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We investigate coined quantum walk search and state transfer algorithms, focusing on the complete
M -partite graph with N vertices in each partition. First, it is shown that by adding a loop to each
vertex the search algorithm finds the marked vertex with unit probability in the limit of a large
graph. Next, we employ the evolution operator of the search with two marked vertices to perform a
state transfer between the sender and the receiver. We show that when the sender and the receiver
are in different partitions the algorithm succeeds with fidelity approaching unity for a large graph.
However, when the sender and the receiver are in the same partition the fidelity does not reach
exactly one. To amend this problem we propose a state transfer algorithm with an active switch,
whose fidelity can be estimated based on the single vertex search alone.

I. INTRODUCTION

Quantum walks [1] are quantum mechanical analogues
of random walks. Their dynamics can be formulated
either in discrete time steps [2], as we consider in the
present paper, or in continuous time [3]. Both have found
promising applications in quantum information process-
ing [4], notably in quantum spatial search where an un-
sorted database is represented by a graph. The solu-
tion to the search problem corresponds to a marked ver-
tex, where the local dynamics is different from the non-
marked vertices. Usually, the initial state of the walk is
taken as the equal weight superposition of all basis states.
The walk is evolved coherently for T steps, after which
we perform a measurement which collapses the state of
superposition and the walker is found on a single vertex.
On various graphs quantum walk is capable of finding
the marked vertex with sufficiently high probability in a
number of steps that grows with the square root of the
number of vertices n, i.e., the complexity is the same
as for the abstract Grover search algorithm [5] which
is known to be optimal. Initially, the investigation was
mostly focused on graphs with some degree of symme-
try or regularity. Continuous time quantum walks were
shown to be optimal [6] for a complete graph, hypercube
and lattices of dimensions greater than 4. Discrete time
quantum walks with coins [7] are also optimal on these
graphs [8–11], in addition, they are optimal for lattices
of dimensions greater than 2 [9]. Scattering quantum
walk [12–14], which represents an alternative equivalent
formulation of the coined quantum walk [15, 16], can per-
form optimal search e.g., on a star graph or a complete
M -partite graph [17]. However, high symmetry is not re-
quired for the optimal performance of the quantum walk
search [18–20]. In fact, it was shown [21] that continuous
the time quantum walk is optimal on Erdös-Renyi ran-
dom graphs as long as the probability of an edge existing

between any pair of vertices is greater than
(

log
3
2 n
)
/n.

However, on scale-free networks [22] the application of
quantum walk search appears to be limited since the op-
timal run-time depends on the centrality of the marked

node [23]. More recently [24] several sufficient and neces-
sary conditions for continuous time quantum walk search
to be optimal were derived.

For the search algorithm (SA) it is not required that
we find the marked vertex with unit probability. As long
as the success probability is constant, we can repeat the
SA several times depending on our error tolerance to find
the marked vertex with high probability without chang-
ing the overall complexity of the algorithm. Even if the
success probability is of the order of 1/ log n, as for the
discrete time quantum walk on the 2D lattice [9], we can
use amplitude amplification [25] which increases the run-
time of the SA by a factor of

√
log n. There are several

graphs where the quantum walk SA is exactly equiva-
lent to the Grover search, e.g., the star graph [17], which
means that the success probability is unity. It is inter-
esting that for the discrete time quantum walks the suc-
cess probability of the SA can be often increased close
to unity by adding loops of appropriate weights at each
vertex. This was found originally for the complete graph
[9] and the hypercube [10]. Later investigations [26–30]
found that this result is much more generic and the opti-
mal weight of the loop depending on the size of the graph
and degree of the vertex was identified. Recently, it was
proven that adding loops improves the success probabil-
ity of the SA on all regular locally arc-transitive graphs
[31].

Quantum walks were also applied to the task of state
transfer [32] between two vertices of a graph. In this
context the initial state of the walk is localized on the
sender vertex and we want to transfer it with high prob-
ability to the receiver vertex. Provided that the location
of the sender and the receiver vertices are known, we
can globally design the dynamics such that the walker is
transferred from one to the other. This approach was in-
vestigated on different graphs such as circle [33, 34], 2D
lattice [35], regular graphs [36] or more general networks
[37]. When the sender and the receiver don’t know each
other’s position they can perform state transfer by mod-
ifying the local coins at their own vertices, i.e., by imple-
menting the evolution operator of the SA for two marked
vertices. This approach was proposed for state transfer
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on lattices [38] and further analyzed on various types of
finite graphs, e. g. on cycles and their variants [39, 40],
star and complete graph with loops [41], complete bipar-
tite graph [42], circulant graphs [43] or butterfly network
[44]. Similar approach can be also applied for finding a
path in a maze formed by star graphs [45] or trees [46].

We consider the state transfer algorithm (STA) follow-
ing the second approach, i.e., based on the evolution op-
erator of the SA with two marked vertices. For the STA
it is desirable that we succeed in the first attempt, i.e.,
the fidelity of state transfer should be ideally one. Nat-
ural candidates for graphs where STA works with unit
fidelity are those where also the SA succeeds with cer-
tainty. Indeed, the graphs considered in [41, 42] were
chosen exactly based on this idea. However, in this pa-
per we show an example of a graph where the SA works
with certainty yet in some instance the STA does not
have unit fidelity.

We investigate search and state transfer on the com-
plete M -partite graph with N vertices in each partition,
i.e., the graph has n = NM vertices. Search on the com-
plete M -partite graph was already investigated in [17] in
the framework of the scattering quantum walk. In the
coined walk the success probability of SA reaches 1

2 . We
show that by adding a loop to each vertex the success
probability tends to one for a large graph. Our approach
is based on dimensional reduction [19, 47–49]. First, we
find an exact invariant subspace I where the state of the
algorithm evolves. Next, we investigate the eigenvectors
of the evolution operator in the limit of a large graph
M → ∞ and N → ∞ and determine those which have
non-vanishing overlap with the initial state. These eigen-
vectors form an orthonormal basis of the relevant part of
the invariant subspace. For the SA, we find an exact in-
variant subspace with dimension 8, and in the asymptotic
limit the relevant part is three-dimensional. We then in-
vestigate the evolution operator of the search with two
marked vertices for the sake of state transfer. There are
two possible configurations - either sender and receiver
are in the same partition or not. In the first case, we find
an exact invariant subspace with dimension 11, while in
the second case it has dimension 22. To simplify the cal-
culations, we employ the symmetry of the graph which
allows us to exchange the sender and the receiver ver-
tex, or the whole partitions containing them in the latter
case. This symmetry splits the invariant subspace I fur-
ther into two closed subspaces - I+ in which the search
with two marked vertices evolves, and the complemen-
tary subspace I− needed for the state transfer. In the
configuration where the sender and the receiver are in the
same partition, the subspace I+ has dimension 8 and the
complementary subspace I− is three-dimensional. For
the second configuration the subspaces have dimensions
12 and 10, respectively. Nevertheless, in the limit of a
large graph only five eigenvectors of the evolution opera-
tor remain relevant in both configurations - three in the
subspace I+ and two in I−. The corresponding eigenval-
ues can be also determined analytically. We show that

when the sender and the receiver are in different parti-
tions the phases of the relevant eigenvalues are harmonic.
Hence, state transfer is achieved with unit fidelity. How-
ever, when the sender and the receiver are in the same
partition, the phases are not harmonic, and the fidelity
of state transfer is less than one. To fix this issue we pro-
pose an STA with an active switch, where initially only
the sender vertex is marked, and after some number of
steps the marking is switched to the receiver vertex. The
fidelity reachable by this STA can be estimated based on
the properties of the search for a single vertex. We show
that STA with an active switch achieves perfect state
transfer on the complete M -partite graph in the limit of
large N and M for both configurations of the sender and
the receiver vertex, and discuss its applicability on other
graphs.

The paper is organized as follows: In Section II we
describe discrete time quantum walks with coin on finite
graphs and introduce the quantum walk search and state
transfer algorithms. In Section III search on the complete
M -partite graph with one marked vertex is investigated
in detail. Section IV is devoted to the STA. The cases of
sender and receiver vertices being in the same or different
partitions are analyzed in Section IV A and Section IV B,
respectively. In Section V we consider a STA with an
active switch. We conclude and provide an outlook in
Section VI.

II. PRELIMINARIES

In this section we overview the general design of the
search and the state transfer algorithms based on the
discrete-time quantum walks with coins [8], [9] and [38].
Before we turn to the algorithms, we describe the dis-
crete time quantum walks with coins. Let us start with
Hilbert space of the walk. Having a graph G = (V,E)
the corresponding Hilbert space HG can be decomposed
as a direct sum

HG =
⊕
v

Hv,

of local Hilbert spaces at each vertex v ∈ V . The or-
thonormal basis in Hv is given by vectors |v, w〉 such
that there is an edge between vertex v and w

Hv = Span {|v, w〉|w ∈ V, {v, w} ∈ E} .

