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ABSTRACT

Rapid reliability assessment of transportation networks can enhance preparedness, risk mitigation, and
response management procedures related to these systems. Network reliability analysis commonly
considers network-level performance and does not consider the more detailed node-level responses
due to computational cost. In this paper, we propose a rapid seismic reliability assessment approach
for bridge networks based on graph neural networks, where node-level connectivities, between points
of interest and other nodes, are evaluated under probabilistic seismic scenarios. Via numerical
experiments on transportation systems in California, we demonstrate the accuracy, computational
efficiency, and robustness of the proposed approach compared to the Monte Carlo approach.

Keywords Graph neural network · Connectivity reliability · Transportation system · Bridge network · Highway network

1 Introduction

Extreme hazards continue to influence the infrastructure system, with losses exceeding hundreds of billions of dollars.
For instance, the overall cost to repair or replace the infrastructure system during Hurricane Katrina in 2005 was over
$1 billion [1]. Furthermore, the transportation system is one of the 16 critical infrastructure sectors according to Cyber
Infrastructure Security Agency [2]. The highway system in the US, for instance, encompasses over 164,000 miles in the
National Highway System (NHS). The society also relies on the highway system during emergencies to access critical
facilities, including hospitals, airports, fire stations, etc. Highway bridges are critical and yet vulnerable components of
the transportation infrastructure. The United States has a national inventory of almost 600,000 highway bridges, many
of which are deteriorated and considered structurally deficient [3]. Maintaining a reliable highway bridge system can be
properly achieved via a framework that quantitatively assesses highway reliability in an accurate and computationally
tractable way.

In the aftermath of natural hazards, the objectives of a reliability assessment framework are to identify the risk potentials
to residents and the infrastructure system [4]; to adjust the emergency plan beforehand to reduce the potential losses; to
allocate the resources effectively for recovery. A review of the reliability analysis of transportation systems can be found
in [5]. As an example, [6] builds a framework considering the human factor in the transportation reliability analysis and
then identifies the need for both transportation systems and driving assistance systems. Among quantitative approaches,
various metrics are proposed to the reliability evaluation of the transportation system, including connectivity [7, 8],
resilience index [9], and travel time [10], traffic flow [11], transportation equity [12]. Even though the effectiveness of
the simulation-based approaches, the computational time for large infrastructure networks is expensive. To address this
issue, surrogate modeling has been proposed for network reliability analysis. For instance, [13] provided a deep learning
framework to accelerate seismic reliability analysis of a transportation network where the k-terminal connectivity
measure was used. As another example, [14] proposed a neural network surrogate for system-level seismic risk
assessment of bridge transportation networks using total system travel time as the evaluation metric.
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Even though surrogate modeling has been proven to provide an effective way for reliability analysis, it has several
limitations. Most of the aforementioned studies only offer a graph-level evaluation of road network resilience per-
formance. Furthermore, these neural network surrogates are unable to generalize to different network topologies. In
this paper, we seek to compute a more detailed generalized node-level evaluation measure in an efficient way using
a neural network-based analysis framework. Specifically, the model evaluates the connectivity probability for all
origin-destination pairs after earthquakes using a graph neural network (GNN) model. The major contributions of this
work are as follows: (1) to the best of authors’ knowledge, this is the first work that evaluates the connectivity for all
origin-destination pairs in the road network using the graph neural network; (2) the proposed end-to-end structure of the
model achieves high efficiency by avoiding extensive sampling otherwise used in Monte Carlo simulations (MCS) which
reduces the computational time; and (3) the proposed model has the ability of inductive learning, i.e., it can predict
node connectivities in unseen graphs. We will numerically show that the proposed framework can effectively accelerate
the connectivity reliability analysis of highway bridge networks with a case study in the Bay Area in California.

The remainder of this article is structured as follows. A general simulation-based framework for connectivity analysis
of transportation networks is described in Section 2. Then, Section 3 presents the node-level bridge connectivity
analysis for earthquake events using a graph neural network. Furthermore, a case study of the highway bridge system in
California is presented to demonstrate the accuracy and efficiency of the proposed framework in Section 4. Finally, the
discussion and conclusion of the proposed framework are presented in Section 5.

