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MOD-2 HECKE ALGEBRAS OF LEVEL 3 AND 5

SHAUNAK V. DEO AND ANNA MEDVEDOVSKY

Dedicated to the memory of Joël Belläıche.

Abstract. We use deformation theory to study the big Hecke algebra acting on mod-2 modular forms of
prime level N and all weights, especially its local component at the trivial representation. For N = 3, 5, we
prove that the maximal reduced quotient of this big Hecke algebra is isomorphic to the maximal reduced
quotient of the corresponding universal deformation ring. Then we completely determine the structure of
this big Hecke algebra. We also describe a natural grading on mod-p Hecke algebras.
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1. Introduction

We study the local component at the trivial representation of big mod-2 Hecke algebras acting on all mod-2
modular forms of a fixed level N , focusing on N = 3 and N = 5. To describe the history of the study of
mod-p Hecke algebras and our contributions, we introduce some notation, informally at first.

For an integer N and a prime p not dividing N , write M(N,Fp) for the space of modular forms modulo p
of level Γ0(N) and any weight in the sense of Serre and Swinnerton-Dyer [SerC, SD]. Let A(N,Fp) be the
shallow Hecke algebra acting on M(N,Fp): this is the closed subalgebra of EndFp

(

M(N,Fp)
)

topologically
generated by the Hecke operators Tn for n not dividing Np. Then A(N,Fp) is a semilocal noetherian ring,
which splits as a product of its completions at maximal ideals, corresponding, up to Gal(F̄p/Fp)-conjugacy,
to semisimple Galois representations ρ̄ : GQ → GL2(F̄p) arising from eigenforms appearing in M(N, F̄p).
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2 SHAUNAK V. DEO AND ANNA MEDVEDOVSKY

Passing to a large enough finite extension F/Fp to resolve the Galois conjugacy, let A(N,F)ρ̄ denote the local
component of A(N,Fp)⊗Fp F corresponding to the Galois representation ρ̄.

The main object of study here is the complete noetherian local F-algebra A(N,F)ρ̄ in the special case
that p = 2, ρ̄ = 1⊕ 1, and N is a prime eventually specializing to 3 or 5.

1.1. Historical context. The structure of A(N,F)ρ̄ was first studied in the late 70s by Jochnowitz, who
proved that A(N,F)ρ̄ is an infinite-dimensional F-vector space [JSt]. In the late 90s, Khare observed that
deformation theory implies that A(N,F)ρ̄ is noetherian, so that Jochnowitz’s result may be reinterpreted in
terms of Krull dimension: dimA(N,F)ρ̄ ≥ 1 [Kh]. There were no further developments until Nicolas and
Serre revitalized the field of study of mod-p Hecke algebras in 2012; we survey the subsequent progress.

2012 Nicolas and Serre use the Hecke recurrence in characteristic 2 (see proof of Theorem 10.1 for an
example thereof) to show that A(1,F2) is a regular local F2-algebra of dimension 2. More precisely,
they prove that A(1,F2) ∼= F2JT3, T5K.

2015 Belläıche and Khare use very different methods — careful comparison with the characteristic-zero
Hecke algebra, known to be big by the Gouvêa-Mazur infinite fern ([GM, Theorem 1]; see also [Em,
Corollary 2.28]) — to show that that for N = 1 and p ≥ 5 the Krull dimension of A(N,F)ρ̄ is always
at least 2, and that A(N,F)ρ̄ ∼= FJx, yK whenever ρ̄ is deformation-theoretically unobstructed [BK].

2017 Deo (first-named author here) generalizes the Belläıche-Khare result [BK] to all N ≥ 1, still under
the assumption p ≥ 5 [De].

2018 Medvedovsky (second-named author) determines the structure of A(1,F3), developing the nilpotence
method (Theorem 2.1 or see [MeD, MeN]), which gives the bound dimA(N,F)ρ̄ ≥ 2 so long as the
genus of X0(Np) is zero (forthcoming) by comparing the weight filtration on M(N,F) with the
nilpotence filtration. This method builds on ideas of Belläıche [BK, appendix]; like the Nicolas-Serre
method it relies on the Hecke recurrence.

≥ 2012 Monsky studies A(N,Fp)ρ̄ and its subquotients for various small N and p by considering recurrences
and power series in characteristic p in the spirit of Nicolas-Serre; see https://mathoverflow.net/users/6214/paul-mo
for many conjectures. In particular, he determines the structure of A(3,F2) and A(5,F2): see
[Mo3, Mo5, MoG]. We recover these structure theorems here (see Theorem B) using completely
different methods.

All this progress has left unresolved most of the cases for p = 2, 3, where the best Krull dimension bound for
the mod-p Hecke algebra is still the Jochnowitz-Khare bound dimA(N,F)ρ̄ ≥ 1, as well as the many cases
where ρ̄ is obstructed and the precise structure of A(N,F)ρ̄ is not known.

The aim of the present paper is to explore how much information one can get about the structure ofA(N,F2)1⊕1

for N prime by using deformation theory of Chenevier pseudorepresentations combined with the nilpotence
method. In particular, we prove that the maximal reduced quotients of A(3,F2) and A(5,F2) are isomor-
phic to those of suitable deformation rings, whose structure we determine explicitly. We also determine the
structure of A(3,F2) and A(5,F2) completely, recovering the structure results of Monsky [MoG] obtained by
entirely different methods. In our proof, we use a purely local deformation condition that we call level-N
shape to restrict our attention to deformations that look like those coming from modular forms of level N
(vs. a power of N). The level-N shape condition may be interpreted as a coarser version of Wake and Wang-
Erickson’s Steinberg condition if it were extended to p = 2 and beyond k = 2 [WWE]. Finally, we identify
a natural grading on a mod-p Hecke algebra by the 2-Frattini quotient of the Galois group, compatible with
the grading on the universal constant-determinant deformation ring described, for p = 2 and ρ̄ = 1⊕ 1,
by Belläıche.

1.2. Main results. We prove a number of structure theorems, of the Hecke algebras A(3,F2) and A(5,F2),
and of various related rings, including deformation rings, which we now introduce informally. For precise
definitions, see section 2.

https://mathoverflow.net/users/6214/paul-monsky
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Let N be an odd integer and GQ,2N the Galois group of the maximal extension of Q unramified outside 2N .
We consider lifts of the trivial representation 1⊕ 1 : GQ,2N → GL2(F2) (viewed as a Chenevier pseudorep-
resentation, subsection 2.9) to local pro-2 F2-algebras with residue field F2 subject to two conditions: the
lifts must be odd (here: trace of complex conjugation is 0) and their determinant must be constant (here:

determinant is 1). Such lifts are parametrized by a noetherian universal deformation ring R̂(N,F2)1⊕1.

The 2-adic Galois representations attached to classical modular forms of level N glue together to form
the modular pseudorepresentation of GQ,2N taking values in A(N,F2)1⊕1, so that the universal property

of R̂(N,F2)1⊕1 gives us a unique local Z2-algebra morphism, a surjection,

(1.2.1) ϕ̂ : R̂(N,F2)1⊕1 ։ A(N,F2)1⊕1

inducing the modular pseudorepresentation from the universal one (subsection 2.11). One does not expect
this map to be an isomorphism for general N , and certainly not for N prime (see subsection 1.4). Our first
result is that for N = 3, 5, this map is in fact an isomorphism on reduced quotients. Note that for N = 3, 5
the trivial mod-2 representation is the only (semisimple) modular one, so that A(N,F2) = A(N,F2)1⊕1

(subsection 9.2).

Theorem A (see Corollary 11.2 and Theorem 11.3). For N = 3, 5, the surjection R̂(N,F2)1⊕1 ։ A(N,F2)
induces an isomorphism

R̂(N,F2)
red
1⊕1 −→∼ A(N,F2)

red.

Moreover, there are explicitly describable Hecke operators X,Y, Z ∈ A(N,F2) with images X̄, Ȳ , Z̄ in A(N,F2)
red,

respectively, and power series f and g in two variables over F2 so that the map

F2Jx, y, zK
(

z − f(x, y)
)(

x− g(y, z)
) −→ A(N,F2)

red

defined by x 7→ X̄, y 7→ Ȳ , and z 7→ Z̄ is an isomorphism.

Theorem A gives us, in completely explicit terms, the structure of reduced deformation rings R̂(3,F2)
red
1⊕1

and R̂(5,F2)
red
1⊕1, not previously known. We know of no other way of determining the structure of these rings.

Moreover, Theorem A together with the fact that the tangent dimension of A(N,F2) is 4 (see Propositions 9.5
and 9.6) immediately implies that A(N,F2) is not reduced, the first explicit examples of nonreduced mod-p

Hecke algebras for Γ0(N).(i) We also give the following refinement of Theorem A on the Hecke algebra side.

Theorem B (see Theorem 13.1). For N = 3 and 5, there exist Hecke operators X,Y, Z,W in A(N,F2) such
that the map

F2Jx, y, z, wK

(xz, xw, (z + w)2)
−→ A(N,F2)

sending x 7→ X, y 7→ Y , z 7→ Z, and w 7→W is an isomorphism.

In Theorem B we have the first explicit structure of a mod-p Hecke algebra that is not a regular local ring.
In particular, it is clear that A(3,F2) and A(5,F2) are not Gorenstein.

Additionally, we determine the structure of A(N,F2)
new, the Hecke algebra acting on the space of mod-2

newforms in the sense of [DM], and the structure of A(N,F2)
pf , the partially full Hecke algebra topologically

generated by the action of Hecke operator UN as well as the Tm for m ∤ 2N . See Theorem 12.1 and
Corollary 12.5.

On the deformation side, although we do not prove a structure theorem for R̂(N,F2)1⊕1 or its level-N
quotient described in subsection 1.4, we do prove an R = T theorem for A(N,F2)

pf . See section 14 for the
relevant definitions and Theorem 14.1 for the exact statement.

(i)Examples of nonreduced Hecke algebras for Γ1(N) were previously found by the first-named author in [De], but the
nilpotent elements came from diamond operators.
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1.2.1. The grading on mod-p Hecke algebras. The full statement of our Hecke algebra structure result
(Theorem 13.1) describes a natural (Z/8Z)×-grading on A(N,F2)1⊕1, one that generalizes to mod-p Hecke

algebras and to local components at dihedral ρ̄: that is, ρ̄ for which ρ̄ ≃ ρ̄⊗ω(p−1)/2
p , where ωp is the mod-p

cyclotomic character. Let ΠpN be the 2-Frattini quotient of GQ,Np.

Theorem C (see Theorem 3.4). The Hecke algebra A(N,F) has a Πp-grading A(N,F) =
⊕

i∈Πp
A(N,F)i,

natural in the sense that for m ∤ Np we have Tm ∈ A(N,F)m.

If p = 2 or if ρ̄ : GQ,Np → GL2(F) satisfies ρ̄ ≃ ρ̄⊗ ω(p−1)/2
p , then the same is true for A(N,F)ρ̄.

In the statement of Theorem C we’ve implicitly identified Πp, the 2-Frattini quotient of GQ,p, with Z×
p /(Z

×
p )

2.
Theorem 3.4 itself says more: there is a corresponding Πp-grading on the space K(N,F) of forms killed
by Up making K(N,F) into a graded A(N,F)-module, and the grading is compatible with the modular
pseudorepresentation map GQ,Np → A(N,F), in the sense that the fibers of GQ,Np ։ GQ,p ։ Πp map to the
corresponding graded components of A(N,F). These statements restrict to A(N,F)ρ̄ and the ρ̄-generalized
eigenform subspace K(N,F)ρ̄ of K(N,F) under the assumptions on ρ̄ as above.

The grading in Theorem C had been previously discovered in two special cases: (p,N) = (2, 1) [NS1]
and (p,N) = (3, 1) [Me3]. Theorem C was inspired by a question of Serre, as well as a partial answer from
Belläıche, which we take the opportunity to present below.

Theorem (Belläıche; see Theorem 6.3). For any odd N , the universal deformation ring R̂(N,F2)1⊕1 has a

natural Π2N -grading compatible with the universal pseudorepresentation map GQ,2N → R̂(N,F2)1⊕1.

1.3. Overview of proofs. We give a rough outline of the proofs of Theorems A and B. The proof of
Theorem A has a spiral nature that may of be independent interest — we move several times between the
deformation side and the Hecke side to achieve our results. The proof of Theorem C is more straightforward;
see section 3.

For the proof of Theorem A, we first construct the universal deformation ring R(N,F2)1⊕1 subject to our
local level-N -shape condition. For more on this condition, see subsection 1.4 below or section 4. We use
a computation of Chenevier to prove a result about the dimension of the tangent space of this restricted
deformation ring R(N,F2)1⊕1 (Corollary 7.4). Using true representations, we get a bound on the dimension
of the tangent space of quotients of R(N,F2)1⊕1 by prime ideals (Proposition 7.8). Then we use this
information to prove results about quotients of the Hecke algebra. In particular, we use the nilpotence method
to determine the structure of A(N,F2)

vnew, the Hecke algebra acting on the space of forms killed by UN +1,
which we call the very new modular forms because the newforms are those killed by U2

N − 1 = (UN + 1)2

(Corollary 10.3). Because A(N,F2)
vnew has dimension 2, we are able to conclude that the minimal prime

ideals of R(N,F2)1⊕1 are preimages of minimal primes of A(N,F2), so that the two rings have the same
reduced quotient (Proposition 11.1). Separately, we determine the structure of A(N,F2)

red (Theorem 11.3),
completing the proof of Theorem A; in particular, the two integral-domain quotients of A(N,F2)

red, visible
in the statement of Theorem A, are the old Hecke algebra A(1,F2) and very new Hecke algebra A(N,F2)

vnew.

The proof of Theorem B is quite involved in its own way. We first determine the structure of the partially
full Hecke algebra (Theorem 12.1). Then we use the partially full Hecke algebra, the two integral domain
quotients found in the proof of Theorem A, and the precise description of the cotangent space A(N,F2) to
find the structure of A(N,F2) (Theorem 13.1).

1.4. The level-N-shape deformation condition. A key tool in the proof of Theorem A is our purely local
level-N -shape deformation condition, which may be defined for any prime p and prime level N . The condition
is simple to describe: for a pseudorepresentation lifting ρ̄ : GQ,Np → GL2(F) we ask that the restriction to
the decomposition group at N contains the inertia subgroup in the kernel (section 4). This captures the
property of a representation with Artin conductor dividing N , such as those contributing to A(N,F)ρ̄, rather
than those whose Artin conductor is a power of N , which may appear in A(N2,F)ρ̄.
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In our setting, the level-N -shape deformation condition defines the universal level-N -shape deformation
ring R(N,F2)1⊕1, a nontrivial quotient of R̂(N,F2)1⊕1 by a nilpotent ideal (Proposition 7.7). The univer-
sality induces the surjection

ϕ : R(N,F2)1⊕1 ։ A(N,F2)1⊕1

factoring ϕ̂ from (1.2.1). It is this map rather than ϕ̂ that we use in the proof of Theorem A.

We now compare our level-N -shape condition to both the unramified-or-±-Steinberg at-N condition appear-
ing in the work of Wake and Wang-Erickson [WWE] and the ordinary-at-N condition from the work of
Calegari–Specter [CS, source file (!) on arxiv]. For this it is helpful to recall that a constant-determinant
pseudorepresentation lifting ρ̄ : GQ,Np → GL2(F) to a pro-p local F-algebraB with residue field F is described
by a function t : GQ,Np → B lifting tr ρ̄. In particular, t is central : t(gh) = t(hg) for all g, h ∈ GQ,Np. For
more on t, see subsection 2.9. Also let DN ⊆ GQ,Np be a decomposition subgroup at N , FrobN ∈ DN any
Frobenius element, and IN ⊆ DN the inertia-at-N subgroup of DN . The pseudorepresentation t satisfies the
level-N -shape condition if

(1.4.1) t(di) = t(d) for i ∈ IN , d ∈ DN .

The Wake–Wang-Erickson condition is stated for residually multiplicity-free p-adic pseudorepresentations
with p ≥ 5 in fixed weight 2, and expressed in terms of generalized matrix algebras (GMAs), introduced
earlier by Belläıche and Chenevier [BC, Chapter 1]. It is possible to obtain an equivalent formulation of
the Wake–Wang-Erickson GMA relation as a pseudorepresentation statement involving all the elements
of GQ,Np by using the notion of the kernel of a pseudorepresentation (of an algebra; see [BeI, §2.1.2]). It is
also straightforward to generalize their GMA relation to weight k. With these adjustments, we might expect
that Wake and Wang-Erickson would call a weight-k pseudorepresentation t : GQ,Np → B unramified-or-
±Steinberg at N if the following conditions hold for all g ∈ GQ,Np and i ∈ IN :

t(g FrobN i)− t(g FrobN ) = ∓N k
2

(

t(gi)− t(g)
)

and(1.4.2)

t(giFrobN )− t(g FrobN ) = ∓N k−2
2

(

t(gi)− t(g)
)

.(1.4.3)

Compare to [WWE, Definitions 3.4.1 and 3.8.1]. If t is an unramified-or-±Steinberg at N pseudorepresenta-
tion of weight k, then [WWE, Lemma 3.4.4] implies that t(i) = 2 for all i ∈ IN . In particular, taking g = 1
in (1.4.2) above recovers our local level-N -shape condition. Conversely, the level-N shape condition implies
(1.4.2) and (1.4.3) for g in the local Galois group DN , but not more generally for g in GQ,Np. This captures
a key distinction between ours and the Wake–Wang-Erickson condition: our condition (1.4.1) is entirely
local, whereas the Wake–Wang-Erickson condition [WWE, Definition 3.8.1] is global — as reflected, neces-
sarily, in our translation-cum-generalization in (1.4.2)–(1.4.3). Let us briefly dwell on this confusing point:
Definition 3.8.1 in [WWE], which relies on the purely local Definition 3.4.1 of loc. cit., requires elements in
the group algebra of a local Galois group to map to zero in a “Cayley-Hamilton” (close to “faithful”) GMA
carrying a representation of a global Galois group. It is therefore fundamentally global in nature.

The Calegari-Specter ordinary-at-N condition from [CS] is similar to Wake and Wang-Erickson’s. Calegari
and Specter enhance the deformation ring with a new variable U meant to capture the behavior of UN . Their
condition holds if U , in addition to satisfying the characteristic polynomial of FrobN (see (5.1.2)), satisfies
the following: for every g ∈ GQ,Np and every i ∈ IN ,

(1.4.4) t(giFrobN )− t(g FrobN ) =
(

t(gi)− t(g)
)

U = 0.

As one can see, the difference between (1.4.3) and (1.4.4) is the substitution of U for ±Nk/2−1, as one
expects from the action of UN on newforms. Depending on the context, one may also expect to add a
second condition here analogous to (1.4.2). We use an identity analogous to (1.4.4) for g = c (see (5.2.1))
to describe the precise structure of A(N,F2)1⊕1 for N = 3, 5 (Theorem 13.1). And we use (1.4.4) and the
related condition on the other side to obtain an R = T theorem for A(N,F2)

pf (Theorem 14.1).

1.5. Comparison with Monsky’s results. Finally we briefly describe the recent results of Paul Monsky,
which inspired and catalyzed both [DM] and the present work, and relate them to ours. In [Mo3], motivated
by recent work of Nicolas and Serre on the mod-2 level-1 Hecke algebra [NS1, NS2], Monsky was able to
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determined that the Hecke algebra acting on a certain subquotient of the space M(3,F2) of mod-2 level-
3 modular forms, which he argued ought to be viewed as the newforms in this setting, is isomorphic to
F2JT7, T13, εK/(ε

2). In [Mo5] he proved similar results in level 5. Monsky’s structure results were obtained by
explicit computations with mod-2 power series and Nicolas–Serre–style Hecke recurrences; though beautiful
and satisfying, they did not appear to be amenable to generalization. Our curiosity piqued, we sought
to reinterpret Monsky’s results in a more conceptual way. This required several steps. First, in [DM] we
defined a space M(N,Fp)

new of newforms mod p for any prime-to-p level N , and proved that Monsky’s
level-3 Hecke algebra from [Mo3] is isomorphic to the Hecke algebra acting on M(3,F2)

new. Next, we used
deformation theory, commutative algebra, and a dash of the nilpotence method to arrive at Theorem A,
a structure theorem for A(N,F2)

red. We also conjectured the statement of Theorem B. After mutually
beneficial discussions with Monsky, both he and we were able to sharpen our results using our independent
methods: Monsky’s in [MoG] and ours as Theorem B here.
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2. Definitions and notation

In this section we review definitions, with references where appropriate, and introduce notation used in the
rest of the article. The expert reader should check in with our notation for the universal pseudodeformation
ring in subsection 2.10, glance at subsections 2.12 and 2.13, and otherwise skip to section 3.

