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In this paper we will attempt to answer the following question: what are the natural quantum
subsystems which emerge out of a system’s dynamical laws? To answer this question we first define
generalized tensor product structures (gTPS) in terms of observables, as dual pairs of an operator
subalgebra A and its commutant. Second, we propose an operational criterion of minimal information
scrambling at short time scales to dynamically select gTPS. In this way the emergent subsystems are
those which maintain their “informational identities” the longest. This strategy is made quantitative
by defining a Gaussian scrambling rate in terms of the short-time expansion of an algebraic version
of the Out of Time Order Correlation (OTOC) function i.e., the A-OTOC. The Gaussian scrambling
rate is computed analytically for physically important cases of general division into subsystems and
is shown to have an intuitive and compelling physical interpretation in terms of minimizing the
interaction strength between subsystems.

I. INTRODUCTION

Mereology is the theory of parthood relations: the
relations of part to whole and the relations of part
to part within a whole. In this paper we shall try
taking some steps towards an information-theoretic
and operational framework for quantum mereology [1].

It is part and parcel of the reductionistic approach
of modern science to explain the behavior of complex
systems in terms of their simpler constituents, e.g. par-
ticles, their properties and their mutual interactions.
However, such a division into simpler components is by
no means unique as it depends on the questions one
is trying to address, the experimental limitations of
the observer, and the physical regime one is operating
in. Some related elementary paradigms exist in various
fields of theoretical physics; for example, what com-
prises the elementary parts in scattering experiments
or the decoupled (“frozen”) degrees of freedom in sta-
tistical mechanics depends on the energy scale under
consideration.

This freedom elicits the following general questions:
how does one select, among manifold possibilities, the
relevant subdivision of a system into sub-parts? Can
one establish a compelling connection between the in-
trinsic dynamics of the system, the operational capabil-
ities of the observer, and a “naturally” emergent multi-
partite structure? This paper makes an attempt at
answering these sweeping questions by employing ideas
from quantum information and using some elementary
operator algebra tools.

Our work takes as its starting point the pathbreaking
papers of Zurek [2], and Carroll and Singh [1]. Zurek
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introduced the so-called “predictability sieve” [2] proce-
dure for the emergence of classicality in systems coupled
with an environment. In [2], Zurek showed how semi-
classical pointer variables emerge from the interaction
between a system and its environment: the pointer vari-
ables are those whose time evolution is most predictable
given the system dynamics. In that work, the division
into system and environment was assumed to be given.
In [1], Carroll and Singh extended Zurek’s criterion to
identify the division into system and environment that
gives the maximally predictable pointer variables.

These works emphasize predictability as a criterion for
identifying good bipartitions. Our work charts a novel
course that is inspired by this approach, but that ex-
tends it in significant ways. First, our framework is
purely quantum, unconcerned with emergent classical-
ity. Second, we consider more generalized subdivisions
beyond system-environment bipartitions. Our mereo-
logical approach depends solely on the system dynamics
– given operational constraints, it gives the partition se-
lected by the Hamiltonian. In this sense, the emergent
partitions that our approach unveils are fundamental
from a dynamical point of view. Finally, by empha-
sizing scrambling as a measure of unpredictability, we
can bring to play powerful methods from the extensive
recent literature on scrambling theory. We also note
the existence of Hamiltonian/spectral approaches for
identifying bi- and multi-partitions [3].

Let us start by motivating our particular strategy with
a qualitative analogy. Consider the system of a soluble,
macroscopic solid inserted into a liquid solvent, inside a
glass beaker. One can, of course, subdivide this system
into the “background” partition of individual molecules.
However, assuming one can only observe this system
without advanced equipment, this subdivision is use-
less. Individual molecules change location and relative
orientation, and exchange energy, much too quickly to
perceive them at such a granular level. Naturally, one
divides this system into the components that can be
perceived as relevantly different: the beaker, the sol-
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vent, and the solid. Note that this “tripartition" does
not last forever – eventually, the solid fully dissolves,
becomes aqueous, and mixes amongst the solvent. Af-
ter enough time, the solvent in the beaker evaporates,
and after eons, the beaker itself disintegrates. In spite
of this, the tripartition minimizes the rate at which its
constituent components “leak” into one another.

We carry this intuition over to general quantum sys-
tems in which subsystems of a given partition might not
spatially mix, but information can scramble between
them. We will therefore use an operational criterion
of minimal information scrambling rate at short time
scales to dynamically select generalized partitions. This
strategy amounts to saying that the emergent subsys-
tems are those that have their informational content
scrambled to “external” degrees of freedom the slowest
by the dynamics, hence maintaining their internal “in-
formational identity” the longest. We are now in the
position of outlining the approach we will pursue in
this paper in a more technical fashion.

The first fundamental ingredient of this paper is pro-
vided by the algebraic approach to quantum virtual
quantum subsystems (VQS) originally advocated in
[4, 5]. The fundamental idea is that operational con-
straints may limit the set of physically relevant observ-
ables and operations to a subalgebra A of operators,
which in turn induces a decomposition of the state
space into a direct sum of virtual quantum subsystems.
This generalized tensor product structure (gTPS) plays
a key role in the theory of decoherence-free subspaces
[6, 7], noiseless subsystems [8, 9], quantum reference
frames [10], topological protection [11], and operator
error correction [12]. Some interesting recent develop-
ments of the general theory can be found in [13, 14].

The second fundamental ingredient is the algebraic out-
of-time-order commutator, “A-OTOC," approach to
quantum information scrambling introduced in [15, 16].
The A-OTOC quantifies the scrambling of information
stored in the physical degrees of freedom represented
by a subalgebra of observables A, and it therefore
serves as a natural quantity from which we can derive
a scrambling rate. It has previously proved successful
in furthering the understanding of two seemingly unre-
lated physical problems – operator entanglement [17]
[18, 19] and coherence-generating power (CGP) [20, 21]
– from a single theoretical vantage point.

It is of paramount importance to stress that such an
algebra-based strategy can be applied to a variety of
situations in which there is not an a priori locality struc-
ture which gives a natural way of defining subsystems,
e.g. [1] in the context of quantum gravity, and, through
operator error correction, holography see [22, 23]. In
cases with “background” locality structures, the emer-
gent system partition may substantially differ from the
background – the final example in V provides an illus-
tration of this. Also, we note our approach is very close
in spirit to the algebraic approach to quantum field the-
ory (QFT) – see, e.g., Haag’s classic book [24] and the
recent [25] on entanglement in QFT. However, in this
paper we will be focusing on finite-dimensional Hilbert
spaces which are more relevant to most of quantum
information.

