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Abstract

Detecting thermal Unruh radiation from accelerated electrons has presented

a formidable challenge due not only to technical difficulties but also for lack of

conceptual clarity about what is actually seen by a laboratory observer. We

give a summary of the current interpretations along with a simpler heuristic

description that draws on the analogy between the Unruh effect and radiation

from a two-level atomic system. We propose an experiment to test whether

there is emission of thermal photons from an accelerated electron.

Introduction

An era of accelerated expansion or ‘inflation’ soon after the Big Bang is invoked to

address several fundamental issues of the Friedmann-Lemâıtre cosmology, viz. the horizon

and flatness problems [1]. Whereas these problems are not well-posed (as they require

unjustifiable extrapolation back to t = 0), it is widely accepted that the generation of a

nearly scale-invariant spectrum of scalar density perturbations during inflation is crucial for

seeding the growth of the observed large-scale structure in the Universe. The underlying

physical mechanism is gravitationally driven particle production through quantum processes

[2–4], which elegantly brings together general relativity and quantum field theory. The

challenge of physically modelling such processes is however formidable, and here we consider
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whether it may be possible to experimentally explore gravitational particle production using

ultra-high intensity lasers.

It is well known that particle-production phenomena can occur in a curved or dynamic

spacetime [5–7]. Famously, thermal radiation arises from particle production near the event

horizon of a black hole, an effect known as Hawking radiation [8, 9]. It had been noted

earlier that particle production also occurs due to the varying gravitational field in an

expanding Universe [2–4, 10]. (Although Schrödinger [10] had remarked on this ‘alarming

phenomenon’ even earlier, his argument was not correct in detail [11].) Of particular interest

is the inflationary epoch in the early Universe when the Hubble expansion rate was very

high and spacetime was very curved and dynamic. Understanding particle production during

inflation should help to embed it in a physical framework [12] and also elucidate non-thermal

production of supermassive dark matter in the early universe [13].

Simply put, an expanding space-time causes creation operators to evolve into superpo-

sitions of creation and annihilation operators. This so-called Bogoliubov transformation

implies the creation of particle-antiparticle pairs — a consequence of the mappings between

the Fock (particle number) states associated with different reference frames. This can hap-

pen in a curved spacetime or in an accelerating frame in flat spacetime [14, 15], both of which

may be interpreted via the equivalence principle as due to gravitational particle production.

Gravitational particle production has not been directly seen. Whereas primordial density

perturbations are indeed observed via their imprint on the cosmic microwave background

(CMB), to establish that these were generated during inflation requires detection of the

concommitant primordial gravitational waves via their B-mode polarisation signature in the

CMB; such a claim was made by the BICEP collaboration but subsequently shown to be

unjustified [16, 17]. However, soon to be commissioned multi-petawatt laser facilities [18, 19]

will enable us to access and control the unprecedented large acceleration they can impart

to e.g. electrons which may lead to the observation for the first time of particle production

in a non-inertial reference frame. This would constitute the experimental confirmation of

the Fulling-Davies-Unruh effect [14, 15, 20] which is considered to be equivalent to Hawking

radiation as a consequence of black hole thermodynamics, and a pointer to quantum gravity.

Our purpose here is to clarify what can be measured in such experiments and to guide

experimentalists with simple models that follow from basic principles. Any claim of detection

of Unruh radiation needs to be an unambiguous measurement in the laboratory frame of
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an effect that tells us that thermal radiation is present in the accelerated frame. We do

not attempt rigorous derivations but rather aim to provide physically meaningful insights;

this paper is an expanded version of our presentation at the Multi Petawatt Prioritization

workshop [21]. We refer the reader to Crispino et al. [22] for an advanced discussion of

Unruh radiation.