2.1. Preliminaries.

2.1.1. Finite fields. We work with a prime p, and will write F for a finite extension of Fp.

2.1.2. Rings. All rings are assumed to be commutative with identity. For a ring B, let Bred be its maximal
reduced quotient, the quotient of B by its nilradical, the intersection of its prime ideals.

If B is a local pro-p ring with maximal ideal m and residue field F, its (reduced) tangent space is the F-vector
space TanB := Hom(m/(m2 + p),F). If B is noetherian, then its local topology agrees with its profinite
topology [dSL, Proposition 2.4], so it’s better known as a complete local noetherian ring with finite residue
field of characteristic p. Moreover, in this case TanB is finite, and its dimension d as an F-vector space is
the same as the dimension of the dual (reduced) cotangent space m/(m2 + p), so that B is a quotient of
W (F)Jx1, . . . , xdK, whereW (F) = Zpn is the ring of Witt vectors of F = Fpn . Finally, dimTanB+1 ≥ dimB,
where dimB is the Krull dimension of B.

(ii)https://services.math.duke.edu/~pierce/AROOO_2020.shtml

https://services.math.duke.edu/~pierce/AROOO_2020.shtml
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2.2. Galois groups. For any number field K, we write GK = Gal(Q̄/K) for the absolute Galois group ofK.
If N is any integer, write Q{N} for the maximal extension of Q unramified outside the primes dividing N
and ∞. Let GQ,N = Gal(Q{N}/Q).

Let χp : GQ → Z×
p denote the p-adic cyclotomic character, normalized so that χp(Frobℓ) = ℓ for prime ℓ 6= p.

Let ωp : GQ → Z×
p be the mod-p cyclotomic character. Both factor through GQ,Np for any integer N .

If G is any quotient of GQ, we write c for any complex conjugation in G. For any prime ℓ, let DQℓ
⊂ GQ

be a decomposition group at ℓ and IQℓ
be the inertia subgroup of DQℓ

. Then write Dℓ(G), or simply Dℓ

if G is clear, for the image of DQℓ
in G. Note that both DQℓ

and Dℓ are only well defined up to conjugacy.
Once Dℓ(G) is fixed, we write Iℓ(G), or simply Iℓ, for the inertia subgroup of Dℓ(G): it is the image of IQℓ

in G, a closed normal subgroup of Dℓ(G) with procyclic abelian quotient. We write Frobℓ for any Frobenius
element of Dℓ(G). If Iℓ(G) is trivial, then Frobℓ is well defined up to conjugacy; otherwise, it is an arbitrary
element in an Iℓ(G)-coset of Dℓ(G), with the whole setup only defined up to conjugacy.

If G is any quotient of GQ, or more generally any profinite group, write Gpro-2 for the maximal continuous
pro-2 quotient of G. Also write G2 for the closed subgroup of G generated by the squares of elements
of G. This is a closed normal subgroup containing the commutators [G,G] (see, for example, [Ch, footnote
before Lemma 5.3]), and the quotient G/G2 = Gpro-2/(Gpro-2)2 is the 2-Frattini quotient of G, its maximal
continuous elementary 2-group quotient. The basic theorem of Frattini theory for p = 2 is that generators
of G/G2 lift to generators of Gpro-2.

2.3. The space of modular forms of level N and all weights. Fix a level N . For an even weight k ≥ 0,
letMk(N,Z) be the space of modular forms of level Γ0(N) and weight k whose Fourier expansion at the cusp
at infinity has rational integer coefficients. We view Mk(N,Z) as a subspace of ZJqK using the q-expansion
principle. For any ring B, letMk(N,B) :=Mk(N,Z)⊗ZB ⊂ BJqK, the space of modular forms of level Γ0(N)
and weight k defined over B. Note that for B ⊆ C, this definition coincides with the usual notion of modular
forms with Fourier coefficients in B viewed as q-expansions. Also define M≤k(N,B) :=

∑

k′≤kMk′(N,B)

and M(N,B) :=
∑

k≥0Mk(N,B) ⊂ BJqK: this is the space of all modular forms of level Γ0(N) defined

over B. For a form f ∈M(N,B), write an(f) for the n
th Fourier coefficient of f , so that f =

∑

n≥0 an(f)q
n.

From now on we assume that p does not divide N . For B = Fp, we have defined M(N,Fp) ⊂ FpJqK, the

space of all mod-p modular forms of level Γ0(N). This is the space of mod-p modular forms as studied by
Serre [SerC] and Swinnerton-Dyer [SD] in level 1.

2.4. The weight filtration on mod-p modular forms. In characteristic zero, spaces of q-expansions of
modular forms are graded by their weight: if B is a subring of C, then

M(N,B) =
⊕

k≥0

Mk(N,B) [Mi, Lemma 2.1.1].

In characteristic p, this is not the case, and the weight grading is replaced by the weight filtration. For p ≥ 5,
let Ep−1 be the level-1 weight-(p−1) Eisenstein series with q-expansion in 1+pZ(p)JqK. Multiplication byEp−1

induces Hecke-equivariant embeddings Mk(N,Fp) →֒Mk+p−1(N,Fp) for each even k ≥ 0. In fact this is the
only kind of weight ambiguity: if we define, for i ∈ 2Z/(p− 1)Z,

(2.4.1) M(N,Fp)
i :=

⋃

k≡i mod p−1

M(N,Fp), then M(N,Fp) =
⊕

i∈2Z/(p−1)Z

M(N,Fp)
i.

See [KHi, Theorem 2.2] or [SD, Theorem 2(iv)] for N = 1. To resolve the weight ambiguity we define
for f ∈M(N,Fp)

i its weight filtration

w(f) := min{k : f ∈Mk(N,Fp)}.
An important property of the weight filtration for our purposes is its compatibility with powers: for any n ≥ 0,
we have w(fn) = nw(f) [JCo, proof of Fact 1.7].

For p = 2, 3, the story is a little more subtle. We may still define the näıve weight filtration in the same way,
i.e. w(f) := min{k : f ∈Mk(N,Fp)}, but with this definition properties the compatibility with powers need
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not be satisfied. For example, the form f3 ∈ M(3,F2) defined in Lemma 9.1 has w(f3) = 4 but w(f2
3 ) = 6.

More dramatically, the form f5 ∈ M(5,F2) loc. cit. has w(f5) = w(f2
5 ) = 4. The difficulty arises because

the Hasse invariant, a geometric mod-p modular form that controls the weight filtration, does not always lift
to a characteristic-zero Γ0(N) form in weight p− 1 for p = 2, 3. The Hasse invariant has q-expansion 1, and
simple zeros at the supersingular points of X0(N)Fp and nowhere else; Ep−1 is a lift for p ≥ 5. A form in
Mk(N,Fp) with a zero of minimal order s at each supersingular point is divisible by s copies of Hasse, and
so comes from a form of lower filtration k − s(p− 1). See [Ca, §1.6–1.8] for more details.

However, the Hasse invariant does always lift to a form of weight p − 1 for Γ1(N) for N > 1. For p = 3,
see [KPa, §2.1] for N > 2; for N = 2, take the Γ0(N) weight-2 Eisenstein series E2,N . For p = 2, see
user Electric Penguin’s answer to MathOverflow question 228497 or [Mei, Appendix B]. Therefore we may
resolve all our difficulties with the weight filtration by replacing w(f) with the weight filtration coming from
Γ1(N). For any f ∈Mk(N,F) set

w1(f) := min
{

k′ : f is the reduction of a q-expansion of a form in Mk′(Γ1(N), Z̄p)
}

.

Then w1(f) is an integer satisfying 0 ≤ w1(f) ≤ k and w1(f) ≡ k (mod p − 1). Because w1(f) is defined

geometrically — k−w1(f)
p−1 is the minimal order of a zero of f at any supersingular point of X0(N)Fp — this

definition resolves the problems with the näıve filtration w(f). In particular,

w1(f
n) = nw(f) for all n ≥ 0;(2.4.2)

w1(f) ≤ w(f) ≤ w1(f) + 3 (and w1(f) = w(f) if p ≥ 5).(2.4.3)

Here (2.4.3) holds because for p = 2, 3 the weight-4 and level-1 Eisenstein form E4, normalized so a0(E4) = 1,
has mod-p q-expansion 1; by the q-expansion principle it is the fourth power (for p = 2) or the square
(for p = 3) of the Hasse invariant.

In our bad examples from Lemma 9.1, f3 and f5 are reductions of semicuspidal(iii) forms appearing with
nontrivial quadratic nebentype in weight 3 and weight 2, respectively, so that their squares appear in their
“true” Γ0(N) weight while they themselves do not. In other words, for N = 3 we have w1(f3) = 3 and
w1(f

2
3 ) = w(f2

3 ) = 6; for N = 5, w1(f5) = 2 and w1(f
2
5 ) = w(f2

5 ) = 4.

2.5. Hecke operators on mod-p modular forms. The spacesMk(N,F) carry actions of Hecke operators
inherited from the action on Mk(N,Z). More precisely, for prime ℓ ∤ Np, the action of the Hecke operator Tℓ
is defined on the q-expansion of a form f ∈Mk(N,F) by

am(Tℓf) = amℓ(f) + ℓk−1am/ℓ(f),

where am/ℓ(f) is understood to be 0 if ℓ ∤ n. We extend this to prime powers ℓr via the recurrence

Tℓr = TℓTℓr−1 − ℓk−1Tℓr−1 for r ≥ 2, and to general n with gcd(n,Np) = 1 multiplicatively via Tnn′ = TnTn′

provided gcd(n, n′) = 1. Since ℓk−1 is well defined in F for k in a (p− 1)-congruence class, the action of Tn
for n ∤ Np on Mk(N,F) extends to an action on all of M(N,F) by (2.4.1).

Also inherited from characteristic-zero is the action on Mk(N,F) and M(N,F) of the Atkin-Lehner opera-
tors Un for any n | N , defined on q-expansions by am(Unf) = amn(f).

Finally, the reduction of the operator Tp onM(N,Z) coincides modulo p with the Atkin-Lehner operator Up,
at least for k ≥ 2. From now on we use Up in place of Tp (including for k = 0) for the at-p Hecke action
on M(N,F). The kernel K(N,F) of Up

(2.5.1) K(N,F) = {f ∈M(N,F) : an(f) = 0 if p | n}

is a key subspace of M(N,Fp) in the sequel. Write Kk(N,F) for Mk(N,F) ∩K(N,F).

All of the Hecke operators — Tn for (n,Np) = 1, Un for n | N , and Up — commute.

(iii)A semicuspidal form vanishes at infinity but is nonzero at at least one other cusp, so its q-expansion at ∞ “looks”
cuspidal without it being a cuspform.

https://mathoverflow.net/a/228596
https://mathoverflow.net/questions/228497
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2.6. The θ operator and Verschiebung. The operator Up has a right inverse, the Verschiebung oper-
ator Vp, sending f =

∑

n anq
n ∈ M(N,F) to Vpf =

∑

n anq
np. If F = Fp, then Verschiebung coincides

with the pth power map, so that Vpf = fp. More generally, Vpf is a Gal(F/Fp)-conjugate of fp. It follows
from (2.4.2) that

(2.6.1) w1(Vpf) = pw1(f).

An important operator on M(N,F) is the derivation θ = q ddq , constructed for p ≥ 5 in [SD] and for p ≥ 2

in [KRe]. The operator θ takes f =
∑

n anq
n to θ(f) =

∑

n nanq
n. One may verify the following facts

(see [KRe, §II Theorem(2),(3); Corollary(6)] for (2.6.3) and (2.6.4) below):

θp−1 = 1− VpUp is a projector onto K(N,F);

im θ = K(N,F);(2.6.2)

ker θ = imVp = im (pth power map);(2.6.3)

w1(θf) ≤ w1(f) + p+ 1, with equality if and only if p ∤ w1(f).(2.6.4)

2.7. The Hecke algebra on mod-p modular forms. We denote by A≤k(N,Fp) the Fp-subalgebra of
EndFp

(

M≤k(N,Fp)
)

generated by the the action of the Hecke operators Tn with gcd(n,Np) = 1 as in
subsection 2.5. Since the actions are compatible with restriction maps, we set

A(N,Fp) := lim←−
k

A≤k(N,Fp) :

this is the (shallow) Hecke algebra acting on the space of modular forms of level Γ0(N) modulo p. Equiv-
alently, considering M(N,Fp) with the discrete topology, and EndFp(M(N,Fp)) with the induced compact-
open topology, the shallow Hecke algebra A(N,Fp) is the closed subalgebra of EndFp(M(N,Fp)) generated
by the Tn with gcd(n,Np) = 1 [MeD, Proposition 2.4].

From this setup it follows that A(N,Fp) is a pro-p semilocal ring, so that it factors as a product of its
localization at its maximal ideals. Moreover, the maximal ideals of A(N,Fp) are in one-to-one correspondence
with certain Galois representations, which we now describe.

To every normalized Hecke eigenform f in Mk(N, Q̄p) a construction of Eichler-Shimura and Deligne at-
taches a continuous Galois representation ρf : GQ → GL2(Q̄p) with the properties that ρf is unramified at
primes ℓ ∤ Np with tr ρf (Frobℓ) = aℓ(f) and that det ρf = χk−1

p . Reducing any GQ-invariant Z̄p-lattice of ρf
modulo the maximal ideal and semisimplifying gives us ρ̄f : GQ → GL2(F̄p). Note that ρ̄f is independent of

the chosen lattice. Galois representations of the form ρf or ρ̄f will be called Γ0(N)-modular.(iv)

The maximal ideals of A(N,Fp), then, are in correspondence with Gal(Fp/Fp)-orbits of Hecke eigenforms

in M(N,Fp), which, by the Deligne-Serre lifting lemma correspond to Gal(Fp/Fp)-orbits of Γ0(N)-modular

representations ρ̄ : GQ → GL2(Fp). Passing to an extension F/Fp that contains all the Hecke eigenvalues
of all the mod-p level-Γ0(N) Hecke eigenforms, we resolve the Gal(F̄p/Fp)-conjugacy. Write A(N,F) for
A(N,Fp) ⊗Fp F, and let A(N,F)ρ̄ be the localization of A(N,F) at the maximal ideal corresponding to ρ̄.
Then A(N,F)ρ̄ is a profinite local ring with residue field F, and we have a decomposition of the Hecke algebra

(2.7.1) A(N,F) =
∏

ρ̄ Γ0(N)-modular

A(N,F)ρ̄

and a corresponding decomposition of the ring of modular forms into ρ̄-eigencomponents

(2.7.2) M(N,F) =
⊕

ρ̄ Γ0(N)-modular

M(N,F)ρ̄

refining the decomposition in (2.4.1), with each A(N,F)ρ̄ acting faithfully onM(N,F)ρ̄. (See [BeE, I.5.1] for
this kind of statement for the finite-dimensional quotients/subs and take limits.) Since Hecke operators Tn
are multiplicative and the prime power Hecke operators Tℓr satisfy an order-2 linear recurrence in r with

(iv)We will not use this below, but Serre reciprocity (formerly Serre’s conjecture) implies that a representation
ρ̄ : GQ,Np → GL2(F̄p) is Γ0(N)-modular if and only if its determinant is an odd power of ωp and it has prime-to-p Artin

conductor dividing N . See subsection 4.1 for more on the Artin conductor for prime N .
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coefficients Tℓ and det ρ̄(Frobℓ) ∈ F, the local Hecke algebra A(N,F)ρ̄ is topologically generated as an
F-algebra by the operators Tℓ for ℓ prime not dividing Np.

Write m(N,F)ρ̄ for the maximal ideal of A(N,F)ρ̄. The modified Hecke operators T ′
ℓ := Tℓ − tr ρ̄(Frobℓ) for

prime ℓ not dividing Np are all in m(N,F)ρ̄; indeed, they topologically generate it.

2.8. The partially full mod-pHecke algebra. Finally, we define the partially full Hecke algebraA(N,Fp)
pf ,

the closed subalgebra of EndFp(M(N,Fp)) topologically generated by both all the Hecke operators Tn
with (n,Np) = 1 and by all the Hecke operators Uℓ for ℓ | N . As in subsection 2.7 we can alternatively
define A(N,Fp)

pf as an inverse limit of finite-level partial Hecke algebras.

One can check that A(N,Fp) acts faithfully on K(N,Fp), defined in (2.5.1), and the pairing

A(N,Fp)
pf ×K(N,Fp) −→ Fp

〈T , f〉 7→ a1(Tf)
(2.8.1)

is (continuously) perfect, inducing A(N,Fp)
pf -module duality isomorphisms

(2.8.2) K(N,Fp) −→∼ Homcont

(

A(N,Fp)
pf ,Fp

)

and A(N,Fp)
pf −→∼ Hom

(

K(N,Fp),Fp
)

.

Here the continuity is with respect to the profinite (equivalently, the local) topology on A(N,Fp)
pf and the

discrete topology on K(N,Fp). For similar constructions, see [JSt, Lemma 6.5], [NS2, Théorème 5.1], [BK,
Lemma 23(iii)], [MeD, Propositions 2.23 and 2.35], and [MeN, section 5].

In particular, for any closed ideal J of A(N,Fp)
pf , the duality in (2.8.2) restricts to a duality between between

the J-torsion in K(N,Fp) and the quotient of A(N,Fp)
pf by J :

(2.8.3) K(N,Fp)[J ] and A(N,Fp)
pf/J are in (continuous) duality as A(N,Fp)

pf -modules

If F/Fp is large enough to contain all Hecke eigenvalues of all mod-p eigenforms of level Γ0(N), and

ρ̄ : GQ,Np → GL2(F) is a Γ0(N)-modular representation, then we can define A(N,F)pfρ̄ as the quotient of

A(N,F)pf acting faithfully onM(N,F)ρ̄. Like the shallow Hecke algebra A(N,F), the partially full A(N,F)pf

will also break up into a product of the ρ̄-components

A(N,F)pf =
∏

ρ̄ Γ0(N)-modular

A(N,F)pfρ̄ ,

with A(N,F)pfρ̄ the quotient of A(N,F)pf acting faithfully on M(N,F)ρ̄, and, as in (2.8.3), in duality with

K(N,F)ρ̄ := K(N,F) ∩M(N,F)ρ̄. However, A(N,F)pfρ̄ will not be local in general: its maximal ideals are
in bijection with systems of eigenvalues {αℓ : ℓ prime dividing N} of the Hecke operators Uℓ with ℓ prime
dividing N appearing in mod-p modular forms in M(N,F)ρ̄.

The natural inclusion map A(N,Fp) →֒ A(N,Fp)
pf sending Tℓ to Tℓ for ℓ prime not dividing Np is finite

(see Corollary 5.2 below for the case of prime N or [De, proof of Theorem 3, p. 23] in general) and induces

finite inclusions A(N,F)ρ̄ →֒ A(N,F)pfρ̄ for Γ0(N)-modular F-valued ρ̄.

2.9. Pseudorepresentations. We recall the definition of a (dimension-2) pseudorepresentation: for a (topo-
logical) group G and a (topological) commutative ring B, a (continuous) pseudorepresentation of G on B
(of dimension 2) is a pair of (continuous) functions (t, d) : G→ B satisfying the following properties:

(1) t(1) = 2;
(2) d : G→ B× is a group homomorphism;
(3) t is central: for all g, h ∈ G, we have t(gh) = t(hg);
(4) trace-determinant identity: for all g, h ∈ G,

(2.9.1) d(g)t(g−1h) + t(gh) = t(g)t(h).