The paper is structured as follows. Sect (II) contains
some introductory material on notation and algebras.
Sect. (III) discusses the gTPS concept used in this
paper. Sect. (IV) reviews definitions and basic results
on the A-OTOC formalism for scrambling of algebras.
In this section, we introduce three physical examples,
which we subsequently follow throughout the paper:
the first example is the scrambling rate of a subsystem;
the second is the coherence generating power of quan-
tum dynamics; the third is the example of quantum
error correcting codes, which by definition suppress
scrambling within the code space. In Sect (V) the
notion of Gaussian scrambling rate is introduced and
deployed to define dynamical emergence of gTPS for
these examples. In the first example, we provide a proof
for the intuitive result that the division into subsystems
that minimizes subsystem scrambling is the division
that minimizes the norm of the interaction Hamiltonian.
For case 2, we bound the Gaussian scrambling rate by
the coherence generating power of maximal commuting
subalgebras. For case 3, we relate scrambling rate to
the detection and correction of errors in a stabilizer
code. Finally, Sect. (VI) contains conclusions and out-
look. The mathematical proofs of most of the results
are in the Appendix.

II. PRELIMINARIES

Let H be a d-dimensional Hilbert space and L(H)
its full operator algebra. L(H) has a Hilbert space
structure via the Hilbert-Schmidt scalar product:
⟨X, Y ⟩ := Tr

(
X†Y

)
and norm ∥X∥22 := ⟨X, X⟩.

This equips the space of superoperators i.e., L(L(H))
with the scalar product ⟨T , F⟩ := TrHS

(
T †F

)
=∑

l,m⟨m|T †F(|m⟩⟨l|)|l⟩, and the norm

∥T ∥2HS = ⟨T , T ⟩ =
∑
l,m

∥T (|m⟩⟨l|)∥22.

For example, if T (X) =
∑

i AiXA†
i , then ∥T ∥2HS =∑

i,j |Tr(A
†
iAj)|2. Moreover, if P is an orthogonal pro-

jection, its rank is given by ∥P∥2HS = TrHSP.
The key objects of this paper are hermitian-closed unital
subalgebras[26] A ⊂ L(H) and their commutants

A′ := {X ∈ L(H) | [X, Y ] = 0, ∀Y ∈ A} (1)

and centers Z(A) := A ∩A′.

For these algebras, the double commutant theorem
holds: (A′)′ = A. If A (A′) is abelian, one has
that A ⊂ A′ (A′ ⊂ A) and therefore Z(A) = A
(Z(A) = A′).

The fundamental structure theorem of these objects
states that the Hilbert space breaks into a direct sum of
dZ := dimZ(A) blocks and each of them has a tensor
product bipartite structure

H =

dZ⊕
J=1

HJ , HJ
∼= CnJ ⊗CdJ . (2)

The factors CnJ and CdJ are VQS [4]. Moreover, at the
algebra level one has that A (A′) acts irreducibly on the
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CdJ factors (CnJ ) A ∼=
⊕dZ

J=1 1nJ
⊗ L(CdJ ), A′ ∼=⊕dZ

J=1 L(C
nJ )⊗ 1dJ

.Whence, d =
∑

J nJdJ , and

dimA =
∑
J

d2J =: d(A), dimA′ =
∑
J

n2
J =: d(A′).

If A (A′) is abelian then dJ = 1, (∀J) (nJ = 1, (∀J)).
By defining the dZ -dimensional (integer-valued) vectors
d := (dJ)J , and n := (nJ)J , one sees that

d2 = (n · d)2 ≤ ∥n∥2∥d∥2 = d(A)d(A′).

If d = λn, the above inequality becomes an equality,
i.e. d2 = d(A)d(A′), In this case the pair (A, A′) is
referred to as collinear. The center of A is spanned by
the projections over the central blocks

Z(A) =

dZ⊕
J=1

C{ΠJ := 1nJ
⊗ 1dJ

}.

Associated to any algebra A is a completely positive
(CP) orthogonal projection map: P†

A = PA, P2
A = PA

and ImPA = A [27]. Using these projections, one can
define a distance between two algebras A and B:

D(A, B) := ∥PA − PB∥HS . (3)

If U is unitary, we denote by U(X) := UXU† and
U(A) := {U(a) | a ∈ A} is the image algebra. The
associated projection is given by PU(A) = UPAU†.

III. GENERALIZED TPS

Formally, the standard “tensor product axiom” of quan-
tum theory says that if we consider the system obtained
by the union of two systems, A and B, then the associ-
ated Hilbert Space H is given by the tensor product of
the Hilbert spaces associated with the individual sub-
systems, i.e., H ∼= HA⊗HB . At the level of observables,
one postulates L(H) ∼= L(HA) ⊗ L(HB); namely, the
full operator algebra is the tensor product of the subsys-
tems operator algebras. By denoting A := L(HA)⊗1B ,
and A′ := 1A ⊗ L(HB), one can equivalently write

A⊗A′ ∼= A ∨A′ ∼= L(H), (4)

where the A∨A′ denotes the algebra generated by the
subalgebras A and A′, i.e., A ∨ A′ := {

∑
i aibi | ai ∈

A, bi ∈ A′}. Now, if A is any hermitian-closed, unital
subalgebra of L(H) and (4) is fulfilled, we say that
the dual pair (A, A′) defines a virtual bipartition or a
Tensor Product Structure (TPS) [4].

The latter are by no means unique since every unitary
mapping U over H gives rise to a dual pair (AU A′

U )
(AU := U(A)) which satisfies (4). Which one of these
TPSs is the “real" or “physical one” depends, again, on
the operationally available resources. It is important
to emphasize that this is true even when one knows
that H = HA ⊗ HB, as the local algebras might not
be implementable. If one has control only on A, then
the associated physical degrees of freedom can be seen
as the “system” whereas those supported by A′ can be
seen as the “environment” (and vice versa). Also, A′

comprises the “symmetries” of A (and vice versa).

In this paper we will consider an even more general
situation. Suppose that operational constraints on
physical resources lead to the selection of a specific class
of realizable operators (observables and operations)
forming an algebra A which does not fulfill (4) but just

A ∨A′ ⊂ L(H). (5)

In this case we say that the dual pair (A, A′) defines a
generalized TPS (gTPS). While (5) is always satisfied,
in order to meet the standard condition (4) A must
be a factor, i.e., the center Z(A) contains just scalars
or, equivalently, there is just one J in the decompo-
sition (2) (see Appendix B for further details). On
the other hand, when A′ is abelian, then nJ = 1 (∀J),
and the decomposition (2) is a form of superselection
with the elements of Z(A) = A′ playing the role of
“superselection charges.”

