 8, it can be seen
that optimized block size is generally smaller at higher BER
setups when error recovery dominates the total computing
overhead. In addition, we notice that LB-ABFT computing
overhead is generally higher at higher BER despite the block
size optimization. The percentage of these operations depends
on the size of GEMMs. It can be seen that the percentage of
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Fig. 9. Model accuracy of ViTs with LB-ABFT and range-based protection.
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Fig. 10. Computing overhead of ViTs with LB-ABFT and range-based protection.

multiplication over the total LB-ABFT computing overhead is
much higher for GEMMs with shorter second matrix.

B. Fault-tolerant Approach for Non-Linear Operations

For NLFs in ViTs, we adopt a range-based approach [45]
[46] to suppress the soft errors induced computing errors in
general. Specifically, for NLFs with determined range such as
softmax, outputs that exceed the range between 0 and 1 will
be set to be zero. For the NLFs without fixed range such as
GELU, we set the range to be ((1+α)×min, (1−α)×max)
where min and max represent the minimum and maximum
values of the function outputs respectively and they can be
obtained through statistic with a set of sampling inputs. α
is utilized to filter out large outputs with very limited number
and it is set to be 0.02 according to [46]. Similarly, computing
results that are out of the range will be set to be zero. Since the
range-based approach only needs comparison operations and
its computing overhead is trivial compared to ViTs processing.

C. Evaluation

The proposed LB-ABFT and range-based approach are
applied to protect ViTs against various soft errors. The ac-
curacy loss relative to a clean model is set to be less than
2% and the maximum computing overhead is set to be 2%
normalized to the total ViTs computing. To evaluate the
proposed fault-tolerant approaches, we inject bit flip errors at
the granularity of operations like addition and multiplication
based on PyTorch such that fault injection is consistent for
both linear operations and non-linear operations. It differs from

prior neuron-wise fault injection frameworks [18] [19] [51]
that fail to cover the non-linear functions and is open sourced
on github 1. With the operation-wise fault injection framework,
we apply the proposed fault-tolerant approaches gradually on
a set of ViTs including ViT-B, Swin-T, DeepViT-S, and CaiT-
XXS-24 at different bit error rates.

We evaluate the model accuracy and compare with that of
clean models and models without any protection. The compar-
ison is shown in Figure 9. It demonstrates that the proposed
fault-tolerant approaches enhance model accuracy significantly
in general and the accuracy can be mostly recovered even
when the accuracy of the unprotected models drops by more
than 50% at higher BER setups. In addition, we notice that
both linear operations and non-linear operations in ViTs can
tolerate some soft errors and the model accuracy drops little
when the error rate is low. However, when the error rate
increases, more sharp model accuracy drop is observed if
linear parts of ViTs are not protected. For instance, the model
accuracy with only range-based protection gets close to zero
when BER is 2E-8 for Swin-T, DeepViT-S, and CaiT-XXS-
24. This is probably because that the number of primitive
operations in linear functions of ViTs is much larger than
that of non-linear functions in ViTs. At the same time, the
influence of faults on non-linear functions remains non-trivial
especially at relatively higher error rate.

Additionally, we evaluate the computing overhead of the
proposed LB-ABFT and range-based protection at different
BER setups in Figure 10. ABFT requires multiplication and
addition, while range-based approach only requires compar-

1https://github.com/xuexinghua/Operation-level-FI.git

https://github.com/xuexinghua/Operation-level-FI.git
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Fig. 11. Model accuracy comparison between LB-ABFT and standard ABFT [40] [52]–[57], intensity-guided ABFT [41], and layer-wise TMR [34] [58].
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Fig. 12. Computing overhead comparison between LB-ABFT and standard ABFT [40] [52]–[57], intensity-guided ABFT [41], and layer-wise TMR [34] [58].

ison. For the LB-ABFT protection, its computing overhead
increases with BER. The main reason is that as the BER
increases, more computing errors will occur and error recovery
will be invoked more frequently. When the BER is very
high, there are still multiple errors in the same sub GEMM,
excessive use of LB-ABFT will not further improve the model
accuracy, so we opt to relax the model accuracy requirement
by using larger blocks and skipping some useless error recov-
ery to reduce the computing overhead. For the range-based
protection, its computing overhead stays the same at different
BER setups, but its benefit to accuracy increases with BER,
because NLFs are usually placed after linear functions and
also help to suppress the computing errors of linear functions
especially when LB-ABFT fails to correct the computing
errors at higher BER.