Pseudorepresentations, introduced in the form above by Chenevier in [Ch] (where they are called deter-
minants), generalize the earlier notion introduced by Wiles [Wi] and Taylor [Tay] and further studied by
Rouquier [Ro] and Nyssen [Ny] (now called pseudocharacters following [Ro]), to arbitrary characteristic. The
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idea is that (t, d) generalizes the data of pairs (tr ρ, det ρ) for true representations ρ : G→ GL2(B): that is,
if ρ : G→ GL2(B) is a representation, then (tr ρ, det ρ) is a pseudorepresentation of G on B. The converse is
not true over for arbitrary rings B, but if B is an algebraically closed field then every pseudorepresentation
on B comes from a true representation [Ch, Theorem 2.12].

If 2 ∈ B× and (t, d) is a pseudorepresentation of G on B, then d is determined by t (the trace-determinant

identity for h = g gives d(g) = t(g)2−t(g2)
2 ); and t is a pseudocharacter in the earlier notion of Taylor et al.

The kernel of a pseudorepresentation (t, d) : G→ B of a group G on a ring B is

(2.9.2) ker(t, d) := {g ∈ G : d(g) = 1, t(gh) = t(h) for all h ∈ G} ⊂ G.

One can check that ker(t, d) is a (closed) normal subgroup of G. Both t and d factor through the quo-
tient G/ ker(t, d), descending to a pseudorepresentation (t, d) : G/ ker(t, d) → B with trivial kernel. If
ρ : G → GL2(B) is a representation, then the kernel of ρ is contained in the kernel of the associated pseu-
dorepresentation: ker ρ ⊆ ker(tr ρ, det ρ). An easy calculation implies that the reverse containment also holds
if B is a field and ρ is absolutely irreducible.

We will work with two-dimensional pseudorepresentations of profinite groups on profinite rings, and from
now on will tacitly assume that all relevant maps are continuous.

For a topological Zp-algebra B, we say that a pseudorepresentation (t, d) of GQ on B is unramified at some
prime ℓ if Iℓ(GQ) is contained in ker(t, d). Moreover, we say that (t, d) is Γ0(N)-modular if (t, d) is the base
change of (tr ρ, det ρ) for some Γ0(N)-modular representation ρ.

2.10. Pseudodeformations of mod-p Galois representations. Fix a representation

ρ̄ : GQ,Np → GL2(F),

which we assume to be semisimple and odd : that is, tr ρ̄(c) = 0. Let C be the category of profinite local
F-algebras with residue field F. We will call the objects of C (F-)coefficient algebras.

Let D̂ρ̄ be the functor from C to the category of sets sending a coefficient algebra (B,m) to the set of
pseudorepresentations (t, d) of GQ,Np on B that reduce to the pseudorepresentation (tr ρ̄, det ρ̄) modulo m

subject to the additional conditions that t(c) = 0 (oddness) and that d = det ρ̄ (constant determinant). A
pseudorepresentation (t, d) lifting (tr ρ̄, det ρ̄) with constant determinant is obviously determined by t, so by
abuse of notation we call such a t a pseudodeformation of ρ̄.

The functor D̂ρ̄ is representable, represented by noetherian universal deformation ring
(

R̂(N,F)ρ̄, n̂(N,F)ρ̄
)

in C equipped with a universal pseudodeformation τ̂univ := τ̂univρ̄,N : GQ,Np → R̂(N,F)ρ̄ of ρ̄, in the sense
that, for a coefficient algebra B, any pseudodeformation t : GQ,Np → B of ρ̄ comes from a unique morphism

R̂(N,F)ρ̄ → B in C of coefficient algebras:

(2.10.1) B

GQ,Np R̂(N,F)ρ̄
τ̂univ

t ∃!

See [Ch, Propositions 3.3, 3.7] for details. Note that τ̂univ = tr ρ̄+β̂univ, where β̂univ maps GQ,Np to n̂(N,F)ρ̄.

Following [BK, section A.2], we define, for ℓ prime not dividing Np, elements t̂ℓ := τ̂univ(Frobℓ) in R̂(N,F)ρ̄
and t̂′ℓ := β̂univ(Frobℓ) in n̂(N,F)ρ̄.

By universality, the t̂′ℓ topologically generate R̂(N,F)ρ̄ as an F-algebra; hence they also generate n̂(N,F)ρ̄ as

an ideal of R̂(N,F)ρ̄. If B is the trace algebra of t, that is, if B is topologically generated as an F-algebra

by t(GQ,Np) (equivalently, by the t(Frobℓ) for ℓ ∤ Np), then the unique map R̂(N,F)ρ̄ → B, guaranteed by
universality as in (2.10.1), is surjective.
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Using β̂univ we also obtain an isomorphism of F-vector spaces (standard in deformation theory; see, for
example, [Go, Lemma 2.6]): if F[ε] are the dual numbers, with ε2 = 0, then

(2.10.2) Tan R̂(N,F)ρ̄ = Hom
(

n̂(N,F)ρ̄/n̂(N,F)
2
ρ̄, F

) ∼= D̂ρ̄(F[ε]).
This isomorphism identifies a linear functional h : n̂(N,F)ρ̄ → F factoring through n̂(N,F)2ρ̄ with the pseu-

dodeformation g 7→ tr ρ̄(g) + εh
(

β̂univ(g)
)

of ρ̄.

If ρ̄ : GQ,Np → GL2(F) is a semisimple odd representation that factors through GQ,Mp for some divisor M
of N , then the surjective map GQ,Np ։ GQ,Mp induces a natural surjection

(2.10.3) ψ̂N,M : R̂(N,F)ρ̄ ։ R̂(M,F)ρ̄

and its kernel is the closed ideal ĴN,M generated by elements of the form τ̂univ(gi)− τ̂univ(g) for g ∈ GQ,Np

and i ∈ Iℓ(GQ,Np) with ℓ running over the primes that divide N but not M .

2.11. The pseudodeformation of ρ̄ carried by A(N,F)ρ̄. By gluing together all the Γ0(N)-modular
pseudorepresentations of GQ,Np that Eichler-Shimura and Deligne’s construction attaches to characteristic-
zero modular eigenforms of level N and reducing modulo p (see, for example, [BeR, Step 1 of the proof of
Theorem 1] for a detailed construction for p = 2, N = 1) one obtains an odd pseudorepresentation

(2.11.1) τmod
p,N : GQ,Np → A(N,Fp)

satisfying τmod
p,N (Frobℓ) = Tℓ for any prime ℓ ∤ pN . If we fix a Γ0(N)-modular ρ̄ : GQ,Np → GL2(F), then

by extending scalars in (2.11.1) and composing with the map A(N,F) ։ A(N,F)ρ̄ from the decomposition
in (2.7.1) (or alternatively, by gluing together the Γ0(N)-modular pseudodeformations of ρ̄ and reducing
mod p), one obtains a constant-determinant odd pseudodeformation of ρ̄

(2.11.2) τmod
ρ̄ := τmod

ρ̄,N : GQ,Np → A(N,F)ρ̄

again with τmod
ρ̄,N (Frobℓ) = Tℓ for ℓ ∤ pN .

(2.11.3) ϕ̂ : R̂(N,F)ρ̄ ։ A(N,F)ρ̄

sending t̂ℓ to Tℓ for primes ℓ ∤ Np. Since A(N,F)ρ̄ is topologically generated by the Tℓ, the morphism ϕ̂
is surjective, which surjectivity tells us that A(N,F)ρ̄ is noetherian, so that its profinite topology coincides
with its local topology [dSL, Proposition 2.4].

2.12. The nilpotence method for lower bounds on dimA(N,F)ρ̄. We summarize the method described
in [MeD, MeN] for obtaining a lower bound on the Krull dimension of a local piece of the mod-p Hecke algebra
acting on a subspace of a polynomial algebra of forms. In [MeD] this method is applied for A = A(1,Fp)ρ̄
with p = 2, 3, 5, 7, 13; more generally the method may be applied to A = A(N,Fp)

pf
ρ̄ so long as the genus

of X0(Np) is zero.

Theorem 2.1 (Nilpotence method [MeD, MeN]). Suppose the following conditions are satisfied.

(1) M(N,F) = F[f ] for some form f ∈M .

(2) A is a continuous local quotient of A(N,F)pf acting faithfully on a subspace K ⊆ K(N,F).

(3) The maximal ideal m of A is generated by Hecke operators S1, . . . , Sd so that, for each i,
(a) Si is in every maximal ideal of A(N,F)pf ; and
(b) the sequence {Si(fn)}n satisfies an M -linear recurrence of some order di whose characteristic

polynomial Xdi + ai,1X
di−1 + · · ·+ ai,di−1X + ai,di ∈M [X ] satisfies both degf ai,j ≤ j for all j

and degf ai,di = di.

(4) There exists a sequence of linearly independent forms {gn}n in K with degf gn depending at most
linearly on n. (In other words, degf gn is O(n).)

Then dimA ≥ 2.

Condition (1) is crucial to the method, as it relies on the Nilpotence Growth Theorem [MeN]. IfK = K(N,F),
then generators S1, . . . , Sd of m satisfying the conditions in (3) are known to exist: see [MeD, 4.3.3 and 6.3]
for the case N = 1; the general case is similar.
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The idea of the proof of Theorem 2.1 is as follows: by the main theorem of [MeN] and the condition on the
sequence {gn}, the function h(n) with the property that mh(n) annihilates {g0, . . . , gn} grows slower than
linearly in n. By duality between A and K coming from the duality between A(N,F)pf and K(N,F) (2.8.2),
the Hilbert-Samuel function k 7→ dimFA/m

k grows faster than linearly in k. Therefore the Hilbert-Samuel
degree of A is strictly greater than 1, hence at least 2. But this degree is equal to the Krull dimension
of A [AM, Theorem 11.14].

In practice, in condition (4) one may replace the f -degree of a form g in M(N,F) with its weight filtration,
as described in subsection 2.4.

2.13. Oldforms and newforms mod p. In this subsection, we assume N is prime. We briefly summarize
the perspective of [DM].

2.13.1. The Fricke automorphism mod p. The characteristic-zero Fricke involution wN on Mk(N,C) send-
ing f(z) to

wNf = f |k
(

0 −1
N 0

)

= Nk/2(Nz)−kf(−1
Nz )

is defined over Z[ 1N ], and therefore descends to Mk(N,Fp). However, wN is not in general well defined as
an algebra involution on all of M(N,Fp): see [DM, section 3] for a details. Since this is inconvenient, we

replace wN onMk(N,Fp) byWN := Nk/2wN . This renormalized Fricke operator is an algebra automorphism
of order dividing p − 1 for p odd [DM, Proposition 3.13(3)]; for p = 2 the operator WN coincides with wN
and is hence an algebra involution. In all cases WN commutes with all Tn for n prime to Np.

2.13.2. Old and new forms mod p. We can now define the mod-p “oldforms” in level N in the following way:
let M(N,Q)old :=M(1,Q) +WNM(1,Q) ⊂M(N,Q), as usual. Set

M(N,Z)old :=M(N,Q)old ∩ ZJqK ⊂M(N,Z);

let M(N,Fp)
old be the subspace of M(N,Fp) obtained by reducing M(N,Z)old modulo p, and finally set

M(N,F)old :=M(N,Fp)⊗Fp F (see [DM, Section 5] for more details).

We also define the “newforms”: let M(N,F)new := ker(U2
N − N−2SN ), where SN is a weight-separating

operator that scales Mk(N,F) by Nk [DM, Section 6]. Observe that replacing F by C recovers the usual
classical notion of newforms. Note that M(N,F)old and M(N,F)new need not be disjoint [DM, Corollary
7.1]. However, we record the following fact.

Lemma 2.2. The operator (U2
N −N−2SN ) maps M(N,F) to M(N,F)old.

Proof. If f ∈ Mk(N,Z), then f = g + h with g ∈ Mk(N,Q)new and h ∈ Mk(N,Q)old. Since the operator
(U2

N −N−2SN ) kills newforms and preserves integrality, we see that (U2
N −N−2SN )f ∈Mk(N,Z)

old. �

2.13.3. New and old Hecke algebra quotients. We also consider A(N,F)old (respectively, A(N,F)new), the
largest quotient of A(N,F) acting faithfully on M(N,F)old (respectively, M(N,F)new). For the shallow
Hecke algebras, we have A(N,F)old ∼= A(1,F).

Since both WN and UN , the operators whose actions define oldforms and newforms, commute with all
the Hecke operators away from Np, both the spaces M(N,F)old and M(N,F)new and the Hecke algebras
A(N,F)old and A(N,F)new split into local ρ̄-components.

In particular, if ρ̄ : GQ,Np → GL2(F) is Γ0(N)-modular, then A(N,F)ρ̄ has two quotients

A(N,F)ρ̄

A(N,F)newρ̄ .A(N,F)oldρ̄A(1,F)ρ̄ ∼=

πold πnew

(2.13.1)

If ρ̄ is unramified at N , then M(N,F)oldρ̄ is nonzero, so that the left quotient πold : A(N,F)ρ̄ ։ A(N,F)oldρ̄

is nontrivial. If ρ̄ further satisfies the level-raising condition at N — namely, tr ρ̄(FrobN ) = ±(N + 1)N
k−2
2 ,
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where det ρ̄ = ωk−1
p — thenM(N,F)newρ̄ is nonzero, so that the right quotient πnew : A(N,F)ρ̄ ։ A(N,F)newρ̄

is nontrivial. See [DM, section 7] for more details.

2.13.4. New and old quotients of the partially full Hecke algebra. Finally we note that M(N,F)old and
M(N,F)new, as well as local pieces M(N,F)oldρ̄ and M(N,F)newρ̄ , are all stable by UN . Indeed, suppose ρ̄
is Γ0(1)-modular and f is in M(1,F)ρ̄. Since we can ignore the action of TN , or indeed of any finite set of
Hecke operators, in defining the ρ̄-generalized eigenspace, and since WN commutes with all Hecke operators
prime to Np, we find that WNf ∈ M(N,F)ρ̄. Moreover, the F-span of {f,WNf} is a UN -stable subspace
of M(N,F)oldρ̄ . And if ρ̄ is Γ0(N)-modular, then f ∈ M(N,F)ρ̄ is in M(N,F)newρ̄ if and only if f is in a

U2
N -eigenspace. Since UN and U2

N commute, this property is preserved under the action of UN , so that

M(N,F)new, and hence M(N,F)newρ̄ , is UN -stable. Therefore we can define A(N,F)pf,oldρ̄ and A(N,F)pf,newρ̄ ,

the faithful quotients of A(N,F)pfρ̄ acting on M(N,F)oldρ̄ and M(N,F)newρ̄ , respectively. See section 5.

3. The grading on the mod-p Hecke algebra

In this short section we exhibit natural compatible gradings on K(N,Fp), A(N,Fp), and τmod
p,N by the 2-

Frattini quotient of Z×
p , which restrict to gradings on A(N,F)ρ̄ if p = 2 or if p is odd and ρ̄ ≃ ρ̄⊗ ω(p−1)/2

p .

This result (Theorem 3.4) generalizes the (Z/8Z)×-grading in the (p,N) = (2, 1) setting described by Nicolas
and Serre [NS1] and the (Z/3Z)×-grading in the (p,N) = (3, 1) setting in the forthcoming treatment of mod-
3 modular forms by the second-named author [Me3]. It owes an additional debt of inspiration to Belläıche’s
universal grading result for mod-2 constant-determinant pseudodeformations of ρ̄ = 1⊕ 1 (Theorem 6.3).

Suppose that B is a profinite ring and Q a finite abelian group, written multiplicatively. Recall that B is
Q-graded if B splits as a direct sum B =

⊕

i∈QB
i of closed additive subgroups Bi with B1 ⊆ B a subring

and BiBj ⊆ Bij for every i, j ∈ Q. If B is Q-graded, then a B-module M is Q-graded if M =
⊕

i∈QM
i

with BiM j ⊆M ij .

Now further suppose that (t, d) : G → B is a (continuous) pseudorepresentation of a profinite group G
on B, and that Q is equipped with a continuous quotient map π : G ։ Q. For i ∈ Q let Gi := π−1(i) be
the corresponding coset of G. We say that (t, d) is Q-graded if B =

⊕

i∈QB
i is a Q-graded ring and for

every i ∈ Q we have t(Gi) ⊂ Bi and d(Gi) ⊂ Bi
2

. Note that all the pseudorepresentation relations from
subsection 2.9 are homogeneous with respect to such a grading.

We begin with two lemmas; the grading theorem is Theorem 3.4. These establish that q-expansions of mod-p
forms can be separated into coefficients whose indices are picked out by a character of conductor p. Note
that Lemma 3.1 is stated in a more general form than strictly required for Theorem 3.4 (for which M = 1
in Lemma 3.1 suffices); this generality necessitates Lemma 3.2. Both are well known.

Lemma 3.1. If f =
∑

n anq
n ∈ M(N,F), and χ is a quadratic Dirichlet character of modulus prM ,

where r ≥ 0 is arbitrary and M2 | N , then the following are also forms in M(N,F):

(1) fχ :=
∑

n

χ(n)anq
n, (2) fχ,+ :=

∑

n:χ(n)=1

anq
n, (3) fχ,− :=

∑

n:χ(n)=−1

anq
n.

Proof. We follow Jeremy Rouse’s answer to MathOverflow question #202449. Let f̃ ∈M(N,O) be a lift of f
for some ring of integersO with residue field F in a finite extension L of Qp; we first show that the analogously

defined characteristic-zero forms f̃χ, f̃χ,+, and f̃χ,− are in M(Np2r,O). Indeed, since χ has order 2 and

the square of its modulus divides Np2r, the statement about f̃χ follows from [Iw, Theorem 7.4]. Let S be
the squarefree product of primes dividing prM ; write US as usual for the operator

∑

n anq
n 7→

∑

anSq
n

and VS for the operator
∑

n anq
n → ∑

anq
nS . By Lemma 3.2 below, f̃χ,0 := VSUS f̃ is in M(Np2r,O), so

that f̃χ,+ = 1
2 (f̃ − f̃χ,0 + f̃χ) and f̃χ,− = 1

2 (f̃ − f̃χ,0 − f̃χ) are both in M(Np2r,O). Finally, Fp-reductions

of forms of level N and of level Np2r coincide: indeed, Hatada [Ha, Theorem 1], generalizing earlier work of
Serre for p ≥ 3 [SerF], shows that every modular form of level Np2r is a p-adic limit of forms of level N . �

https://mathoverflow.net/questions/202449
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Lemma 3.2. If f is in M(N,Z) and ℓ is a prime, then VℓUℓf ∈M
(

lcm(N, ℓ2),Z
)

.

Proof. Integrality of coefficients is clearly preserved, so it suffices to establish the level. The level of Uℓf is
a priori Nℓ if ℓ ∤ N and N if ℓ | N . But in fact if ℓ2 | N , then Uℓf is of level N/ℓ. Indeed, if ℓ2 | N , then any
form in M(N,Q) is a linear combination of ℓ-new forms (which Uℓ kills), forms from level N/ℓ (which Uℓ
keeps at level N/ℓ), and forms in the image of Vℓ coming from level N/ℓ (which Uℓ sends back to level N/ℓ).
Finally, Vℓ raises the level from Nℓ or N/ℓ by a factor of ℓ. �

We now return to our setting of a fixed prime p and a level N prime to p. Let Πp be the 2-Frattini quotient
of GQ,p: that is, Πp = Gal(Lp/Q), where L2 = Q(µ8) and for p odd Lp is the quadratic subfield of Q(µp).
We also identify Πp with the 2-Frattini quotient of Gal(Q(µp∞)/Q) ≃ Z×

p : explicitly, Π2 = (Z/8Z)× and

for p odd Πp = F×
p /(F

×
p )

2. In this way, we may think of any n ∈ Z prime to p as having a value in Πp.
Restriction to Lp gives a quotient map GQ,Np ։ Πp with the property that Frobℓ maps to ℓ for ℓ ∤ Np prime.
For i ∈ Πp and F/Fp, let

K(N,F)i := {f ∈ K(N,F) : an(f) 6= 0 =⇒ n = i in Πp} ⊂ K(N,F).