A formal example of a structure similar to that of
Eq. (2) is the Fock space of fermionic particles

F−(H1) =

∞⊕
N=0

S−H⊗N
1

∼=
n⊗

i=1

C2 (6)

where S− is the operator that antisymmetrizes the
Nth tensor power H⊗N

1 of the n-dimensional 1-fermion
Hilbert space H1. The isomorphism in Eq. (6) is non-
unique; the subsystems C2 correspond to the fermionic
modes {ci, i = 1, . . . , n} that can be constructed in
infinitely many different ways depending on the single-
particle basis one chooses to adopt [28]. If the Hamil-
tonian H of the fermionic system is quadratic, then
there are fermionic modes that diagonalize H, which
arguably provide a “naturally” emerging subdivision
of the Fock space. More specifically, the Hamiltonian
becomes a sum of terms cic

†
i that are associated with

the different mode subalgebras generated by ci, c
†
i ,1.

In this way, each mode gives rise to a dynamically in-
dependent subsystem, and information stored in each
of the modes does not leak out to other modes.

We would like to stress that we regard both the tensor
and the additive structure in Eq. (2) as elements of
quantum mereology, which in this way conceptually
unifies these two aspects. The first one is the partition
into subsystems while the second describes the partition
of the state-space into central symmetry sectors. The
latter are labelled by the the super-selection charges’
joint eigenvalues and are dynamically decoupled insofar
as the operations belong to A [29].

A. Noiseless Subsystems for collective
decoherence

To illustrate these concepts, let us consider symmetry-
protected quantum information [9]. In this case Eq. (4)
is not satisfied as the relevant algebra is not a fac-
tor, and therefore the state-space splits into disjoint
symmetry sectors. Consider a system comprising N
physical qubits in which the only allowed operations
are global, due to the lack of spatial resolution. The
algebra A is given by the operators invariant under
qubit permutations. It turns out that this is the unital
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algebra is generated by the collective spin operators
Sα :=

∑N
j=1 σ

α
j , (α = x, y, z) and that the Hilbert

space H = (C2)⊗N breaks down into dJ = 2J + 1-
dimensional irreducible components, each with a multi-
plicity nJ , labelled by the total angular momentum J :
H = ⊕JHJ . For any value of the quantum number J ,
there is a virtual bipartition HJ

∼= CnJ ⊗CdJ . In the
context of decoherence protection, A is the “interaction”
algebra generated by the system’s operators coupled to
the environment. The CnJ ’s are acted on trivially by
A and therefore provide “virtual noiseless subsystems”
where information can be encoded and safely stored
[8]. These noiseless subsystems can then be (univer-
sally) acted upon by elements of the commutant A′, the
latter given by the group algebra of permutations gen-
erated by pair-wise Heisenberg interactions. The center
Z(A) is just the abelian algebra generated by the total
angular momentum operator S2 :=

∑
α=x,yz(S

α)2.

IV. SCRAMBLING OF ALGEBRAS.

Let us first illustrate the importance of algebras of
observables and commutativity in a simple information-
processing setup. Consider two agents, A and B,
that have access to the two commuting subalgebras
of observables A and B = A′ respectively. If the
agents have access to a unitary channel U , such that
[X,U(Y )] = 0 ∀X ∈ A, ∀Y ∈ B (in words, “commu-
tativity persists”), then no information can be broad-
casted from the physical degrees of freedom associated
with A to those associated with B (see Appendix A).
This shows that studying the commutator between
elements of A and U(A′) provides insights into the
scrambling of information from A to A′.

The central object of our algebraic approach to quan-
tum scrambling is the A-OTOC. This tool was origi-
nally introduced in [15] for closed systems and extended
to open ones in [16]. It is defined as

GA(U) :=
1

2d
EX∈A, Y ∈A′

[
∥[X, U(Y )]∥22

]
, (7)

where U(X) := U†XU (with U unitary over H). Here E
denotes the Haar-average over the unitaries X (Y ) in A
(A′). Roughly, the A-OTOC measures how much the
symmetries of the VQS associated to A are dynamically
broken by U . From Eq. (7) it follows immediately that
GA(U) = GA′(U†). Moreover, in the collinear case, one
has GA = GA′ , and therefore GA(U) = GA(U†).

In the collinear case, the A-OTOC has a simple geomet-
rical interpretation in terms of the distance between
algebras defined in Eq. (3) [15]

GA(U) =
1

2

D2(A′,U(A′))

d(A′)
. (8)

Namely, the A-OTOC quantifies how far the commu-
tant is mapped from itself by the dynamics. Clearly,
this distance is maximal, i.e., maximally scrambling,
when A′ gets orthogonalized to itself by the action of
U .

We will now consider three important physically mo-
tivated examples, all of them collinear, in which the

A-OTOC can be fully computed analytically (more
details about the first two cases can be found in [15]).

1) Let H = HA ⊗HB be a bipartite quantum system
with A = L(HA) ⊗ 1B, and, therefore, A′ = 1A ⊗
L(HB). In this case one recovers the averaged bipartite
OTOC discussed in [19]

GA(U) = 1− 1

d2
⟨SAA′ , U⊗ 2(SAA′)⟩, (9)

where d = dAdB = dimH (dX = dimHX (X = A,B)),
and SAA′ is the swap between the A factors in H⊗ 2.
This a remarkable formula as it allows one to rigorously
prove a wealth of results and unveil several relations
between GA(U) and other physical quantities.

2) Let AB = A′
B be the algebra of operators which are

diagonal with respect to an orthonormal basis B :=
{|i⟩}di=1 i.e., AB = C {Πi := |i⟩⟨i|}di=1. This is a d-
dimensional maximal abelian subalgebra, and

GAB
(U) = 1− 1

d

d∑
i,j=1

|⟨i|U |j⟩|4. (10)

This expression coincides with the coherence-generating
power (CGP) of U introduced in [20, 30]. There, CGP is
defined as the average coherence (measured by the sum
of squares of off-diagonal elements, with respect to B)
generated by U starting from any of the pure incoherent
states Πi. Geometrically the CGP is proportional to
the distance D(AB ,U(AB)) [31] and has been applied
to the detection of the localization transitions in many-
body systems [30], and to detection of quantum chaos
in closed and open systems [32].

3) Let {Sl}n−k
l=1 be a set of stabilizer operators over

n-qubits [33], GS = {
∏n−k

l=1 Sαl

l | (αl)l ∈ {0, 1}n−k},
the stabilizer group they generate and A := C[GS ] its
group algebra. In Eq. (2) now we have J = (jl)l ∈
{−1, 1}n−k, nJ = 2k, dJ = 1. The VQS CnJ with
J = (1, . . . , 1) (identity irrep of GS and A) is a quantum
error correcting code [33]. The A-OTOC:

GAS
(U) = 1− 1

23n−k

∑
g,h∈GS

|⟨g,U(h)⟩|2. (11)

A. Mereological Entropies

It is important to stress that 1−GA(U) can be regarded
as a generalized purity [34] and that the A-OTOC itself
is therefore a type of generalized linear entropy.