2 Transportation System Reliability Analysis

A transportation network can be represented by a graph G = (V,E) where V and E denote the sets of nodes and
edges between these nodes, respectively. In a highway bridge system, a node is a highway intersection, and an edge
is a highway segment between two intersections. Each link is denoted by (u, v) ∈ E with u and v being the indices
of its two end nodes. In this work, we assume the bridge is the only component that can fail in the network due to an
earthquake, and an edge (u, v) is removed from the graph only because of a bridge failure.

Given a source node s and a target node t, s and t are connected when there exists at least one active path ls,t =
{(s, v1), (v1, v2), (v1, v2), . . . , (vn, t)} between s and t. Let us denote the the set of all possible paths as the set
Ls,t = {lis,t}

ns,t

i=1 where ns,t is the total number of active path between s and t. We seek to compute the node-to-node
connectivity (as a probability) using the survival probability of the bridges in the network.

To do so, we first model the survival state of the path i between s and t as a binary Bernoulli variable given by

xs,t,i =

{
1, with probability ps,t,i,
0, with probability 1− ps,t,i,

(1)

where {1, 0} denotes the survived and failed states, respectively. A path with at least one failed bridge will be removed.
If path i between s and t consist of ms,t,i bridges, the survival probability of the path can be represented with

ps,t,i =

ms,t,i∏
j=1

ps,t,i,j , (2)

where ps,t,i,j is the survival probability of the jth bridge on path i between s and t. The path failure probability is
calculated by subtracting the survival probability from one. The detail of calculating bridge survival probability is
shown in Section 3.2.1. Because of the numerous path candidates, it is computationally intractable to compute the
node-to-node connectivity probability directly given bridge and path failure probabilities. As a result, a Monte Carlo
(MC) approach is adopted in this work, where realizations of the network are obtained by randomly removing paths
based on path survival probabilities ps,t,i calculated using Equation 2. Specifically, for the kth MC realization of the
network with the removed paths, we check all the possible paths between a given pair s and t using the breadth-first
search (BFS) algorithm with time complexity of O(|V|+ |E|). Then, the binary node-to-node connectivity pks,t is set
equal to one, if there is at least one path between s and t, and it is set to zero, otherwise. With N MC samples, the
none-to-node connectivity probability can be approximated as

Ps,t =
1

N

N∑
k=1

pks,t. (3)

Enough MC samples are used until the quantity of interest converges, which is set to be when the standard deviation of
connectivity probability becomes less than 0.01.
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3 Graph Neural Network for Node-Level Transportation System Reliability Analysis

3.1 Graph Neural Network

In most of the first applications of neural networks, the input data is structured and typically of Euclidean structure. In
graph applications, on the other hand, input is non-Euclidean and unstructured, containing different types of topologies.
As such, normal neural network frameworks cannot handle graph data since the structure of the input data is not fixed.
This paper leverages the GNN to tackle the non-Euclidean graph-structured inputs. Using the previously introduced
notation for the graph, G = (V,E), features used in the GNN consist of node features Xn ⊂ R|V |×Fn and edge
features Xe ⊂ R|E|×Fe , where |V | and |E| denote the number of nodes and edges, |Fv| and |Fe| denote the dimension
of features for each node and edge. The process of combining features from a node and other nodes is called message
passing. There are various approaches to exploiting node features. For instance, graph convolutional network [15]
accomplishes message passing by using the adjacency matrix A, or in an improved way by using a normalized adjacency
matrix.

However, the adjacency matrix contains the intra-node information, and it can only be used for transductive learning
tasks. To overcome this obstacle, GraphSAGE [16] is proposed to enable inductive learning tasks without exploiting the
adjacency matrix. GraphSAGE uses parametrized neural networks to aggregate node information based on the central
vertex and its neighbors. The learned node aggregation consists of two stages: feature aggregation and feature update.
The learned aggregation step is modeled as a single layer in the graph neural network.

In the feature aggregation stage, at step k (or in the kth layer) for each node v, we aggregate the features of its neighbors
denoted by xk

u ∈ R1×dk
n ,∀u ∈ N (v) according to:

xk+1
N (v) = f

(
{xk

u,∀u ∈ N (v)}
)
, ∀v ∈ V, (4)

where f is the aggregation function, here chosen to be the mean aggregator function, and dkn is the node embedding
dimension at layer k. Then in the update stage at step k for each node v, the updated node features xk+1

v will be
computed using the previous node features xk

v ∈ R1×dk
n and the aggregated features xk+1

N (v) ∈ R1×dk+1
n according to:

xk+1
v = σ

(
g
(
ϕ
(
xk
v , x

k+1
N (v)

