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Efficient excitation-transfer across fully connected networks via local-energy optimization
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We study the excitation transfer across a fully connected quantum network whose sites energies can be ar-
tificially designed. Starting from a simplified model of a broadly-studied physical system, we systematically
optimize its local energies to achieve high excitation transfer for various environmental conditions, using an
adaptive Gradient Descent technique and Automatic Differentiation. We show that almost perfect transfer can
be achieved with and without local dephasing, provided that the dephasing rates are not too large. We investigate
our solutions in terms of resilience against variations in either the network connection strengths, or size, as well
as coherence losses. We highlight the different features of a dephasing-free and dephasing-driven transfer. Our
work gives further insight into the interplay between coherence and dephasing effects in excitation-transfer phe-
nomena across fully connected quantum networks. In turn, this will help designing optimal transfer in artificial
open networks through the simple manipulation of local energies.

I. INTRODUCTION

Boosted by the unprecedented interest towards quantum in-
formation technologies, the study of the properties of complex
networks in the quantum domain has received a great deal of
attention, due to its broad range of applicability [1, 2]. Sev-
eral theoretical studies have indeed shown that modeling com-
plex quantum phenomena in terms of simple quantum systems
is not sufficient to capture a plethora of interesting problems
belonging to different fields, ranging from — just to name a
few - quantum communication [3, 4], transport phenomena in
nanostructures [5, 6], to quantum biology [7, 8].

Despite their apparent differences, such phenomena face
similar theoretical challenges. On one hand, they require a
deeper understanding of the role played by the geometry and
topology in the properties of the network itself, as well as
its optimal functionality. On the other hand, while exploring
quantum dynamical processes in complex networks, it is cru-
cial to assess whether or not genuine quantum features, such
as non-classical correlations [9], or genuine quantum pro-
cesses, such as decoherence [10], may influence the transport
properties of a given complex network. The significance of
these theoretical studies is essentially twofold: they constitute
an attempt to unveil the potential benefits offered by quantum
resources, while paving the way towards a better understand-
ing of the way quantum complex networks can be realised in
practice.

In this work, we address the problem of identifying a net-
work configuration compatible with optimal transport perfor-
mances, including the effect of non-trivial interaction between
the complex system and an external environment. These in-
stances call for an extensive use of the open quantum systems
formalism, the latter being able to effectively describe and in-
terpret the dynamical evolution of a system undergoing irre-
versible processes such as dissipation and dephasing, which
result from the interaction with the environment [11-13].

However, attacking this multifaceted issue from the most
general standpoint would be a formidable task. We there-

fore focus on a specific model of open quantum network,
whose features have been extensively studied. The latter has
been used to effectively describe the phenomenological dy-
namics of the Fenna-Matthews-Olson (FMO) protein com-
plex [14, 15]. This complex plays a pivotal role in light-
harvesting process of green-sulphur bacteria: it mediates the
highly efficient transfer of excitations from large antenna
structures to reaction centres [7, 15, 16]. The dynamics of
such a complex has been modeled and thoroughly studied re-
sorting to the open quantum system paradigm in a series of
seminal papers [17-19]. In particular, in this work we refer
to Ref. [18], where the FMO complex dynamics is described
by a network simultaneously undergoing a Hamiltonian dy-
namics, accounting for the coherent exchange of excitations
between the network sites, along with dephasing and dissipa-
tive Lindbladian dynamics, leading to loss of coherence and
excitations instead. Interestingly, the dynamics exhibits a be-
haviour, which, to some extent, seems conterintuitive: un-
like a classical random walk model, whenever one studies
the fully Hamiltonian dynamics (i.e., in absence of dephas-
ing and dissipation), the transport through the network can be
inhibited as a consequence of destructive interference between
sites [18]. Such destructive interference can be suppressed by
either adding local static disorder — eventually leading to per-
fect excitation transfer in the limit of random local energies —
or adding local dephasing noise. The addition of static disor-
der contradicts the celebrated Anderson localization, accord-
ing to which random disorder is responsible for inhibition of
fully coherent transfer [20, 21]. The effects of local dephasing
mechanisms, instead, clearly show that this is a relevant exam-
ple of environment-assisted transport [17, 22, 23]: contrary to
expectations, the effect of dephasing is not necessarily detri-
mental for the performance of transport, which could instead
be enhanced in certain conditions [17, 18].