In the basis state |v, w〉 the first index v describes the
actual position of the walker, while the second index
w describes the direction of propagation of the walker.
Movement of the walker is achieved by application of the
flip-flop shift operator Ŝ, which is defined in the following
way

Ŝ|v, w〉 = |w, v〉. (1)

To generate a nontrivial evolution a coin operator Ĉ is
applied at every step before the shift takes place. The



3

coin operator can be decomposed into a direct sum

Ĉ =
⊕
v

Ĉ(l)
v ,

where Ĉ
(l)
v acts locally at a vertex v, i.e., it is a unitary

operator on Hv. The evolution operator Û of one step of
the walk is then given by

Û = ŜĈ. (2)

The main idea of search and state transfer algorithms
is to apply one local coin operator at the marked vertices
and different local coin operator at the other vertices of
the graph. Marked vertices are those that we want to find
or between which we want transfer the walker. Usually,
the local coin that is used at non-marked vertices is the
Grover operator [5]

Ĝ(l)
v = 2|Ωv〉〈Ωv| − Î(l)v , (3)

where Î
(l)
v is an identity operator at the subspace Hv and

|Ωv〉 is an equal weight superposition of all basis states
at the vertex v given by

|Ωv〉 =
1√
d (v)

∑
w

{v,w}∈E

|v, w〉. (4)

Here d(v) denotes the degree of the vertex v, which is also
the dimension of the subspace Hv. The coin operator of
the SA with one marked vertex m reads

Ĉm =
⊕
v∈V
v 6=m

Ĝ(l)
v ⊕ Ĉ(l)

m (5)

where Ĉ
(l)
m is the local coin operator at the marked ver-

tex. A usual choice for the marked coin is either a simple

phase shift by π (i.e., Ĉ
(l)
m = −Î(l)m ), or the Grover oper-

ator followed by a phase shift by π (i.e., Ĉ
(l)
m = −Ĝ(l)

m ).
In the present paper we consider the latter case. Using
the coin operator (5) we obtain the evolution operator of
the SA

Ûm = ŜĈm.

The steps of the SA are:

1. Initialize the walk in the equal weight superposition
of all basis states

|Ω〉 =
1√∑

v∈V
d(v)

∑
v∈V

√
d(v)|Ωv〉. (6)

2. Apply the evolution operator Ûm t-times. The state
of the walk after t steps is given by

|φ (t)〉 = Û tm |Ω〉 .

3. Measure the walk.

The probability to find the walker at the marked vertex
is given by the summation over all basis states in the
subspace Hm

Pm(t) =
∑
w

{m,w}∈E

|〈m,w|φ (t)〉|2. (7)

The optimal number of steps T providing high success
probability depends on the structure of the graph.

In the case of STA we consider 2 parties, sender and re-
ceiver sitting at vertices s and r, respectively, which want
to establish communication between each other. The
sender and the receiver have access only to their local
Hilbert spaces Hs and Hr, respectively. Typical STA
[38, 41, 42] uses the evolution operator of the search for
two marked vertices

Ûs,r = SĈs,r,

where we apply the same local coins at both marked ver-
tices at the same time

Ĉs,r =
⊕
v∈V
v 6=s,r

Ĝ(l)
v ⊕ Ĉ(l)

s ⊕ Ĉ(l)
r . (8)

However, the initial state of STA is different — it starts
localized at the sender vertex in some state |s〉. Standard
choice is the equal weight superposition of all basis states
at the vertex s, i.e., |s〉 = |Ωs〉. The steps of the STA are
the following:

1. Sender initializes the walk at its vertex in the state
|s〉.

2. The evolution operator Ûs,r is applied t-times. The
state of the walk after t steps is given by

|φ (t)〉 = Û ts,r |s〉 .

3. Receiver measures the walk at its vertex.

The fidelity of the STA, i.e., the probability that the
receiver finds the walker at its vertex, is given by

F(t) =
∑
w

{r,w}∈E

|〈r, w|φ (t)〉|2. (9)

The number of steps T (st) required to achieve state trans-
fer with high fidelity depends again on the size and the
structure of the graph. In contrast to the SA it is desir-
able that the STA performs with high fidelity in a single
run. In such a case we talk about perfect state transfer.

III. SEARCH ON THE COMPLETE M-PARTITE
GRAPH

Consider the complete M -partite graph (with M > 2).
Complete M -partite graph is a graph that has the set of
vertices V divided into M subsets, where vertices have
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no edges between them, but are connected to all ver-
tices in other subsets. We label the vertices of the graph
as vα, where α = 1, . . . ,M denotes the partition. The
basis states of the quantum walk are therefore given by
|vα, wβ〉, α 6= β. We also limit ourselves to the case
where all parts have the same size N , thus the whole
graph has n = MN vertices. This choice greatly sim-
plifies the construction of the invariant subspace. The
graph is d-regular with the vertex degree

d = N(M − 1).

Without loss of generality we assume that the marked
vertex is in the first partition.

Search on the complete M -partite graph was investi-
gated in [17] in the framework of the scattering quantum
walk. The difference between the two formulations is that
in the coined walk the walker lives on the vertices, while
in the scattering walk it lives on the edges. The results
of [17] can be adopted for the coined quantum walk with
a single modification. Namely, for the evaluation of the
success probability (7) we consider only the overlap with
the states where the walker is at the marked vertex, i.e.,
of the form |m1, kα〉, k = 1, . . . , N , α = 2, . . . ,M , which
form the basis of the local Hilbert space at marked ver-
tex Hm. The equal weight superposition of such states
corresponds to the state |w2〉 in [17]. This gives us the
success probability of 1

2 for a large graph. Note that

with probability close to 1
2 we would find the walker in

some state |kα,m1〉, k = 1, . . . , N , α = 2, . . . ,M , i.e.,
where the walker is at the vertex kα and would move to
the marked vertex after the application of the shift Ŝ.
In the scattering walk framework these states are also
considered in the evaluation of the success probability.
Nevertheless, we focus on the coined formulation. In the
end our goal is to investigate the state transfer between
vertices where the coined formulation is more natural,
since sender and receiver are considered to be restricted
to their local Hilbert spaces Hs and Hr, respectively.

We show that one can improve the success probabil-
ity of the coined walk search by adding one loop at each
vertex. This is done by adding basis states |vα, vα〉 corre-
sponding to the loop at each vertex, i.e. the dimension of
the local Hilbert spaces Hvα increases by one. Moreover,
we modify the local coin operator (3) by replacing the
state |Ωvα〉 (4) with the state |Ωvα(l)〉 given by

|Ωvα(l)〉 =
1√
d+ l

 M∑
β=1
β 6=α

N∑
k=1

|vα, kβ〉+
√
l |vα, vα〉

 ,

where l is the weight of the loop. Note, however, that the
initial state of the SA remains the same as before, i.e.,
we prepare the system in the equal weight superposition
(6) of all basis states excluding the states corresponding
to the loops. According to [29, 31] the optimal weight l
of the loops is given by

l =
d

NM
= 1− 1

M
. (10)

Since we focus on the limit of a large graph we put l = 1.
This choice corresponds to the local coin operator being
the Grover operator (3) of dimensions d + 1, except for
the marked vertex where we include an additional phase
shift by π. First, we show that the SA evolves in an 8-
dimensional invariant subspace I. We note that in princi-
ple the dimension of the exact invariant subspace can be
reduced further, since the evolution operator restricted
on I still has some degenerate eigenvalues. However, the
construction of the basis would not be as intuitive and
the ensuing calculations will not simplify. Second, we
consider a limit of a large graph which effectively reduces
the dimension of the invariant subspace to three.

Let us begin with the construction of the basis of the
invariant subspace I. The numerical simulations indicate
that the state of the walk |φ(t)〉 evolves periodically close
to a state corresponding to the loop on the marked vertex
|m1,m1〉. Hence, we consider this desired target state of
the SA as the first basis vector of the invariant subspace

|ν1〉 = |m1,m1〉 . (11)

Next, we add an equal weight superposition of all edges
leaving the marked vertex

|ν2〉 =
1√
d

M∑
α=2

N∑
k=1

|m1, kα〉. (12)

Concerning the non-marked vertices in the first partition,
we add two states corresponding to a superposition of all
loops and a superposition of all edges leaving the first
partition

|ν3〉 =
1√

(N − 1)

N∑
j 6=m

|j1, j1〉,

|ν4〉 =
1√

d(N − 1)

N∑
j 6=m

M∑
α=2

N∑
k=1

|j1, kα〉.