)
;W

))
, ∀v ∈ V, (5)

where ϕ is the concatenating function, σ is a nonlinear activation function, g(·;W ) represents a fully connected layer
with parameter W . In this work, we extend the learning aggregation process in [16] to include both node and edge
features. At step k, edge features xk

e ∈ R1×dk
e of the edge connecting each node v,∀u ∈ E(v), are aggregated through

xk+1
E(v) = f

(
{xk

e ,∀e ∈ E(v)}
)
, ∀v ∈ V. (6)

where dke is the edge embedding dimension at layer k. The aggregation step for node embedding is the same as Equation
4. Then in the update step, both node features and edge features are passed through a neural network:

xk+1
v = σ

(
g
(
ϕ
(
xk
v , x

k+1
N (v), x

k+1
E(v)

)
;W

))
, ∀v ∈ V. (7)

By repeatedly using Equations 4, 6 and 7, the node and edge features of multiple-hop neighbors of the central node are
aggregated into the features of that central node. Figure 1 illustrates the process of message-passing when both node
and edge features are passed. The left figure represents the original graph at step 0 where the node features x0

n and edge
feature x0

e are initialized. Then in the aggregation step, which is shown in the middle figure, the node feature and edge
feature are passed following the arrow direction. Taking the red node as an example, in step 1, the node features and
edge features with blue color are passed into the red node and then updated, which are 1-hop neighbors. Then in step 2,
the node features and edge features with green color are passed into the red node and then updated, which are 2-hop
neighbors. After the k-step update, the node feature xk

n includes the information from all k-hop neighbors, which is
shown in the right figure. Then the node embedding can be further used for node regression and other downstream tasks.

3.2 Graph Neural Network for Bridge Connectivity Analysis

The pipeline of graph neural network surrogate for bridge connectivity analysis is shown in Figure 2. The pipeline
consists of two major components: a bridge seismic analysis module and a graph neural network module.
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Figure 1: Message-passing with both node and edge features.

Figure 2: Pipeline of connectivity analysis of highway bridge system.

3.2.1 Bridge Seismic Analysis Module

This module consists of bridge graph generation and bridge failure probability calculation. To generate the graph, we
first need to define a region of interest for reliability analysis. The edges in the graph are highways, freeways, and
expressways within the region of interest. The intersections of these roadways are considered as nodes in the graph. To
calculate the bridge failure probability, the first step is to extract bridge information in the considered highway system,
which could be obtained from the National Bridge Inventory (NBI) [17]. The useful information for bridge failure
probability calculation includes built year, structural material, structural type, number of spans, maximum span length,
bridge length, and skew angle. It should be noted that in general, an edge may consist of zero, one, or more than one
bridge.

The second step for bridge failure probability calculation is to determine the ground motion at each bridge site. In
this paper, the ground motion prediction equation (GMPE) is adopted, which predicts the characteristics of ground
motion, including peak ground acceleration (PGA), spectral acceleration (SA), and its associated uncertainty [18, 19].
In the past decades, hundreds of GMPEs have been proposed for predicting PGA and SA. In this work, Graizer-Kalkan
GMPE (GK15) [20] is adopted. The updated ground-motion prediction model for PGA has six independent predictor
parameters: moment magnitude M , the closest distance to fault rupture plane in kilometers R, average shear-wave
velocity in the upper 30m VS30, style of faulting F , regional quality factor Q0, and basin depth under the site Bdepth. In
GK15, the peak ground acceleration is calculated as a multiplication of a series of functions. In the natural logarithmic
scale, it is given by:

ln(PGA) = ln(G1) + ln(G2) + ln(G3) + ln(G4) + ln(G5) + σln(PGA), (8)
where G1 is a scaling function for magnitude and style of faulting, G2 models the ground-motion distance attenuation,
G3 adjusts the distance attenuation rate considering regional anelastic attenuation, G4 models the site amplification
owing to shallow site conditions, G5 is a basin scaling function, and σln(PGA) represents variability in the ground
motion.