The next lemma shows that Hecke operators act compatibly with this Πp-indexing:

Lemma 3.3 (cf. [NS1, (6) and ff.]). For all m prime to p and i ∈ Πp, the Hecke operator at m maps
K(N,F)i into K(N,F)mi. This includes Tm if m ∤ Np and Um if m | N .

Proof. Since the Hecke operators are multiplicative at relatively prime indices, it suffices to show this for
prime-power-index Hecke operators. First let ℓ ∤ Np be a prime. For a form f coming from weight k the
Fourier coefficients of Tℓf are well known:

an(Tℓf) = aℓn(f) + ℓk−1an/ℓ(f),

where an/ℓ(f) = 0 if ℓ ∤ n. The claim for Tℓ follows since Πp is an elementary 2-group, so that ℓ ≡ ℓ−1 in Πp.

For r ≥ 2 the claim for Tℓr follows by induction, since Tℓr = TℓTℓr−1 − ℓk−1Tℓr−2 . On the other hand, if ℓ is
a prime with ℓr | N , then an(Uℓrf) = anℓr(f) so that the claim for Uℓr follows. �

Let ρ̄ be a Γ0(N)-modular representation defined over F, and set K(N,F)iρ̄ := K(N,F)i ∩K(N,F)ρ̄.

Theorem 3.4. Suppose that p = 2 or p is odd and ρ̄ ∼= ρ̄⊗ ω p−1
2 .

(1) The space of forms has a natural Πp-grading: K(N,F)ρ̄ =
⊕

i∈Πp
K(N,F)iρ̄.

(2) The Hecke algebra A(N,F)ρ̄ has a natural Πp-grading A(N,F)ρ̄ =
⊕

i∈Πp
A(N,F)iρ̄, where for m ∤ Np

we have Tm ∈ A(N,F)mρ̄ . The decomposition from (1) endows K(N,F)ρ̄ with the structure of a Πp-
graded A(N,F)ρ̄-module.

(3) The decomposition from (2) and the quotient map GQ,Np ։ Πp gives a Πp-grading to the pseudorep-
resentation τmod

ρ̄ .

Moreover, (1)–(3) hold for A(N,F)ρ̄ × A(N,F)ρ̄⊗ω(p−1)/2 acting on K(N,F)ρ̄ ⊕ K(N,F)ρ̄⊗ω(p−1)/2 and for
A(N,Fp) acting on K(N,Fp).

Proof. (1) Fix a quadratic Dirichlet character χ on Πp, so that χ = ω
p−1
2

p if p is odd. For ε = ±1,
let K(N,F)χ,ερ̄ = {g ∈ K(N,F)ρ̄ : an(g) 6= 0 only if χ(n) = ε}. For f ∈ K(N,F)ρ̄ we have, by
the assumption that ρ̄ ∼= ρ̄ ⊗ χ and in the notation of Lemma 3.1, fχ,ε in K(N,F)χ,ερ̄ , so that

K(N,F)ρ̄ = K(N,F)χ,+ρ̄ ⊕K(N,F)χ,−ρ̄ , completing the proof for p odd. For p = 2, decompose each
K(N,F)χ,ερ̄ further into a direct sum of two pieces corresponding to the values of a second quadratic
Dirichlet character in Πp.

(2) Follows formally from (1) and Lemma 3.3 as follows. Let B = A(N,F)ρ̄. For i ∈ Πp, let

Bi :=
{

T ∈ A(N,F)ρ̄ | for all j ∈ Πp, TK(N,F)jρ̄ ⊆ K(N,F)ijρ̄
}

.
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By considering finite weight and taking limits we see that each Bi is a closed F-submodule of B.
Moreover, 1 is in B1 and BiBj ⊆ Bij ; by considering q-expansions and using (1), it’s clear that
the sum of the Bi inside B is direct, so that B′ :=

⊕

i∈Πp
Bi is a Πp-graded F-algebra. Finally by

Lemma 3.3 for each m ∤ Np we have Tm ∈ Bm. These operators generate B, so that B = B′.

(3) For every i ∈ Πp, the coset G
i
Q,Np is closed in GQ,Np. By the Chebotarev density theorem, the Frobℓ-

conjugacy classes for those primes ℓ ∤ Np with ℓ ≡ i in Πp are dense in G
i
Q,Np. Since τ

mod
ρ̄ (Frobℓ) = Tℓ

is in A(N,F)ℓρ̄ by (2), and τmod
ρ̄ is continuous with each A(N,F)iρ̄ closed, the claim follows.

The proofs of the second and third statement are analogous. �

Corollary 3.5. Under the conditions of Theorem 3.4 we additionally have a Πp-grading on A(N,F)pfρ̄ , and,
if N is prime, on A(N,F)newρ̄ . These gradings are compatible with their structures as A(N,F)ρ̄-algebras and
their action on M(N,F)ρ̄.

Proof. For A(N,F)pfρ̄ , mimic the argument in Theorem 3.4(2), noting that Lemma 3.3 covers all Hecke

operators topologically generating A(N,F)pfρ̄ . For A(N,F)newρ̄ , first refine Theorem 3.4(1) to give a grading
on K(N,F)newρ̄ := K(N,F)ρ̄ ∩M(N,F)new, on which A(N,F)newρ̄ acts faithfully. Namely, if f ∈ K(N,F)newρ̄

decomposes as f =
∑

i∈Πp
fi with fi ∈ K(N,F)iρ̄, then in fact each fi is in K(N,F)newρ̄ . Indeed, by

Lemma 3.3, the operator U2
N −N−2SN is 1-graded and maps each fi to K(N,F)iρ̄, so if it annihilates f , then

it must annihilate each fi. The grading on A(N,F)newρ̄ then follows as in Theorem 3.4(2). �

4. The level-N shape deformation condition

Recall that we are assuming that N is a prime different from p. In level 1, we expect R̂(1,F)ρ̄ and A(1,F)ρ̄
to be isomorphic reasonably often (details in [BK]; in fact we do not know of any counterexamples). But
already in prime level N this is an unreasonable expectation: on the modular forms side, the prime-to-p Artin
conductor of a characteristic-zero Γ0(N)-modular representation divides N [CHi]. But on the deformation

side, the ramification at N is unrestricted. In other words, by design and definition, R̂(N,F)ρ̄ = R̂(N j ,F)ρ̄
for any j ≥ 1, whereas a priori one expects A(N2,F)ρ̄ to surject onto A(N,F)ρ̄ with nontrivial kernel.(v)

In short, to compare a Hecke algebra of prime level to a deformation ring, we will have to impose a deformation
condition. We write G = GQ,Np, DN = DN(G) and IN = IN (G) for brevity.

4.1. Pseudorepresentations of level-N shape. Let B be a Zp-algebra, and (t, d) : G→ B a pseudorep-
resentation with d a power of χp. We will say that (t, d) has level-N shape if

(4.1.1) for every d ∈ DN and i ∈ IN , we have t(di) = t(d).

Equivalently, (t, d) has level-N shape if the kernel of (t, d)|DN
contains IN (see (2.9.2)).

The level-N -shape condition is meant to capture the notion of a representation having Artin conductor
dividing N for pseudorepresentations. Recall that Artin conductor of a Galois representation is defined by
measuring dimensions of subspaces of invariants by filtrations of inertia groups. It is not clear how to extend
this notion to general Galois pseudorepresentations, as there is no underlying space on which the Galois
group is acting. But in fact, we will show that a representation has prime-to-p Artin conductor dividing N
if and only if its associated pseudorepresentation has level-N shape.

Let K be a field that is also a Zp-algebra, and ρ : G→ GLK(V ) a two-dimensional representation with det ρ
a power of χp. Recall that ρ has prime-to-p Artin conductor N (respectively, 1) if the inertial invariants V IN

form a one-dimensional (respectively, two-dimensional) subspace of V .

Proposition 4.1. Let K, (ρ, V ) be as above; let (t, d) = (tr ρ, det ρ). Then the following are equivalent.

(1) ρ has prime-to-p Artin conductor dividing N.

(v)In fact, one knows that A(Nj , F)ρ̄ stabilizes for j ≫ 0. For example, if ρ̄ is modular of level 1, then it follows from [CRe,

Proposition 2] that A(Nj ,F)ρ̄ = A(N2, F)ρ̄ for every j ≥ 2.
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(2) ρ|IN is unipotent.

(3) (t, d)|IN = (2, 1).

(4) (t, d)|DN
splits over K as a sum of two unramified characters.

(5) t has level-N shape.

Proof. We show (1) ⇐⇒ (2) =⇒ (4) =⇒ (3) =⇒ (2) and (4) =⇒ (5) =⇒ (3). If ρ has Artin
conductor dividing N , then ρ|IN is reducible: if it is not trivial, then ρ|IN has a one-dimensional invariant

line L ⊂ V and IN acts through a character on the quotient V/L; since det ρ is unramified at N , this
character is trivial. In either case, ρ|IN is unipotent. The converse also holds, so (1) ⇐⇒ (2). If ρ|IN is

unipotent, then since IN is normal in DN with abelian quotient, ρ|DN
is upper-triangularizable, possibly

after a quadratic extension. Indeed, the normality guarantees that DN preserves the 1-eigenspace of IN , on
which it acts through its abelian quotient DN/IN , so that there’s a common eigenvector; extending K may
be necessary if IN acts trivially. So (2) implies (4). The implication (4) =⇒ (3) is clear. If (t, d)|IN = (2, 1),

then by the Brauer-Nesbitt theorem the semisimplification of ρ|IN is trivial, so that ρ|IN is unipotent, so

that (3) =⇒ (2). If (t, d)|DN
is a sum of unramified characters, then the semisimplification of ρ|DN

contains IN in its kernel. Since semisimplifying ρ does not change its pseudorepresentation, we conclude
that IN is contained in ker (t, d)|DN

, so that (4) implies (5). Finally, if IN is in the kernel of (t, d)|DN ,

then t(i · 1) = t(1) = 2 for all i ∈ IN . Therefore (5) implies (3). �

4.2. Level-N shape as a deformation condition. Suppose ρ̄ : GQ,Np → GL2(F) is a semisimple repre-
sentation with prime-to-p Artin conductor dividing N . Let Dρ̄ be the functor from C to sets sending a local
F-algebra B in C to the set of odd, constant-determinant pseudodeformations of ρ̄ having level-N shape.

Then Dρ̄ is representable by a complete noetherian F-algebra
(

R(N,F)ρ̄, n(N,F)ρ̄
)

, the quotient of R̂(N,F)ρ̄
by the closed ideal ĴN generated by the set

{τ̂univ(di)− τ̂univ(d) : d ∈ DN (GQ,Np), i ∈ IN (GQ,Np)}.
This gives us a universal pseudodeformation of ρ̄

(4.2.1) τuniv : GQ,Np → R(N,F)ρ̄
factoring through R̂(N,F)ρ̄ If ℓ ∤ Np is prime, then set tℓ := τuniv(Frobℓ) and t

′
ℓ := tℓ − tr ρ̄(Frobℓ).

As in equation (2.10.2), we can identify the tangent space of this modified universal deformation ring with
deformations to the dual numbers:

(4.2.2) TanR(N,F)ρ̄ = Hom
(

n(N,F)ρ̄/n(N,F)
2
ρ̄, F

) ∼= Dρ̄(F[ε]).

For Γ0(1)-modular ρ̄, write R(1,F)ρ̄ for R̂(1,F)ρ̄, ϕ for ϕ̂ from (2.11.3), and τuniv for τ̂univ from (2.10.1).

Note that the map ψ̂N,1 : R̂(N,F)ρ̄ ։ R(1,F)ρ̄ described in (2.10.3) factors through R(N,F)ρ̄:

(4.2.3)

R̂(N,F)ρ̄

R(N,F)ρ̄ R(1,F)ρ̄,

ψ̂N,1

ψN,1

because ĴN , described above, is visibly contained in ĴN,1 = ker ψ̂N,1, described after (2.10.3).

4.3. Level-N shape and Γ0(N)-modular pseudorepresentations. In this subsection we establish that
all Γ0(N)-modular pseudorepresentations have level-N shape and record consequences for the relationship
between the Hecke algebra and the level-N deformation ring. Recall our notation in this section: N is prime,
G = GQ,Np, DN = DN (G) and IN = IN (G).

Theorem 4.2 (Atkin-Lehner, Carayol). Let f be in Sk(N, Q̄p)
new. Then aN (f) = ±N (k−2)/2. Moreover, if

ρf : G → GL2(Q̄p) is the attached p-adic Galois representation, then ρf |DN
∼
(

χp ψ ∗
0 ψ

)

, where ψ is the

unramified character sending FrobN to aN(f), and the extension ∗ is ramified at N .
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Proof. The first statement is due to Atkin and Lehner [AL, Theorem 3]. The second statement is implied
by local-global compatibility established by Carayol [CHi]; see also [We, Section 3] and [EPW, Lemma 2.6.1]

for a statement in this context. Note that ψ = ε χ
(k−2)/2
p with ε2 = 1. �

Corollary 4.3.

(1) Any Γ0(N)-modular pseudorepresentation has level-N shape.
(2) If ρ̄ : G → GL2(F) is Γ0(N)-modular, then the pseudorepresentation τmod

ρ̄ : G → A(N,F)ρ̄ con-
structed in (2.11.2) has level-N shape.

(3) The surjection ϕ̂ : R̂(N,F)ρ̄ ։ A(N,F)ρ̄ from (2.11.3) factors through R(N,F)ρ̄, inducing a contin-
uous surjective map ϕ : R(N,F)ρ̄ ։ A(N,F)ρ̄ sending tℓ to Tℓ.

Proof. Any Γ0(N)-modular pseudorepresentation comes from a p-adic representation ρf attached to a Γ0(N)-
modular eigenform f ; by Proposition 4.1, it suffices to show that ρf satisfies any of the equivalent conditions
listed there. If f is a cuspidal newform, then Theorem 4.2 implies that ρf visibly satisfies condition (4). Oth-
erwise f comes from a level-1 form, so that ρf is unramified at N , and satisfies, for example, condition (3).
Parts (2) and (3) follow from (1) since τmod

ρ̄ is obtained by gluing characteristic-zero Γ0(N)-modular pseu-
dorepresentations and then reducing modulo p. �

5. UN and the partially full Hecke algebra

We continue the notation of section 4; recall that N 6= p is prime. Here we track several consequences of
Theorem 4.2 and Corollary 4.3, in particular, the connection between the Atkin-Lehner operator UN and
the trace of Frobenius-at-N elements in the partially full Hecke algebra.

5.1. The polynomial satisfied by UN . Although FrobN is not well-defined, even up to conjugacy, as an
element of GQ,Np, it does determine a coset of IN (GQ,Np) inside DN (GQ,Np). Therefore, the level-N shape
of τmod

ρ̄ guarantees that

(5.1.1) FN := τmod
ρ̄ (FrobN ) is a well-defined element of A(N,F)ρ̄.

Now fix a Γ0(N)-modular ρ̄. In the case that ρ̄ is unramified at N , the surjection πold : A(N,F)ρ̄ ։ A(1,F)ρ̄
from (2.13.1) maps FN to TN and aN (ρ̄) to tr ρ̄(FrobN ).

Now let ρ̄ be an arbitrary Γ0(N)-modular representation appearing in weight kρ̄ and let

PN (X) := X2 − τmod
ρ̄ (FrobN )X + det ρ̄(FrobN )

= X2 − FNX +Nkρ̄−1 ∈ A(N,F)ρ̄[X ],
(5.1.2)

be the characteristic polynomial of any FrobN under τmod
ρ̄ .

Proposition 5.1. If ρ̄ is Γ0(N)-modular, then PN(UN ) = 0 in A(N,F)pfρ̄ .

Proof. Since A(N,F)pfρ̄ acts faithfully onM(N,F)ρ̄, and since the action of all the Hecke operators comes from

their action on the characteristic-zero spaceM(N, Q̄p), which has a basis of eigenforms, it suffices to show the
following: for any k ≥ 0 even and any normalized Hecke eigenform f ∈Mk(N, Q̄p), its UN -eigenvalue aN (f)
is annihilated by PN,f(X) := X2 − tr ρf(FrobN )X + det ρf (FrobN ). Here ρf : GQ,Np → GL2(Q̄p) is the
p-adic Galois representation attached to f .

If f is a newform, then Theorem 4.2 explicitly shows that aN (f) is an eigenvalue of ρf evaluated at any FrobN
(it suffices to consider the semisimplification of the matrix loc. cit.). Thus aN (f) is a root of PN,f(X). On
the other hand, if f is an N -stabilization of a level-1 eigenform g, then ρf = ρg, and aN (f) is an eigenvalue

of the matrix

(

aN (g) 1
−Nk−1 0

)

, which gives the action of UN on the two-dimensional Hecke-stable subspace

with basis g and g(Nz). Since aN (g) = tr ρg(FrobN ), the characteristic polynomial of this matrix coincides
with PN,f(X), and the claim follows. �
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Corollary 5.2. If ρ̄ is Γ0(N)-modular, then the map sending X to UN gives a surjection

A(N,F)ρ̄[X ]/PN(X) ։ A(N,F)pfρ̄

compatible with the natural inclusion A(N,F)ρ̄ →֒ A(N,F)pfρ̄ .

Proof. Follows from Proposition 5.1. See also [De, section 8]. �

5.2. A relation between UN and the image of τmod
ρ̄ . Write τ for τmod

ρ̄ .

Proposition 5.3. With i any element of IN (GQ,Np), any FrobN in DN(GQ,Np), and g ∈ GQ,Np, we have

UN
(

τ(gi)− τ(g)
)

= τ(giFrobN )− τ(g FrobN ).

In particular, for g = c any complex conjugation,

(5.2.1) UN τ(c i) = τ(c iFrobN )− τ(cFrobN ).

Proof. As in the proof of Proposition 5.1 it suffices to show that for every Hecke eigenform f ∈ M(N, Q̄p),
we have aN (f)

(

tr ρf (gi)− tr ρf (g)
)

= tr ρf (giFrobN )− tr ρf (g FrobN ), where ρf : GQ,Np → GL2(Q̄p) is the
p-adic Galois representation attached to f . If f is old, then i is in the kernel of ρf , so that on the left-hand
side tr ρf (gi) = tr ρf (g) and on the right hand side tr ρf (giFrobN ) = tr ρf (g FrobN ): both sides reduce to 0.
So it suffices to consider f new. In this case, Theorem 4.2 implies that there is a basis for ρf so that

ρf (FrobN ) =

(

NaN (f) ∗
0 aN (f)

)

and ρf (i) =

(

1 ∗
0 1

)

.

The main statement then follows from part (2) of Lemma 5.4 below by setting T = ρf (FrobN ), P = ρf (i),
M = ρf (g). For the second statement, take g = c and note that tr ρf (c) = 0. �

Lemma 5.4. Let B be a ring, M =
(

aM bM
cM dM

)

∈ M2(B), upper-triangular T =
(

aT bT
0 dT

)

∈ M2(B), and

upper-triangular unipotent P =
(

1 bP
0 1

)

∈M2(B). Then

(1) trMP − trM = cM bP
(2) trTMP − trTM = dT cMbP = dT (trMP − trM)

Part (1) is an easy computation; (2) follows from (1) by taking TM for M ;

Remark 5.5. By takingMT forM in Lemma 5.4, we obtain the similar trMTP−trMT = aT (trMP−trM),
which leads toNUN

(

τ(gi)−τ(g)
)

= τ(g FrobN i)−τ(g FrobN). This and (5.2.1) are the two Calegari–Specter–
style conditions that we use in Theorem 14.1. △

6. The trivial ρ̄ mod 2

For the rest of this article, we specialize to p = 2 and ρ̄ = 1⊕ 1, so that we can take F = F2 and suppress F2

from notation. Recall that N is an odd prime and set G := GQ,2N ; we’re viewing 1⊕ 1 as a representation
of G. Also let DN := DN (G) and IN := IN (G). Write τ := τmod

1⊕1 .