Our work systematically explores the interplay between op-
timal transport and different instances of dephasing noise af-
fecting the system’s coherence. More specifically, we focus
on the model introduced in Ref. [18] to describe the FMO



complex, where the latter is represented by a N = 7-site fully
connected network (FCN), i.e, a network where each site is
connected to any other one. We find the optimal distribution
of local on-site energies resulting in the best population trans-
fer — constrained by the interaction strengths as gathered from
experiments [24] — under different dephasing conditions.

Focusing on the local energies without changing the in-
teraction strengths greatly simplifies both the numerical op-
timization and practical implementation of the resulting net-
work. Furthermore, in similar systems, there is evidence
that the excitation transport efficiency is more suscepti-
ble to changes to the site energies than to the connection
strengths [25]. We also assess how robust the transfer per-
formance is against changes in the network configuration. In
particular, for fixed N, we perform arbitrary changes in the
network connectivity, and also change the initial site, where
the excitation is initially injected, or the final site where the
excitation is extracted from the network (the so-called sink).
In all these cases we find that the presence of even a moder-
ate local dephasing noise makes the transport properties quite
robust against arbitrary change in the network properties.

We then go beyond the prescriptions imposed by experi-
mental data and perform the optimization step by choosing
random (albeit fixed) coupling strengths. This is consistent
with the aim of this work that, as we should indeed stress, is
not about ascertaining how effective the FCN representation
of Ref. [18] is at correctly reproducing the FMO phenomenol-
ogy. Rather, we would like to address the potential to improve
transport performances in a given network, whose architec-
ture is well justified by experimental evidence, by exploiting
its quantum features.

The remainder of the paper is organised as follows. In Sec-
tion II, we describe our model of open N-site FCN, whose
dynamics is affected by Markovian dissipation and dephas-
ing. In Section III, we give more details about the methodol-
ogy used throughout the paper. In particular, we discuss the
standard procedure for Markovian master equation vectoriza-
tion used both for numerically simulating the system dynam-
ics, and arranging the parameters over which performing the
optimization in a suitable way. Using an adaptive gradient-
descent technique, we run the numerical simulations whose
results and analysis are given in Section IV. Focusing on the
case of a network made of N = 7, we thoroughly study its
perfomances by optimizing the local energies, while the cou-
plings between the network sites are given. In the same Sec-
tion, we discuss the resilience of the network against changes
in the network configuration. We finally draw our conclusions
in Section V, where possible future directions are also dis-
cussed.

II. DESCRIPTION OF THE MODEL

Following Ref. [18], we consider a FCN made of N sites —
Cf. Figure 1. We assume that, together with the Hamiltonian
dynamics, the system is affected by two different noise mech-
anism: local pure dephasing, which destroys coherence of any
superposition of states, and local spontaneous emission, caus-
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FIG. 1. Sketch of the physical situation investigated in this paper.
We consider a fully connected network comprising N sites. The ex-
citation is initially injected in one site of the network (darker green),
while a different site is attached to a sink into which the excitation
is transferred (at a rate I's). The generic n-th site of the network is
locally affected by dephasing noise (at a rate ;) and spontaneous
emission, the latter causing the excitation to be irreversibly lost at
rate I';;. By optimizing the set of local energies h;;, we systematically
study the efficiency of excitation-transfer to the sink under different
dephasing conditions.

ing the network to irreversibly transfer excitations from one
site to the environment. We further assume that one excitation
at a time can be transferred across the network, i.e., we work
in the single-excitation subspace. This assumption reduces the
complexity of the problem, as we scale down the Hilbert space
dimension from 2N to N, still exhibiting interesting physics.
In order to fix the notation, let us introduce the basis {|n) }
(n = 1,...,N). In this basis, the unitary dynamics of the
FCN is captured by a N x N Hamiltonian containing the en-
ergies associated to each site, as well as the coupling between
them. For purposes that will become clear in the following
Sections, the system Hamiltonian can be decomposed as

H = Hp + Hy, (D

where Hp is the diagonal part containing all the on-site ener-
gies, while H contains the coupling between any two sites of
the network. The former can be decomposed as

Hp =) _hu|n)(n|, )

where h, is the energy associated to the n-th site, while the
latter is given by

HI:ZImn‘mxn‘/ 3)

which, in the language of graph theory, represents the so-
called adjacency matrix [26]. Note that, as we are dealing
with a FCN, Hj is not a sparse matrix, meaning that, in gen-
eral, we have [, # 0.