Given the variability in seismic resistance among the bridges in the network, there is insufficient data to conduct a
thorough seismic analysis for each individual bridge in the transportation network. Instead, to assess our proposed
model which is focused on the network-level response, without loss of generality, the failure probability of a bridge is
computed using fragility functions following the guideline of HAZUS-HM [21]. HAZUS-HM categorizes the bridges
into 28 primary types based on materials, structure type, build year, number of spans, etc. To estimate the probability of
failure of bridges, the geographical location of the bridge, SA at 0.3 s and 1.0 s at the bridge location, and soil condition
are also required. The form for 5% damped spectral acceleration at spectral period T is:

Sa,T = PGA× µ (T,M,R, VS30, Bdepth) , (9)
where µ is the spectral shape function. In HAZUS-HM, the failure probabilities of bridges are computed using the
fragility curve. Five damage states are defined: none, slight, moderate, extensive, and complete damage states. For
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bridges, extensive damage in HAZUS-HM is defined by shear failure, major settlement approach, or the vertical offset
of the abutment. In this work, we assume the bridges will stop functioning and be removed from the network when
bridge damage is beyond the extensive damage state. The fragility curve for the bridge component is modeled as
log-normal distribution functions characterized by median and dispersion. Furthermore, the failure probability of the
jth edge on path i between s and t, ps,t,i,j ∈ [0, 1] is computed based on the assumption that the edge fails when at
least one bridge fails.

3.2.2 Bridge Connectivity Analysis Module

To build the training data and testing data for graph neural networks, we need first to create node feature and edge
feature using the failure probability computed in 3.2.1. The edge feature is the failure probability of each edge, which
has already been computed. It should be noted that in conventional connectivity analysis, there is no feature directly
assigned to the nodes, i.e., the intersection of the roadways. In this work, however, we consider node features in the
graph neural network models. Four local and global graph characteristics are considered as features of node v: the
degree of the node deg(v); the largest failure probability of edges connected to the node max({p(e),∀e ∈ E(v)}); the
smallest failure probability of edges connected to the node min({p(e),∀e ∈ E(v)}) and number of hops on the shortest
path to the target node t h(v, t). All the node features in the graph are denoted by Xn ∈ R|N |×Fn with the number of
node features Fn = 4.

Figure 3: Architecture of graph neural network model for node-level connectivity analysis.

The proposed node features characterize each node from several perspectives: the degree represents the possible paths
connecting the node to its neighbors; the range of failure probabilities of edges connected to the node represents the
distribution of the failure probability; the number of hops represents a global feature characterizing the distance with
respect to the target node. It should be noted that in addition to the range of edge failure probabilities (the largest and
smallest failure probabilities of connected edges), one can also consider multiple quantiles to more precisely capture the
distribution of failure probabilities for a potentially more accurate analysis.

The architecture of the proposed graph neural network model for bridge connectivity analysis is shown in Figure 3.
A single block of message passing consists of a message-passing layer, a dropout layer, and an activation layer. The
skipping layer connection is used in our proposed architecture to mitigate vanishing or exploding gradient problems. A
regression block with multiple feed-forward fully connected layers is concatenated after the last message passing block.
The output of the model is the node-level connectivity probability Pc ∈ R|V |×1. The L1 loss is used for quantifying the
difference between the MCS and prediction.

4 Experiments and Results

4.1 Experiment Setup

The proposed GNN-based reliability analysis is applied to the highway bridge system of the California Bay Area. The
transportation system contains highways, freeways, and expressways connecting major airports and hospitals. The
considered study area includes the major cities of Santa Clara, Mountain View, and San Jose, with a large population
base. Therefore, it is important to maintain the connectivity of the highway bridge system after extreme events. In this
experiment, three different regions of study are considered (levels 1 to 3). The map illustrations are shown in Figure 4
obtained from Google Map [22]. The 1989 Loma Prieta earthquake is chosen as the seismic event. The earthquake of
scenario i is scaled to different magnitudes:

Mi = Mu − λi, (10)
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Where Mu is the upper bound of the possible earthquake magnitude and set to be 8.0 in this study, and λi is a random
sample following truncated exponential distribution with the shape parameter of 1.5. Furthermore, in this paper, without
loss of generality in evaluating our proposed GNN approach, we assume the seismic intensities at the location of
components are perfectly correlated [23], where the residual of PGA will be the same for all the components in the
transportation system. Figure 2 shows the pipeline of data generation. The details of these three regions, including the
number of nodes, Nn, number of edges, Nb, and number of bridges, Nb, are shown in Table 1. In the Monte Carlo
simulation (MCS) approach, the number of samples Ns is set to 10,000. For each node in the graph, 200 earthquake
realizations are generated, where the first 100 realizations are allocated for training and the subsequent 100 realizations
are designated for testing. Also, we held out 20% of the nodes for testing. To ensure that the removed nodes are more
or less evenly scattered on the network, the serial graph partitioning algorithm [24] is applied for the partitioning of the
graph.