Next, we consider the edges leading to the first partition
from the outside and ending either on the marked or
non-marked vertex, and construct the following two basis
states

|ν5〉 =
1√
d

M∑
α=2

N∑
k=1

|kα,m1〉, (13)

|ν6〉 =
1√

d(N − 1)

N∑
j 6=m

M∑
α=2

N∑
k=1

|kα, j1〉.

These states can be obtained by applying the shift oper-
ator on |ν2〉 and |ν4〉. To complete the basis we consider
the states corresponding to the superposition of all edges
between the vertices outside of the first partition

|ν7〉 =
1√

d(d−N)

M∑
α,β=2
β 6=α

N∑
j,k=1

|jα, kβ〉
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and the superposition of all remaining loops

|ν8〉 =
1√
d

M∑
α=2

N∑
k=1

|kα, kα〉.

Clearly, the initial state of the SA (6) lies in I and has
the following form

|Ω〉 =
1√
MN

[
|ν2〉+ |ν5〉+

√
d−N |ν7〉+

+
√
N − 1(|ν4〉+ |ν6〉)

]
. (14)

By direct calculation one can show that the evolution
operator Ûm of the SA acts on the basis states according
to

Ûm |ν1〉 =
1

d+ 1

(
(d− 1) |ν1〉 − 2

√
d |ν5〉

)
,

Ûm |ν2〉 = − 1

d+ 1

(
2
√
d |ν1〉+ (d− 1) |ν5〉

)
,

Ûm |ν3〉 =
1

d+ 1

(
(1− d) |ν3〉+ 2

√
d |ν6〉

)
,

Ûm |ν4〉 =
1

d+ 1

(
2
√
d |ν3〉+ (d− 1) |ν6〉

)
,

Ûm |ν5〉 =
1

d+ 1

(
(1− d) |ν2〉+ 2

√
N − 1 |ν4〉+

+2
√
d−N |ν7〉+ 2 |ν8〉

)
,

Ûm |ν6〉 =
1

d+ 1

(
2
√
N − 1 |ν2〉 − (d+ 3− 2N) |ν4〉+

+2
√

(d−N)(N − 1) |ν7〉+

+2
√
N − 1 |ν8〉

)
,

Ûm |ν7〉 =
1

d+ 1

(
2
√
d−N |ν2〉+

+2
√

(d−N)(N − 1) |ν4〉+

+(d− 1− 2N) |ν7〉+ 2
√
d−N |ν8〉

)
,

Ûm |ν8〉 =
1

d+ 1

(
2 |ν2〉+ 2

√
N − 1 |ν4〉+

+2
√
d−N |ν7〉+ (1− d) |ν8〉

)
. (15)

Hence, I is indeed an invariant subspace of the SA and
the state of the walk |φ(t)〉 remains in I for all t. Its
evolution is determined by the eigenvalues and eigenvec-
tors of Ûm, which is in the invariant subspace represented
by an 8 × 8 unitary matrix with matrix elements given
by (15). While it is possible to diagonalize this matrix
analytically, the procedure is rather onerous and the re-
sulting expressions are quite lengthy. Nevertheless, the
analysis can be considerably simplified in the limit of a
large graph, i.e., when N →∞ and M →∞. As we can
see from the expansion (14) for large N and M the ini-
tial state of the algorithm tends to |ν7〉. Hence, the only

eigenvectors of the evolution operator Ûm, which remain
relevant in the asymptotic limit, are those which have

non-vanishing overlap with |ν7〉. It turns out that there
are only three such states and their asymptotic form is
given by

|ψ1〉 =
1√
2

(|ν7〉 − |ν1〉),

|ψ(±)
2 〉 =

1

2
(|ν1〉+ |ν7〉 ± i(|ν5〉 − |ν2〉)). (16)

It can be shown that for the other eigenvectors of Ûm
the overlap with the initial state decreases at least as
O(1/

√
NM). Let us turn to the eigenvalues. The eigen-

vector |ψ1〉 corresponds to λ1 = 1. For |ψ(±)
2 〉 the eigen-

values have the form

λ
(±)
2 = e±iω2 .

From the characteristic polynomial of Ûm we find that
cosω2 is given by the largest root of the quadratic equa-
tion

x2 −
(

1− N

d+ 1

)
x− (d+ 1)(N − 2) +N − 3

(d+ 1)
2 = 0.

This leads us to

ω2 = arccos

(
1− 1 +NM −

√
N2M2 − 6NM + 4N + 5

2(d+ 1)

)

≈ 2√
NM

. (17)

From the relations (16) we express the initial and the
target state of the SA in terms of the eigenvectors of the
evolution operator as

|Ω〉 =
1√
2
|ψ1〉+

1

2

(
|ψ(+)

2 〉+ |ψ(−)
2 〉

)
,

|ν1〉 = − 1√
2
|ψ1〉+

1

2

(
|ψ(+)

2 〉+ |ψ(−)
2 〉

)
. (18)

The state after t iterations of the SA reads

|φ(t)〉 =
1√
2
|ψ1〉+

1

2

(
eiω2t |ψ(+)

2 〉+ e−iω2t |ψ(−)
2 〉

)
.

(19)
The success probability (7) of the SA after t steps can be
expressed in the form

Pm(t) = |〈ν1|φ(t)〉|2 + |〈ν2|φ(t)〉|2. (20)

From (19) and (18) we see that the probability to find
the walker in the target state |ν1〉 is given by

|〈ν1|φ(t)〉|2 = sin4

(
ω2t

2

)
. (21)

The probability to find the walker in the state |ν2〉 reads

|〈ν2|φ(t)〉|2 =
1

4
sin2 (ω2t) . (22)
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FIG. 1. Overall success probability of SA (black dots) and
the probability to find the walker in the target state |ν1〉 (blue
squares) as a function of the number of steps t for N = 40
and M = 100. Red curves correspond to the analytical results
(dashed line to eq. (21) and full line to eq. (23) ). Green
diamonds denote the probability that the walker is on the
marked vertex but not in the loop, which follows the curve
(22). The success probability is close to one after T ≈ 100
steps, in accordance with (24).

Put together we obtain the overall success probability of
the SA

Pm(t) = sin2

(
ω2t

2

)
. (23)

We see that for t = π
ω2

the state of the SA is very close to

the target state |ν1〉. Hence, the number of steps needed
to find the marked vertex with probability close to one
is given by

T =
π

ω2
≈ π
√
NM

2
+O

(
1√
NM

)
. (24)

For illustration we plot in Figure 1 the probability to
find the marked vertex (23) as a function of the number
of steps for a graph with N = 40 and M = 100.

We note that the result (23) holds in the limit of large
N and M . To investigate how quickly does the success
probability at the optimal time (24) approaches unity
we performed numerical simulations for various values
of N and M . The simulations indicate that the success
probability is essentially independent of N and with M
it scales according to

Pm(T ) = 1−O
(

1

M

)
.

The results are illustrated in Figure 2.

IV. STATE TRANSFER

We now turn to the analysis of the STA. There are two
possible configurations — the sender and the receiver are

FIG. 2. Overall success probability of SA as a function of
the number of partitions M for N = 10 (gray circles), N = 50
(blue triangles) and N = 100 (brown diamonds). For a given
N and M we evaluate numerically the evolution of SA for
the optimal number of steps T given by (24) and determine
Pm(T ) from the formula (20). To unravel the scaling of the
success probability we plot 1 − Pm(T ) on the log-log scale.
Independent of the value of N , the sets of data-points fit well
onto the 1/M slope indicated by the red line.

in the same partition or not. Numerical simulations indi-
cate that for the graph without loops the STA does not
work well. When the sender and the receiver are in the
same partition the fidelity does not surpass 0.25. For the
second configuration the first maximum of fidelity tends
to 0.8. Hence, we turn to the graph with loops. Choosing
the initial state of the sender as the equal weight super-
position (4), i.e., |s〉 = |Ωs〉, the numerical simulation
reveals that the fidelity tends to 1 for the second con-
figuration. However, when the sender and the receiver
are in the same partition the fidelity is still limited. As
we show in Figure 3 it does not surpass 0.35. A careful
analysis would reveal that the culprit are two orthogonal
eigenvectors of the evolution operator of the STA corre-
sponding to the eigenvalue -1, one having a large overlap
with |Ωs〉 and the other one with |Ωr〉. In the second con-
figuration this does not happen, as both |Ωs〉 and |Ωr〉
have overlaps with the same eigenvectors of the evolu-
tion operator of the STA. Hence, the absence of an edge
between the sender and the receiver vertex in the first
configuration significantly limits the achievable fidelity
when we use the equal weight superposition state |Ωs〉 as
the initial state of STA.