In this setting, the Hecke algebra and the deformation rings all have compatible gradings, which we de-
scribe in subsection 6.3. Moreover, the fact that the two Atkin-Lehner eigenvalues are glued together has
several ramifications that we explore in subsections 6.4 and 6.5. We review what’s known in level one in
subsection 6.2.
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6.1. Galois group notation. We fix additional notation in use for the remainder of this document. Recall
that the 2-Frattini quotient of G is

Π2N = G/G2 = Gal
(

Q(i,
√
2,
√
N)/Q

)

≃ Gal(Q(ζ8)/Q)×Gal
(

Q(
√
N)/Q

)

= (Z/8Z)× × {±1}.
(6.1.1)

Let η : G։ (Z/8Z)××{±1} be the quotient map, with components η2 : G։ (Z/8Z)× and ηN : G։ {±1}.
For i ∈ (Z/8Z)×, let Gi := η−1

2 (i), so that G = G1 ∪G3 ∪G5 ∪G7. Further refine each Gi as G
+
i ∪G−

i , with
Gεi := η−1

(

(i, ε)
)

. Moreover, for (i, ε) ∈ (Z/8Z)× × {±1}, we’ll let gi be an arbitrary element of Gi and g
ε
i

an arbitrary element of Gεi . Finally, for a subset S of G, write S for its image in G/G2.

Lemma 6.1. For any prime N we have

(a) c is in G+
7 ; (b) IN = G1; (c) DN = 〈IN , G+

N 〉.

Proof. Let K1 = Q(ζ8). The first part follows from the fact that c is 7 in Gal(K1/Q) = (Z/8Z)× and

that Q(
√
N) is a totally real field. For the other parts, since FrobN in Gal(K1/Q) = (Z/8Z)× is the

element N , the decomposition group at N in Gal(K1/Q) = (Z/8Z)× is 〈N〉. Since every prime above N

of K1 totally ramifies in K := Q(ζ8,
√
N), we know that IN is contained in the preimage G1 of Gal(K/K1)

in G but not in G+
1 ; the second part follows. By the same token, DN is contained in the preimage of

〈N〉 ⊂ (Z/8Z)× = Gal(K1/Q) in G, and we can choose FrobN such that its image is in G+
N . �

6.2. The structure of R(1)1⊕1 and A(1). Before continuing with level N , we briefly describe the situation
in level 1. In this case, there is only one ρ̄, namely 1⊕ 1, so that A(1) = A(1)1⊕1 is a local ring. Recall
that the Galois group GQ,2 has 2-Frattini quotient Π2 = Gal(Q(ζ8)/Q) = (Z/8Z)×; for i ∈ Π2, let G

i
Q,2

be the coset mapping to i under the natural 2-Frattini quotient map GQ,2 ։ (Z/8Z)×. We’ve established
a (Z/8Z)×-grading on A(1) and τ (Theorem 3.4). We describe the structure of A(1) and the isomorphism
R(1)1⊕1 ≃ A(1) following Nicolas, Serre, and Belläıche [NS1, NS2, BeR].

Let B = F2Jx, yK, an abstract F2-algebra that we endow with an (Z/8Z)×-grading in two different ways as
follows. Fix i = 3 or i = 5 in (Z/8Z)×. Let x have grading i and y have grading −i, so that B1 = F2Jx

2, y2K,
Bi = xB1, B−i = yB1, and B7 = xyB1.

Theorem 6.2 (Nicolas, Serre, Belläıche).

(1) For any choice of gi ∈ Gi2,Q and g−i ∈ G−i
2,Q, the map

F2Jx, yK −→ A(1) given by x 7→ τ(gi), y 7→ τ(g−i),

is an isomorphism of (Z/8Z)×-graded F2-algebras. In particular, if i = 3 then x 7→ T11 and y 7→ T5
is such an isomorphism; if i = 5, then x 7→ T13 and y 7→ T3 is such an isomorphism.

(2) The map ϕ : R(1)1⊕1 ։ A(1) is an isomorphism; R(1)1⊕1 and τuniv are (Z/8Z)×-graded.

(3) Both τuniv and τ factor through Gpro-2
Q,2 , preserving the grading.

The group Gpro-2
Q,2 has been studied by Markshaitis and Serre; it has presentation 〈g, c : c2 = 1〉 in the

category of free pro-2 groups, where g is any element that does not fix
√
2 [Ma].

Theorem 6.2 begins to clarify why we eventually restrict to N ≡ 3, 5 mod 8 for our main results.

6.3. The grading on R̂(N)1⊕1 and R(N)1⊕1. By Theorem 3.4 we know that the Hecke algebra A(N)1⊕1

and the modular pseudorepresentation τmod := τmod
1⊕1,N are graded by (Z/8Z)×. Belläıche has described a

richer grading by all of G/G2 on R̂(N)1⊕1 and τ̂univ := τ̂univ1⊕1,N as well. The construction makes sense for
any profinite group that is 2-finite in the sense of Mazur, but we restrict to groups of the form GQ,2M .

Theorem 6.3 (Belläıche, unpublished). Let M ≥ 1 be any odd level, and let Π be the 2-Frattini quotient

of GQ,2M . Then R̂(M)1⊕1 has a natural Π-grading making τ̂univ1⊕1,M into a graded Π-pseudorepresentation.
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Belläıche’s grading on B = R̂(M)1⊕1 takes the following shape: for i ∈ Π, let GiQ,2M ⊂ GQ,2M be the

corresponding coset and set Bi to be the closed F2-submodule of B generated by τ̂univ1⊕1,M (GiQ,2M ), along

with 1 if i = 1. The trace-determinant identity (2.9.1) implies that B′ :=
⊕

i∈ΠB
i is a Π-graded algebra;

universality shows that B ∼= B′. For level M = 1, Theorem 6.3 recovers the grading on R(1)1⊕1 from

Theorem 6.2(2). For M = N prime, Belläıche’s construction in Theorem 6.3 endows R̂(N)1⊕1 with a
grading by (Z/8Z)× × F×

N/(F
×
N)

2. The proof of Corollary 6.4 below suggests that the grading by F×
N/(F

×
N)

2

is lost when we pass from R̂(N)1⊕1 to R(N)1⊕1, leaving only a (Z/8Z)×-grading — as befits a deformation
ring approximating A(N)1⊕1.

Corollary 6.4. The level-N -shape universal deformation ring R(N)1⊕1 has a natural (Z/8Z)×-grading, so
that τmod is a (Z/8Z)×-graded pseudorepresentation and ϕ : R(N)1⊕1 ։ A(N)1⊕1 is a map of (Z/8Z)×-
graded F2-algebras.

Proof. By Theorem 6.3, R̂(N)1⊕1 has a grading by (Z/8Z)× × F×
N/(F

×
N)

2, so it suffices to show that the

kernel of the quotient map R̂(N)1⊕1 ։ R(N)1⊕1 is (Z/8Z)×-graded. This kernel is the ideal ĴN de-
fined in subsection 4.2, topologically generated by elements of the form τ̂univ(di) − τ̂univ(d) for d ∈ DN

and i ∈ IN ; to see that ĴN is graded, we want τ̂univ(di) and τ̂univ(d) to be in the same (Z/8Z)×-component

of R̂(N)1⊕1. Since τ̂
univ is graded, it suffices to know that the map DN → Gal(Q(ζ8)/Q) = (Z/8Z)× factors

through DN/IN . But this is clear as Q(ζ8) is unramified at N . �

6.4. The partially full Hecke algebra. We specialize section 5 to p = 2. In this setting, the polynomial
satisfied by UN over A(N) ((5.1.2) and Proposition 5.1) has the form

(6.4.1) PN(X) = X2 + FNX + 1.

Here recall that FN = τmod(FrobN ). In particular, since aN (1⊕ 1) = 0, the polynomial PN (X) has a double
root residually modulo m(N)1⊕1, so that from the description of the maximal ideals of the partially full
Hecke algebra in subsection 2.8, it’s clear that

(6.4.2) A(N)pf1⊕1 is a complete local noetherian ring with residue field F2.

The same will be true for any N -old ρ̄ mod 2 satisfying the level-raising condition of subsection 2.13.3.

Let U ′
N = UN + 1, so that U ′

N ∈ m(N)pf1⊕1. Then a simple manipulation of (6.4.1) implies that

(6.4.3) FN = FNU
′
N − (U ′

N)
2

from which it’s immediately clear that

(6.4.4) FN ∈ (m(N,F)pfρ̄ )2.

Finally, we record Proposition 5.3 in our setting: for i ∈ IN we have

(6.4.5) UN τ
mod(c i) = τmod(c iFrobN )− τmod(cFrobN ).

6.5. New and very new forms and their Hecke algebras. Specializing subsection 2.13.2 to p = 2
tells us that the subspace of newforms inside M(N) is ker(U2

N −N−2SN ) = ker(U ′
N )2. We similarly define

K(N)new := K(N) ∩M(N)new, so that

(6.5.1) M(N)new =M(N)[(U ′
N)

2] and K(N)new = K(N)[(U ′
N )2].

From this description and the duality in (2.8.3) we deduce that

A(N)new = A(N)pf/(U ′
N )2.(6.5.2)

In particular, A(N)new will have nilpotent elements. We therefore define, in an ad-hoc way for p = 2, the
spaces of very new modular forms:

M(N)vnew := kerU ′
N ⊆M(N) and K(N)vnew := K(N)[U ′

N ].

With this definition, the newforms are generalized very new forms. Like the newforms, the very new forms
break up into local components for various ρ̄; we in particular consider

M(N)vnew1⊕1 :=M(N)vnew ∩M(N)1⊕1 and K(N)vnew1⊕1 := K(N)1⊕1[U
′
N ].
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Let A(N)vnew be the largest quotient of A(N) acting faithfully onM(N)vnew; extending scalars as necessary,
it too breaks up into local ρ̄-components, with A(N)vnewρ̄ the largest quotient of A(N), or of A(N)vnew, acting
faithfully on M(N)vnewρ̄ . By (2.8.3) again,

(6.5.3) A(N)vnew = A(N)pf/(U ′
N ) and A(N)vnew1⊕1 = A(N)pf1⊕1/(U

′
N).

In particular,

(6.5.4) A(N)vnew acts faithfully on K(N)vnew.

Remark 6.5. One can show that K(N)vnew, A(N)vnew, and the modular A(N)vnew-valued pseudorepresen-
tation τvnew, as well as all their corresponding ρ̄ component analogues, are naturally and compatibly graded
by (Z/8Z)×/〈N〉 in the sense of Theorem 3.4. △

7. Infinitesimal deformations of the trivial ρ̄ mod 2

We continue our notation from the previous section; in particular N is an odd prime. We analyze first-order
deformations of the pseudorepresentation associated to the representation 1⊕ 1 of GQ,2N to compute tangent

space dimensions of R̂(N)1⊕1 and R(N)1⊕1 and their maximal reduced quotients. For N ≡ 3 or 5 modulo 8
we also find the generators of the cotangent space of R(N)red1⊕1.

7.1. Tangent dimensions of R̂(N)1⊕1 and R(N)1⊕1.

Lemma 7.1. Let G2 be the closed subgroup of G generated by the squares of elements of G. Then

(1) Tan R̂(N)1⊕1
∼= {set maps b : G/G2 → F2 | b(1) = b(c) = 0};

(2) TanR(N)1⊕1
∼= {set maps b : G/G2 → F2 | b(1) = b(c) = 0, b(di) = b(d) for all d ∈ DN , i ∈ IN}.

Proof. See also [Ch, Lemma 5.3]. We use equations (2.10.2) and (4.2.2), and identify a pseudodeforma-
tion t = εb : G → F2[ε] of the trivial mod-2 representation with the set-theoretic map b : G → F2. The
trace-determinant identity for elements g and gh of G on t simplifies to b(g2h) = b(h), so that b fac-
tors through G/G2. Since the latter is abelian, the condition t(gh) = t(hg) is automatically satisfied for
all g, h ∈ G. The condition t(1) = 2 = 0 forces b(1) = 0; oddness forces b(c) = 0. The additional requirements
on b in (2) come from the level-N shape condition. �

Corollary 7.2. dimTan R̂(N)1⊕1 = 6.

Proof. From (6.1.1), G/G2 = Gal(Q(
√
−1,
√
2,
√
N)/Q). Now we use Lemma 7.1 (1). �

The following lemma will help us with dimTanR(N)1⊕1 and follows immediately from Lemma 6.1.

Lemma 7.3.

(1) If N ≡ 1 (mod 8), then |DN | = |IN | = 2 and c 6∈ DN .
(2) If N ≡ 3, 5 (mod 8), then |DN | = 4, |IN | = 2, and c 6∈ DN .
(3) If N ≡ 7 (mod 8), then |DN | = 4, |IN | = 2, and c ∈ DN \ IN .

Corollary 7.4. dimTanR(N)1⊕1 =

{

5 if N ≡ 1 modulo 8

4 otherwise.

In particular, suppose N ≡ 3, 5 modulo 8. Choose any g±N ∈ G±
N , any g

+
−N ∈ G+

−N , any g−−N ∈ G−
−N , and

any g−7 ∈ G−
7 . The maximal ideal of R(N)1⊕1 is generated by the images under τuniv of these four elements.

Proof. We use Lemma 7.1(2) and translate the conditions on b via Lemma 7.3, taking cases. IfN ≡ 1 (mod 8)
then the level-N conditions on b translate to b(DN∪{c}) = {0}. Hence we conclude that dimTanR(N)1⊕1 = 5.
If N ≡ 7 (mod 8), then the conditions give us b(DN ) = {0}, so we get that dimTanR(N)1⊕1 = 4. And
if N ≡ 3, 5 (mod 8), then we get b(IN ∪ {c}) = {0} and b(g) = b(g′) whenever {g, g′} = DN \ IN . In this
case, we also get dimTanR(N)1⊕1 = 4. For the refinement for N ≡ 3, 5 mod 8, use Lemma 6.1. �
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7.2. Representation-theoretic lemmas. In this subsection, we will study the properties of a pseudode-
formation of the trivial mod-2 representation taking values in a domain. These results will be used to control
the dimension of the tangent space of R(N)red1⊕1.

Before stating Proposition 7.6, we recall a result due to Chenevier that we will use in its proof.

Lemma 7.5. [Ch, Lemma 3.8] Suppose B is an coefficient algebra and t : G → B is a pseudodeformation
of the trivial mod-2 representation. Then t factors through Gpro-2.

Proposition 7.6. Let B be an integral domain coefficient algebra and K its field of fractions with algebraic
closure K. Suppose that t : G → B is a pseudodeformation of the trivial mod-2 representation. Then t is
the trace of a semisimple representation ρ : G→ SL2(K). Moreover:

(1) ρ factors through Gpro-2.

(2) ρ|IN is unipotent: that is, ρ|IN ∼
(

1 η
0 1

)

for some additive character η : IN → K.

(3) ρ|DN
has abelian image.

(4) Either ρ(IN ) is trivial or ρ|DN
is unipotent.

(5) t has level-N shape: IN ⊆ ker t|DN
.

(6) For all g ∈ G, d ∈ DN , i ∈ IN , we have t(gi)− t(g) = t(dgi)− t(dg).

Proof. The existence of ρ with tr ρ = t is a theorem of Chenevier [Ch, Theorem 2.12].

(1) Follows from Lemma 7.5, the semisimplicity of ρ, and the Brauer-Nesbitt theorem.

(2) By (1), the restriction ρ|IN factors through the pro-2 tame-inertia quotient of IN , which is isomorphic

to Z2. Therefore ρ|IN is reducible, and hence an extension of a character χ : Z2 → K
×

by χ−1.
We claim that χ has finite order. Indeed, let a be a lift of a generator of the Z2-quotient of IN ,
and σ a lift of FrobN to DN . Then σaσ−1 = aN [Stacks, Lemma 0BU5]. It follows that ρ(a)
and ρ(a)N are conjugates of each other, so that if λ is an eigenvalue of ρ(a), then so is λN ; in
other words, λN = λ±1. Therefore every eigenvalue of ρ(a) has finite order; since ρ(a) generates
the image of ρ|IN , the character χ does too. Finally, any finite-order character from Z2 to a field of
characteristic 2 must be trivial.

(3) From (2), we get that ρ|IN ∼
(

1 η
0 1

)

for some additive character η : IN → K of order 1 or 2,

depending on whether ρ is ramified at N . Since N is odd, we have ρ(a)N = ρ(a) in either case, so
that ρ(a) and ρ(σ) commute.

(4) Since IN is normal in DN with abelian quotient, ρ|DN
=
(

α η′

0 α−1

)

for some unramified charac-

ter α : DN → K
×

and extension class η′. Since ρ(DN ) is abelian, we have, for every i in IN

and d in DN , the matrix ρ(i) =
(

1 η(i)
0 1

)

commuting with ρ(d) =
(

α(d) η′(d)

0 α−1(d)

)

. It follows that

η′(d) + η(i)α−1(d) = η(i)α(d) + η′(d). If η is nontrivial, then α = α−1, so α = 1 as we are in
characteristic 2. Otherwise ρ(IN ) = 1.

(5) One checks that t(di) = t(d) for all d ∈ DN , i ∈ IN in both the possible settings from (4).

(6) Immediate if ρ(IN ) is trivial; otherwise use Lemma 5.4. �

In summary, the level-N shape condition is automatic for pseudodeformations of 1⊕ 1 to a domain. In the
next subsection we use this observation to show that the quotient map R̂(N)red1⊕1։R(N)red1⊕1 induced from

the natural surjective map R̂(N)1⊕1 ։ R(N)1⊕1 (subsection 4.2) is an isomorphism.

7.3. The tangent space to R(N)red1⊕1. We now turn our attention to R(N)red1⊕1, in particular its tangent

dimension. For brevity, writeR := R(N)1⊕1 and R̂ := R̂(N)1⊕1, and n and n̂, respectively, for their maximal
ideals; keep the notation introduced above for G = GQ,2N , IN := IN (G/G2) and DN := DN (G/G2).

https://stacks.math.columbia.edu/tag/0BU5
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If (B,m) is any integral-domain coefficient algebra carrying a pseudodeformation t of 1⊕1, then Proposition 7.6

implies that t automatically has level-N shape, so that the map R̂ → B guaranteed by the universal property
factors through the quotient map R̂ → R. If α : R → B satisfying t = α ◦ τuniv is surjective, then α induces

a surjection of finite-dimensional F2-vector spaces n̂/n̂
2
։ n/n2

α
։ m/m2, corresponding to an embedding of

tangent spaces (see also Lemma 7.1):

(7.3.1)

TanB = (m/m2)∗
h 7→h◦t−−−−→

∼
TB

∩ ∩ ∩
TanR = (n/n2)∗

h 7→h◦τuniv

−−−−−−−→
∼

TR := {b ∈ TR̂ : b(di) = b(d) for all d ∈ DN , i ∈ IN}
∩ ∩ ∩

Tan R̂ = (n̂/n̂2)∗
h 7→h◦τ̂univ

−−−−−−−→
∼

TR̂ := {set maps b : G/G2 → F2 : b(1) = b(c) = 0}.

To understand Rred, we begin to analyze R/p for prime ideals p.

Proposition 7.7.

(1) Every prime ideal p̂ of R̂ is the preimage of a prime ideal p of R, so that R̂/p̂ = R/p.
(2) R̂red = Rred

Proof. The second part follows from the first, so let p̂ be a prime ideal of R̂. Let t : G → R̂/p̂ be

the pseudorepresentation obtained by composing τ̂univ : G → R̂ with the quotient map R̂ ։ R̂/p̂.
By Proposition 7.6(5), t has level-N shape so that the quotient map R̂ → R̂/p̂ factors through R; let

α : R → R̂/p̂ be the corresponding map (that is, satisfying t = α ◦ τuniv) and let p = kerα. Then

R/p = R̂/p̂ since R̂/p̂ is the trace algebra of t. �

Proposition 7.8. Let p be a prime ideal of R. Then

dimTanR/p ≤











5 if N ≡ 1 modulo 8;

2 if N ≡ 3, 5 modulo 8;

3 if N ≡ 7 modulo 8.

Proof. WriteK for the field of fractions ofB := R/p. From Proposition 7.6, t is the trace of a unique semisim-
ple representation ρ : G→ SL2(K). If ρ is unramified at N , then α factors through the quotient R։ R(1):
see (2.9.2) and (4.2.3). By Theorem 6.2,

dimTanB ≤ dimTanR(1) = 2.