State of the art of our theoretical understanding

As mentioned above, recent developments in ultra-high intensity lasers [23] have revived

interest in the possibility of detecting both the Schwinger effect and testing non-perturbative

QED effects [24–29]. Projects such as the European Extreme Light Infrastructure [18, 19]

or the Shanghai Coherent Light Facility [30] will provide radiation beams with intensities

exceeding 1023 W/cm2. An electron placed at the focus of such beams should then experience

an acceleration comparable to what it would feel at the event horizon of a 6 × 1018 kg

(3×10−12M⊙) black hole. Indeed for such low mass black holes the surface gravity is strong

enough that pairs of entangled photons can be produced from the vacuum, with one of the

pair escaping to infinity. The black hole radiates and the spectrum has the blackbody form at

the Hawking temperature [8]. However astrophysical black holes are usually shrouded by the

matter they are accreting. Given the difficulties of directly observing Hawking radiation,

Unruh proposed, by appealing to the Equivalence Principle (of gravitational and inertial

accelerations), that a similar effect (hereafter called just the ‘Unruh effect’) can be measured

by an accelerated observer [20].

While it is generally accepted that the semi-classical derivation of Hawking radiation is

sound, it nevertheless makes use of several approximations that have not been tested. Simi-

larly, while an accelerated observer is believed to experience the equivalent Unruh radiation,

it has been unclear what a detector in the laboratory frame will actually measure. Views

are split, with some researchers believing that the answer is contained in ordinary quantum

field theory, while others point out that additional effects due to the acceleration must be

included. A possible reason for such differing views is that defining what constitutes an

experimental proof of Hawking and Unruh radiation requires a coherent understanding of

rather disparate fields: viz. gravity, non-equilibrium quantum field theory in curved space-

time, and high-intensity lasers.
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FIG. 1: Heuristic interpretation of the Unruh effect for a two-level atomic system. When the

atom is at rest (top row), high order (virtual) processes involving the simultaneous emission and

absorption of photons are permitted. However, when the atom is accelerated (bottom row), emission

and absorption can become decorrelated leaving the atom in an excited state and emitting a photon

to a distant observer.

The exact derivation of the Unruh effect is not simple, but physical intuition can be gained

by considering an idealized two-level atom (with energy separation ∆E = hν) that is subject

to a constant acceleration a [31, 32]. In the accelerated state, higher-order processes by which

a photon is simultaneously emitted and absorbed can also be considered (see Figure 1). Since

the acceleration incrementally changes the velocity of the atom, the frequency at which the

photon is emitted can be slightly different than the frequency at which it is absorbed.

However, if this change in frequency is larger than the linewidth of the atomic transition,

the emitted photon disentangles from the absorbed one, and we are left with an atom in the

excited state and a real photon being radiated away as shown in Figure 1. By Heisenberg’s

principle this occurs when c2/a ≲ ℓ, where ℓ = c/ν is the photon correlation length (i.e.,

wavelength), and we have assumed an acceleration time tacc ∼ c/a. This is the essence of

the Unruh effect: it is a very general process which is associated with all accelerated bodies.

If the acceleration continues for a sufficiently long time (we will define what we mean

by this later), the process of emission and absorption of photons by the atom reaches a

steady state. The Unruh effect requires that the duration of the acceleration be at least
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comparable to the inverse of A21, the Einstein coefficient for spontaneous emission (for the

case of naturally broadened lineshape). The frequency uncertainty due to the acceleration

is

∆ν ≳
1

2πtacc
=

a

2πc
, (1)

so we can set A21 ∼ a/2πc. Let us consider the accelerated frame, i.e., the instantaneous

inertial frame in which the accelerated observer is at rest. In Rindler coordinates, frequencies

(ω′) and distances (z′) in the accelerated frame are related to those in the laboratory frame