The whole picture is actually completed by introducing two
auxiliary sites to the network: one where excitations are irre-



versibly lost after spontaneous emission, the other where exci-
tations are transferred to, and which mimics the reaction cen-
ter in photosynthetic complexes such as the FMO complex.
This site is named, from now on, the sink. Owing to such extra
sites, we are actually working with an (N + 2)-dimensional
Hilbert space, therefore we complete our basis by introduc-
ing |0) and |s), which identify the aforementioned extra sites,
respectively.

Resorting to this notation, the pure dephasing process is
formally described by local Lindblad operators of the form

Ly, = V/nln)(nl, €y

where 7y, is the dephasing rate. Differently, the spontaneous
emission processes are modeled through the set of Lindblad
operators

Lr, = VTa[0)(n], (5)

where I';; is the rate with which the excitation is lost in the
local environment. As we said earlier, we introduce a sink,
where the excitation travelling through the network is trans-
ferred with a rate I's. Similarly to Equation (5), this process is
physically modeled as a spontaneous emission, whose associ-
ated Lindblad operator reads

Lr, = VTsls)(m|, (6)

|m) being a given site of the network, i.e., m = 1,... N. Note
that the latter ensures that population is irreversibly trans-
ferred to the sink once the target site |m) is reached.

We assume that our system undergoes a fully Markovian
irreverisble dynamics, therefore the corresponding Lindblad
master equation reads

do _i
1
+5 X (2LueL) - LiLup —pLiLy), (D

S

where H is suitably defined over the enlarged (N + 2)-
dimensional Hilbert space, while the sums over 7, and
T',, are meant to run over all the possible values of n =
1,..., N. Note that the case of a uniform network, i.e., when
Iy, Jmn, vn, T'n are all equal for any value of 7, can be analyt-
ically solved — Cf. Appendix A in Ref. [18]. In a more gen-
eral setting, one can include temperature and memory effects
by replacing Equation (7) by a more general master equa-
tion, as done, e.g., in Ref. [19] using the numerically exact
Time Evolving Density with Orthogonal Polynomial Algo-
rithm (TEDOPA) [27-29]. However, including these effects
is beyond the scope of this work, so we restrict to the Marko-
vian master equation in Eq. (7). Finally, it is worth stress-
ing that we have made the underlying assumption of local en-
vironmental mechanisms. This adheres well with a scenario
where the nodes of the network are spaced more than any spa-
tial correlation-length of the environment. While this allows

to explicitly bypass the possibility of environment-induced ef-
fects in the transport of the excitations to the sink, it matches
the situation encountered in situations of simulated networks
consisting of matter-like information carriers effectively con-
nected by radiation-based quantum buses and addressed by lo-
cal potentials to tune their respective local energies. Although
identify a specific arrangement is not among the goals of our
investigation, we will have such an architecture in mind, im-
plicitly, in the remainder of our formal analysis.

III. METHODS

Given the model introduced in Section II, our goal is to op-
timize the local on-site energies 1 = {h1,...hy} in order
to further improve the excitation transfer, under different de-
phasing conditions.

First, prior to the optimization problem, we need to solve
the system dynamics. To this end, one widely used option is to
vectorise Equation (7) [30]. Note that, by construction, the re-
duced density operator is represented by a (N +2) x (N +2)
Hermitian matrix p, which also automatically encodes infor-
mation about two extra sites introduced in Section II. Through
vectorisation, the density matrix is readily transformed to a
(N + 2)2-dimensional vector (whence the name of the tech-
nique)

0 — 7= (poo,pm,...,p0N+1,Plo,--'/PN+1N+1)- @®)

Analogously, the unitary part can be remapped according to
[H,0] = Lyf = (I® H—-H' @ I)7, 9)

whereas the dissipative part transform as

1 -
LupLy, — i{L;Ly,p} — L7 =
1 -
[(L;)T Ly -5 LiLy+ (LyL)" @ 1) |7 (10)

By applying this set of rules, one obtains a first-order differ-
ential equation of the form

. i

r=—2 LI, (1
where the full vectorised Lindbladian is given by £ = Ly +
ih )Y L. Owing to this representation, the system state at a
generic time ¢t is formally obtained by exponentiation, i.e.,

F(t) = e #t£ 7(0). (12)

Therefore the sink population is easily obtained considering
the (N + 2)2-th component of 7(t), i.e., ¥, = 7(t) - §, where
§=1(0,0,..,0,1)isa (N + 2)2—dimensional vector. Notice
that, after applying the transformation given by Equation (9),
we are still able to separate between an interaction term Eb
and a term which depends solely on the local energies EB.
The latter can be written as

£ =Y huHu, (13)
n



with
Hy = (I |n)(n| —|n)(n|1I). (14)

Let us now fix the total evolution time T and prepare the sys-
tem with an excitation in the n-th site. The goal of optimizing
the population transfer can be achieved by minimising the cost
function

C(h) =1—r{(R), (15)

where 71 represents the set of parameters over which the opti-
mization is performed.