We show that the fidelity of STA in the first configura-
tion can be improved considerably by choosing the initial
state |s〉 as the loop on the sender vertex. Moreover, we
prove that this initial state works well also in the sec-
ond configuration. In both configurations the walker will
be with high probability transferred to the loop at the
receiver vertex. We denote this receiver state as |r〉.
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FIG. 3. The evolution of the fidelity F of the state transfer
during 1000 steps for N = 40 and M = 100. Sender and
receiver are in the same part. The initial state |s〉 is the equal
weight superposition on the sender vertex |Ωs〉. We see that
the fidelity does not grow over 0.35.

A. Sender and receiver in the same partition

Let us first consider the case when the sender and the
receiver are in the same partition of the graph , i.e., they
are not connected directly by an edge. Without loss of
generality we consider that they are in the first one.

We begin by constructing the basis of the exact invari-
ant subspace. The procedure is similar to the one for the
SA, but we have to consider two marked vertices corre-
sponding to the sender s and the receiver r. Hence, the
basis states of the form (11), (12), (13) will appear twice
- once for m = s and once for m = r. In the end we find

the following 11 basis vectors

|ν1〉 = |s1, s1〉 ,

|ν2〉 =
1√
d

M∑
α=2

N∑
j=1

|s1, jα〉 ,

|ν3〉 = |r1, r1〉 ,

|ν4〉 =
1√
d

M∑
α=2

N∑
j=1

|r1, jα〉 ,

|ν5〉 =
1√
N − 2

N∑
j 6=s,r

|j1, j1〉 ,

|ν6〉 =
1√

d(N − 2)

N∑
j 6=s,r

M∑
α=2

N∑
k=1

|j1, kα〉 ,

|ν7〉 =
1√
d

M∑
α=2

N∑
j=1

|jα, s1〉 ,

|ν8〉 =
1√
d

M∑
α=2

N∑
j=1

|jα, r1〉 ,

|ν9〉 =
1√

d(N − 2)

N∑
j 6=s,r

M∑
α=2

N∑
k=1

|kα, j1〉 ,

|ν10〉 =
1√

d(d−N)

M∑
α=2

M∑
β=2,β 6=α

N∑
j,k=1

|jα, kβ〉 ,

|ν11〉 =
1√
d

M∑
α=2

N∑
j

|jα, jα〉 (25)

Let us denote the subspace spanned by these vectors as I.
Clearly, it contains the initial and the desired target state
of the STA (|s〉 = |ν1〉 and |r〉 = |ν3〉). It can be shown
by direct calculation that it is closed under the action
of Ûs,r. However, we will not provide the expression of

Ûs,r in this basis because I can be divided further into
two invariant subspaces. This comes from a fact that
the evolution of the STA is invariant with respect to the
exchange of the sender and the receiver vertex. Let us
denote the operator corresponding to this symmetry as
P̂ . Clearly, it holds that

P̂ 2 = Î , [P̂ , Ûs,r] = 0.

P̂ acts on the basis states (25) as

P̂ |ν1〉 = |ν3〉 , P̂ |ν2〉 = |ν4〉 , P̂ |ν7〉 = |ν8〉 ,
P̂ |νj〉 = |νj〉 , j = 5, 6, 9, 10, 11.

Since P̂ commutes with Ûs,r, they have common eigen-

vectors. From P̂ 2 = Î we see that the spectrum of P̂
consists of two eigenvalues 1 and −1. Hence, the invari-
ant subspace I can be split into two subspaces I+ and
I− which correspond to eigenvalues 1 and −1 of the op-

erator P̂ . Basis of the invariant subspace I+ is spanned
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by eigenstates denoted as |σi〉, i = 1, . . . , 8 and it has the
following form

|σ1〉 =
1√
2

(|ν1〉+ |ν3〉) ,

|σ2〉 =
1√
2

(|ν2〉+ |ν4〉) ,

|σ3〉 = |ν5〉 ,
|σ4〉 = |ν6〉 ,

|σ5〉 =
1√
2

(|ν7〉+ |ν8〉) ,

|σ6〉 = |ν9〉 ,
|σ7〉 = |ν10〉 ,
|σ8〉 = |ν11〉

Note that if we perform SA for two marked vertices in-
stead of STA, the subspace I+ would be invariant with
respect to the search. This is due to the fact that the
initial state of SA algorithm lies within this subspace.
Basis of the invariant subspace I− is spanned by eigen-

states denoted as |τi〉, i = 1, . . . , 3 and it has the following
form

|τ1〉 =
1√
2

(|ν1〉 − |ν3〉) ,

|τ2〉 =
1√
2

(|ν2〉 − |ν4〉) ,

|τ3〉 =
1√
2

(|ν7〉 − |ν8〉)

This subspace is needed only in STA since the initial state
of SA is orthogonal to this subspace.

The sender and the receiver states in the new basis
read

|s〉 =
1√
2

(|σ1〉+ |τ1〉) ,

|r〉 =
1√
2

(|σ1〉 − |τ1〉) . (26)

The evolution operator in the new basis is block diagonal,
i.e., Ii are the invariant subspaces of Ûs,r. We find the
following relations for the basis states of I+

Ûs,r |σ1〉 =
1

d+ 1

(
(d− 1) |σ1〉 − 2

√
d |σ5〉

)
,

Ûs,r |σ2〉 = − 1

d+ 1

(
2
√
d |σ1〉+ (d− 1) |σ5〉

)
,

Ûs,r |σ3〉 =
1

d+ 1

(
(1− d) |σ3〉+ 2

√
d |σ6〉

)
,

Ûs,r |σ4〉 =
1

d+ 1

(
2
√
d |σ3〉+ (d− 1) |σ6〉

)
,

Ûs,r |σ5〉 =
1

d+ 1

(
(3− d) |σ2〉+ 2

√
2(N − 2) |σ4〉+ 2

√
2(d−N) |σ7〉+ 2

√
2 |σ8〉

)
,

Ûs,r |σ6〉 =
1

d+ 1

(
2
√

2(N − 2) |σ2〉 − (d− 2N + 5) |σ4〉+ 2
√

(d−N)(N − 2) |σ7〉+ 2
√
N − 2 |σ8〉

)
,

Ûs,r |σ7〉 =
1

d+ 1

(
2
√

2(d−N) |σ2〉+ 2
√

(d−N)(N − 2) |σ4〉+ (d− 2N − 1) |σ7〉+ 2
√
d−N |σ8〉

)
,

Ûs,r |σ8〉 =
1

d+ 1

(
2
√

2 |σ2〉+ 2
√
N − 2 |σ4〉+ 2

√
d−N |σ7〉 − (d− 1) |σ8〉

)
. (27)

In the second subspace I− the evolution operator acts
according to

Ûs,r |τ1〉 =
1

d+ 1

(
(d− 1) |τ1〉 − 2

√
d |τ3〉

)
,

Ûs,r |τ2〉 = − 1

d+ 1

(
2
√
d |τ1〉+ (d− 1) |τ3〉

)
,

Ûs,r |τ3〉 = − |τ2〉 . (28)

Let us now investigate the dynamics of the STA in the
limit of a large graph. We denote by Û± the restriction of

Ûs,r on I±, and determine the spectrum and eigenvectors

of these operators. For Û+ the results are similar to those
for the SA. In the subspace I+ three relevant eigenvec-

tors remain, as for the others the overlap with |σ1〉 tends

to zero at least as O(1/
√
NM). The limit form of the

relevant eigenvectors is given by

|ψ1〉 =

√
2

3
|σ1〉 −

1√
3
|σ7〉 ,

|ψ(±)
2 〉 =

1√
6
|σ1〉+

1√
3
|σ7〉 ±

i

2
(|σ5〉 − |σ2〉). (29)

The eigenvector |ψ1〉 corresponds to λ1 = 1. In the case

of |ψ(±)
2 〉 the eigenvalues have the form

λ
(±)
2 = e±iω2 .
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From the characteristic polynomial of Û+ we find that
cosω2 is the largest root of the quadratic equation

x2 −
(

1− N

d+ 1

)
x− (d+ 1)(N − 3) +N − 5

(d+ 1)
2 = 0,

which leads us to

ω2 = arccos

(
1− 1 +NM −

√
N2M2 − 10NM + 8N + 9

2(d+ 1)

)

≈
√

6

NM
. (30)

In the subspace I− there are two additional relevant
eigenvectors in the asymptotic limit

|ψ(±)
3 〉 =

1√
2
|τ1〉 ±

i

2
(|τ2〉 − |τ3〉). (31)

For the last eigenvector of Û− the overlap with the state

|τ1〉 behaves like O(1/
√
NM). The relevant eigenvalues

have the form

λ
(±)
3 = e±iω3 ,

with

ω3 = arccos

(
1− 1

d+ 1

)
≈
√

2

NM
. (32)

Using the results (29), (31) we see that for a large graph
the sender and the receiver states (26) can be decom-

posed into the eigenvectors of the evolution operator Ûs,r
according to

|s〉 =
1√
3
|ψ1〉+

1√
12

(
|ψ(+)

2 〉+ |ψ(−)
2 〉

)
+

+
1

2

(
|ψ(+)

3 〉+ |ψ(−)
3 〉

)
,

|r〉 =
1√
3
|ψ1〉+

1√
12

(
|ψ(+)

2 〉+ |ψ(−)
2 〉

)
−

−1

2

(
|ψ(+)

3 〉+ |ψ(−)
3 〉

)
.