(ω and z, respectively) as: ω′(τ) = ω e−aτ/c, z′(τ) = z e−aτ/c[1 + tanh (aτ/c)], where τ is

the proper time in the accelerated frame, and the motion is in the +z direction [33]. If

we consider τ = 0, then frequencies and distances in the inertial laboratory frame and the

accelerated frame are the same. The spectral flux of emitted photons is given by

F acc
ν (τ = 0) ∼ hνA21ϕνℓ

−2 ∼ haν3ϕν

2πc3
, (2)

where we have taken the photon correlation length to be the characteristic size of the emission

volume, and ϕν is the line profile. In order to estimate the line profile, we notice that, because

of the acceleration, frequencies that were emitted earlier in time are Doppler shifted. The

Lorentz boost that relates the frequencies in the accelerated (ν ′) and inertial (ν) frames is

ν ′(τ) = ν
1− v/c√
1− v2/c2

, (3)

where the accelerated frame moves with velocity v(τ) = c tanh (aτ/c) on the Rindler’s

trajectory. Thus, the probability to emit a photon in the frequency range between ν ′ and

ν ′ + dν ′ is simply related to the fractional change in velocity; hence ϕν dν
′ = dv/c. This

implies,

ϕν dν
′ =

dv

c dν ′ dν
′ ∼ 1

ν
dν ′, (4)

where the last relation is obtained by assuming that most of the emission occurs near τ = 0.

We can thus approximate ϕν = 1/ν, giving

F acc
ν ∼ haν2

2πc3
. (5)

We notice that this relation should only be applicable for small frequencies since it relies on

the assumption that most of the spectrum is built around τ = 0.

As discussed in Ref. [33], the overall frequency spectrum that results from these Doppler

shifts is thermal. In the final step of this heuristic derivation of the Unruh effect, let us
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assume that the flux of emitted photons can be represented in terms of a blackbody function

at some temperature TU. In the low-energy regime, this is simply given by the Raleigh-Jeans

formula:

F acc
ν =

2πν2

c2
kBTU. (6)

Equating the last two expressions, we get

TU =
ℏa

2πkBc
, (7)

which is just the Unruh temperature [20] (please note that in the definition of TU we have

introduced the reduced Planck constant, ℏ, instead of h).

From the considerations above we see that the key element in the realization of the Unruh

effect is the atom having discrete energy levels, i.e. a system that can change its state or

its internal energy. We call such a system a detector. Any particle with internal structure,

e.g. a proton or a neutron, is a detector according to this definition. If we describe the two

level detector as a classical harmonic oscillator, the damping rate is obtained by comparing

the correlation length of the system (λ) to the spatial scale of the transition (c/ν), i.e.,

γcl = (32π3/3) ν3(λ/c)2 ∼ ν3(ℓ/c)2 [34, 35], where λ ∼ ℓ ∼ c/ν for such a transition. Using

this, the coefficient of spontaneous emission is [32, 36]:

A21 ∼
g2

4π
γcl ∼

g2

4π

( a

2πc

)
, (8)

where, for generality, we have introduced a coupling constant, g2/4π. For discrete transitions

of a detector involving the emission and absorption of photons and a change of internal

state, g2/4π = 1. If the transition is associated with an electron jumping to a different

atomic level, this is described by the electromagnetic coupling g2/4π = α, where α is the

fine structure constant. The arguments here can be easily generalised. In Figure 1 we see

that the accelerated atom can, in principle, couple to the emission and absorption of other

particles e.g. gravitons and neutrinos [37–40], and possibly even those beyond the Standard

Model such as axions, dark photons or millicharged particles [41, 42].

Larmor power and radiation reaction

A direct observation of the Unruh effect as outlined above would require the acceleration

of atoms. However, because of their larger mass compared to that of electrons, the accel-

eration of atoms or ions is challenging. Using radiation pressure acceleration [43], even at
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intensities IL ∼ 1025 W/cm2, we expect only TU ∼ 10−3 eV. This temperature would indeed

be high enough to affect the ionization state of the bound levels in the accelerated atom,

hence the measurement of the ionization balance or line emission spectral changes from

the atom as function of the acceleration (particularly for rotational/vibrational spectra of

molecules) would provide possible ways for the detection of Unruh radiation. However the

required laser intensity is well above what is achievable at any current laser facility. In addi-

tion, at IL ∼ 1025 W/cm2 QED effects such as copious production of electron-positron pairs

[44] would already make any detection of changes in the ionization balance very challenging.