The graph neural network used in this work consists of five graph message-passing layers and three fully connected
layers for regression purposes. The dimension of the hidden message passing layer and fully connected layer is 512.
The rectified linear unit (ReLU) is chosen as the activation function. The dropout rate is set to 0.1, and the Adam
optimizer is used to minimize the L1 loss, which is the mean absolute error, with a learning rate of 0.001. The model
is trained using mini-batch training with 200 epochs and a batch size of 64, which is commonly chosen in the neural
network training [25].

Figure 4: Map illustration of the studied regions in different levels.

Table 1: Statistic of different region levels

Graph Level # Node Nn # Edge Ne # Bridge Nb

Level 1 39 64 245
Level 2 84 133 448
Level 3 103 159 628

4.2 Prediction Results

We test the performance of the proposed approach from multiple perspectives. First, we consider a regression problem
where we calculate the probability of connectivity between a target node and the rest of the nodes in the region. The
target node is located in downtown San Jose, which is a critical location for the large population base. We calculate
the connectivity probability for three regions of interest. The prediction results for the Level 1 region are shown in
Figure 5. The maximum and average mean absolute error (MAE) between MCS and GNN prediction is 0.037 and
0.020, respectively. Figure 6 shows the prediction results and the corresponding error for the Level 3 graph. For this
case, the maximum MAE in the graph is 0.051 and the mean prediction MAE is 0.015. This demonstrates the accuracy
of the proposed GNN surrogate model.

Furthermore, from the perspective of decision-making, stakeholders may choose to consider a set of node connectivity
classes. In this case, we evaluate how accurate the predicted classes will be compared to the MCS approach. It
should be noted that a different classification model is not trained in this case. We only predict the connectivity
classes by assigning the predicted connectivity probability of each node into a class. In this example, three classes
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(a) Predicted connectivity probability from GNN (b) Absolute error between GNN and MCS predictions

Figure 5: Prediction of connectivity probabilities between the target node (red circle) and the other nodes in the Level 1
region. The nodes are color-coded based on the predicted connectivity probability (Figure 5a) and the absolute error
between predicted connectivity probabilities from GNN and MCS (Figure 5b).

(a) Predicted connectivity probability from GNN (b) Absolute error between MCS and GNN predictions

Figure 6: Prediction of connectivity probabilities between the target node (red circle) and the other nodes in the Level 3
region. The nodes are color-coded based on the predicted connectivity probability (Figure 6a) and the absolute error
between predicted connectivity probabilities from GNN and MCS (Figure 6b).

for node connectivity probabilities, namely normal connection, minor disconnection and major disconnection, for the
connectivity probabilities falling in the ranges [0.75, 1.0], [0.5, 0.75] and [0, 0.5], respectively. Figure 7 shows the
classification result using the same example in Figure 5. F1 score is chosen as the classification evaluation metric,
which is 1.0 in this example.

Moreover, we conducted an ablation study on hyperparameters to assess their influence in both regression and
classification tasks comprehensively. The study encompasses various hyperparameters, including the number of GNN
layers, the dimension of the hidden layer, the learning rate during training, and the features employed in the training
process. Three metrics including MAE and F1 score of two-class and three-class classification are considered in
the ablation study, which is aligned with the aforementioned experiment. Each scenario was subjected to three runs
utilizing different random seeds, and the reported results represent the average values over these runs. Table 2 provides
a summarized overview of performance metrics for different regions. Notably, a reduction in the number of GNN layers
is associated with a decrease in prediction performance. Furthermore, an increase in the learning rate and a decrease in
the dimension of the hidden layer results in less stable training performance, thereby diminishing overall performance.
When utilizing solely the edge feature during both training and prediction, it becomes evident that message passing is
less effective when compared with the performance of the complete model. This observation underscores the importance
of the pipeline’s efficiency and the hyperparameter selection.
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(a) Predicted connectivity classes from MCS (b) Predicted connectivity class from GNN

Figure 7: Identical predictions of connectivity classes obtained from MCS (Figure 7a) and GNN models (Figure
7b) for the Level 1 region. The red circle shows the target node. Three classes represent normal connection, minor
disconnection, and major disconnection.