Using Equations (8) to (14), we are able to obtain the sink
population rST and calculate its gradient with respect to h.
The latter can be efficiently done by using Automatic Dif-
ferentiation techniques [31]. We can hence minimise C (E)
using gradient-based techniques, eventually finding the opti-
mal on-site energies configuration, i.e., ﬁopt. In this work,
we chose to use a Root Mean Square Propagation (RMSprop)
algorithm [32], an an adaptive learning-rate optimization al-
gorithm developed to tackle limitations of stochastic gradient
descent in training deep neural networks. It adjusts learning
rates for each parameter and divides the gradients by an ex-
ponentially weighted moving average of the squares of the
derivatives in the parameters updates. This aids convergence,
speed, and stability. While reuqiring careful hyper-parameter
tuning, RMSprop is a valuable tool for training neural net-
works, particularly useful for non-stationary objectives and
recurrent neural networks. Our choice is based solely on the
fact that we generally observed a comparatively faster conver-
gence to the solution compared to other similar techniques in
our numerical simulations.

IV. ANALYSIS AND RESULTS

As mentioned above, we start our analysis by considering
a specific network made of N = 7 sites, which, according
to the evidence experimentally gathered in [24], reproduces
quite accurately the excitation transfer operated by a FMO
complex. In order to perform the optimization, we assume
that the coupling between the network sites are those given in
Ref. [18], which, in turn are based on the experimental results
given in Ref. [24]. Therefore, the non-diagonal part of the
system Hamiltonian is given by

Hy =

0 —-1041 51 —43 47 -—-151 -78
—104.1 0 326 7.1 54 8.3 0.8

51 32.6 0 —468 10 =81 51
—4.3 71 —468 0 707 —14.7 —61.5
4.7 54 1.0 =707 O 89.7 =25
—15.1 8.3 —-8.1 —-147 89.7 0 32.7
—7.8 0.8 51 —615 -25 327 0
(16)

Here and in the following energy values are expressed in units
of 1.2414 - 10—* eV, while times are in ps, as in Refs. [18, 24].
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FIG. 2. Example of learning curve using the approach presented in
Section III. The final sink population rg is optimized with respect
to E, and we plot it as a function of the number of iterations of
RMSprop, with T = 5. The numerical values of the Hj entries
are those given by Equation (16), the decaying rates are given by

w =T =5.107% Ty = 6.283, while we assume that 7, = 0
for any value of 1, meaning that the network is not subject to any
dephasing. We assume that the excitation is initially injected in the
first site of the network, i.e., p(0) = |1)(1].

A few comments about Hj are now in order. Equation (16)
is representative of a network with a high level of connectiv-
ity — all the entries are non-zero, as we would expect for a
FCN where every site is coupled to any other site — where
evidently coupling strenghts are site-dependent. We further
assume that the sink |s) is attached to the third site, repre-
sented by |3). This assumption is actually physically mo-
tivated in FMO complexes: experimental evidence suggests
that the third site is the one coupled with the reaction cen-
tre [24]. For the sake of completeness, we mention here that
more recent experiments revealed the existence of a 8-th site
in the FMO complex [33, 34]; however, for our purposes, we
mainly consider the case of N = 7 sites, as the largest system,
with some results concerning networks with reduced size dis-
cussed in Section IV B.

Although our first aim is to optimize the network trans-
port properties over the on-site energies, we will bench-
mark our numerical findings against those contained in
Ref. [18], where the on-site energies are given by, Eref =
(215,220,0,125,450,330,280), the decaying rates associ-
ated to spontaneous emission are I, = I' = 5- 1074,
I's = 6.283, the optimal local dephasing rates are Y =
(0.157,9.432,7.797,9.432,7.797,0.922,9.433), while the to-
tal evolution time is T = 5 unless differently stated.

Using the methodology introduced in Section III, we can,
for instance, plot a typical learning curve of h.In Figure 2, we
show the final sink population rST as a function of the number
of the iterations of the optimization algorithm, given a specific

network and environment configuration.



[ 7 [T o) [P (5]
Tref| 0.955 | 0.971
T 10922 | 0981
0 [0.639 | 0.989

TABLE I. Final sink population rST (T = 5) for different dephasing
consitions, i.e., 7 = Jref, 1, 0. In the right-hand column we consider
the case where all the local energies Ii are set to zero, i.e., Eo =
(0,...,0), while in the left-hand column, we show the final sink

population for the optimal local energies ﬁgpt as obtained with the
optimization method discussed in Section III.