Otherwise, (7.3.1) above and Proposition 7.6(4),(6) tell us that t satisfies the following properties:

(1) t(c) = t(DN ) = 0;
(2) t(g)− t(gi) = t(dg)− t(dgi) for g ∈ G, d,∈ DN , i ∈ IN .

Let b ∈ TB. By following the maps in (7.3.1) we see that b is a set map from G/G2 ∼= (Z/2Z)3 to F2 subject to
the same conditions as t projected to G/G2. We use Lemma 7.3 repeatedly. If N ≡ 1 mod 8, then {c}∪DN

has size 3, so that b has at most 8 − 3 = 5 degrees of freedom and dimTanB ≤ 5. Otherwise, we can
choose i ∈ IN and d ∈ DN so that {1, i, d, di} are the distinct elements of DN . The condition (2) for g 6∈ DN

implies that the sum of the b-values on G/G2 −DN is zero. Since DN has size 4 itself, that is a total of 5
independent conditions on b, so that dimTanB ≤ 3. Finally, for N ≡ 3, 5 mod 8, the condition b(c) = 0 is
an additional independent condition, so that dimTanB ≤ 2. �

In any case since R(1) ≃ F2Jx, yK is a quotient of R (Theorem 6.2), the following corollary is immediate.

Corollary 7.9. If N ≡ 3, 5 mod 8, then dim R̂ = dimR = 2.

We now analyze the tangent dimension of Rred.
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Proposition 7.10. dimTanRred ≤
{

5 if N ≡ 1 mod 8,

3 otherwise.
In particular, suppose N ≡ 3, 5 mod 8. Choose

g±N ∈ G±
N , g+−N ∈ G+

−N , g−−N ∈ G−
−N , and g−7 ∈ G−

7 .

Then the maximal ideal of Rred is generated by τ red(g±N ) and any two of τ red(g+−N ), τ red(g−−N ), and τ red(g−7 ).

Proof. The proof is similar to that of Proposition 7.8 and repeatedly uses Lemma 7.3. By Proposition 7.6,
the following hold modulo every prime ideal of R, so that they hold in Rred:

(1) τ red(c) = τ red(IN ) = 0.
(2) τ red(di) = τ red(d) for all d ∈ DN and i ∈ IN .
(3) τ red(gi)− τ red(g) = τ red(dgi)− τ red(dg) for all g ∈ G, d ∈ DN , and i ∈ IN .

For N ≡ 1 mod 8, then IN = DN , and the analysis and the conclusion are analogous to those of
Proposition 7.8. Otherwise, IN has size 2 and index 2 in DN , which in turn has has index 2 in G/G2.
For any b ∈ TRred , the first condition tells us that b is zero on the 3-element set ĪN ∪ {c}. The second
condition tells us that the b-values on the two elements of DN that are not in IN coincide. Now the third
condition, as in the proof of Proposition 7.8, means that the sum of the b-values on G/G2−DN is zero. Thus
we get 5 independent conditions, so that dimTanRred ≤ 3. For the refinement in the case N ≡ 3, 5 mod 8,
compare to Corollary 7.4. �

8. Hecke tangent dimensions at the trivial ρ̄ mod 2

Here we study A(N)1⊕1 := A(N,F2)1⊕1, the local component of trivial mod-2 representation of the big
Hecke algebra acting on M(N,F2). Recall that N is an odd prime.

8.1. The shallow Hecke algebra and its reduced quotient. As a consequence of the surjective map
R(N)1⊕1 ։ A(N)1⊕1 (Corollary 4.3(3)) as well as Corollary 7.4 and Proposition 7.10 we get the following:

Corollary 8.1.

(1) dimTanA(N)1⊕1 ≤
{

5 if N ≡ 1 mod 8

4 otherwise.
(2) dimTanA(N)red1⊕1 ≤

{

5 if N ≡ 1 mod 8

3 otherwise.

8.2. The partially full Hecke algebra of level N . From the discussion in subsection 6.4 A(N)pf1⊕1 is a

complete local noetherian ring, an A(N)1⊕1-algebra whose maximal ideal mpf := m(N)pf1⊕1 is generated by
U ′
N := UN + 1 together with m := m(N)1⊕1. Moreover with τ : G → A(N)1⊕1 the modular pseudodefor-

mation of 1⊕ 1, for any FrobN element in DN , the element FN := τ(FrobN ) ∈ A(N)1⊕1 is well defined
independent of the choice and satisfies FN ∈ (mpf)2 (6.4.4). Finally, (6.4.5) implies that for any i ∈ IN and
any complex conjugation c, so that

U ′
N τ(c i) = τ(c i) + τ(cFrobN ) + τ(c iFrobN ),

so that τ(c i) + τ(cFrobN ) + τ(c iFrobN ) ∈ (mpf)2 as well.

Lemma 8.2. If N ≡ 3, 5 mod 8, then dimTanA(N)pf1⊕1 ≤ 3, with the maximal ideal generated by U ′
N , τ(ci),

and τ(cFrobN ) — or, more generally, by U ′
N , τ(g−7 ), and τ(g±−N ) for any g−7 ∈ G−

7 and any g±−N ∈ G±
−N .

Proof. Let i ∈ IN be a lift of a generator of its Z2 tame-inertia quotient. It follows from the proof of
Corollary 7.4 that the images of τ(c i), τ(cFrobN ), τ(ciFrobN ) and τ(FrobN ) are an F2-basis for the cotan-
gent space m/m2. Therefore, so are

τ(c i), τ(cFrobN ), τ(FrobN ), and τ(c i) + τ(cFrobN ) + τ(c iFrobN ).

So these four elements generate m as in ideal. Therefore mpf is generated by these four elements together
with U ′

N . Since both τ(FrobN ) and τ(c i)+τ(cFrobN )+τ(c iFrobN ) are in (mpf)2, the cotangent space of the
partially full Hecke algebra is spanned by the images of U ′

N , τ(c i), and τ(cFrobN ). The claim follows. �
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8.3. The Hecke algebra on very new forms. As above, let i ∈ IN be a lift of the generator of its Z2

quotient, FrobN ∈ DN any Frobenius-at-N element, and c ∈ G any complex conjugation.

Lemma 8.3. The element FN = τmod(FrobN ) of A(N)1⊕1 maps to zero in A(N)vnew1⊕1 .

Proof. Since U ′
N = 0 in A(N)vnew1⊕1 and FN = FNU

′
N − (U ′

N )2 (6.4.3), we have FN = 0 in A(N)vnew1⊕1 . �

Lemma 8.4. If N ≡ 3, 5 (mod 8), then dimTanA(N)vnew1⊕1 ≤ 2. Its maximal ideal is generated by the images

of τ(ci) and either τ(cFrobN ) or τ(ciFrobN ). More generally still, it is generated by any τ(g−7 ) and τ(g
±
−N ).

Proof. Let mvnew be the maximal ideal of A(N)vnew1⊕1 . By construction U ′
N kills M(N)vnew1⊕1 . Therefore there

is a surjective map A(N)pf1⊕1 ։ A(N)vnew1⊕1 sending U ′
N to zero and restricting the action of the other Hecke

operators. The proof of Lemma 8.2 (and using the same notation) tells us that the images of τmod(ci)
and τmod(cFrobN ) span mpf/

(

(mpf)2, U ′
N

)

as an F2-vector space. That space surjects onto mvnew/(mvnew)2,
proving the lemma. �

9. Mod-2 modular forms of level 3 and 5

In this section, we restrict ourselves to N = 3, 5 and study the properties of A(N) := A(N,F2) in these
cases. We determine the structure of M(N) := M(N,F2) (subsection 9.1), prove that A(N) is a local ring
(subsection 9.2), and compute the exact dimensions of the tangent space of A(N).

9.1. M(3) and M(5) are polynomial algebras. In level 1, Swinnerton-Dyer showed that M(1) = F2[∆],
where ∆ = q + q9 + q25 + · · · is the mod-2 q-expansion of ∆, the unique normalized cuspform of level 1 and
weight 12 [SD, Theorem 3]. The fact that M(1) is a polynomial algebra is a key ingredient for all the known
proofs of the structure of A(1) [NS2, MeN, GG, MoV]. In levels 3 and 5, we use an analogous structure
result to allow us to apply the nilpotence method [MeN] to prove that dimA(N)vnew ≥ 2 (Theorem 10.1).
The structure of M(3) and M(5) is certainly known to experts and we make no claim of originality.

Lemma 9.1. If N = 3, 5, then M(N) = F2[fN ] for some fN ∈M(N). More precisely,

f3 = E3-crit
4 = q + q2 + q3 + q4 + q6 + q8 + q9 + q12 + q16 + q18 +O(q20) ∈M4(3,F2),

f5 = E5-crit
4 = q + q2 + q4 + q5 + q8 + q9 + q10 + q16 + q18 +O(q20) ∈M4(5,F2).

Remark 9.2. For p ≥ 5, the subspace of M(N,Fp) coming from weights divisible by p− 1 is the coordinate
algebra of X0(N)Fp with the supersingular points removed, with the weight filtration corresponding to the
maximal order at the poles [SerC, Corollaire 2]; for p = 2, 3 something similar is true with the filtration
adjusted. For example, M(7,F2) = F2[f7, f

−1
7 ] for f7 = η(q7)η(q)−1 a Hauptmodul on X0(7). △

Proof of Lemma 9.1. In all cases, we determine M(N,Z) and reduce modulo 2.

Case N = 3: We claim that M(3,Z) is generated by e2 = E2,3, the unique Eisenstein series in weight 2;

g4 := E3-crit
4 , the normalized semicuspidal Eisenstein eigenform in weight 4; and h6, which captures a

congruence in weight 6; with a single relation: g24 = e2h6. More precisely, let

e2 := E2,3 =
E2 − 3E2(q

3)

−2 = 1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 +O(q6) ∈M2(3,Z),

g4 := E3-crit
4 =

E4 − E4(q
3)

240
= q + 9q2 + 27q3 + 73q4 + 126q5 +O(q6) ∈M4(3,Z),

and let

c6 := q − 6q2 + 9q3 + 4q4 + 6q5 +O(q6) ∈ S6(3,Z)

be the unique normalized cuspform. Then e2g4 and c6 are congruent modulo 27, so set

h6 :=
e2g4 − c6

27
= q2 + 6q3 + 27q4 + 80q5 +O(q6) ∈M6(3,Z).
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We claim that monomials in e2, g4, and h6 give a Victor-Miller basis in each even weight k ≥ 0, by
which here we mean simply a set of forms {fk,0, . . . , fk,dk−1}, where dk = dimMk(3,C) = 1 + ⌊k3 ⌋, satis-
fying fk,i = qi + O(qi+1) for each i, k. For 0 ≤ i ≤ ⌊k6 ⌋ we define the even Victor-Miller elements: let

fk,2i := e
k/2−3i
2 hi6. For 0 ≤ i≤⌊k−4

6 ⌋ we define the odd Victor-Miller elements: let fk,2i+1 := e
k/2−2−3i
2 g4h

i
6.

To see that these {fk,i} define a basis ofMk(3,C), observe that for even k, we have ⌊k6⌋+1+⌊k−4
6 ⌋+1 = 1+⌊k3 ⌋;

the Victor-Miller shape of their q-expansions guarantees that they are also a basis for Mk(3,Z).

The dimension formulas guarantee that the relation g24 = e2h6 is the only one. In other words,

M(3,Z) = Z[e2, g4, h6]/(g
2
4 − e2h6)

as a graded algebra. Finally, modulo 2 we have e2 ≡ 1, so that our relation becomes h6 = g24 , so that we can
conclude that M(3) =M(3,F2) is a polynomial algebra in g4 over F2.

Case N = 5: Very similar to N = 3, except that forms of weight 2 and 4 already generate. Again, let

e2 := E2,5 = 1+6q+18q2+24q3+42q4+6q5+O(q6) and g4 := E5-crit
4 = q+9q2+28q3+73q4+125q5+O(q6).

Let c4 = q − 4q2 + 2q3 + 8q4 − 5q5 +O(q6) be the unique normalized cuspform of weight 4. Since c4 and g4

have a congruence modulo 13, let d4 :=
g4 − c4

13
= q2 + 2q3 + 5q4 + 10q5 + O(q6) ∈ M4(5,Z). Using the

standard dimension result dimMk(5,C) = 1+2⌊k4⌋, combined with a Victor-Miller–basis construction similar
to above, one can prove that, as a graded algebra,

M(5,Z) = Z[e2, g4, d4]/(g
2
4 − e22d4 − 4g4d4 + 8d24).

Over F2 we have e2 = 1, so that the relation reduces to g24 = d4, so that M(5,F2) = F2[g4]. �

9.2. A(3) and A(5) are local rings. By the discussion in subsection 2.7, to show that A(3) and A(5) are
local F2-algebras, it suffices to prove the following lemma. Recall that G = GQ,2N .

Lemma 9.3. For N = 3, 5, if ρ̄ : G→ GL2(F2) is a Γ0(N)-modular representation, then ρ̄ = 1⊕ 1.

Proof. It is clear that the only reducible semisimple such ρ̄ is 1 ⊕ 1, so it remains to prove that there are
no such irreducible ρ̄. Since M(N) is a polynomial algebra, one may use an elementary method of Serre, as
sketched in [BK, footnote p. 398] in level 1. Alternatively, this fact follows from Serre reciprocity (formerly
Serre’s conjecture). We give a third argument that is in between these in terms of machinery involved.

Suppose ρ̄ : G → GL2(F̄2) Γ0(N)-modular. We first show that the image of ρ̄ is a finite 2-group. By a
theorem of Tate, an irreducible ρ̄ must be ramified at N [Tat]. Since the level is prime, ρ̄|IN ≃ ( 1 ∗

0 1 ), where ∗
is a nontrivial extension (Theorem 4.2). Thus ∗ is an additive character IN → F̄2, which must factor through
the tame inertia quotient of IN , an abelian group isomorphic to

∏

ℓ 6=2 prime Zℓ. The only nontrivial such ∗
factors through Z2/2Z2 = F2, so that |ρ̄(IN )| = 2. Following the proof of part (4) of Proposition 7.6, it
follows that ρ̄|DN ≃ ( 1 ∗

0 1 ) which implies that ρ̄(DN ) is an elementary abelian 2-group. Therefore, it follows
that ρ̄|GQ(

√
−N)

is unramified outside {2,∞}. From [Se, Corollary to Theorem B] (see also [MT]), it follows

that ρ̄|GQ(
√

−N)
is reducible. From class field theory it follows that the maximal abelian extension of Q(

√
−N)

unramified outside {2,∞} is a pro-2 extension of Q(
√
−N). Hence, the image ρ̄(G) is a 2-group, finite since ρ̄

is continuous, as claimed. But any 2-subgroup of GL2(F̄2) is contained in a unipotent Borel. Therefore ρ̄ is
reducible, hence trivial. �

Corollary 9.4. A(3) and A(5) are pro-2 noetherian local rings with residue field F2.

9.3. Tangent spaces to A(3,F2) and A(5,F2). For N = 3, 5, we can strengthen and refine Corollary 8.1.
Let m(N) be the maximal ideal of A(N), and m(N)red be the maximal ideal of A(N)red. We state the result
for N = 3 and N = 5 separately, and then combine these to get a general result.

Proposition 9.5.

(1) dimTanA(3) = 4, and the maximal ideal is generated by T11, T5, T13, and T7.

(2) The maximal ideal of A(3)red is generated by T11 and any two of T5, T7, T13.

(3) In (1) and (2), Tq′ may replace Tq if q′ is a prime congruent to q modulo 24.
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Proposition 9.6.

(1) dimTanA(5) = 4, and the maximal ideal is generated by T13, T3, T11 and T7.

(2) The maximal ideal of A(5)red is generated by T13 and any two of T3, T7, T11.

(3) In (1), (2), Tq′ may replace Tq if Frobq = Frobq′ in Gal
(

Q(i,
√
2,
√
5)/Q

)

.

Corollary 9.7. For N = 3, 5, we have

(1) dimTanA(N) = 4, with the maximal ideal generated by τ(g±N ), τ(g−−N ), τ(g+−N ), and τ(g−7 ).

(2) m(N)red is generated by τ red(g±N ) and any two of τ red(g−−N ), τ red(g+−N ), and τ red(g−7 ).

Corollary 9.7 follows from Corollary 7.4 and Propositions 7.10, 9.5 and 9.6.

Proof of Proposition 9.5. By Corollary 9.4 we know that A(3) = A(3)1⊕1 is already local. Write m,mred

for m(3),m(3)red, respectively. The method of Proposition 7.8 and Proposition 7.10 will yield explicit span-
ning sets for m/m2 and mred/(mred)2; we then establish their linear independence in m/m2 by exhibiting
their action on forms explicitly.

Recall that GQ,2·3/G
2
Q,2·3 = Gal(Q(

√
−1,
√
2,
√
3)/Q) = Gal(Q(µ24)/Q), so every element is determined by

its action on the triple v3 = (
√
−1,
√
2,
√
3) and may be represented by Frobq for q in {73, 5, 7, 11, 13, 17, 19, 23}

(or other prime representatives of their congruence classes modulo 24).

Let i ∈ I3 be nontrivial, and let d ∈ D3− Ī3 be the element fixing
√
3. Then the correspondence is as follows.

elt. lift
action sample local

on v3 Frobq at 3

1 g+1 (0, 0, 0) 73 trivial
i g−1 (0, 0, 1) 17 in Ī3
d g+3 (1, 1, 0) 11 in D3

id g−3 (1, 1, 1) 19 in D3

elt. lift
action sample local

on v3 Frobq at 3

c g+7 (1, 0, 0) 23 −
ci g−7 (1, 0, 1) 7 −
cd g+5 (0, 1, 0) 13 −
cid g−5 (0, 1, 1) 5 −

Comparing this chart to Corollary 7.4 tells us that m(3) is generated by, for example, T11, T5, T13, and T7.
For the generators of m(3)red, similarly use Proposition 7.10. It remains to see that T11, T5, T13, and T7 are

linearly independent in m/m2. Let ∆(q) =
∑

2∤n q
n2

be the mod-2 q-expansion of the Ramanujan ∆-function,

so that ∆ and ∆′ := ∆(q3) are both forms in M(3). It is straightforward to verify the following table, for
example using SageMath [Sage].

f T5(f) T7(f) T11(f) T13(f)
∆ 0 0 0 0
∆3 0 0 ∆ 0
∆5 ∆ 0 0 ∆
∆′ 0 0 0 0

∆2∆′ ∆ ∆′ 0 0

From the table, it is clear that ∆3, ∆5 and ∆2∆′ are three forms annihilated by m2 but not by m. Now
suppose T = aT5+bT7+cT11+dT13 is in m2 for some a, b, c, d ∈ F2. Then T (∆

3) = c∆ and T (∆5) = (a+d)∆
and T (∆2∆′) = a∆+ b∆′ are all three equal to zero, so a = b = c = d = 0. �

Proof of Proposition 9.6. The proof for N = 5 is analogous; we highlight a few details. The Frattini field
K = Q(

√
−1,
√
2,
√
5) has index 2 in Q(µ40). So Frobq in Gal(K/Q) depends on congruences modulo 40.

Table of elements in Gal(K/Q) with local-at-5 subgroups and action on v5 = (
√
−1,
√
2,
√
5):
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elt. lift
action sample local

on v5 Frobq at 5

1 g+1 (0, 0, 0) 41, 89 trivial
i g−1 (0, 0, 1) 17, 73 in Ī5
d g+5 (0, 1, 0) 61, 29 in D̄5

id g−5 (0, 1, 1) 13, 37 in D̄5

elt. lift
action sample local

on v5 Frobq at 5

c g+7 (1, 0, 0) 31, 79 −
ci g−7 (1, 0, 1) 7, 23 −
cd g+3 (1, 1, 0) 11, 19 −
cid g−3 (1, 1, 1) 3, 67 −

The forms ∆3, ∆5, and ∆2∆(q5) again serve as witnesses for the linear independence of {T3, T7, T11, T13}
in m(5)/m(5)2. The details are left to the reader. �

10. Structure of A(N,F2)
vnew for N = 3, 5

We now focus onA(N)vnew, the Hecke algebra acting faithfully on the very new formsM(N)vnew = ker(UN+1).
In subsection 10.1 we use the nilpotence method (Theorem 2.1) to show that dimA(N)vnew ≥ 2. In
subsection 10.2 we deduce thatA(N)vnew is a complete regular local F2-algebra of dimension 2 (Corollary 10.2)
and deduce that dimTanA(N)red = 3 (Corollary 10.4).