The proposed model is also compared with other neural network models including support vector regression (SVR),
fully connected neural network (FCNN), graph convolutional network (GCN), and graph attention network (GAT)
[26], where the evaluation metrics are the same as the ablation study. The performance comparison over different
regions is shown in Table 3. The fully connected network has a relatively low accuracy due to the reason that it lacks
generalization capability to different graphs, and it cannot learn the graph feature effectively. Compared to GAT and
GCN prediction, the proposed model still has a relatively high accuracy in terms of MAE and F1 scores in all three
regions.

In order to assess the robustness of the proposed approach, we run several experiments in which the number of training
nodes within the graph varies. Specifically, a subset of the nodes is considered as the target nodes in training. For each
case, a specific ratio of the graph nodes is selected as the "training" target nodes. These ratios are chosen between 5%
and 80%. The evaluation metrics include mean square error, mean absolute error, and F1 score. The performances with
different levels are demonstrated in Figure 8, which shows that when the ratio of training target nodes is from 20%
to 40%, the F1 score can reach 0.85 and MAE is less than 0.08. Furthermore, when the training target node ratio is
60%, the F1 score can reach above 0.9, and MAE is less than 0.01. To further evaluate the robustness of the proposed
approach, Figure 9 compares the MCS and GNN predictions of node connectivity for all earthquake realizations. The
percentage in each figure indicates the ratio of false positive (FP) and false negative (FN) samples among all samples
with the cutoff threshold 0.75, which is less than 5%. It can also be seen that the Pearson Correlation coefficients
between MCS and GNN prediction for all region levels are higher than 0.93.

(a) Level 1 (b) Level 2 (c) Level 3

Figure 8: Relationship between different metrics and the percentage of training nodes shown for the Level 1 region
(Figure 8a), Level 2 region (Figure 8b), and Level 3 region (Figure 8c).
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(a) Level 1 (b) Level 2 (c) Level 3

Figure 9: Relationship between predicted node connectivity and MCS predictions shown for the Level 1 region (Figure
9a), Level 2 region (Figure 9b), and Level 3 region (Figure 9c). The percentage in the figure represents the proportion
of false positive (FP) and false negative (FN) results.

Table 2: Ablation study of hyperparameters on three different regions. Three metrics is considered in the comparison:
MAE, F1 score of two-class and three-class classification. The cutoff thresholds for two-class and three-class classifica-
tion are {0.75} and {0.5, 0.75}, respectively.

Level 1 Level 2 Level 3

Model MAE F1 (2 class) F1 (3 class) MAE F1 (2 class) F1 (3 class) MAE F1 (2 class) F1 (3 class)

# GNN layer = 3 0.047 0.905 0.876 0.049 0.925 0.870 0.051 0.939 0.889
# GNN layer = 1 0.061 0.878 0.853 0.092 0.851 0.760 0.112 0.863 0.760
Hidden size = 32 0.044 0.903 0.878 0.052 0.923 0.868 0.064 0.926 0.862

Learning rate = 0.01 0.070 0.858 0.829 0.138 0.756 0.636 0.175 0.805 0.618
No node feature 0.065 0.869 0.838 0.094 0.844 0.760 0.138 0.831 0.715

Full model 0.032 0.937 0.921 0.029 0.953 0.919 0.038 0.956 0.919

4.3 Model Performance Under Special Cases

Previous research [27] indicates that neural networks are vulnerable to small perturbations to the original data, which
will might change the neural network prediction drastically. To illustrate the robustness of our approach for reliability
analysis, the proposed GNN model is evaluated on the slightly modified testing data. As the context, we consider the
cases where bridge failure probabilities are decreased or increased because of repairs or deterioration through the life
cycle. To test the robustness of the proposed model among all region levels, we generate perturbed features by adding
to each edge failure probability a zero-mean Gaussian noise with a standard deviation set equal to 20% of the original

Table 3: Performance comparison among different models on three regions. FCNN, GAT and GCN are considered to
compare with the proposed model. Three metrics are considered in the comparison: MAE, F1 score of two-class and
three-class classification. The cutoff thresholds for two-class and three-class classification are {0.75} and {0.5, 0.75},
respectively.