As discussed in Ref. [45], for small accelerations, the Unruh signal from an atom inside a

cavity can resonate with its normal modes, enhancing the overall emission. This may be a

promising avenue for a future experiment; however, the experimental realization of such a

detector is still far from being realised.

For all of these reasons, Unruh and others have instead adopted an alternative approach

to exploit the mathematical analogy between trans-sonic flowing water [46], Bose-Einstein

condensates [47] and other analogue systems [48] and the behaviour of quantum fields in the

vicinity of a black hole horizon. While these experiments have successfully demonstrated

the mathematical soundness of Hawking’s solution, they may have fallen short in proving

that the radiation is actually emitted by non-inertial bodies and that the underlying theory

is indeed physically correct [49].

Electrons, instead, are much easier to accelerate so are the ideal ‘detector’ to test the

Unruh predictions. Large accelerations can already be realised in the laboratory using high

intensity lasers, e.g. lasers with intensity IL ∼ 1019 W/cm2 can accelerate electrons to an

Unruh temperature of about 1 eV [50]. While, in principle, this can be measured in the

laboratory, there is a fundamental issue that has seldom been discussed in the literature:

the electron is a point particle with no internal structure. This implies that what we mean

by Unruh radiation for an accelerated electrons must be carefully defined, see, in particular

Refs. [51–53]. Bell and Leinaas [51, 52] have pointed out that by treating the electron spin as

a two-level quantum system interacting with the Unruh bath, the effect of the radiation field

along the accelerated orbit of the electrons is different from the effect on an electron sitting

at rest. This leads to a small, but non-vanishing depolarization of the electron beam. These

conclusions have, however, been questioned [54, 55]. Moreover, the Unruh temperature in

arbitrary trajectories [56, 57] may not be the same as for uniform linear acceleration, as it is
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commonly calculated. Recently the possibility of accelerating an electron in a magnetic field

has been considered [58]. While such a system exhibits finite transitions set by the Landau

levels and thus its behaviour resembles that of an atom, its realisation would still push the

limits of the currently available laser and magnetic field technology.

Already the above discussion shows how controversial the subject of Unruh radiation

has been in the literature [59–61] , especially concerning how to distinguish it from other

classical and quantum radiation processes involving acceleration of charged particles.

Here we address these issues in a unified approach, with the aim of clarifying different in-

terpretations of what is meant by radiation from an accelerated electron. While the electron

has no internal energy states, its interaction with the accelerated vacuum (the Unruh pho-

tons) results in continuous changes of its momentum via electromagnetic scattering [62, 63].

First, for electromagnetic scattering, we take g2/4π = α in Eq. (8). These energy changes

can be infinitely small, so ν → 0 and A21 → 0. This means that those small continuous tran-

sitions require infinitely long times to equilibrate and consequently the power radiated by

the Unruh effect at those frequencies is very small. Eq. (8) still remains valid if γcl ≲ a/2πc,

implying that the uniform acceleration must continue at least for a time

t ≳ teq =

(
64π4h2

3m2c3a

)1/3

, (9)

where teq ∼ 1/ν is the thermalization time and we have taken ℓ = λC , where λC = h/mc

is the Compton wavelength, i.e. the correlation length of the structure-less detector. Also,

if we want to restrict our analysis to only non-relativistic motion, we should also require

t ≪ tacc, implying t ≪ c/a.