For example, in the bipartite case 1) the A-OTOC is
identical to the operator linear entanglement entropy of
U as well as to the average linear entropy production
of the channel T (ρ) := TrB

[
U(ρ⊗ 1

dB
)
]

over pure ρ’s
[19]. This is an entropic contribution purely at the level
of the multiplicative mereological structure.

On the other hand, for abelian A′ = Z(A), the A-
OTOC is an average of the linear entropies of the
probability vectors pJ := 1

dJ
(⟨ΠJ ,U(ΠK)⟩)dZ

K=1

GA(U) =
∑
J

qJSL(pJ), qJ := dJ/d, (12)
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where SL(pJ) := 1− ∥pJ∥2, and J = 1, . . . , dZ . Since,
from Eq. (7), one immediately sees that GA(U) =
GA′(U†) for abelian A, we have the same result with
with nJ and U† in lieu of dJ and U respectively. These
entropies measure how uniformly the ΠK ’s are spread
across the system of central sectors by the action of U.
This is an entropic contribution purely at the level of
the additive mereological structure.

For general A, both the additive and the multiplica-
tive mereological structures contribute to the A-OTOC
entropy. One has contributions from the “uniformiza-
tion” of the the central sector system (due to the the
"off-diagonal" UJK := ΠJUΠK : for J ̸= K) and the
operator entanglement of the individual UJK (see Ap-
pendix C).

V. SCRAMBLING AND SUBSYSTEM
EMERGENCE

We will now show how the A-OTOC formalism de-
veloped so far can be used to define dynamical emer-
gence of subsystems. Qualitatively, the idea is, given a
Hamiltonian H and an algebra A, to define a notion
of “scrambling time” τs(H,A) (and “scrambling rate”
τ−1
s (H,A)) which is the time scale needed to have non-

trivial scrambling, i.e, if t ≪ τs no scrambling occurs.
Once this is done, one can select algebras (gTPS) by
maximizing τs (minimizing τ−1) over a family A of
operationally available A’s. Symbolically

{EmergentA} := argminA∈A τ−1
s (H,A) (13)

Quantitatively, the starting point of our investigation
is the following result on the short-time dynamics of
the A-OTOC for Hamiltonian systems Ut = e−iHt.

Proposition[Appendix D] GA(Ut) = 2(t/τs)
2 +O(t3),

where the “Gaussian scrambling rate" τ−1
s is given by

τ−1
s (H,A) = ∥(1− PA+A′)H̃∥2, (14)

where we have defined the normalized Hamiltonian
H̃ := H√

d
. The “gaussian scrambling time" τs can be

regarded as defining the period over which scrambling
is negligible and information “locally" encoded in A is
retained.

The precise sense in which the Gaussian scrambling
rate describes the rate of information scrambling with
respect to both the additive and multiplicative structure
of Eq. (2) becomes explicit by rewriting Eq. (14) as
(see Appendix E)

τ−2
s (H,A) =

= ∥(1− PA∨A′)(H̃)∥22 + ∥PA∨A′(1− PA+A′)(H̃)∥22.
(15)

The rate is given by two different types of contri-
butions: coupling between different central sectors
ΠJH ∼= CnJ ⊗CdJ in (2), and entangling “interactions"
within them. When A is a factor, the first contribu-
tion, which corresponds to the first term in Eq. (15),

vanishes, and

τ−1
s =

∥∥∥∥H̃ +Tr
(
H̃
)1
d
−

−1vA

dvA
⊗ TrvA(H̃)− TrvB (H̃)⊗ 1vB

dvB

∥∥∥∥
2

(16)

where H ∼= HvA⊗HvB is the virtual bipartition induced
by the dual pair of factors (A,A′) and d = dvA dvB .
When either A or A′ is abelian, the second contribution,
which corresponds to the second term in Eq. (15),
vanishes, and one has τ−1

s = ∥(1−PA∨A′)H̃∥2, or even
more explicitly

1/τ2s =
∑
J

∥ΠJH̃(1−ΠJ)∥22. (17)

Using Eq. (14) we can derive a number of analytical
properties of the gaussian scrambling rate:

Corollary[Appendix F] i) GA(Ut) = 0 (∀t) if (and
only if) H belongs to the operator subspace A+A′ :=
{a+ b | a ∈ A, b ∈ A′}. Combined with Eq. (14), this
means that the A-OTOC vanishes for all times if and
only if τ−1

s vanishes, despite the fact that the gaussian
scrambling rate describes just the short-time expansion
of GA(Ut).

ii) Using the standard Hilbert-space notion of the dis-
tance between a vector x and a subspace, Eq. (14) can
be recast into an even more geometrical fashion:

τ−1
s (H,A) = D(H̃, A+A′). (18)

In words: for any A the gaussian scrambling rate is
the distance between the assigned (normalized) Hamil-
tonian and the sum of the operator subspaces A and
A′. Due to i), when such a distance vanishes then the
A-OTOC is identically zero at all times.

iii) The following upper-bounds hold:

τ−1
s (H,A) ≤ min{D(H̃,A), D(H̃,A′)} ≤ ηH , (19)

where ηH := ∥H̃∥2 is a natural energy scale associated
with H (whose inverse sets the physical unit of time).
The first bound above implies the nearly obvious fact
that if H belongs to either A or A′ then there is no
scrambling. Also, if either A or A′ are abelian then
the first upper-bound is saturated. On the other hand,
Hamiltonians orthogonal A+A′ will saturate the last
upper-bound and correspond to the fast scramblers in
this short-time (gaussian) regime.

In the light of these results, the minimization problem
(13) has the following neat (yet formal) geometrical
solution: the dynamically “emergent” gTPS are those
associated to the A ∈ A such that the operator vector
space A+A′ has minimum distance from the Hamil-
tonian H. In particular, A’s such that that distance
is zero (ηH) correspond to no scrambling (fast scram-
blers). Moreover, when A (A′) is abelian then A+A′

in the above can be replaced by A′ (A).
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A. Three Examples

Let us now consider again the cases 1)-3) in the above.
We will derive the explicit forms for τS(H,A) in these
cases and show that in these important situations,
Eq. (14) has a very physically transparent interpre-
tation. This fact provides a key motivation to pursue
the gaussian scrambling rate formalism in this paper.