Level 1 Level 2 Level 3

Model MAE F1 (2 class) F1 (3 class) MAE F1 (2 class) F1 (3 class) MAE F1 (2 class) F1 (3 class)

SVR 0.061 0.874 0.834 0.092 0.821 0.738 0.172 0.793 0.672
FCNN 0.081 0.848 0.827 0.148 0.717 0.604 0.198 0.759 0.598
GAT 0.079 0.834 0.775 0.079 0.869 0.782 0.083 0.901 0.816
GCN 0.056 0.886 0.853 0.037 0.944 0.906 0.055 0.937 0.878

Our model 0.032 0.973 0.921 0.029 0.953 0.919 0.038 0.956 0.919

9
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edge failure probability. The resulting failure probability is truncated at 0 and 1. Following this perturbation to the edge
features, the node features are also updated accordingly. Then the GNN prediction of node connectivities is performed
for all three regions as described in Section 4.2 and the comparison between the prediction and MCS in this perturbed
case is also shown in Figures 10 and 11. It can be seen in Figure 11, that even though there is more discrepancy between
the GNN and MCS compared to the original case in Figure 9, the overall the performance is acceptable for an unseen
case where all edges have different features. The F1 score of prediction with perturbed data is 0.964, 0.959, and 0.972
for three region levels, respectively.

(a) Level 1 (b) Level 2 (c) Level 3

Figure 10: Relationship between different performance metrics and different ratios of training target nodes, shown for
the Level 1 region (Figure 10a), Level 2 region (Figure 10b), and Level 3 region (Figure 10c) with perturbed edge
features.

(a) Level 1 (b) Level 2 (c) Level 3

Figure 11: Comparison of predicted node connectivity between MCS and GNN in Level 1 region (Figure 11a), Level 2
region (Figure 11b), and Level 3 region (Figure 11c) with perturbed edge features.

Finally, we assess the capability of the proposed approach in generalization or inductive inference and prediction.
Specifically, we evaluate whether the model can be used for predicting out-of-distribution (OOD) data, that is, producing
accurate predictions for test cases that are distributed differently from the way training data was distributed. As opposed
to transfer learning, where the model is retrained on the new data, in generalization or inductive learning, we do not
modify the previously trained model and only evaluate it on the new data. In practice, this can be used to assess network
connectivity when new bridges or roads are either added to a network expansion or removed due to a disaster.

In these cases, to assess whether the trained model has generalization capacity without additional fine-tuning, we
consider the base training of the model to be done at the Level 2 region level. We then test the performance of the
trained model on the Level 3 region. In general, this is a challenging task because many of the nodes in the larger Level
3 region are unseen and were not included in the previous training. Furthermore, another challenge in this task is that
the input and output dimensions of the neural network change, where the conventional machine learning model cannot
handle this scenario. However, as can be seen in Figure 12, the proposed GNN model has an acceptable performance.
It can be seen that the F1 score in this case is 0.96 when 80% of the nodes in the smaller region (Level 2) were used
as training nodes, for a prediction at a large region (Level 3). This good performance in handling inductive learning
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tasks is achieved because the mechanism of the message passing used in the GNN architecture enables a modular
understanding of how the graph features are aggregated and collectively influence the task at hand.

(a) (b)

Figure 12: Assessment of the performance of inductive learning from the Level 2 region to Level 3 region, in terms of
the classification results (Figure 12a) and regression results (Figure 12b).

5 Conclusion and Discussion

Rapid evaluation of large-scale infrastructure system reliability is critical to enhance the preparation, risk mitigation
and response management under probabilistic natural hazard events. In this paper, we propose a rapid seismic reliability
assessment approach for roadway transportation systems with seismic damage on bridges using the graph neural
network. Compared with the common reliability assessment approaches, which consider the response at the system or
graph level, we focus on a more detailed notion of reliability where the seismic impact is quantified at the node-level for
transportation systems. The proposed GNN surrogate bypasses extensive sampling that is required in Monte Carlo-based
approaches and offers high efficiency while preserving accuracy. Additionally, the message-passing component of
the proposed GNN model creates a modular model structure that can offer a good generalization capacity, i.e., can
effectively predict system reliability in unseen graphs. The numerical experiments demonstrate the effectiveness,
robustness, and efficiency of the proposed approach in enabling rapid assessment of large-scale network reliability
with high accuracy. As extensions to this work, measures other than node-to-node connectivity can be considered.
Examples include travel distance, travel time, or traffic flow. Currently, only the damage beyond the extensive damage
is considered in the paper. Another direction for future research is to investigate the influence of multiple damage
states in the resulting network level performances, which can provide more insights for the practical implications of the
reliability analysis of transportation systems.
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