Recall that U ′
N = UN + 1. Let mnew, mpf be the maximal ideals of A(N)new, A(N)pf , respectively.

10.1. Lower bound on dimA(N)vnew by the nilpotence method.

Theorem 10.1. For N = 3, 5, the Krull dimension of A(N)vnew is at least 2.

Proof. Recall from (6.5.2) and (6.5.3) the presentations of A(N)new and A(N)vnew as quotients of A(N)pf :
to wit, A(N)new = A(N)pf/(U ′

N )2 and A(N)vnew = A(N)pf/(U ′
N ). It is thus clear that U ′

N is nilpotent
in A(N)new, so that dimA(N)new = dimA(N)vnew. It therefore suffices to show that dimA(N)new ≥ 2.
We prove this with the nilpotence method, by showing that the four conditions of Theorem 2.1 are satisfied
for A := A(N)new.

Condition (1): By Lemma 9.1, M(N) = F2[f ] for a form f = fN .

Condition (2): Set K := K(N)new as in (6.5.1), by (2.8.3) in duality with A = A(N)pf/(U ′
N)

2.

Condition (3): The Hecke operators U ′
N as well as every Tℓ for ℓ ∤ 2N act locally nilpotently on M(N) and

are therefore in mpf . By [MeD, Proposition 6.2] for general level, generalizing [NS1, Théorème 3.1], given any
prime ℓ ∤ 2N , the sequence {Tℓ(fn)}n satisfies a linear recurrence over M(N) whose companion polynomial
Pℓ,f = Xℓ+1 + a1X

ℓ + · · · + aℓ+1 has coefficients aj ∈ M(N) with degf aj ≤ j and degf aℓ+1 = ℓ + 1.
Equivalently, both the f -degree and the total degree (as a polynomial in X and f) of Pℓ,f coincide with its
X-degree. By a similar argument, {UN(fn)}n satisfies an M(N)-linear recurrence whose polynomial PN,f
also has its f -degree and total degree coincide with its X-degree N . Therefore {U ′

N(f
n)} = {UN(fn) + fn}

will satisfy an M(N)-linear recurrence with characteristic polynomial P ′
N,f = (X − f)PN,f ; the degree

constraints of P ′
N,f follow from those of PN,f .

For completeness, we include below both PN,f and Pℓ,f for Tℓ that generate m
pf (Lemma 8.2) and hence its

quotient mnew. For N = 3 we may take ℓ = 13 and ℓ = 7; for N = 5 we take ℓ = 11 and ℓ = 7: see the
element tables in the proofs of Propositions 9.5 and 9.6.
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N = 3 ℓ Pℓ,y for y = f3

3 X3 + yX2 + (y2 + y)X + y3 + y

7 X8 + (y2 + y)(X4 +X3) + (y4 + y3 + y2 + y)(X2 +X) + y8

13 X14 + y2X12 + y4X10 + y6X8 + (y8 + y4 + y2)X6 + (y10 + y6 + y2)X4

+ (y12 + y6 + y4 + y2 + y)X2 + (y2 + y)X + y14

N = 5 ℓ Pℓ,y for y = f5

5 X5 + yX4 + (y2 + y)X3 + (y3 + y)X2 + (y4 + y3 + y2 + y)X + y5 + y

7 X8 + (y2 + y)X6 + (y2 + y)X5 + (y6 + y5 + y2 + y)(X2 +X) + y8

11 X12 + y2X8 + (y4 + y2)X6 + y6X4 + (y8 + y6 + y2 + y)X2 + (y2 + y)X + y12

Condition (4): We seek a linearly independent sequence of forms {gn} in K(N)new with the property

that degf gn grows no faster than linearly in n. By (2.4.2) we may replace degf (gn) in this estimate with its
Γ1(N)–weight filtration w1(gn).

Write f = fN and let u = w1(fN ); by §2.4 we know that u = 3 (N = 3) or u = 2 (N = 5).

For n odd, consider the F2-vector spaceWn spanned by the forms θ(f), θ(f3), . . . , θ(fn) insideM(N) ⊂ F2JqK.
On one hand, by (2.6.2) we have Wn ⊆ K(N). On the other hand, by (2.4.2) for each i, we have

w1

(

θ(f i)
)

≤ w1(f
i) + 3 = ui+ 3.

Therefore (2.4.3) implies that Wn ⊆ K(N)un+6. Moreover, we claim that

(10.1.1) dimWn =
n− 1

2
.

Indeed, f = q + O(q2), so that for odd i we have θ(f i) = qi + O(qi+1). Thus θ(f), θ(f3), . . . , θ(fn) are
linearly independent, and there are n−1

2 of them.

Now consider the image of Wn under the operator (U ′
N )2. By Lemma 2.2, we have (U ′

N )2Wn ⊂ M(N)old.
More precisely, since θ commutes with U ′

N , we have

(10.1.2) (U ′
N )2Wn ⊆ θ

(

Mun+6(N)old
)

,

where we write

(10.1.3) Mk(N)old :=Mk(1) +WNMk(1).

We now analyze dim θ
(

Mk(N)old
)

for any even k ≥ 0. Standard dimension formulas (for example, [DS,

Theorem 3.5.1]) tell us that dimMk(1) =
k
12 + O(1). Since WN is an involution and the sum in (10.1.3) is

direct on cuspforms [DM, Proposition 5.4], we conclude that for any even k ≥ 0, we have

(10.1.4) dimMk(N)old =
k

6
+O(1).

On the other hand, by (2.6.3), (2.4.2), and (2.4.3), the kernel of θ onMk(N)old certainly contains the squares
of forms in M⌊ k

2 ⌋
(N)old. Thus by (10.1.4) we obtain

(10.1.5) dimker
(

θ
∣

∣Mk(N)old
)

≥ k

12
+O(1),

so that combining (10.1.4) and (10.1.5) gives

(10.1.6) dim θ
(

Mk(N)old
)

≤ k

12
+O(1).

Finally, we return to (10.1.2). By (10.1.1), the operator (U ′
N )2 maps a space of dimension n−1

2 to a space
whose dimension, by (10.1.6), grows no faster than un

12 +O(1). Therefore,

dimker
(

(U ′
N )2

∣

∣Wn

)

≥ (6− u)n
12

+O(1).
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Since u ≤ 3, we can certainly choose gn ∈ ker
(

(U ′
N )2

∣

∣Wn

)

⊂ K(N)new, at least for n ≫ 0, so that the
sequence {gn} is linearly independent. Moreover, w1(gn) ≤ un, as required.

Finally, Theorem 2.1 allows us to conclude that dimA(N)vnew = dimA(N)new ≥ 2, as desired. �

10.2. Main result and corollaries.

Corollary 10.2. For N = 3, 5, A(N)vnew is a complete regular local F2-algebra of dimension 2.

The proof is immediate from Theorem 10.1 and Lemma 8.4. To give a more precise statement, we en-
dow F2Jy, zK with a grading by (Z/8Z)×/〈N〉 ≃ {±1} by giving y and z both the grading −1. Also
write τvnew for the pseudorepresentation GQ,2N → A(N)vnew1⊕1 coming from τmod.

Corollary 10.3. For N = 3, 5, the map y 7→ τvnew(g±−N ) and z 7→ τvnew(g−7 ) gives a graded isomorphism

F2Jy, zK ≃ A(N)vnew of (Z/8Z)×/〈N〉-graded F2-algebras. In particular:

• The map F2Jy, zK→ A(3)vnew given by y 7→ T13 and z 7→ T7 is an isomorphism of Gal(Q(
√
−2)/Q)-

graded algebras.

• The map F2Jy, zK → A(5)vnew given by y 7→ T11 and z 7→ T7 is an isomorphism of Gal(Q(i)/Q)-
graded algebras.

Proof. Corollary 10.2 and Lemma 8.4. For explicit generators, see Propositions 9.5 and 9.6. �

Corollary 10.4. For N = 3, 5, we have dimTanA(N)red = 3.

Proof. On one hand, by Theorem 6.2 the level-1 Hecke algebra A(1) is a dimension-2 domain, so that the
quotient map A(N) ։ A(1) factors through A(N)red. Corollary 10.2 and the same logic imply that the
map A(N) ։ A(N)vnew factors through A(N)red as well. On the other hand, Propositions 9.5 and 9.6 tell
us that dimTanA(N)red is at most 3. Therefore it suffices to prove, for example, that the kernel J1 of
the induced quotient map A(N)red ։ A(1) is nonzero. We show this by proving that J1 + Jvnew 6= Jvnew,
where Jvnew is the kernel of the induced map A(N)red ։ A(N)vnew.

Since A(N)vnew = A(N)pf/(U ′
N ), the relation in (6.4.3) implies that Jvnew, when projected to A(1), con-

tains TN = τmod
2,1 (FrobN ), one of the two generators of the maximal ideal of A(1). ThereforeA(N)red/(Jvnew+J1)

is a quotient of A(1)/(TN ), so has Krull dimension at most 1. Since A(N)red/Jvnew = A(N)vnew has Krull
dimension 2, we must have Jvnew + J1 6= Jvnew, so that J1 6= 0, as desired. �

11. Structure of R(N,F2)
red and A(N,F2)

red for N = 3, 5

We are now ready to state and prove one of the main results of this article where for N = 3, 5 we describe the
structure of A(N)red := A(N,F2)

red precisely, by proving that it is isomorphic to R(N)red := R(N,F2)
red.

In other words, we prove Theorem A.

Proposition 11.1. For N = 3, 5, R(N) has two minimal prime ideals, and the quotient by each of them
factors through ϕ : R(N) ։ A(N).

Proof. By Corollary 7.9, the Krull dimension of R(N) is 2. On one hand, its quotient R(1) is isomorphic
to A(1), which is a domain of Krull dimension 2 (Theorem 6.2). Therefore the kernel pold := JN,1 of
the map ψN,1 : R(N) ։ R(1) from (4.2.3) is a minimal prime ideal of R(N). Moreover, ψN,1 factors
through A(N), since again its target is isomorphic to A(1). On the other hand, A(N)vnew is also a quotient,
via A(N), of R(N); and for N = 3, 5 we know that A(N)vnew is also a domain of Krull dimension 2
(Corollary 10.2). Therefore the kernel pvnew of the corresponding surjection R(N) ։ A(N)vnew is also a
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minimal prime of R(N).

(11.0.1)

R(N) A(N)

A(1)

A(N)vnew

R(1)

F2Jy, zK

F2Jx, yK

ϕ

ϕvnew

ψN,1

∼ ∼∼

∼

We claim that pold 6= pvnew. Indeed, any element of R(N) of the form τuniv(FrobN ) must be in pvnew, since
any such element maps to FN = τmod(FrobN ) in A(N) and then to zero in A(N)vnew by Lemma 8.3. At
the same time the image of FN in A(1) is TN , which for N = 3, 5 modulo 8 is a generator of the maximal
ideal, and is in any case nonzero, so that none of the elements of the form τuniv(FrobN ) are in pvnew.
Furthermore, pold 6⊂ pvnew, since the two have the same depth.

We now claim that every prime ideal of R(N) contains either pold or pvnew, so that these are the only
minimal primes. Let J be the ideal of R(N) generated by elements of the form τuniv(FrobN ) and the
nilradical of R(N), so that J ⊆ pvnew. We show that J = pvnew. Since J contains the nilradical, R(N)/J is
a quotient of R(N)red. Further, the image of τuniv(FrobN ) is a generator of the maximal ideal of R(N)red

(in other words, the image of τuniv(FrobN ) is nonzero in m(N)red/(m(N)red)2), because this is true in its
quotient A(1). Therefore,

dimTanR(N)/J ≤ dimTanR(N)red − 1 ≤ 2,

where the last inequality follows from Proposition 7.10. Therefore, R(N)/J is a quotient of a complete
regular local F2-algebra of Krull dimension 2, which has A(N)vnew ∼= F2Jy, zK as a quotient. In other words,
R(N)/J ∼= A(N)vnew and J = pvnew. Finally, by Proposition 7.8, any prime ideal p of R(N) that does
not contain pold contains the set τuniv(DN ) and hence, in particular τuniv(FrobN ). Therefore, any such p

contains J = pvnew, as claimed. �

Corollary 11.2. The surjections R̂(N) ։ R(N)
ϕ
։ A(N) induce isomorphisms

R̂(N)red ≃ R(N)red ≃ A(N)red.

Proof. By Proposition 11.1, all the minimal primes of R(N) contain kerϕ, so that they also correspond to

the minimal primes of A(N). Hence, that ker(ϕ) is nilpotent. By Proposition 7.7, the primes of R̂(N) are
all contractions of primes of R(N). �

Theorem 11.3. For N = 3, 5, the reduced Hecke algebra A(N)red is isomorphic to
F2Ja, b, cK
(

ab
) , with

a ∈ τ red(g±N ) + (m(N)red)2, b ∈ τ red(g−7 ) + (m(N)red)2, and c = τ red(g±−N ).

(1) For N = 3, let f ∈ F2Jx, yK be the power series satisfying f(T11, T13) = T7 in A(1), and let
g ∈ F2Jy, zK be the power series satisfying g(T13, T7) = T11 in A(N)vnew: that is,

f = xy + x3y + xy5 + x7y + x5y3 + x3y5 + x9y + x5y5 + x3y7 + xy9 + xyO
(

(x2, y2)5
)

and g = yz + z2 + yz3 + y2z2 + y3z + y3z3 + y2z4 +O
(

y4, (y, z)8
)

. Then the map

F2Jx, y, zK
(

z − f(x, y)
)(

x− g(y, z)
) −→ A(N)red induced by x 7→ T11, y 7→ T13, z 7→ T7

is an isomorphism.

(2) For N = 5, let f ′ ∈ F2Jx, yK be the power series satisfying f ′(T13, T11) = T7 in A(1), and let
g′ ∈ F2Jy, zK be the power series satisfying g′(T11, T7) = T13 in A(N)vnew. Then the map

F2Jx, y, zK
(

z − f ′(x, y)
)(

x− g′(y, z)
) → A(N)red induced by x 7→ T13, y 7→ T11, z 7→ T7

is an isomorphism.
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Proof. Following the notation of the proof of Proposition 11.1, write predold and predvnew for the images of pold
and pvnew respectively, in A(N)red. These are the two minimal primes of the reduced ring A(N)red, so
that in particular predold ∩ predvnew =

(

0
)

. We know from Corollary 10.4 that dimTanA(N)red = 3; moreover
by putting Corollary 9.7, Theorem 6.2, and Corollary 10.3 together, we know that can choose an ordered
triple of generators (X,Y, Z) of m(N)red so that the first two generate m(1) and the second and third
generate m(N)vnew: namely X = τ(g±N ), Y = τ(g±−N ), and Z = τ(g−7 ). In particular for N = 3 we can
choose (T11, T13, T7); for N = 5 we choose (T13, T11, T7). Then we can find a unique power series f ∈ F2Jx, yK
so that Z = f(X,Y ) in A(1); more precisely, f is in m2

F2Jx,yK because Z maps to 0 in the cotangent space

of A(1). Similarly, there is a unique power series g ∈ m2
F2Jy,zK with X = g(Y, Z) in A(N)vnew.

Now consider the map α : F2Jx, y, zK ։ A(N)red given by x 7→ X, y 7→ Y, z 7→ Z. By construction,
z − f(x, y) ∈ predold and x− g(y, z) ∈ predvnew. Since furthermore,

F2Jx, y, zK
(

z − f(x, y)
) ≃ F2JX,Y K = A(1),

we have α−1(predold) =
(

z − f(x, y)
)

. Similarly, α−1(predvnew) =
(

x− g(y, z)
)

. By considering degrees, it is clear
that the elements z − f(x, y) and x − g(y, z) of the UFD F2Jx, y, zK have no common factors — they are
nonassociate irreducibles — so that the intersection and the product of the ideals they generate agree:

kerα = α−1(predold ∩ p
red
vnew) = α−1(predold) ∩ α−1(predvnew) =

(

z − f(x, y)
)(

x− g(y, z)
)

.

Since the images of x−g(y, z), y, and z−f(x, y) form a basis of the cotangent space of F2Jx, y, zK, the reduced
Hecke algebra has the structure F2Ja, b, cK/(ab) as claimed. The computation of f and g in the caseN = 3 and
(X,Y, Z) = (T11, T13, T7) proceeds by linear algebra by constructing a basis of K(1) (respectively, K(3)vnew)
dual to the monomials in x and y of A(1) (respectively, y and z of A(3)vnew) �

Remark 11.4. The obstacle to extending Theorem 11.3 from N = 3, 5 to all primes N ≡ 3, 5 (mod 8) is the
lower bound on the Krull dimension of A(N)vnew1⊕1 from Theorem 10.1, which implies that A(N)vnew1⊕1 ≃ F2Jy, zK
(Corollary 10.2). The limitation is twofold.

• Condition (1) of the nilpotence method (Theorem 2.1) requires that the ambient space of modular
forms be a polynomial algebra over a finite field. Using Riemann-Hurwitz and the ideas described
in Remark 9.2, one can show that this happens if and only if X0(2N) has genus 0. This a technical,
not a conceptual, limitation to the nilpotence method, but we do not know of any workarounds at
the moment.

• Condition (4) of the nilpotence method requires as input an infinite sequence of forms in K(N)new1⊕1

whose filtration grows at most linearly. In the proof of Theorem 10.1, we essentially obtain such
a sequence from dimension formulas for Mk(1) = Mk(1)1⊕1 and Mk(N) = Mk(N)1⊕1, from which
we can deduce information about dimMk(N)new1⊕1. But in general, standard dimension formulas are
insufficient: they must be refined for various ρ̄.

There are several known ρ̄-dimension formula techniques: Bergdall-Pollack [BP, Proposition
6.9(a)] uses Ash-Stevens, which requires p ≥ 5; Jochnowitz [JCo, Lemma 6.4], uses θ twists for
p ≥ 5 and the Eichler-Selberg trace formula, but is limited by dimension < p in characteristic p;
Anni-Ghitza-Medvedovsky (forthcoming, currently also only for p ≥ 5) refines Jochnowitz’s trace
formula work with deeper congruences; see also [AGM]. All of these rely on propagation from low
weight and none of them yet allow for p = 2. The low-weight piece in our context is done: since the
level-raising condition for 1⊕ 1 modulo 2 is satisfied at every odd N , [DM, Theorem 2(2b)] guar-
antees that Kk(N)new1⊕1 is nonempty for some weight k. But the propagation part for p = 2 awaits
further development.

Despite these limitations, one would not be surprised to discover thatR(N)red1⊕1
∼= A(N)red1⊕1

∼= F2Ja, b, cK/(ab)
for all primes N ≡ 3, 5 mod 8. △
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12. Structure of A(N,F2)
pf for N = 3, 5

We now determine the structure of A(N)pf for N = 3, 5. Let τpf : GQ,2N → A(N)pf1⊕1 be the pseudorepre-

sentation obtained by composing τmod with the natural injection A(N)1⊕1 → A(N)pf1⊕1. In this section we

write τ for τpf . Recall that c ∈ GQ,2N is a complex conjugation.

Theorem 12.1. Let N = 3, 5, and let Y = τ(g±−N ) and Z = τ(ci) for any choice of g±−N , c and i ∈ IN .
Then the map

F2Jy, z, uK

(zu2)
։ A(N)pf induced by u 7→ U ′

N , y 7→ Y z 7→ Z

is an isomorphism. If N = 3 then (Z, Y ) may be (T13, T7); if N = 5 then (Z, Y ) may be (T11, T7).