1’) Spatial Bipartitions: Here we consider a state-space
which is given a background multipartition into N
(ordered) qubits H = (C2)⊗N . If S ⊂ {1, . . . , N} (and
S̄ is its complement) then, H = HS ⊗ HS̄ , and the
local observable algebras AS := L(HS)⊗ 1S̄ and A′

S =
1S ⊗ L(HS̄). Since PAS

(X) = TrS̄X ⊗ 1
dS̄

, ,PAS̄
(X) =

1
dS

⊗ TrSX, and PAS
PAS̄

(X) = Tr(X)
d 1, Eq. (14) takes

the form:

1/τs = ∥H̃ − 1S

dS
⊗ TrS(H̃)− TrS̄(H̃)⊗ 1S̄

dS̄
∥2, (20)

where, for simplicity, we assumed a traceless H and
dX = 2|X|, (X = S, S̄). Here we see that the projection
1 − PA+A′ – namely the projection onto (A+A′)⊥ –
in Eq. (14) is nothing but the extraction of the S-S̄-
interaction part of H. This result leads to a particularly
intuitive and satisfactory sense of “subsystem emergence
from minimal scrambling”: given a family S of subsets
of {1, . . . , N}, the Hamiltonian H selects those S ∈ S
such that S-S̄-interaction part of H has minimal norm,
i.e., those which are minimally coupled with the rest
of the system.

2’) Maximal Abelian Algebras: If AB = span{|j⟩⟨j|} =
A′

B , where the |j⟩’s form a basis B, then, from Eq. (17),
the gaussian scrambling rate is the Hilbert-Schmidt
norm of the off-diagonal (in the basis B) part of H̃.
Intuitively, this quantity is as small as possible when
the eigenbasis BH of H and B are as close as possible:
the dynamically selected AB’s are the closest to the
one generated by H. Indeed, if H is non degenerate
with an eigenbasis BH , one can prove the bound

τ−1
s (H,AB) ≤ ηH D(AB , ABH

). (21)

D denotes the distance between algebras defined in the
above and studied, in relation to CGP, in [31].

3’) Stabilizer Algebra: PA′
S
(X) =

|GS |−1
∑

g∈GS
gXg†, and from the Proposition

above,

τ−1
s (H,AS) = ∥(1− PA′

S
)H̃∥2. (22)

If H anticommutes with any of the stabilizer gener-
ators Sl’s (see 3) above) then PA′

S
(H̃) = 0 and the

scrambling rate (22) is maximal. This is exactly the
condition for H to generate correctable errors in the
associate error correcting code. The elements in A′

S
not in AS correspond to non-trivial operations on the
code or to uncorrectable errors [33] and have τ−1

s = 0.

B. Rate minimization over families of algebras

In this section we are going to illustrate the minimiza-
tion strategy (13) by means of toy models with “circular”

families of algebras. In the first (second) case we have
a continuous family of bipartitions (bases) of the two-
qubit (one-qubit) space. The third case corresponds to
a family obtained by single-qubit rotations of two-qubit
symmetric operators.

At the formal level, a general way to build a family of
algebras is to consider the adjoint orbit A := {AU :=
U(A)}U∈U of a given A, for U ranging in some set U of
unitaries. Operationally, this means that the observer
has the ability to implement elements of A and the
unitaries in U. From (18) easily follows the covariance
relation

τs(H,U(A)) = τs(U†(H),A), (23)

which, in turn, shows that minimizing τ−1
s (H, •) over

the adjoint orbit of A is equivalent to minimizing the
scrambling rate of A over an orbit of Hamiltonians
H := {U†(H)}U∈U, i.e., minimizing τ−1

s (•,A) : H → R.

1”) Consider H = C2 ⊗C2, with H = σz ⊗ 1 and the
family Aθ := UθA0U

†
θ , where A0 = L(C2) ⊗ 1, and

Uθ := ei
θ
2σ

x⊗σx

. From Eq. (20) τ−1
s (H,Aθ) = | sin θ|.

Non-trivial )vanishing rate for θ = π (Uπ ̸= 1 but
A0 = Aπ) and gaussian fast scrambler for θ = π/2
when the Hamiltonian is “pure" interaction.

2”) Consider H = C2, H = σz, and the family ABθ
,

where Bθ = {Uθ|0⟩, Uθ|1⟩} and Uθ := ei
θ
2σ

y

. From v)
and (23), one finds τ−1

s (H,ABθ
) = | sin θ|. This rate

vanishes non-trivially for θ = π (Uπ ̸= 1 but AB0
=

ABπ
) and is maximal, corresponding to a gaussian fast

scrambler, for θ = π/2 when Bπ/2 is mutually unbiased
with respect to B0 (and the rotated algebra ABπ/2

has
maximal distance from AB0

).

3”) Consider H = C2 ⊗C2, with H = σz ⊗ 1+ 1⊗ σz,
and the family Aθ := UθA0U

†
θ , where A0 = C{1, S}′

(S swap operator) and Uθ := ei
θ
2σ

y ⊗ 1. From v) and
(23), one obtains τ−1

s (H,Aθ) = 1
4∥Hθ − SHθS∥2 =√

2 sin(θ/2), where Hθ := U†
θHUθ. Here θ = π is a

gaussian fast scrambler as the rotated Hamiltonian Hπ

is now anti-symmetric and thus orthogonal to A0.

While in these cases the optimization problem for τ−1
s

is straightforward, in general it might be a quite chal-
lenging one, even in physically intuitive cases. Consider
the case of minimizing τ−1

s (H,AS) over spatial bipar-
titions of an N -qubit system, H = (C2)⊗N , that may
only contain two-qubit interaction terms. We can repre-
sent H as a weighted graph G ≡ (V,E), with V and E
being the set of vertices and edges respectively. Each of
the N = |V | vertices represents a qubit and each edge
represents a two-qubit interaction term in the system
Hamiltonian. We then have H̃ = 2−N/2

∑
(i,j)∈E Hij .

In particular, let us consider the case of Ising interac-
tions on each edge: H̃ = 2−N/2

∑
(i,j)∈E Jijσ

α
i ⊗ σβ

j ,
where α, β ∈ {X,Y, Z}. For any subset of qubits
S ⊂ V , the Gaussian scrambling rate, given by Eq.
(20), is:

τ−1
s (H,AS) =

 ∑
(i,j)∈∂S

J2
ij

1/2

, (24)
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where ∂S ≡ {(i, j) ∈ E|i ∈ S and j ∈ S̄}, the biparti-
tion boundary. [35]

The problem of minimizing the gaussian scrambling
rate in this case corresponds precisely to solving the
weighted min-cut problem in graph theory. This
can be solved by the Stoer-Wagner algorithm, whose
run-time complexity depends just on the number of
vertices and number of edges [36].