Hence, the evolution of STA takes place in a five dimen-
sional subspace

|φ(t)〉 =
1√
3
|ψ1〉+

+
1√
12

(
eiω2t |ψ(+)

2 〉+ e−iω2t |ψ(−)
2 〉

)
+

+
1

2

(
eiω3t |ψ(+)

3 〉+ e−iω3t |ψ(−)
3 〉

)
. (33)

The fidelity of STA can be written as a sum

F(t) = |〈r|φ(t)〉|2 + |〈ν4|φ(t)〉|2, (34)

of probabilities that the walker is in the receiver state
|r〉 = |ν3〉 corresponding to the loop, or at the receiver

vertex but not in the loop, i.e., the state |ν4〉. From the
relations (29), (31) and (33) we find that these probabil-
ities are given by

|〈r|φ(t)〉|2 =
1

36
(2 + cos (ω2t)− 3 cos (ω3t))

2
, (35)

|〈ν4|φ(t)〉|2 =
1

24

(
sin(ω2t)−

√
3 sin(ω3t)

)2
. (36)

From the relations (30), (32) we see that the frequencies
are not harmonic, since for a large graph

ω2 =
√

3ω3.

The overall fidelity of STA is then given by

F(t) =
1

36

(
2 + cos

(√
3ω3t

)
− 3 cos (ω3t)

)2
+

+
1

24

(
sin(
√

3ω3t)−
√

3 sin(ω3t)
)2
. (37)

The fidelity of STA will not reach one exactly. However,
for a large graph the first maximum of fidelity reaches
the value

F1 ≈ 0.94. (38)

The number of steps required to reach the first maximum
is approximately given by

T (st) ≈ 2.39
√
NM. (39)

At this time the walker is with high probability in the
receiver state |r〉.

For illustration we show in Figure 4 the evolution of
fidelity for a graph with N = 40 and M = 100.

The fidelity (38) in the first maximum is reached in the
limit of large N and M . We have performed numerical
simulations to investigate how quickly does the fidelity at
the optimal time (39) approaches the asymptotic value
(38). Similarly to the results for the SA, the simulations
indicate that the fidelity is essentially independent of N
and with M it scales according to

F(T (st)) = F1 −O
(

1

M

)
.

The results are illustrated in Figure 5.

B. Sender and receiver in different partitions

Let us now turn to the case when the sender and the
receiver are in different parts of the complete M-partite
graph. Without loss of generality we label the partition
containing the sender as 1 and the partition with the
receiver as 2.

The construction of the basis of the invariant subspace
I is more involved, since we have to consider the second
partition with the receiver vertex separately from the rest



10

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
□□□□□□□
□□□□□
□□□□
□□□
□□□
□□
□□
□□
□□
□□
□□
□□
□□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□□
□□
□□
□□
□□
□□□
□□□□□□□□□□□□□□□□□□□□□□

□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

□□□□□
□□□□□
□□□□□□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

□□□□□
□□□□
□□□□
□□□
□□□
□□□
□□□
□□□
□□□
□□□
□□□
□□□
□□□
□□□□
□□□□
□□□□
□□□□
□□□□
□□□□
□□□□
□□□□
□□□□
□□□□
□□□□
□□□□
□□□
□□□
□□□
□□□
□□□
□□□
□□□
□□□□
□□□□
□□□□□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

□□□□
□□□□
□□□□
□□□□
□□□□
□□□□□□□
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●
●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
◇◇◇◇◇◇◇◇
◇◇◇◇◇
◇◇◇◇◇
◇◇◇◇
◇◇◇◇
◇◇◇◇
◇◇◇◇
◇◇◇◇
◇◇◇◇
◇◇◇◇◇◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◇◇◇
◇◇◇
◇◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇◇
◇◇◇
◇◇◇◇◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◇◇◇◇◇
◇◇◇◇
◇◇◇◇
◇◇◇◇
◇◇◇◇◇
◇◇◇◇◇◇◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◇◇◇◇◇
◇◇◇◇
◇◇◇◇
◇◇◇
◇◇◇
◇◇◇
◇◇◇
◇◇◇
◇◇◇
◇◇◇
◇◇◇
◇◇◇◇
◇◇◇◇◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

◇◇◇
◇◇◇
◇◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇◇
◇

FIG. 4. Fidelity of the state transfer as a function of the
number of steps t for N = 40 and M = 100. The sender
and the receiver vertices are in the same partition. Black
dots are obtained from the numerical simulation, the full red
curve corresponds to (37). Since the frequencies (30), (32)
are not integer multiples the fidelity behaves an-harmonically.
At the time of the first maximum (39) the walker is with
high probability in the receiver state |r〉, which is depicted by
the blue squares. The probability to be in the receiver state
follows the curve (35) represented by the red dashed curve.
The green diamonds correspond to the probability that the
walker is at the marked vertex but not in the loop, which
follows the curve (36).

FIG. 5. Overall fidelity of STA as a function of the number
of partitions M for N = 10 (gray circles), N = 50 (blue
triangles) and N = 100 (brown diamonds). The sender and
the receiver vertices are in the same partition. For a given
N and M we evaluate numerically the evolution of STA for
the number of steps T (st) needed to reach the first maximum
(39) and determine F(T (st)) according to (34). To unravel

the scaling of the fidelity we plot F1−F(T (st)) on the log-log
scale. The data-points follow the 1/M slope indicated by the
red line, with almost no dependence on N .

of the graph. We begin with the states starting at the

sender vertex

|ν1〉 = |s1, s1〉 ,
|ν2〉 = |s1, r2〉 ,

|ν3〉 =
1√
N − 1

N∑
j 6=r

|s1, j2〉 ,

|ν4〉 =
1√

d−N

M∑
α=3

N∑
j=1

|s1, jα〉 , (40)

which correspond to the loop, edge from the sender to the
receiver, equal weight superposition of all edges from the
sender to the remaining vertices in the second partition,
and edges to all remaining vertices. We repeat the same
for the receiver vertex

|ν5〉 = |r2, r2〉 ,
|ν6〉 = |r2, s1〉 ,

|ν7〉 =
1√
N − 1

N∑
j 6=s

|r2, j1〉 ,

|ν8〉 =
1√

d−N

M∑
α=3

N∑
j=1

|r2, jα〉 (41)

Next, we consider the same edges but starting at the
non-marked vertices in the first partition and prepare
the following superpositions

|ν9〉 =
1√
N − 1

N∑
j 6=s

|j1, j1〉 ,

|ν10〉 =
1√
N − 1

N∑
j 6=s

|j1, r2〉 ,

|ν11〉 =
1

N − 1

N∑
j 6=s

N∑
k 6=r

|j1, k2〉 ,

|ν12〉 =
1√

(d−N)(N − 1)

N∑
j 6=s

M∑
α=3

N∑
k=1

|j1, kα〉 . (42)

The same procedure is repeated in the second partition

|ν13〉 =
1√
N − 1

N∑
j 6=r

|j2, j2〉 ,

|ν14〉 =
1√
N − 1

N∑
j 6=r

|j2, s1〉 ,

|ν15〉 =
1

N − 1

N∑
j 6=r

N∑
k 6=s

|j2, k1〉 ,

|ν16〉 =
1√

(d−N)(N − 1)

N∑
j 6=r

M∑
α=3

N∑
k=1

|j2, kα〉 . (43)
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Next, we consider the edges leading to the sender or the
receiver vertex from the outside of the first two partitions

|ν17〉 =
1√

d−N

M∑
α=3

N∑
j=1

|jα, s1〉 ,

|ν18〉 =
1√

d−N

M∑
α=3

N∑
j=1

|jα, r2〉 . (44)

Then we add states corresponding to edges leading to the
non-marked vertices in the first or the second partition
from the outside

|ν19〉 =
1√

(d−N)(N − 1)

N∑
j 6=s

M∑
α=3

N∑
k=1

|kα, j1〉 ,

|ν20〉 =
1√

(d−N)(N − 1)

N∑
j 6=r

M∑
α=3

N∑
k=1

|kα, j2〉 . (45)

Finally, we consider all edges between vertices in the rest
of the graph, and all remaining loops

|ν21〉 =
1√

N(d−N)(M − 3)

M∑
α=3

M∑
β=3,β 6=α

N∑
j,k=1

|jα, kβ〉 ,

|ν22〉 =
1√

d−N

M∑
α=3

N∑
j=1

|jα, jα〉 (46)

It can be shown by direct calculation that the 22 vectors
(40)-(46) constitute an invariant subspace of the STA.