We conclude this section by noting that the power emitted in Unruh radiation in the

accelerated frame is

P acc
ν =

F acc
ν ℓ2

tacc
∼ B

(
ℏ
c2

)
g2a2

4π
, (10)

where the factor B ∼ 2/3 arises from the fact that transitions where the detector undergoes

an energy gain or an energy loss are both possible (hence a factor of 2), and because of the

isotropy of space in three dimensions (giving a factor 1/3). While P acc
ν is the power emitted

in the accelerated frame, the same result would have been obtained had the calculation been

done in the laboratory frame. Hence P lab
ν = P acc

ν , which is a somehow trivial argument

for inertial frames since it is well-known from classical electromagnetism that the Larmor

formula for the radiated power carries no net momentum and therefore is Lorentz invariant.
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On the other hand, one could also argue that the same considerations should apply for

the frames that are instantaneously at rest with the accelerated charge. Since Eq. (5)

was derived for slow-moving observers, the above relations are strictly valid only for non-

relativistic motion.

However, the relation P lab
ν = P acc

ν can be proven exactly using a full relativistic quantum

field theory calculation of the emitted power by the accelerated charge which is performed in

both frames [64]. It is shown that the Unruh effect involving an accelerated electron reduces,

at tree level, to nothing other than the classical Larmor radiation as seen in the laboratory

frame. For the case of an electron, assuming that it had sufficient time to thermalize, we

indeed reproduce the classical Larmor formula for electromagnetic radiation, which can be

seen as the limit power achieved by accelerated detectors with no internal structure.

This appears to be a quite general result. Refs. [65–68] show that the rate of electro-

magnetic bremsstrahlung emitted by a static charge in the accelerated frame is the same as

that measured by the inertial one. A similar conclusion for scalar fields was also reached

by Refs. [69–71]. All the above authors conclude that the classical Larmor radiation of an

accelerated charge corresponds to the emission and absorption of zero-energy Rindler pho-

tons of the thermal bath in the accelerated frame. The two processes are in fact exactly

equivalent, the only difference being that in the Unruh case the calculation is performed in

the accelerated frame, and for Larmor radiation in the laboratory frame.

The equivalence between Larmor and Unruh radiation only stands if we consider the

lower order (classical) limit implied by the spectral flux in Eq. (5). Going beyond the

Rayleigh-Jean regime, Eq. (6) becomes

F acc
ν =

2πhν3

c2
1

ehν/kBTU − 1
, (11)

which then allows us to include the full energy spectrum of the emitted photons by a non-

relativistic electron. The above expression assumes that the detector experiences no recoil.

However, as photons rescatter with the detector, the latter does experience a finite recoil µ.

The occupation of states described by the Planck function must then be changed to [68, 72]

F acc
ν =

2πhν3

c2
1

e(hν+µ)/kBTU − 1
, (12)

where µ = ℏ2k2/2m plays the role of a chemical potential. Here m is the mass of the

detector and ℏk represents the recoil momentum. Since the average photon energy is of
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order of kBTU, then ℏkc ∼ kBTU, and we can approximate µ ∼ (kBTU)
2/2mc2. To limit

to sub-relativistic energies, we also require that the acceleration time is long compared to

the time it takes a photon to cross a Compton wavelength, i.e., tacc ≫ λC/c, which implies

kBTU ≪ mc2. Regarding µ as a small correction, we have

F acc
ν =

2πν2

c2
kBTU

[
1− (kBTU)

2

2mc2hν

]
∼ haν2

2πc3

(
1− kBTU

2mc2

)
, (13)

where in the last step inside the parenthesis we have taken hν ∼ kBTU. Using the same

reasoning as above, the power emitted by Unruh radiation is

P acc
ν ≡ P lab

ν ∼ B

(
ℏ
c2

)
g2a2

4π

(
1− η

kBTU

2mc2

)
, (14)

where again B ∼ 2/3 and η is a coefficient that depends on the details of the detector. For

electrons, η = 24 [68]. The above formula shows that recoil (quantum) corrections to the

Larmor formula contain terms of order a2kBTU/mc2 [68, 73]. This is what is usually referred

to as the Unruh effect for accelerated electrons [53, 74] . In addition, while relativistic

corrections to the Larmor formula are outside the scope of the present work, we should

stress that those too may further modify Eq. 14 in a non trivial manner.