To highlight the advantages of the proposed LB-ABFT, we
compare it with several state-of-the-art fault-tolerant methods
from the perspective of both model accuracy and computing
overhead in Figure 11 and Figure 12, respectively. [34] [58]

represent typical layer-wise TMR approaches. Despite the
different application scenarios of ABFT, [40] [52]–[57] essen-
tially utilize standard ABFT approaches. They conduct ABFT
with the granularity of GEMMs and can only recover from a
single computing error. Particularly, we want to emphasize that
standard ABFT is widely utilized and can still be considered
to be one of the state-of-the-art algorithm-based fault tolerance
approaches. [41] is an intensity-guided ABFT and suppose it
hides the error detection overhead within GPU idle time slot
perfectly. It also recovers from a single computing error. Ac-
cording to the comparison, we notice that LB-ABFT achieves
comparable accuracy with layer-wise TMR, but the computing
overhead is much smaller. When compared with standard
ABFT and intensity-guided ABFT, LB-ABFT requires much
less multiplication and achieves higher model accuracy under
all the different BER setups. The main reason can be attributed
to two aspects. On the one hand, LB-ABFT divides larger
GEMM into multiple sub blocks and spreads random bit-flip
errors across the different sub blocks, which greatly improves
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Fig. 13. The execution time distribution of standard ABFT and the proposed LB-ABFT under different bit error rate setups.
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Fig. 14. The average error probability of sub GEMMs in LB-ABFT and the average error probability of GEMMs in standard ABFT, which directly reveals
the invocation probability of error recovery procedures of LB-ABFT and standard ABFT under different BER setups.

the success rate of the LB-ABFT error recovery procedures.
Thereby, the resulting model accuracy can be improved. On
the other hand, some of the sub blocks are fault-free, and LB-
ABFT only performs error recovery on faulty sub GEMMs
instead of the whole GEMM. Hence, this approach reduces
the total computing overhead. While intensity-guided ABFT
shows less addition overhead than LB-ABFT because of the
ideal error detection hiding mechanism, the optimization can
be potentially orthogonal to this work.

In order to gain insight of the proposed LB-ABFT, we
also present the execution time distribution of both LB-ABFT
and standard ABFT deployed on GPUs in Figure 13. It
can be observed that the execution time distribution varies
substantially. The error recovery procedure dominates the
execution time for standard ABFT while the proportion of the
error detection procedure is much higher in LB-ABFT. The
main reason can be attributed to the fine granularity of error
detection and error recovery in LB-ABFT. Basically, many sub
GEMMs are actually fault-free and they will not invoke the
time-consuming error recovery procedure. To further confirm
the above analysis, we present the average error probability of
sub GEMMs in LB-ABFT and the average error probability
of GEMMs in standard ABFT in Figure 14, which directly
reveals the invocation probability of error recovery procedures
of LB-ABFT and standard ABFT under different BER setups.
As shown in Figure 14, the error probability of sub GEMMs
is very low in general and it is much lower than that of the
standard ABFT without blocking. The higher error probability
of GEMMs in standard ABFT will not be a problem at lower
BER because the overall computing overhead is dominated
by the error detection overhead, but it becomes expensive at
higher BER when the error recovery procedure takes up the

majority of the ABFT overhead as shown in Figure 13.

V. CONCLUSION

In this paper, we perform comprehensive reliability analysis
of ViTs at different granularities including models, layers,
modules, and patches, and reveal the unique reliability fea-
tures. Based on the analysis, we proposed LB-ABFT approach
to adjust blocking size to fit the reliability requirements of
different ViTs linear functions and BER setups, and applied a
range-based approach to protect NLFs that are generally over-
looked. According to our experiments, the proposed LB-ABFT
achieves great advantages on both accuracy and computing
overhead over the standard ABFT at various BER setups. The
hybrid approach shows significant accuracy improvement and
can almost fully recover the accuracy even when the accuracy
drops by 50%.
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