To proceed further we employ the symmetry P̂ which
switches the sender and the receiver partitions. Its action

on the basis states |νj〉 is given by

P̂ |νj〉 = |νj+4〉 , j = 1, 2, 3, 4, 9, 10, 11, 12,

P̂ |νi〉 = |νi+1〉 , i = 17, 19,

P̂ |νk〉 = |νk〉 , k = 21, 22.

Since P̂ commutes with the evolution operator of the
STA we can split I into subspaces I± corresponding to
eigenvalues ±1. Subspace I+ has dimension 12 and it is

spanned by the following eigenvectors of P̂

|σi〉 =
1√
2

(|νi〉+ |νi+4〉) , i = 1, 2, 3, 4

|σj〉 =
1√
2

(|νj+4〉+ |νj+8〉) , j = 5, 6, 7, 8

|σ9〉 =
1√
2

(|ν17〉+ |ν18〉) ,

|σ10〉 =
1√
2

(|ν19〉+ |ν20〉) ,

|σ11〉 = |ν21〉 ,
|σ12〉 = |ν22〉

Subspace I− has dimension 10 and it is spanned by the

following eigenvectors of P̂ corresponding to the eigen-
value −1

|τi〉 =
1√
2

(|νi〉 − |νi+4〉) , i = 1, 2, 3, 4

|τj〉 =
1√
2

(|νj+4〉 − |νj+8〉) , j = 5, 6, 7, 8

|τ9〉 =
1√
2

(|ν17〉 − |ν18〉) ,

|τ10〉 =
1√
2

(|ν19〉 − |ν20〉)

In the new basis the sender and the receiver states have
the following form

|s〉 =
1√
2

(|σ1〉+ |τ1〉) ,

|r〉 =
1√
2

(|σ1〉 − |τ1〉) . (47)
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The evolution operator Ûs,r is block diagonal. We find the following relations for the basis vectors of I+

Ûs,r |σ1〉 =
1

d+ 1

(
(d− 1) |σ1〉 − 2 |σ2〉 − 2

√
N − 1 |σ6〉 − 2

√
d−N |σ9〉

)
,

Ûs,r |σ2〉 =
1

d+ 1

(
−2 |σ1〉+ (d− 1) |σ2〉 − 2

√
N − 1 |σ6〉 − 2

√
d−N |σ9〉

)
,

Ûs,r |σ3〉 =
1

d+ 1

(
−2
√
N − 1 |σ1〉 − 2

√
N − 1 |σ2〉+ (d− 2N + 3) |σ6〉 − 2

√
(d−N)(N − 1) |σ9〉

)
,

Ûs,r |σ4〉 =
1

d+ 1

(
−2
√
d−N |σ1〉 − 2

√
d−N |σ2〉 − 2

√
(d−N)(N − 1) |σ6〉 − (d− 2N − 1) |σ9〉

)
,

Ûs,r |σ5〉 =
1

d+ 1

(
2 |σ3〉 − (d− 1) |σ5〉+ 2

√
N − 1 |σ7〉+ 2

√
d−N |σ10〉

)
,

Ûs,r |σ6〉 =
1

d+ 1

(
− (d− 1) |σ3〉+ 2 |σ5〉+ 2

√
N − 1 |σ7〉+ 2

√
d−N |σ10〉

)
,

Ûs,r |σ7〉 =
1

d+ 1

(
2
√
N − 1 |σ3〉+ 2

√
N − 1 |σ5〉 − (d− 2N + 3) |σ7〉+ 2

√
(d−N)(N − 1) |σ10〉

)
,

Ûs,r |σ8〉 =
1

d+ 1

(
2
√
d−N |σ3〉+ 2

√
d−N |σ5〉+ 2

√
(d−N)(N − 1) |σ7〉+ (d− 2N − 1) |σ10〉

)
,

Ûs,r |σ9〉 =
1

d+ 1

(
− (d− 3) |σ4〉+ 4

√
N − 1 |σ8〉+ 2

√
2N(M − 3) |σ11〉+ 2

√
2 |σ12〉

)
,

Ûs,r |σ10〉 =
1

d+ 1

(
4
√
N − 1 |σ4〉 − (d− 4N + 5) |σ8〉+ 2

√
2N(N − 1)(M − 3) |σ11〉+ 2

√
2(N − 1) |σ12〉

)
,

Ûs,r |σ11〉 =
1

d+ 1

(
2
√

2N(M − 3) |σ4〉+ 2
√

2N(N − 1)(M − 3) |σ8〉+ (d− 4N − 1) |σ11〉+ 2
√
N(M − 3) |σ12〉

)
,

Ûs,r |σ12〉 =
1

d+ 1

(
2
√

2 |σ4〉+ 2
√

2(N − 1) |σ8〉+ 2
√
N(M − 3) |σ11〉 − (d− 1) |σ12〉

)
.

The action of the evolution operator on the basis vectors of I− reads

Ûs,r |τ1〉 =
1

d+ 1

(
(d− 1) |τ1〉+ 2 |τ2〉+ 2

√
N − 1 |τ6〉 − 2

√
d−N |τ9〉

)
,

Ûs,r |τ2〉 =
1

d+ 1

(
−2 |τ1〉 − (d− 1) |τ2〉+ 2

√
N − 1 |τ6〉 − 2

√
d−N |τ9〉

)
,

Ûs,r |τ3〉 =
1

d+ 1

(
−2
√
N − 1 |τ1〉+ 2

√
N − 1 |τ2〉 − (d− 2N + 3) |τ6〉 − 2

√
(d−N)(N − 1) |τ9〉

)
,

Ûs,r |τ4〉 =
1

d+ 1

(
−2
√
d−N |τ1〉+ 2

√
d−N |τ2〉+ 2

√
(d−N)(N − 1) |τ6〉 − (d− 2N − 1) |τ9〉

)
,

Ûs,r |τ5〉 =
1

d+ 1

(
−2 |τ3〉 − (d− 1) |τ5〉 − 2

√
N − 1 |τ7〉+ 2

√
d−N |τ10〉

)
,

Ûs,r |τ6〉 =
1

d+ 1

(
(d− 1) |τ3〉+ 2 |τ5〉 − 2

√
N − 1 |τ7〉+ 2

√
d−N |τ10〉

)
,

Ûs,r |τ7〉 =
1

d+ 1

(
−2
√
N − 1 |τ3〉+ 2

√
N − 1 |τ5〉+ (d− 2N + 3) |τ7〉+ 2

√
(d−N)(N − 1) |τ10〉

)
,

Ûs,r |τ8〉 =
1

d+ 1

(
−2
√
d−N |τ3〉+ 2

√
d−N |τ5〉 − 2

√
(d−N)(N − 1) |τ7〉+ (d− 2N − 1) |τ10〉

)
,

Ûs,r |τ9〉 = − |τ4〉 ,
Ûs,r |τ10〉 = − |τ8〉 . (48)

To investigate the dynamics of STA in more detail we
again turn to the limit of a large graph. We denote by
Û± the restriction of Ûs,r on I±. For Û+ there are three
eigenstates which have non-vanishing overlap with the

state |σ1〉, namely

|ψ1〉 =

√
3

2
|σ1〉 −

1

2
√

3
|σ2〉 −

1√
6
|σ11〉 , (49)

|ψ(±)
2 〉 =

1√
8

(|σ1〉+ |σ2〉)±
i

2
(|σ9〉 − |σ4〉) +

1

2
|σ11〉 .
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Note that for the other eigenstates the overlap with |σ1〉
decreases at least as O(1/

√
NM). Turning to the eigen-

values, we find that the eigenvector |ψ1〉 has eigenvalue

λ1 = 1. From the characteristic polynomial of Û+ we find

that the eigenvalues of |ψ(±)
2 〉 have the form λ

(±)
2 = e±iω2 ,

where cosω2 is the largest root of the cubic equation

0 = x3 −
(

1− N + 2

d+ 1

)
x2 − (d+ 1)(N − 1)−N + 5

(d+ 1)
2 x+

+
NM − 4

(d+ 1)
2 .