If we now use Eq.(14) and repeat the same calculation used to derive the Abra-

ham–Lorentz formula for the radiation reaction force in the laboratory frame, we obtain:

Flab
RR ∼ B

(
ℏ
c2

)
g2

4π

(
1− η

kBTU

mc2

)
ȧ. (15)

This provides a first-order quantum correction to the non-relativistic Abraham–Lorentz ra-

diation reaction force. Recently, it has been argued [68] that the observation of quantum

corrections to radiation reaction are an experimental proof of the Unruh effect. Indeed,

quantum radiation reaction effects have been seen in aligned crystals [75] as well as with

high power lasers [76]. However, since quantum corrections to the Abraham–Lorentz for-

mula (and its relativistic counterpart) can also be derived directly from QED [27] without

appealing to the Unruh effect, the claim [68] alone is not sufficient without a firm theoret-

ical understanding of the relationship between radiation reaction in the laboratory frame

and higher-order corrections to the Unruh effect in the accelerated frame. Unfortunately,

the noise in the experimental setup was too high to allow the outcome to be established

unambiguously.
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Avenues to the detection of the Unruh effect

To proceed further we need to turn back to the radiation reaction formula of Eq.(15).

The quantum recoil correction implies a modified fine structure constant [68]

α −→ α

(
1− η

kBTU

mc2

)
. (16)

This is not surprising since, in presence of an excited vacuum, the QED coupling is modified

as a result of the screening of the bare charge caused by the polarized cloud of virtual particles

[77, 78]. This effect can be calculated very precisely, up to 4-loop order for the leptonic

contribution [78], and it has been verified experimentally as a function of the exchanged

momentum [79]. However, the calculation of the running of α with momentum does not

include acceleration contributions. In the absence of a rigorous theory, we estimate this

by approximating the vacuum polarization as Π = ω2
p/ω

2
0, where ωp = (e2n

(v)
p /ϵ0m)1/2 is

the plasma frequency of the virtual pairs, with n
(v)
p the density of virtual particles and

ω0 ∼ (kBTU/m)1/2/λC the natural vibration frequency of the accelerated electron. The

density of virtual pairs can be estimated using non-equilibrium QFT techniques based on

the quantum Vlasov equation for fermions [80–82]; this gives n
(v)
p ∼ ma2/24π2ℏc3 [83, 84].

The ‘running’ of the fine structure constant with acceleration is then

α(a) =
α

1 + Π
∼ α

(
1− 8π3α

3

kBTU

mc2

)
. (17)

Up to a numerical constant, this is indeed the same scaling as in Eq.(16).

Here we propose a variation of the experimental scheme suggested in Ref. [85] as a possible

way to directly measure the Unruh effect from accelerated electrons. Following directly

our previous paper [85], let us now consider the case of an electron oscillating in the field

produced by a linearly polarized high-intensity laser beam. We can consider the acceleration

to be constant if the laser frequency is such that (see Eq. 9):

νL ≲

(
3m2c3a

64π4h2

)1/3

≈ 4.9× 1017
(

IL
1020 W/cm2

)1/6

Hz, (18)

where IL is the laser intensity. The above relation is well satisfied for all current high-

intensity optical lasers. Once the electron is accelerated the second step is to probe its

motion using another laser beam. If the probe laser vector’s potential is denoted as A,

the effective interaction Hamiltonian (including the quantum recoil correction seen above)
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describing the Thomson scattering process is [85]

Hint(r) =
e2

2m

(
1− η

kBTU

mc2

)2

A ·A ∼ e2

2m
e−q·rA ·A, (19)

where we have used a ∼ r/t2acc (with r the position vector of the electron), such that

q = 2ηkBTUa/mc4. To ensure non-relativistic motion, the probe frequency must be high

enough to sample time scales that are shorter than the acceleration time, that is c/λp ≳ t−1
acc

(where λp is the probe laser wavelength). In practice, this implies that the probe must be

operated at X-ray wavelengths, and X-ray free electron lasers [86] are thus ideally suited for

this.