A. Optimal solutions

In this Section, we systematically study the network perfor-
mance under different dephasing conditions, by looking at the
population transferred to the sink over a total evolution time
T. To this end, we assume that the coupling between the sites
is given by Hj in Equation (16), with the numerical values
of the decaying rates as given above. We then study the ef-
fectiveness of the optimization of local energies for different
dephasing conditions. We indeed start with considering three
relevant cases: in the first case, we consider the local dephas-
ing rates 7yrf obtained through the optimization performed in
Ref. [18]; in the second case, the network sites are not sub-
ject to any dephasing, i.e., v, = 0, for any value of #; the
third case, where the dephasing is uniform across all sites,
ie., yn = v = 1. For easing the notation, we will denote
the array of local depashing rates 4 with Yet, 0,1 in the three
aforementioned cases, respectively.

For sake of definiteness, we assume that the excitation is
initially injected in the first site of the network, i.e., the initial
condition for Equation (7) reads p(0) = |1)(1|; furthermore
we assume that the third site, i.e., |3), is connected to the sink.
It is worth mentioning that our results are not qualitatively
affected if we change either the state connected to the sink or
the initial excited site.

In order to solve the optimization problem, we first ini-
tialise the local energies Ky setting them all equal to zero, i.e.,
h = hy = (0,...,0). By so doing, we obtain the final pop-

ulation transferred to the sink 77 (fg). We then perform the
optimization over the local energies in the way described in
Section III for the three different dephasing conditions, and
obtain ] (Egpt), with ¥ = e, 0, 1.

The improvement achieved by optimizing over hi can be de-
duced from the data shown in Table I, whereas the sink pop-
ulation dynamics is shown in Figure 3. The corresponding
optimal Hamiltonians can be found in Appendix A. We ob-
serve marginal improvement of the population transfer when
we take ¥ = ref, a slight improvement for uniform dephasing
rates (7 = T) and a larger improvement in absence dephasing,
(7= 0). In all cases, we are able to achieve high population
transfer.

We then explore larger uniform dephasing rates by consid-
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FIG. 3. Plot of the sink population 7 (E'?

opt) @s a function of ¢, where

m)pl are the optimal on-site energies obtained through optimization,
with the three sets of dephasing rates 7 = Jrer, 0, 1. The remaining
parameters are the same as in Figure 2. Notice that we are able to
achieve high population transfer both with and without dephasing
noise.

ering v, = <y, where <y varies in the range [0,20]. As shown
in Figure 4, the optimization allows us to effectively transfer
population in a large interval of the chosen range; noticeably,
the smaller is the dephasing rate, the larger is the improvement
compared to the non-optimized scenario. Moreover, numeri-
cal investigations show that, even setting all the local energies
to zero, the system achieves high population transfer while
we increase the value of the dephasing rates. One can also ob-
serve that there is an intermediate range of 7y where the popu-
lation transfer is high even without optimization. In this range,
the optimization of local energies is superfluous to observe
high transfer; the process is mostly guided by dephasing, as in
the case where ¥ = 7,.t. However, when the dephasing rate
becomes too large, it turns out to be detrimental to the trans-
fer; we indeed observe a decrease in the final sink population,
both in the optimized and in the non-optimized case. This oc-
currence can be ultimately justified in terms of the quantum
Zeno effect [35-37]: extreme dephasing conditions tend to
freeze the system dynamics [23].

To conclude this part of the study we compare our opti-
mal population transfer with the population transfer achieved
when taking h = fzref, as given at the beginning of this sec-
tion. Figure 5 provides evidence of the effectiveness of the
optimization: the optimal set of on-site energies Eopt outper-

forms ﬁref for any t > 0.

B. Resilience against different configurations

We now want to test some properties of the optimal on-
site energies ﬁopt for different 7 discussed in Section IV A.
We start by looking at the resilience of the transfer against
variations either in the initial or end sites, or in the coupling
between the sites. We consider the optimal solutions for a
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FIG. 4. Final sink population rg (T = 5) for uniform dephasing rate
across all network sites 7y, = <y. We compare the case where on-site
energies h are the result of the optimization (dash-dotted line) with
the case in which we assume them to be all null (solid line). On the
one hand the plot shows that the optimization procedure only leads to
minor improvements in the population transfer for moderate to large
values of -y compared to the case where all the local energies are set
to zero. On the other hand, the optimization procedure results in a
significant improvement of the excitation transfer performance for
small values of 7.