We find that it has the following asymptotic form

ω2 ≈ arccos

(
1− 4

NM

)
≈ 2

√
2

NM
. (50)

Considering the subspace I−, there are two eigenvec-
tors which remain relevant in the asymptotic limit (for
the others the overlap with |τ1〉 vanishes at least as

O(1/
√
NM)), namely

|ψ(±)
3 〉 =

1√
2
|τ1〉 ±

i

2
(|τ9〉 − |τ4〉). (51)

The eigenvalues are λ
(±)
3 = e±iω3 , where cosω3 is the

largest root of the quartic equation

0 = x4 +
N − 2

d+ 1
x3 −

(
1− NM

(d+ 1)
2

)
x2 −

− (N − 2)(d− 1)

(d+ 1)
2 x+

N(M − 2)

(d+ 1)
2 .

Its asymptotic form is given by

ω3 ≈ arccos

(
1− 1

NM

)
≈
√

2

NM
. (52)

From (49), (51) we see that for a large graph the sender
and the receiver states can be decomposed into the eigen-
vectors of the evolution operator Ûs,r according to

|s〉 =

√
3

8
|ψ1〉+

1

4

(
|ψ(+)

2 〉+ |ψ(−)
2 〉

)
+

+
1

2

(
|ψ(+)

3 〉+ |ψ(−)
3 〉

)
,

|r〉 =

√
3

8
|ψ1〉+

1

4

(
|ψ(+)

2 〉+ |ψ(−)
2 〉

)
−

−1

2

(
|ψ(+)

3 〉+ |ψ(−)
3 〉

)
.

The evolution of STA takes place in a five dimensional
subspace

|φ(t)〉 =

√
3

8
|ψ1〉+

+
1

4

(
eiω2t |ψ(+)

2 〉+ e−iω2t |ψ(−)
2 〉

)
+

+
1

2

(
eiω3t |ψ(+)

3 〉+ e−iω3t |ψ(−)
3 〉

)
. (53)

The fidelity of STA after t steps (9) can be expressed as
a sum

F(t) =

8∑
j=5

|〈νj |φ(t)〉|2. (54)

From (49), (51) and (53) we find that the transfer prob-
abilities to individual states |νj〉 are given by

|〈ν5|φ(t)〉|2 =
1

64
(3 + cos (ω2t)− 4 cos (ω3t))

2
,

|〈ν6|φ(t)〉|2 =
1

16
sin4

(
ω2t

2

)
,

|〈ν7|φ(t)〉|2 = 0,

|〈ν8|φ(t)〉|2 =
1

32
(sin(ω2t)− 2 sin(ω3t))

2
. (55)

From the asymptotic expansions (50), (52) we see that
for a large graph the frequencies are harmonic

ω2 = 2ω3.

Hence, we find that with probability

|〈r|φ(t)〉|2 = sin8

(
ω3t

2

)
, (56)

the walker is in the receiver state |r〉 = |ν5〉, i.e., at the
receiver vertex in the loop, and with probability

|〈ν6|φ(t)〉|2 + |〈ν8|φ(t)〉|2 =
1

2
sin2 (ω3t) sin4

(
ω3t

2

)
+

+
1

16
sin4 (ω3t) , (57)

it is at the receiver vertex but not in the loop. Overall,
the fidelity of STA for a large graph is given by

F(t) = sin4

(
ω3t

2

)
. (58)

We conclude that the state transfer is achieved after T (st)

steps, where

T (st) ≈ π
√
NM

2
. (59)

At this time the walker is with high probability in the
receiver state |r〉.

For illustration we show in Figure 6 the evolution of
fidelity for a graph with N = 40 and M = 100.

The result (58) holds in the limit of large N and M .
To investigate how quickly does the fidelity at the opti-
mal time (59) approaches unity we performed numerical
simulations for various values of N and M . The simu-
lations indicate that the fidelity can be again estimated
by

F(T (st)) = 1−O
(

1

M

)
,

however, the dependence on N is more complex than for
search and STA with the sender and the receiver in the
same partition. The results are illustrated in Figure 7.
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FIG. 6. Overall fidelity of the STA as a function of the number
of steps t for N = 40 and M = 100. The sender and the
receiver vertices are in different partitions. Black dots are
obtained from the numerical simulation, the full red curve
corresponds to (58). The walker is transferred to the receiver

vertex with fidelity close to one after T (st) ≈ 140 steps, in
accordance with (59). At this time the walker is found with
high probability in the loop (blue squares), as follows from the
analytical prediction (56) depicted by the red dashed curve.
Green diamonds represent the probability that the walker is
at the marked vertex but not in the loop, which follows the
curve (57).

V. STATE TRANSFER ALGORITHM WITH AN
ACTIVE SWITCH

As we have shown in the previous section, the STA
does not perform with unit fidelity on the complete M -
partite graph with loops when the sender and the receiver
are in the same partition. Note that if the receiver does
not know the position of the sender, the measurement
should be made at the optimal time (59) corresponding
to the more likely configuration, i.e., when the sender and
the receiver are in different partition. This reduces the
fidelity of STA further to approximately 0.91.

To fix this issue we introduce an STA where the sender
and the receiver will actively switch the local coins at
their vertices. We use that for M →∞ and N →∞ the
state of the SA (19) on the complete M -partite graph
with loops evolves periodically from the initial state |Ω〉
to the target state |ν1〉 and back with a period of 2T ,
where T is the run-time of the SA given by (24). Hence,
we can perform the state transfer in the following way.
The sender initializes the walk on its vertex in the target
state of the search algorithm |s〉 = |ν1〉 which corresponds
to the loop at the sender vertex. For the first T steps only
the sender will use the marked coin, i.e., the walk will
evolve according to the operator Ûs of the SA with the
marked vertex s. The sender state |s〉 will evolve close to
the equal weight superposition |Ω〉, i.e., the initial state
of the SA (6). Afterwards, the sender switches off the
marked coin, and the receiver switches it on, i.e., the
walk evolves according to the operator Ûr of the SA with
the marked vertex r. After another T steps the walk will

FIG. 7. Overall fidelity of STA as a function of the number
of partitions M for N = 10 (gray circles), N = 50 (blue
triangles) and N = 100 (brown diamonds). The sender and
the receiver vertices are in different partitions. For a given N
and M we evaluate numerically the evolution of STA for the
optimal number of steps T (st) given by (59) and determine

F(T (st)) from the formula (54). To unravel the scaling of the

fidelity we plot 1 − F(T (st)) on the log-log scale. The full
red line has the 1/M slope, while the dashed red line follows

1/M2. The plot indicates that O(1/M) > 1 − F(T (st)) >
O(1/M2), and that the fluctuations decrease with increasing
N .

evolve close to the state |r〉 corresponding to the loop at
the receiver vertex, and the receiver will detect it with
high probability. In this way we can achieve state transfer
with high fidelity on the complete M -partite graph with
loops irrespective of the relative position of the sender
and the receiver.

For illustration, we show in Figure 8 the comparison
of the fidelities of state transfer of the original STA and
the STA with an active switch when the sender and the
receiver are in the same partition. We see that the STA
with an active switch takes more steps, however, the fi-
delity reaches one.

Let us now formalize the STA with an active switch on
more general graphs. Namely, we consider graphs where
the optimal number of steps T of the SA does not depend
on the position of the marked vertex m. The steps of the
STA with an active switch can be formulated as follows:

1. Sender initializes the walk at its vertex in the state
|s〉 corresponding to the target state of the SA with
the marked vertex s.

2. Sender uses marked coin on his vertex for T steps,
i.e., the evolution operator Ûs is applied T -times.

3. Receiver uses marked coin on his vertex for T steps,
i.e., the evolution operator Ûr is applied T -times.

4. Receiver measures the walk at its vertex.

We show that the fidelity of the STA with an active
switch can be lower bounded using only the results from
the SA with one marked vertex, which is not true for
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FIG. 8. Comparison of fidelity of the original STA (37) (red
diamonds) with fidelity of the STA with an active switch
(black dots) as a function of the number of steps t for N = 40
and M = 100. The sender and the receiver vertices are in the
same partition. The switch between Ûs and Ûr is done after
T ≈ 100 steps, corresponding to the run-time of the SA.

the original STA. As we have seen in the case of the
complete M -partite graph with loops, the SA does not
tell us anything about the evolution of the STA in the
subspace I−.