In the special case of a graph with uniform edge weights,
we can normalize the Hamiltonian so that all J ’s = 1.
The graph is considered unweighted, with the corre-
sponding problem known as min-cut. This problem is
solved by the Karger-Stein algorithm [37, 38]. Clearly,
τ−1
s (H,AS) = |∂S|. It is important to note that this

unweighted minimization generally gives rise to a de-
generate space of bipartitions. For example, in the case
of a one-dimensional lattice, any bipartition consisting
of a one-edged boundary yields τ−1

s (H,AS) = 1, and
the solution space is N − 1-fold degenerate.

To fully illustrate the problem, consider the special
case of a two-dimensional qubit lattice, with edges
from each qubit to its horizontal and vertical direct
neighbors. Let us specify our interaction Hamiltonian
as that of ZZ crosstalk, a common source of noise
in superconducting quantum processors [39, 40]:
H̃ =

∑
(i,j)∈E Jijσ

z
i ⊗ σz

j . For simplicity, we take
the Jij to be normally distributed (N (0, 1)), and
we consider at four-by-four grid of qubits. Figure 1
provides a graphical visualization.

One may worry that the problem of minimizing
the scrambling rate does not correspond exactly to
weighted min-cut since the subsystems in our bipar-
tition need not be simply connected. In the case that
we minimize over all possible bipartitions, it is obvious
that any bipartition of disconnected subsystems can be
decomposed into a bipartition of connected subsystems
with a lower scrambling rate. On the other hand, if
we constrain our family of bipartitions to those that
contain equally sized subsystems, for example, the min-
imization becomes a more challenging task. Figure 1
demonstrates these distinct cases. Nonetheless, the di-
rect mapping of the spatial bipartition scrambling rate
minimization problem for a class of physically moti-
vated Hamiltonians to a well-known graph theory prob-
lem demonstrates the feasibility of actually diagnosing
the emergence of dynamically preferred subsystems.

We can probe properties of the minimum cut and resul-
tant subsystems as parameters of our physical system
are varied. Two quantities that easily admit further
study are τ−1

S itself, as well as typical subsystem size.
We define S to be the lower cardinality subsystem in
the min-cut solution.

It is perhaps natural to suspect that in the case of
unconstrained τ−1

S minimization, increasing the number
of interacting qubit pairs as well as their interaction
strengths will correspond one-to-one with smaller |S|;
one may intuit that smaller |S| implies a smaller |∂S|,
thereby decreasing the expected τ−1

S . However, we shall
see this does not necessarily hold.

Again consider a lattice of qubits, now made boundary-
less by adding interactions between opposite qubits
on the original boundary, yielding a toroidal geometry.
The Jij values between adjacent qubits are still drawn
from N (0, 1). Now, we introduce interactions between
next nearest neighbors (NNN), which are one diagonal
apart on the lattice, and assign to each a Jij , also drawn
from a normal distribution with a variable variance.
We then increase the NNN interaction strengths (i.e.
increase the variances of J) and see how average |S| and
τ−1
S vary. Figure 2 contains plots of these relationships.

To increase interactions, we generate NNN J values
by scalar multiplication of samples from N (0, 1). It is
thus expected that the τ−1

S varies quadratically with
the relative interaction strength of the NNN, since
variance scales quadratically with scalar multiplication
of a random variable, and edge weights are J2 terms.

More interestingly, we see that after decreasing rapidly,
|S| begins to increase after the NNN interactions
surpass the nearest-neighbor interactions in strength.
When NNN interactions are very small, they contribute
little to the total min-cut weight and can effectively be
ignored. In the limit where NNN interactions are very
strong, nearest-neighbor interactions contribute very
little to the total min-cut weight and can effectively
be ignored. In between, they both contribute signifi-
cantly and the system is in a regime where |∂S| ∝ τ−1

S ,
thereby preferentially selecting smaller S on average.

As the system size grows, the probability that there
exists some particular qubit which has only weak inter-
actions with its neighbors grows. It is thus expected
that average |S| decreases. This is observed in the
difference between the 6x6 and 4x4 lattices in Figure
2.

We can also probe how |S|avg changes as a lattice
transitions from 1D to 2D. For a 1xN lattice, |S|avg
should fall around N/4. We have seen that |S|avg falls
between 1 and 2 for an NxN lattice. For n ≥ 3, we
see |S|avg rapidly approaches the NxN value, as the
number of interactions per qubit is a constant 4 (3).

VI. CONCLUSIONS

In this paper we have proposed a novel dynamical
mechanism for the operational emergence of generalized
tensor product structures. Generalized tensor product
structures are defined by a dual pair (A, A′) made of
a unital hermitian-closed subalgebra of implementable
operators A and its commutant A′. This pair defines
a Hilbert space mereology having both additive and
tensor product components. When A is a factor, i.e., it
has a trivial center, just the latter survives, and one has
a standard virtual bipartition where the Hilbert space
becomes a simple tensor product of two subsystems
associated to A and A′ [4].

By means of a short-time expansion of the algebra
OTOC recently introduced in [15, 16], we define a
notion of gaussian scrambling time τs, which is the
time scale over which the system degrees of freedom
associated with A are (approximately) mapped onto
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(a) (b)

Figure 1: Figure a) shows the weighted min-cut bipartition of the system, with the subsystems S and S̄ denoted by
red and blue nodes respectively. Figure b) shows the minimal τ−1 bipartition subject to the constraint that |S| =
4. Observe that the minimum cut in a) has a strictly lower weight than that of b) and can be obtained from b) by
selecting just the lowest edge-weighted node in S to be the new S.

(a) (b)

Figure 2: For each relative interaction strength x, 500 Jij samplings and corresponding runs of the min-cut algorithm
were averaged. The relative interaction strength x was implemented as a multiplier x · N (0, 1). X values were increased in
increments of 0.02, from 0 to 5, for the 4x4 lattice, and in increments of 0.05 for the 6x6 lattice.

themselves and no scrambling occurs. The rate τ−1
s

has a simple and elegant geometric meaning in terms of
the distance of the system Hamiltonian from the space
A + A′, and it involves couplings between different
central sectors and intra-sector entangling interactions.

Given the system Hamiltonian, and a family of op-
erational possibilities, our framework dynamically
selects the emergent tensor product structures corre-
sponding to maxima of τs. In the light of the entropy-
like nature of the algebra OTOC, this approach is
reminiscent of the minimal entropy production prin-
ciple and selects the structures which preserve their
“informational identity” the longest.