1.0 A

0.6 1

0.4 1

0.2 1

0.0 1

FIG. 5. Dynamics of the sink population r%(%) under the dephas-
ing condition 7 = Jyer. The solid curve corresponds to i = Prefs
while the dash-dotted curve corresponds to the optimized site en-
ergies h= ﬁopt. This plot shows that the optimization method dis-
cussed in Section III is effective at improving the population transfer.

total evolution time T = 5, with Hj being given by Equa-
tion (16). In our analysis the initial and the target sites are
always different. The corresponding results can be found in
Table 11, where in the left-hand column we show the smallest
population transferred while varying the site where the exci-
tation is initially injected, while in the right-hand column we
show the smallest population transferred when we vary the
site connected to the sink. In both cases, the transfer is more
resilient when it is mostly guided by dephasing. Indeed, when
7 = T or 7 = et we still observe high population trans-

[ [min(T)[p(0) [min(rD)]Lr,

Vet 0.971 0.961
1 0.981 0.976
0 0.018 0.031

TABLE II. Smallest population transferred min(r!) at T = 5 for
different sets of dephasing noise ¥ = Yopt, 1,0. In the central col-
umn, we show those instances in which we vary the initial state p(0),
i.e., the site where the excitation is initially injected, whereas on the
rightmost column we change the site m connected to the sink through
the operator Lr_ introduced in Equation (6).

fer, whereas those results are in stark contrast with the zero-
dephasing case, when the population transferred to the sink
can drop almost to zero.

Next, we look at the effect of allowing population transfer
to the sink from a second node of the network. Under this
hypothesis, we observe a minimum population of 7! = 0.998
transferred to the sink, when the latter is connected to both the
3-rd and 7-th sites, i.e., m = 3 and m = 7 in Equation (6).
Furthermore, it is worth mentioning that we observe no signif-
icant differences between the different dephasing conditions.

We then use the same local energies while considering dif-
ferent coupling between sites. To do so, we randomly extract
the entries of the matrix H} from a uniform distribution in the
range [—200,200]. As before, we choose |1) as the initial ex-
cited site, while |3) is the target state. Results are shown in
Table III, where we report the smallest and the largest pop-
ulation transferred to the sink. We can see that the most re-
silient transfer is achieved for ¥ = 7., while, again, the
lowest transfer is observed in absence of dephasing noise. It
is worth noticing that in all cases we have evidence of a con-
figuration yielding an almost perfect population transfer. The
corresponding Hamiltonians can be found in Appendix A.

To complete, we study the population transferred to the sink
when the network size is reduced. Starting from a FCN of
N = 7 sites, where the adjacency matrix Hj is given by Equa-
tion (16), we progressively scale down the system size, remov-
ing one by one the nodes of the network. To this end, we first
discard one node of the network (except for the input and the
output nodes, 1 and 3, respectively) and update the adjacency
matrix by removing the corresponding row and column, then

’ 07 ‘min(rsT)‘max(rsT)‘
For| 0.833 | 0.999
1] 0630 | 0.999
0 | 0.036 | 0.999

TABLE III. Smallest and largest population transferred rsT atT =5
as obtained with adjacency matrix H; whose elements are ran-
domly extracted from a uniform distribution defined over the interval
[—200,200]. We consider 10* realisations of Hj, showing that there
is at least one matrix H; leading to almost perfect transfer [cf. right-
most column].
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FIG. 6. Optimized population transferred to the sink rST atT =D5as
a function of the number of nodes removed from the original network
for different dephasing conditions, i.e., ¥ = Yyef, 1,0. See details in
Section IV B.

we optimize over the local energies h. Among all the possible
configurations with 6 nodes, we select the one correspond-
ing to the smallest population transferred to the sink after per-
forming the optimization. The rationale behind such choice
is that, by looking at the worst case scenario, we test the ef-
fectiveness of optimizing only the local energies of a smaller
network to achieve high excitation transfer.

We iterate the node-removal followed by optimization pro-
cedure until we reach the non-trivial case where we are left
with only 3 nodes. Results are shown in Figure 6, where it can
be seen that this operation has a significant, detrimental im-
pact on the population transfer, showing that carefully select-
ing the local energies for a given network configuration may
not be sufficient to achieve the desired transfer for smaller net-
works. Furthermore, we can see that, in contrast to changes in
the coupling strengths for the seven-site network, reduction of
the number of nodes seems to be more detrimental in presence
of dephasing noise.