To derive the lower bound of fidelity of the STA with
an active switch we first introduce two conditions on the
SA. The first condition is related to target state of the
SA. We suppose that after T steps the state of the SA
can be expressed in the form

|φ(T )〉 = ÛTm |Ω〉 = αm |m〉+ εm |ηm〉 (60)

for every marked vertex m in the graph. Here |m〉 ∈ Hm
is the target state of the SA, i.e., if the walk is in this
state the success probability of finding the marked vertex
m is exactly 1, and |ηm〉 is a unit vector orthogonal to
|m〉. Complex numbers αm and εm are such that |αm| is
close to one and |εm| � 1. |αm|2 is closely related to the
success probability of the SA, since

Pm(T ) = |〈m|φ(T )〉|2 +
∑
|j〉∈Hm
〈j|m〉=0

|〈j|φ(T )〉|2

= |αm|2 + |εm|2
∑
|j〉∈Hm
〈j|m〉=0

|〈j|ηm〉|2. (61)

Note that if the vector |ηm〉 does not have a support at
the marked vertex then the success probability is exactly
|αm|2. From the relation (60) for m = s we express the
initial state of the STA with an active switch as

|s〉 =
1

αs

(
ÛTs |Ω〉 − εs |ηs〉

)
. (62)

The second condition describes the periodicity of the SA.
Namely, we suppose that after 2T steps the state of the
SA can be written in the form

Û2T
m |Ω〉 = βm |Ω〉+ δm |ρm〉 , (63)

where |ρm〉 is a unit vector orthogonal to the initial state
|Ω〉. βm and δm are again complex numbers where |βm|2
is the return probability. We assume that it is close to
one and that |δm| � 1. In other words, this condition
says that if we double the number of steps the SA returns
close to its initial state.

Assuming that the SA satisfies the conditions (60) and
(63) we write the final state of the STA with an active
switch in the following manner

ÛTr Û
T
s |s〉 =

1

αs
ÛTr Û

T
s

(
ÛTs |Ω〉 − εs|ηs〉

)
=

1

αs
ÛTr

(
Û2T
s |Ω〉 − εsÛTs |ηs〉

)
=

1

αs
ÛTr

(
βs|Ω〉+ δs|ρs〉 − εsÛTs |ηs〉

)
=
αr
αs
βs|r〉+

βs
αs
εr|ηr〉+

δs
αs
ÛTr |ρs〉 −

− εs
αs
ÛTr Û

T
s |ηs〉 (64)

where we have first used (62), then (63) and finally we
again use (62) but for the state |r〉. The fidelity of STA
with an active switch can be expressed as

F =
∣∣∣〈r ∣∣∣ÛTr ÛTs ∣∣∣ s〉∣∣∣2 +

∑
|j〉∈Hr
〈j|r〉=0

∣∣∣〈j ∣∣∣ÛTr ÛTs ∣∣∣ s〉∣∣∣2 .
Hence, the square root of the fidelity can be bounded
from below by

√
F ≥

∣∣∣〈r ∣∣∣ÛTr ÛTs ∣∣∣ s〉∣∣∣ .
To approximate

∣∣∣〈r ∣∣∣ÛTr ÛTs ∣∣∣ s〉∣∣∣ we use the following es-

timates∣∣∣〈r ∣∣∣ÛTr ∣∣∣ ρs〉∣∣∣ ≤ |||r〉|| ∣∣∣∣∣∣ÛTr |ρs〉∣∣∣∣∣∣ = |||r〉|| |||ρs〉|| = 1,∣∣∣〈r ∣∣∣ÛTr ÛTs ∣∣∣ ηs〉∣∣∣ ≤ |||r〉|| ∣∣∣∣∣∣ÛTr ÛTs |ηs〉∣∣∣∣∣∣ = 1, (65)

which follow from the Cauchy–Schwarz inequality and
the unitarity of evolution operator Ûm. Combining (64)
with (65) we find the lower bound for the square root of
the fidelity which reads
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√
F ≥

∣∣∣∣αrαs βs〈r|r〉+
βs
αs
εr〈r|ηr〉+

δs
αs

〈
r
∣∣∣ÛTr ∣∣∣ ρs〉− εs

αs

〈
r
∣∣∣ÛTr ÛTs ∣∣∣ ηs〉∣∣∣∣

≥ |αr|
|αs|
|βs| −

|δs|
|αs|

∣∣∣〈r ∣∣∣ÛTr ∣∣∣ ρs〉∣∣∣− |εs||αs|
∣∣∣〈r ∣∣∣ÛTr ÛTs ∣∣∣ ηs〉∣∣∣

≥ |αr|
|αs|
|βs| −

|δs|
|αs|
− |εs|
|αs|

. (66)

It is easy to see from (66) that if |αs|, |αr| and |βs| are
close to one and if |εs| � 1 and |δs| � 1 then the fidelity
of the state transfer is close to one.

The result derived above guarantees that if the SA suc-
ceeds with unit probability in the limit of a large graph,
then the STA with an active switch achieves perfect state
transfer. Moreover, even for small graphs the STA with
an active switch can actually achieve very good fidelity.
For illustration we have investigated numerically the STA
with an active switch on the complete M -partite graph
for various values of N and M . The results are similar
to those presented in Figure 7.

FIG. 9. Overall fidelity of STA with an active switch as
a function of the number of partitions M for N = 10 (gray
circles), N = 50 (blue triangles) and N = 100 (brown dia-
monds). The walk is initialized at the sender vertex in the
loop. For a given N and M we evaluate numerically the evo-
lution operator Ûs of SA with marked vertex s, apply it for
the optimal number of steps T given by (24). Then we re-

peat the same with Ûr. Finally, we make a measurement
at the receiver vertex r and determine the fidelity F(2T ).
To unravel the scaling of the fidelity we plot 1 − F(2T ) on
the log-log scale. The full red line has the 1/M slope, while
the dashed red line follows 1/M2. The plot indicates that
O(1/M) > 1−F(2T ) > O(1/M2).

VI. CONCLUSION

We have investigated search and state transfer algo-
rithms based on the coined quantum walks, focusing on
the complete M -partite graph. It was shown that adding
loops to all vertices increases the success probability of
the SA close to one for a large graph. This is by now a

standard method [9, 10, 26–30] which has a potential to
significantly improve the success probability on a much
broader class of graphs [31]. However, the analysis of the
SA does not provide the necessary insight for the investi-
gation of the STA, as the latter requires larger invariant
subspace. As we have seen on the example of the com-
plete M -partite graph with loops, success probability of
the SA close to one does not guarantee STA with unit
fidelity. The reason is that the phases of the relevant
eigenvalues of the evolution operator are not harmonic
when the sender and the receiver are in the same parti-
tion. Although the modification of the initial state has
improved the fidelity considerably, the absence of an edge
between the sender and the receiver vertex on the com-
plete M -partite graph does not allow for perfect state
transfer. It would be interesting to find out if this occurs
for different graphs as well.

In the present paper we have limited our investigations
to the case where all partitions have the same number of
vertices N . This enabled us to find exact invariant sub-
spaces for SA and STA which have dimensions indepen-
dent of N and M . Allowing the partitions with different
number of vertices appears to break this feature, and the
dimension of the invariant subspace is likely to depend
on M . We plan to investigate this behaviour in the near
future for small values of M .

To improve the STA on the complete M -partite graph
we have introduced the STA with an active switch. This
approach allows for perfect state transfer in the limit of a
large graph in both configurations of the sender and the
receiver vertex. The trade-off is that the STA with an
active switch requires more steps than the original STA.
Indeed, when the sender and the receiver are in different
partitions, the number of steps for the original STA to
reach unit fidelity is twice the number of steps of the
search for two vertices. On the other hand, STA with an
active switch takes twice the number of steps of the SA
for one vertex. Since the search for two vertices is

√
2

faster than the search for one vertex, the STA with an
active switch is slower by the same factor.

The main advantages of the STA with an active switch
are that it can be applied to other graphs, and that its
fidelity can be estimated based on the analysis of the SA
for one marked vertex alone. In this way we can achieve
state transfer with high fidelity on graphs, where the SA
for one marked vertex has success probability close to
one and evolves almost periodically. For many symmetric
graphs these conditions are well satisfied, at least in the
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limit of a large graph. Moreover, exact periodicity of
the Grover walk (i.e., without the marked vertex) was
recently investigated for various graphs [50–52]. It would
be of interest to determine if SA works on these graphs
as well.

The STA with an active switch also has some disad-
vantages. As we have already mentioned, it will have
a longer run-time in comparison with the original STA.
Moreover, the sender and the receiver have to actively
switch off or on their marked coins. However, this is
only a local operations, and since we consider that the
run-time of the SA is independent of the location of the
marked vertex, the time of the switching is determined
solely by the global properties of the graph, e.g., the num-
ber of vertices. Hence, the sender and the receiver still
do not need to know each other’s position. Finally, we
have to determine the target state of SA, which serves as

the initial state for the STA with an active switch. Nev-
ertheless, for highly symmetric graphs this target state
is usually either the equal weight superposition of all di-
rection or the state corresponding to a loop.
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