The intuition behind this idea becomes clear in some
physically compelling examples we considered. Specif-
ically, when AB is a maximally abelian subalgebra
corresponding to a basis B, the A-OTOC quantifies
the coherence-generating power of the unitary dynamics
with respect to B [20, 30] and the gaussian-scrambling
rate τS is closely related to the distance between the ba-
sis B and the eigenbasis BH of a non-degenerate Hamil-
tonian H that generates the time evolution. Given
a family of operationally relevant bases (for example,
a family of product bases in a quantum-many body
setting), the minimization of τS provides a transparent
notion of a dynamically preferred basis as the one that
minimizes the rate with which coherence is generated.
In addition, in the case that A is a factor, the A-OTOC
quantifies the operator entanglement of the unitary evo-

lution operator U [19] across the bipartition induced by
A and the gaussian scrambling rate corresponds exactly
to the interaction strength between the subsystems of
this bipartition. Minimizing the gaussian scrambling
rate over operationally accessible bipartitions, then,
describes the rather intuitive fact that the dynamics
dictate a partitioning of the system into the subsystems
that interact the weakest. We applied this framework
in quantum many-body systems of qubits on a square
lattice with random nearest neighbors (NN) and next
nearest neighbors (NNN) Ising interactions. In this
case, we mapped the minimization of τ−1

S over biparti-
tions of the background qubits into a weighted min-cut
problem of graph theory and studied the dependence of
the average size of the emergent subsystems as we vary
the relative strength of the NNN and NN interactions.

VII. ACKNOWLEDGMENTS

This research was (partially) sponsored by the NSF
award PHY-2310227 and by the Army Research Office
Grant Number W911NF-20-1-0075. SL was supported
by DARPA under the RQMLS project, and by AFOSR
and ARO. The views and conclusions contained in
this document are those of the authors and should
not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Office
or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for



9

(a) (b)

Figure 3: Again, 500 Jij samplings and corresponding runs of the min-cut algorithm were averaged. As n increases,
the average size of S approaches what we have seen previously.
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Appendix A: Commutativity and Information Transfer

Suppose that for a unitary CP map U one has [X,U(Y )] = 0, ∀X ∈ A,∀Y ∈ B (Heisenberg picture).

Let us prepare a family of states ρα = Tα(ρ0) where the Tα(·) :=
∑

i K
i
α(·)(Ki

α)
† are trace preserving

(
∑

i(K
i
α)

†Ki
α = 1) CP maps with Kraus operators in A. Now, if X ∈ B, one has that (Schrödinger pic-

ture) Tr
[
XU†(ρα)

]
= Tr

[
T †
αU(X)ρ0

]
= Tr [U(X)ρ0] .The last equality holds because, since U(X) ∈ B commutes

with all operators in A, one has that T †
αU(X) =

∑
i(K

i
α)

†U(X)Ki
α = (

∑
i(K

i
α)

†Ki
α)U(X) = U(X). The above

shows that the A-local preparation maps Tα have no influence on the expectation values of operators in B. Namely,
the states U†(ρα)’s restricted to B are all identical and, therefore, no information can be sent by U from A to B.

Appendix B: The Factor Condition

Let A ⊂ L(H) be a unital hermitian-closed subalgebra. One has the surjective algebra homomorphism

A⊗A′ → A∨A′ : a⊗ b 7→ ab. (B1)

whose kernel is the ideal I of A⊗A′ generated by {c⊗ c̃− c̃⊗ c | c, c̃ ∈ Z(A)} or, equivalently, by span{ΠJ ⊗
ΠK −ΠK ⊗ΠJ}JK where the Π’s are the central projections. Using standard isomorphisms one has that

A⊗A′

I
∼= A ∨A′. (B2)

Since dim(I) =
∑

J ̸=K d2Jn
2
K from (B2) one sees that the first isomorphism in Eq. (4) is obtained if I = {0} i.e.,

there is just one J in Eq. (2). The latter condition means Z(A) = C1 which is the definition for A being a factor.
In this case dim(A ∨A′) = d2Jn

2
J = (nJdJ)

2 = dim(L(H)) which implies the second isomorphism in Eq. (4).

Appendix C: A-OTOC and entropies: the general case

i) In [16] in was proven that

GA(Ut) =
1

d
Tr

[
S(1− ΩA)U⊗ 2

t (ΩA′)
]
= 1− 1

d
Tr

[
SΩAU⊗ 2

t (ΩA′)
]
, (C1)

where ΩA := EX∈A[X ⊗ X†] =
∑d(A)

α=1 eα ⊗ e†α, ΩA′ := EY ∈A′ [Y ⊗ Y †] =
∑d(A′)

β=1 fβ ⊗ f†
β , and S is the swap

operator over H⊗ 2. The eα’s (fβ ’s) form an orthogonal (hermitean-closed) basis for A (A′) and fulfill [15, 16]

Tr1 [S ΩA(X ⊗ 1)] =
∑
α

eαXe†α = PA′(X), Tr1 [S ΩA′(X ⊗ 1)] =
∑
β

fβXf†
β = PA(X), (C2)

More specifically, eα =
1nJ√
dJ

⊗ |l⟩⟨m|, α := (J, l,m); J = 1, . . . dZ ; l,m = 1, . . . , dJ and fβ = |p⟩q| ⊗ 1dJ√
nJ

, p, q =

1, . . . , nJ from which it follows

ΩA =
∑
α

eα ⊗ e†α =
∑
J

1⊗2
nJ

⊗ SdJ

dJ
, ΩA′ =

∑
β

fβ ⊗ f†
β =

∑
J

SnJ

nJ
⊗ 1⊗2

dJ
, (C3)

where SdJ
∈ L

(
(CnJ ⊗CdJ )⊗2

)
is the swap operators between the CdJ factors (similarly for the SnJ

’s.) Note
that from (C3) it follows

∑
α ∥eα∥22 =

∑
β ∥fβ∥22 = d, and Tr[ΩA] =

∑
J n2

J = d(A′), Tr[ΩA′ ] =
∑

J d2J = d(A).