C. Coherence preservation properties

Results from Section IV B have shown that, when the trans-
port is dephasing-assisted, the population transfer is more re-
silient to changes of the network configuration. On the other
hand, we also expect that such process would tend to destroy
coherence in the system. This is not necessarily true in ab-
sence of dephasing noise, provided that the transfer is fast
enough (so that coherence is not destroyed due to excitation
losses).

To study how coherence is preserved or lost from the sys-
tem during the population transfer, we add a new site |8) to
the network, uncoupled from all the other sites. We then pre-
pare the system in the superposition %(|1> +18)), and we

study the time evolution of coherences while the population

transfer from site |1) to the target is taking place.

The irreversible transfer from site |3) to the sink will in-
evitably lead to coherence loss from the system. However,
we would like to separate these artificial losses from the ef-
fect of dephasing and spontaneous emission induced by the
interaction with the environment. To do so, we instead con-
nect the site |3) to a long spin chain via an interaction Hamil-
tonian J35,(|3) (so| + [s0) (3]), where |sg) is the first site of
the chain. Moreover, the chain is described by the following
nearest- neighbour interaction Hamiltonian

Nc
He =TY (Isj) (sjal + Isj1) (sjl), (17)
=0

where we assume uniform coupling | across the chain, and
Nc is the number of sites of the spin chain.

If the chain is long enough and the evolution time consid-
ered is not too long, we do not expect revivals to occur, mean-
ing that most of the population transferred to the chain will not
go back to the network. This enables us to picture the whole
chain as an effective sink. However, in contrast to the previous
scenario, the interaction between the network and the chain is
affecting the unitary part of the dynamics, therefore it does not
induce any additional decoherence.

We hence study the coherence dynamics in this new sce-
nario for different dephasing rates 4 and the associated opti-
mal on-site energies presented in Section IV A. The total pop-
ulation pc transferred to the chain as a function of time can
be found in Figure 8.

In order to study the time evolution of coherence we employ
the standard quantifier given by the /;-norm [38]. In Figure 7,
we show the dynamics of the total coherence of the system
computed as

C=Ylpil, (18)
i

as well as the coherence associated to the 8-th site only

Cg =) |psj| — pss (19)
j

where j =1,..,N,sg, ..., SN~ In our simulations, we consid-
ered a chain of Nc = 80 spins, J35, /1t = I's, and | = 2]35,.

After a time T = 10, we observe a significant increase in
C in absence of dephasing and a small increase when we add
dephasing noise. An increase in Cg can also be observed for
4 = 0and ¥ = 1, while Cg(T) < Cg(0) for ¥ = Frer. We
eventually looked at the coherence per number of sites/spins
involved ¢ = C/ Ny For the initial state ¢ = %, while at the
end of the transfer Nioy = N + N¢c. We obtained ¢ ~ 0.035
for Fref, ¢ ~ 0.080 for ¥ = 1, ¢ ~ 0.499 for 7 = 0.

These results are in agreement with the expectation that in
absence of dephasing, coherence is mostly preserved, while
losses can occur when the population transfer is driven by de-
phasing.
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FIG. 7. Time evolution of coherence. In Panel (a), we study the
system coherence C as quantified by Equation (18), while in Panel
(b), we look at the reduced coherence Cg associated to the 8-th site,
computed using Equation (19). We compare the curves obtained for
different dephasing rates ¥ = 7, 6, T, while resorting to the cor-
responding optimal on-site energies. The parameters used for the
numerical simulation are the same as in Figure 8.

V. CONCLUSIONS AND OUTLOOK

In this work, we optimized the on-site energies of a fully
connected quantum network to improve population transfer
for different enviromental conditions. Specifically, we con-
sidered a simple model of a FMO complex in the single-
excitation subspace, subjected to spontaneous emission and
local dephasing. Resorting to a gradient-based technique, we
found the optimal site energies for different dephasing rates.
We studied the properties of our solutions in terms of re-
silience against changes in the network initial preparation,
couplings, and size, providing a discussion about coherence
preservation during the transfer. We show that high population
transfer in a FMO-like network can be achieved by merely
optimizing the sites energies for a large range of different de-
phasing rates. However, the optimal solutions for dephasing-
driven and zero-dephasing transport are significantly different
in terms of resilience to network configuration and coherence
preservation. While in absence of dephasing we find both a

kA,
0.4 4 \\
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FIG. 8. Population pc transferred from the network to the spin chain
as a function of time. We consider the optimal site energies Eopt
(obtained for an evolution time T = 5), under different choices of
the dephasing rates 7 = '_fopt,ﬁ, 1. For the numerical simulations,
we chose N¢ = 80 spins in the chain, [35,/fi = I's, and | = 2]z,
while all the remaining values of the physical parameters are given
at the beginning of Section IV.

high transport performance, and a high degree of coherence
preservation, the optimal solutions in the presence of dephas-
ing are shown to be more resilient to changes in the network
initial state and couplings between sites, while, as expected,
they exhibit a higher loss of coherence in the quantum network
state. However, in contrast to the transfer resilience against
changes in the sites interaction, reduction in the network size
seems to be more detrimental in presence of dephasing.