We now take an ensemble of uncorrelated electrons at a temperature T , all placed in-

side the high-power laser spot where they are accelerated as seen in Figure 2 showing the

schematic of the suggested experimental setup. Because of the modified Hamiltonian, the

differential cross section for Thomson scattering which is the quantity which is measured in

the experiment, is proportional to the dynamic structure factor, S(k+ iq, ω). This is given

by [85, 87]

S(k+ iq, ω) =

∫
S0(k, ω

′)F (k+ iq, ω − ω′)dω′, (20)

where k = ki−kf is the scattering wavenumber, that is, the difference between the wavenum-

ber of the incoming x-ray photons and the wavenumber of the scattered ones as shown in

Figure 2, and [85]

F (k+ iq, ω) =

√
a

πq
exp

[
(ω − k · v)2

qa

]
. (21)

Here, v is the bulk velocity of the electrons. For a classical gas in equilibrium at a temper-

ature T we have [85],

S0(k, ω) =

(
m

2πk2kBT

)1/2

exp

[
− m

2k2kBT

(
ω − ℏk2

2m

)2
]
. (22)

The electron motion induced by the high-intensity optical laser remains along the acceler-

ation direction, which also corresponds to the laser polarization axis. As shown in Figure 2,

we can then choose the geometry of the scattering probe such that k · v = 0, and the total

structure factor probed by the X-ray laser reduces to

S(k+ iq, ω) =

(
m

2πk2kBTeff

)1/2

exp

[
− m

2k2kBTeff

(
ω − ℏk2

2m

)2
]
, (23)

12



FIG. 2: Schematic of the setup for the proposed experiment to detect Unruh radiation. The black

arrows indicate the polarization direction of the optical laser and FEL beams (both vertical in the

figure), and kOL is the waveumber of the high-intensity optical laser.

implying that the modified Hamiltonian (19) results in the electrons being probed by the

Thomson scattering beam exhibit an effective temperature given by [85]

Teff = T

(
1 +

maq

2kBk2

)
= T

[
1 + 4η

(
πkB
ℏkc

)2

T 3
U

]
. (24)

Thus the probe measures a broadened electron velocity distribution

∆T

T
=

Teff − T

T
≈ 0.5× csc2(θ/2)

(
IL

1020 W/cm2

)3/2(
λp

0.1 nm

)2

, (25)

where θ is the scattering angle. The expected broadening is within current experimental

capabilities of detection [88].

We note that this uncertainty in the outgoing photon energy can also be interpreted as an

uncertainty in the rest mass of the electron [87], that is, by setting kB∆T = kB(Teff − T ) =

(∆m)c2, we obtain

∆m =
maq

2k2c2
= 4η

( π

ℏkc2
)2

(kBTU)
3. (26)

We also note that, based on the discussions in the previous section, taking ℏkc ∼ kBTU, we

13



can rewrite Eq.(26) as:

∆m ∼ 4π2η

c2
kBTU. (27)

Thus if the measurement reveals a broadening as in Eq.(25) it would provide direct

evidence of the fact that the probe photons are scattering off electrons that are dressed by

an excited vacuum. The proposed experiment will thus provide a direct measurement of

those quantum effects associated with the Unruh process that cannot be ascribed to just

classical Larmor radiation. We believe that the experimental approach suggest here satisfies

all the requirements stated in Ref. [89] as needed for a robust claim of the quantum Unruh

effect.

Conclusions

The significance of experimentally detecting the Unruh effect can hardly be overstated.

It will be a major scientific milestone marking a new era of experimental tests of quantum

gravity as it will illuminate fundamental issues related to the (im)possibility of information

loss [90] and the smallest possible scales in Nature.

We note that such experiments at future high-intensity laser facilities may have impact

on diverse technology applications such as quantum computing (as a quantum process under

unscreenable gravitational fluctuations).
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