Using Eq. (C1), (C3) and S(1⊗2
nJ

⊗ SdJ
) = SnJ

⊗ 1⊗2
dJ

, one gets the following expression for the A-OTOC

1−GA(U) =
1

d

∑
JK

1

nKdJ
Tr

[
(SnJ

⊗ 1⊗2
dJ

)U⊗2
JK(SnK

⊗ 1⊗2
dK

)
]
, (C4)

where UJK(X) := (ΠJUΠK)X(ΠJUΠK)†. For the factor case dZ = 1 one recovers the bipartite OTOC ( i.e.,
operator entanglement of U) (9) while for abelian A′ (nK = 1,∀K) one finds:

1−GA(U) =
1

d

∑
J

1

dJ

∑
K

Tr
[
Π⊗2

J U(ΠK)⊗2
]
=

∑
J

qJ
∑
K

|⟨ΠJ

dJ
, U(ΠK)⟩|2 =

∑
J

qJ∥pJ∥2 (C5)

where qJ := dJ

dJ
and pJ := (⟨ΠJ

dJ
, U(ΠK)⟩)dZ

K=1 are probability vectors as (pJ)K ≥ 0 and
∑

K(pJ)K =

Tr[ΠJ

dJ
U(

∑
K ΠK)] = Tr[ΠJ

dJ
] = 1. Then, using

∑
J qJ = 1

d

∑
J dJ = 1 one obtains (12).
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More in general, the term in (C4) under trace can be seen to be proportional to the operator purity of the maps
UJK := ΠJUΠK : HK

∼= CnK ⊗CdK → HJ
∼= CnJ ⊗CdJ . The entropic contributions to (C4) are an intertwining

of the “uniformization" of the the central sector system (due to the the "off-diagonal" UJK for J ̸= K) and the
operator entanglement of the individual UJK . Both the additive and the multiplicative mereological structures
contribute to the A-OTOC entropic nature.

Appendix D: Proof of the Proposition.

If Ut = eitH by expanding the exponential one finds that the zeroth and first order terms vanish and GA(Ut) =
t2

d Tr
[
(S(ΩA − 1)H⊗ 2(ΩA′)

]
+O(t3). Now H(X) = HX −XH := (LH −RH)(X) and therefore H⊗2 = L⊗2

H −
LH ⊗RH −RH ⊗ LH +R⊗2

H . Computations using Eq. (C2) and Tr [S(A⊗B)] = Tr[AB] lead to

Tr
[
S ΩARH

⊗ 2(ΩA′)
]
= Tr

[
S ΩALH

⊗ 2(ΩA′)
]
= ⟨PA(H),PA′(H)⟩. (D1)

and

Tr [S ΩA(RH ⊗ LH)(ΩA′)] = Tr [S ΩA(LH ⊗RH)(ΩA′)] = ∥PA′(H)∥22, Tr
[
SH⊗2(ΩA′)

]
= 2

(
∥PA(H)∥22 − ∥H∥22

)
.

(D2)

Bringing all terms together (and up to higher order terms)

GA(Ut) =
2t2

d

(
∥H∥22 − ∥PA′(H)∥22 + ⟨PA(H),PA′(H)⟩ − ∥PA(H)∥22

)
⟩

=
2t2

d
⟨H, (1− PA)(1− PA′)(H))⟩ = 2t2

d
∥(1− PA)(1− PA′)(H)∥22. (D3)

Now PA+A′ = PA + PA′ − PAPA′ and 1− PA+A′ = (1− PA)(1− PA′) from which Eq. (14) follows.

Appendix E: Proof of Eq. (15)

Since A+A′ ⊂ A ∨A′, one has the identity 1− PA+A′ = (1− PA∨A′) + PA∨A′(1− PA+A′) one also finds

τ−2
s (H,A) = ∥(1− PA∨A′)(H̃)∥22 + ∥PA∨A′(1− PA+A′)(H̃)∥22. (E1)

Since PA∨A′(X) =
∑

J ΠJXΠJ where the ΠJ ’s are the central projections in (2), the first term can be written∑
J ∥ΠJH(1 − ΠJ)∥22 whereas the second term is a sum over J of terms as in Eq. (20) squared. The rate is

given by two different types of contributions: coupling between different central sectors HJ
∼= Cn

J ⊗CdJ in (2)
and entangling “interactions" inside each of them. When (A,A′) is a dual pair of factors, the first contribution
vanishes (the factor condition imposes that PA∨A′ = 1) and one obtains (16). When either A or A′ is Abelian,
the second contribution vanishes (A ⊂ A′ or A′ ⊂ A implies A+A′ = A ∨A′) and one obtains (17).

Appendix F: Proof of the Corollary

i) if H ∈ A+A′ the Ut factorizes in two commuting unitaries, one acting on A and the other on A′. Plugging this
into the definition (7) one sees that U(Y ) ∈ A′ and that the A-OTOC then vanishes. Viceversa, if the A-OTOC
is identically zero then also τ−1

s = 0 which, by Eq. (14), is possible iff H = PA+A′(H) i.e., H ∈ A+A′.

ii) Just use D(x,W ) = infy∈W ∥x− y∥ = ∥(1− PW )x∥. Where PW is the subspace projection.

iii) One has that ∥(1 − PA)(1 − PA′)(H)∥2 ≤ ∥(1 − PA)(H)∥2 = D(H,A) and ∥(1 − PA)(1 − PA′)(H)∥2 ≤
∥(1− PA′)(H)∥2 = D(H,A′) from which the bound (19) follows.

Appendix G: Proof of Eq. (21)

The distance between two maximal abelian algebras AB = C{|i⟩⟨i|} and AB̃ = C{|̃i⟩⟨̃i|} is given by D(AB ,AB̃) =

∥PAB
− PAB̃

∥HS =
√
2d(1− 1

d

∑
i,̃i |⟨i|̃i⟩|4) =

√
2d(1− tr(XTX)) where Xi,j := |⟨i|j̃⟩|2 [31]. From (17)

1/τ2s (H,AB) =
1

d

d∑
i=1

(⟨i|H2|i⟩ − ⟨i|H|i⟩2) = η2H(1− ⟨ε,XT
HXHε⟩), ηH :=

∥H∥2√
d
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where H =
∑

k ϵ̃k|k̃⟩⟨k̃| is the spectral resolution of H, the normalized vector ε = 1
∥H∥2

(ϵ̃1, . . . , ϵ̃d), and (XH)ik :=

|⟨i|k̃⟩|2. Then τ−2
s ≤ η2H∥1−XT

HXH∥∞ ≤ η2H ∥1−XT
HXH∥1 = η2H tr

(
1−XT

HXH

)
= d η2H

(
1− 1

d tr(X
T
HXH)

)
=

1
2η

2
H D2(AB ,ABH

), whence τ−1
s ≤ ηH D(AB ,ABH

).

Appendix H: Proof of Eq. (23)

By definition U(A) := {UxU† |x ∈ A} for unitary U is a unital hermitian-closed subalgebra of L(H) if A is so.
Then, PU(A) = UPAU† by direct inspection. The same relation is true for (U(A))′ = U(A′) i.e., PUA′U† = UPA′U†

Using unitary invariance of ∥ · ∥2 one finds:

τ−1
s (H,U(A)) = ∥(1− PU(A′))(1− PU(A))(H)∥2 = ∥U(1− PA′)U†U(1− PA)U†(H)∥2

= ∥(1− PA′)(1− PA)U†(H)∥2 = τ−1
s (U†(H),A). (H1)
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