Our work contributes to further understanding of the trans-
port properties of fully connected quantum networks by isolat-
ing the effect of local energies, dephasing conditions, and net-
work size for a given set of couplings between the sites. Fur-
thermore, our results show that a viable and fruitful approach
to design efficient synthetic devices is to apply adaptive learn-
ing approaches to enhanced existing natural devices, such as
the photosynthetic complex that we have considered in this
paper. In this respect, further progress can be made by either
studying larger networks, or going beyond the one-excitation
subspace, or studying different models of interactions. One
might also consider more complex environments, e.g. includ-
ing non-Markovian effects, as those are displayed by a vari-
ety of non-artificial physical systems, and assess whether that
could be beneficial for further improving the properties of the
transfer.
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Appendix A: Optimal Hamiltonians

In this Appendix, we report some of the optimal Hamilto-
nians found during our optimizations and analysis. All energy
values are expressed in units of 1.2414 x 10™% eV,

The optimal Hamiltonians, expressed in matrix form, found
with the interactions described by Equation (16) for the results
presented in Table I in are

657 —1041 51 —-43 47 -—-151 -78
—104.1 —-11.1 32.6 7.1 5.4 8.3 0.8
5.1 326 —56.1 —468 10 -81 5.1
—4.3 71 —46.8 —36.2 —70.7 —14.7 —61.5 |,
4.7 54 1.0 -70.7 =306 89.7 -—-25
—15.1 8.3 —-81 —-14.7 89.7 557 327
—-7.8 0.8 51 —-615 —-25 327 42
(A1)
for ¥ = Yeer,
435 —-1041 51 —43 47 —-151 -78
—104.1 137 326 7.1 54 8.3 0.8
5.1 326 —458 —468 1.0 -81 5.1
—4.3 71 —468 —43 -70.7 —14.7 —61.5 |,
4.7 5.4 1.0 -70.7 —195 89.7 =25
—-15.1 8.3 —8.1 -—147 89.7 144 327
—-7.8 0.8 51 —-615 —-25 327 86
(A2)

for 4 = 1, and

10

—-132 -1041 51 —43 47 —-151 7.8
—-1041 -17 326 7.1 54 8.3 0.8
51 326 161 —468 1.0 -81 51
—4.3 71 —468 —433 -707 —-147 —615|,
4.7 54 1.0 -70.7 4242 89.7 =25
—-151 83 —81 —147 89.7 —-568.8 32.7
—7.8 0.8 51 —615 -25 327 395
(A3)

for 7 = 0.

While a simple intuition of the pattern of optimal matrix
entries found in such examples seems to be elusive, one can
notice that, in the absence of dephasing, the moduli of two of
the optimized local energies are significantly higher than the
rest. In the analysis reported in Section IV B we found fully
connected networks that achieved near perfect transfer (see
Table III) for different 7. The corresponding Hamiltonians
are

657 1824 —833 —-106.2 —191.6 —18.8 —20.8
1824 —-111 -1526 919 —1623 55.6 183.7
—83.3 —152.6 —-56.1 —132.0 —190.2 177.3 -—101.7
—-106.2 919 —-132.0 —-36.2 —161.3 —169.0 144.6
—191.6 —162.3 —190.2 —161.3 —-30.6 —106.3 —102.8
—-188 556 1773 -169.0 —106.3 557 —111.5
—20.8 183.7 —-101.7 1446 -—-102.8 —111.5 42
(A4)
for 7 = et
435 1029 928 63.8 287 -—136.6 —183.1
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28.7 —1185 —198.8 —184.6 —-195 —-153.8 52
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—183.1 110.7 1447 —-1395 52 1880 —8.6
(A5)

for 7 = 1, and
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for ¥ = 0. Again, no intuition for the optimality of such actions are significantly stronger than in the FMO complex
configurations is apparte. However, that many of the inter- model described by Equation (16).
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