The proof has a number of steps. We first determine the structure ofA(N)pf,old. Recall from subsection 2.13.4
that M(N)old = M(1) +WNM(1) is a subspace of M(N) stable under the action of both A(N) and UN ,
and A(N)pf,old is the largest quotient of A(N)pf acting faithfully on M(N)old.

Lemma 12.2. For any prime N ≡ 3, 5 mod 8 we have A(N)pf,old1⊕1 ≃ F2JU
′
N , Y K.

More precisely, given any g±−N , the map F2Ju, yK → A(N)pf,old1⊕1 given by u 7→ U ′
N and y 7→ τ(g±−N ) is an

isomorphism. In particular,

A(3)pf,old ∼= F2JU
′
3, T13K and A(5)pf,old ∼= F2JU

′
5, T11K.

Proof. Recall that the Hecke algebra A(N) sits inside A(N)pf as a closed subalgebra, with the latter fi-
nite over the former (subsection 2.8 and Corollary 5.2). Moreover, the image of A(N)1⊕1 under the nat-

ural surjection A(N)pf1⊕1 ։ A(N)pf,old1⊕1 is A(N)old1⊕1
∼= A(1). Therefore A(N)pf,old1⊕1 is finite over A(1), so

dimA(N)pf,old1⊕1 = dimA(1) = 2 (Theorem 6.2). We now look at generators closely: the maximal ideal

of A(1) is generated by the images FN and Y of τ(FrobN ) and τ(g±−N ), respectively. Therefore, the finiteness

of A(N)pf,old1⊕1 over A(1) implies that the maximal ideal of A(N)pf,old1⊕1 is generated by FN , Y , and U ′
N = UN+1.

Since, by (6.4.3), the image of FN in the cotangent space of A(N)pf,old1⊕1 is 0, the maximal ideal of A(N)pf,old1⊕1

is generated by Y and U ′
N . As dimA(N)pf,old1⊕1 = 2, this is a minimal generating set, and the map

F2Jy, uK→ A(N)pf,old1⊕1

given by y 7→ Y = image of τ(g±−N ) and u 7→ U ′
N is an isomorphism. �

Lemma 12.3. For N = 3, 5 we have dimTanA(N)pf = 3. The maximal ideal is generated by U ′
N and any

choice of τ(g±−N ) and τ(g−7 ). For example, the maximal ideal of A(3)pf is generated by T13, T7, and U
′
3, and

the maximal ideal of A(5)pf is generated by T11, T7, and U
′
5.

Proof. On one hand, dimTanA(N)pf ≤ 3 (Lemma 8.2). On the other hand, Lemma 12.2 implies that
dimA(N)pf ≥ 2, so that dimTanA(N)pf ≥ 2 as well. If dimTanA(N)pf = 2, then A(N)pf is a regular
local ring of dimension 2 and hence isomorphic to its quotient A(N)pf,old. But that would imply that the
annihilator of M(N)old in A(N)pf is trivial, which would mean that the same is true for the annihilator pold
of M(N)old in A(N), which in turn would mean that A(N) ≃ A(1). But that is absurd — for example,
Proposition 11.1 shows that A(N) has two distinct minimal primes, so that pold 6= (0). The precise statement
about generators follows from the analysis in Lemma 8.2. �

We are now ready to prove the structure theorem for A(N)pf (Theorem 12.1).

Proof of Theorem 12.1. From Lemma 12.3 we know that Y = τ(g±−N ), Z = τ(ci) and U ′
N generate the

maximal ideal of A(N)pf . Let β : F2Jy, z, uK ։ A(N)pf be the map sending y 7→ Y , z 7→ Z, and u 7→ U ′
N .

Claim 1: kerβ ⊆ (zu): Note that τmod
2,1 (ci) = τmod

2,1 (c) = 0 for any complex conjugation c and i ∈ IN .

Here τmod
2,1 : GQ,2 → A(1) is the level-one modular pseudorepresentation. Hence, β(z) annihilates M(N)old.
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Consider the natural surjections A(N)pf ։ A(N)pf,old and A(N)pf ։ A(N)vnew. Precomposed with β
and the isomorphism from Lemma 12.2, the former becomes the quotient map F2Jy, z, uK ։ F2Jy, uK, with
kernel (z). Indeed, from the observation above, we see that z is in the kernel and Lemma 12.2 then implies
that the kernel is (z). Similarly, precomposed with β and the isomorphism from Corollary 10.2 the latter
becomes the quotient map F2Jy, z, uK ։ F2Jy, zK, with kernel (u).

(12.0.1)

F2Jy, z, uK A(N)pf

A(N)pf,old

A(N)vnew

F2Jy, uK

F2Jy, zK

β

ker=(U ′
N )

ker=(z)

ker=(u)

∼

∼

Since both the maps F2Jy, z, uK ։ A(N)pf,old and F2Jy, z, uK ։ A(N)vnew factor through β, its kernel ker(β)
is contained in (z) ∩ (u) = (zu).

Claim 2: kerβ ⊇ (zu2): Since β(u2)M(N) = (U ′
N )2M(N) ⊆ M(N)old (Lemma 2.2) and β(z) annihilates

M(N)old, the operator β(zu2) annihilates M(N).

Claim 3: kerβ = (zu2): By Claim 1 above, any element of kerβ is of the form zut for some t ∈ F2Jy, z, uK.

Suppose t 6∈ (u). Then β(zt) does not annihilate M(N)vnew, so that by (6.5.4) there is an f ∈ K(N)vnew

with β(zt)(f) 6= 0. By Lemma 12.4 below, f is in the image of U ′
N . This means that if U ′

N(g) = f for
some g ∈ K(N), then β(zut)(g) 6= 0. Hence zut 6∈ kerβ. �

To complete the argument, we show that every very new form in kerU2 is in the image of U ′
N :

Lemma 12.4.

Let f be in K(N)vnew for a prime N 6≡ 1 mod 8. There exists g ∈ K(N) with U ′
N (g) = f .

Proof. Write f = f1 + f3 + f5 + f7, with fi ∈ K(N) as in Theorem 3.4. Since UN is an N -graded operator
and f ∈ K(N)vnew = ker(UN + 1), we have UNf = f , so that UNfi must equal fNi. For i 6≡ 1, N mod 8,
let f1,i := f1 + fi. Then U

′
N (f1,i) = f . �

We deduce the structure of A(N)new. Write τnew for the composition GQ,2N
τmod

−→ A(N) ։ A(N)new.

Corollary 12.5. Let N = 3, 5, and let Y = τnew(g±−N ) and Z = τnew(ci) for any choice of g±−N , complex
conjugation c, and i ∈ IN . Then the following map is an isomorphism:

F2Jy, z, uK

(u2)
։ A(N)new defined by u 7→ U ′

N , y 7→ Y z 7→ Z.

If N = 3 then we may take (Z, Y ) = (T13, T7); if N = 5 then (Z, Y ) may be (T11, T7).

Proof. Theorem 12.1 and (6.5.2). �

13. Structure of A(N,F2) for N = 3, 5

Finally, we determine the structure of A(N) for N = 3, 5. In other words, we prove Theorem B.

Theorem 13.1. Let N = 3 or 5. Choose any Y = τmod(g±−N ), and Z = τmod(ci) for any choice of c and

any i ∈ IN . Recall that FN = τmod(FrobN ). Then the map

F2Jx, y, z, wK

(xz, xw, (z + w)2)
։ A(N) induced by x 7→ FN , y 7→ Y, z 7→ Z, w 7→ UNZ

is an isomorphism of (Z/8Z)×-graded algebras. Here the grading on F2Jx,y,z,wK
(xz,xw,(z+w)2) is defined by x having

grading N , y and w having grading −N , and z having grading 7.
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Proof. Denote τmod by τ throughout the proof. From Corollary 9.7, A(N) is topologically generated
by FN , Y , Z, and any Y ′ = τ(g−ε−N ) chosen so that Y = τ(gε−N ). First we adjust these generators slightly.
Recall that (5.2.1) gives us that, for any i ∈ IN ,

UNZ = UN τ(ci) = τ(c i FrobN )− τ(c FrobN );

moreover, the image of the set {Y, Y ′} inm(N)/m(N)2 is the same as the image of the set {τ(c i FrobN ), τ(c FrobN )}.
Therefore we can replace Y ′ by UNZ in the generating set.

Now let F2Jx, y, z, wK be an abstract power series ring endowed with the grading as described in the statement
of Theorem 13.1. By the discussion above, the map γ defined by sending x 7→ FN , y 7→ Y , z 7→ Z,
and w 7→ UNZ gives us a surjection of (Z/8Z)×-graded F2-algebras γ : F2Jx, y, z, wK ։ A(N). We now view
A(N) as a subalgebra of A(N)pf ≃ F2Jy1, z1, u1K/(z1u

2
1) via δ, the inverse of the map β from Theorem 12.1,

in order to understand ker γ:

F2Jx, y, z, wK
γ
։ A(N) ⊂ A(N)pf

δ−→∼ F2Jy1, z1, u1K/(z1u
2
1).

Here the y and the z of the first ring map to the image of y1 and z1, respectively, of the last.

We show that (w+z)2, xz and xw are all in kerγ = ker δ◦γ. The first is simple: δ◦γ(w+z) = δ(UNZ+Z) = u1z1,
so that δ◦γ

(

(w+z)2
)

= 0 and (w+z)2 ∈ kerγ. For the second and third, recall that FN = FNU
′
N+(U ′

N)
2 (6.4.3),

so that δ ◦ γ(x(w + z)) = δ(FNU
′
NZ) = 0, as FN is a multiple of U ′

N and (U ′
N )2Z is in ker δ. More-

over δ ◦ γ(xz) = δ(FNZ) = δ(FNU
′
NZ + (U ′

N)
2Z) = 0. Therefore both xw and xz are in ker γ.

Finally, we claim that ker γ =
(

(w + z)2, xw, xz
)

. For simplicity, reparametrize by letting w0 = w + z (note
that this is not a graded parameter!) and rephrase the claim in the following way: consider the map

η : F2Jx, y, z, w0K→ F2Jy1, z1, u1K

sending x 7→ u21/(1 + u1), y 7→ y1, z 7→ z1, and w0 7→ z1u1. Then our claim ker γ =
(

(w + z)2, xw, xz
)

is

equivalent to the claim η
(

(w2
0 , xw0, xz)

)

= (z1u
2
1). Note that we have shown that η

(

(w2
0 , xw0, xz)

)

⊂ (z1u
2
1);

our goal is to show that there is nothing else in η−1
(

(z1u
2
1)
)

. Observe that any f in F2Jx, y, z, w0K is equivalent

modulo
(

w2
0 , xw0, xz

)

to a power series of the form g = a(x, y) + w0b(y, z) + c(y, z) for some a ∈ F2Jx, yK

and b, c ∈ F2Jy, zK. Then η(g) = a
(

u21/(1 + u1), y1
)

+ z1u1b(y1, z1) + c(y1, z1). By inspection it is clear

that η(g) is a multiple of z1u
2
1 only if g = 0. Therefore η−1

(

(z1u
2)
)

= (w2
0 , xw0, xz), as claimed. Returning

to our original graded parametrization, we have shown that ker γ =
(

(w + z)2, xw, xz
)

. Note that this is a
graded ideal, as expected. �

Note that the element z + w in F2Jx,y,z,wK
(xz,xw,(z+w)2) is nilpotent, and the reduced quotient

(

F2Jx, y, z, wK
(

xz, xw, (z + w)2
)

)red

≃ F2Jx, y, zK

(xz)

matches the results of Theorem 11.3.

14. An R = T theorem for A(N,F2)
pf
1⊕1

In this section we prove an R = T theorem for the partially full Hecke algebra A(N)pf = A(N,F2)
pf
1⊕1

for N = 3, 5. To construct a deformation ring surjecting onto A(N)pf we interpolate the deformation
conditions of Wake–Wang-Erickson [WWE] and Calegari–Specter [CS, arxiv source file].

Let U be a formal variable, and letR(N)pf1⊕1 := R(N,F2)
pf
1⊕1 be the quotient of the polynomial ringR(N)1⊕1[U ]

by the closed ideal J generated by the following elements:

(1) U2 − τuniv(FrobN )U + 1,

(2) τuniv(g FrobN i)− τuniv(g FrobN )− U
(

τuniv(gi)− τuniv(g)
)

, for g ∈ GQ,Np and i ∈ IN ;
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(3) τuniv(g FrobN i)− τuniv(g FrobN )− U−1
(

τuniv(gi)− τuniv(g)
)

, for g ∈ GQ,Np and i ∈ IN .
Here U−1 := τuniv(FrobN )− U , as suggested by (1).

Then R(N)pf1⊕1 is a complete Noetherian local F2-algebra with residue field F2. Moreover, given a profinite

local F2-algebra B, the morphisms R(N)pf1⊕1 → B correspond to tuples (t, α), where t is a B-valued pseu-
dorepresentation with constant determinant and level-N shape deforming 1⊕ 1 and α ∈ B is an element
satisfying the relations (1)–(3) given above.

We are now ready to state and prove the main result of this section.

Theorem 14.1. For N = 3, 5, the tuple (τpf , UN ) induces an isomorphism

R(N)pf1⊕1 ≃ A(N)pf .

Proof. Write τpf : GQ,2N → A(N)pf for the modular pseudorepresentation τmod : GQ,2N → A(N) composed
with the natural inclusion A(N) →֒ A(N)pf . By (5.1.2), Proposition 5.3, and Remark 5.5, the element UN
of A(N)pf satisfies (1)–(3), inducing the surjective morphism

ϕpf : R(N)pf1⊕1 ։ A(N)pf .

Conditions (1)-(3), together with the proof of Lemma 8.2, implies that the cotangent space of R(N)pf1⊕1 is

spanned by the images of U + 1, τuniv(ci) and τuniv(cFrobN ). Note that

ϕpf(X + 1) = U ′
N , ϕpf

(

τuniv(ci)
)

= τmod(ci), and ϕpf
(

τuniv(cFrobN )
)

= τmod(cFrobN ).

From Theorem 12.1, we know that there exists a surjective map

β : F2Jy, z, uK→ A(N)pf sending y 7→ τmod(cFrobN ), z 7→ τmod(ci), u 7→ U ′
N .

Therefore, the surjective map

β′ : F2Jy, z, uK→R(N)pf1⊕1 sending y 7→ τuniv(cFrobN ), z 7→ τuniv(ci), u 7→ U + 1.

is a lift of β: that is, ϕpf◦β′ = β. Combining conditions (2) and (3) for g = c, we obtain Uτuniv(ci) = U−1τuniv(ci):
i.e., (U + 1)2 τuniv(ci) = 0. Thus zu2 ∈ kerβ′. On the other hand, by Theorem 12.1, kerβ = (zu2).
Since ϕpf ◦ β′ = β and β′ is surjective, it follows that kerβ = kerβ′ so that ϕpf is injective. Since ϕpf is
surjective by construction, our claim is proved. �

Note that, for N = 3, 5, the trace algebras of τmod and τuniv in A(N)pf andR(N)pf1⊕1 are A(N) andR(N)1⊕1,
respectively. So we obtain the following immediate corollary.

Corollary 14.2. For N = 3, 5, under the isomorphism obtained in Theorem 14.1, A(N) is isomorphic to

the image of R(N)1⊕1 in R(N)pf1⊕1.

15. Complements and questions

In this last section we gather some easy-to-deduce information about Hecke algebras and deformation rings
of levels closely related to Γ0(3) and Γ0(5). We also include some unanswered questions.

15.1. Hecke algebras for Γ0(9) and Γ0(25) modulo 2. The analysis we have already done allows us to
determine the structure of the reduced quotients A(9,F2)

red and A(25,F2)
red
1⊕1 with minimal additional work.

Proposition 15.1. If N = 3 or 5, then we have an isomorphism

R̂(N,F2)
red
1⊕1 ≃ A(N2,F2)

red
1⊕1 ≃ A(N,F2)

red
1⊕1

Note that A(9,F2) = A(9,F2)1⊕1 is a local ring, whereas A(25,F2) has two local components.
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Proof. On the deformation side, the rings R̂(N2,F2)1⊕1 and R̂(N,F2)1⊕1 coincide by definition. On the
Hecke side, restriction to modular forms of levelN induces a surjective morphismA(N2,F2)1⊕1 ։ A(N,F2)1⊕1.
Combining these with the map ϕ̂ from (2.11.3) gives us

(15.1.1) R̂(N,F2)1⊕1 = R̂(N2,F2)1⊕1

ϕ̂
։ A(N2,F2)1⊕1 ։ A(N,F2)1⊕1.

Taking reduced quotients, along with Corollary 11.2, completes the proof. �

Since characteristic-zero Galois representations attached to a form of level N2 — for example, to the twist of
a level-one eigenform by a Dirichlet character modulo N — need not have level-N shape, we do not expect ϕ̂
to factor through R(N,F2)1⊕1.

15.2. Hecke algebras of for Γ1(3) and Γ1(5) modulo 2. We can achieve similar results for Γ1(3)
and Γ1(5). The construction of the spaces of mod-2 modular forms and the Hecke algebra are similar to those
for Γ0(N) described in subsections 2.3 and 2.7. For odd N we define spacesMk

(

Γ1(N),F2

)

of mod-2 modular
forms of level Γ1(N) as reductions of q-expansions of characteristic-zero Γ1(N)-modular forms of weight k
whose q-expansion at the infinity cusp is integral. We also let Ak

(

Γ1(N),F2

)

be the Hecke algebra generated

by the action of the Hecke operators prime to 2N acting on Mk

(

Γ1(N),F2). As described in subsection 2.4,

we have embeddings Mk

(

Γ1(N),F2

)

→֒ Mk+1

(

Γ1(N),F2

)

induced by multiplication by E1,χN lifting the

Hasse invariant, so that restriction defines projections Ak+1

(

Γ1(N),F2

)

։ Ak
(

Γ1(N),F2

)

, and we can form
the Hecke algebra

A
(

Γ1(N),F2

)

:= lim←−
k

Ak
(

Γ1(N),F2

)

acting on M
(

Γ1(N),F2

)

:=
⋃

k

Mk

(

Γ1(N),F2

)

.

Both the Hecke algebra and the space of forms break up into ρ̄ components as in (2.7.1), (2.7.2).

Proposition 15.2. For N = 3, 5 restriction to forms of level Γ0(N) induces the isomorphism

A
(

Γ1(N),F2

)red

1⊕1
≃ A(N,F2)

red
1⊕1

For N = 3 we further have the isomorphism A
(

Γ1(N),F2

)

1⊕1
≃ A(N,F2)1⊕1.

Proof. Although the modular pseudorepresentation taking values in A
(

Γ1(N),F2

)

1⊕1
does not have con-

stant determinant, and hence does not factor through R̂(N,F2)1⊕1, its image in A
(

Γ1(N),F2

)red

1⊕1
does [De,

Lemma 5 and ff.], so that universality gives us a surjective morphism

R̂(N,F2)1⊕1 ։ A
(

Γ1(N),F2

)red

1⊕1
.

On the other hand, restriction from forms of level Γ1(N) to forms of level Γ0(N) gives a surjective map
A
(

Γ1(N),F2

)

1⊕1
։ A(N,F2)1⊕1. Now take reduced quotients and apply Corollary 11.2.

The second statement comes from equality on the space of forms. Indeed, for k even, we already have
Mk(3,Z2) =Mk

(

Γ1(3),Z2

)

since the only even Dirichlet character modulo 3 is the trivial one. And for k odd,

we have Mk

(

Γ1(3),F2

)

⊆ Mk+1(3,F2) with the embedding induced by multiplying by the Hasse invariant
lifted by E1,χ, where χ is the nontrivial mod-3 Dirichlet character. Thus M(Γ1(3),F2) =M(3,F2), and the
claim follows. �

15.3. Remaining questions. We close with a number of questions not answered in this text.

(1) Can Theorems A and B be generalized to all primes N ≡ 3, 5 mod 8? See Remark 11.4 for a
discussion of the limitations of our methods.

LetR′(N,F2)1⊕1 be the deformation ring with conditions (1.4.2) and (1.4.3) imposed. Recall thatR(N,F2)1⊕1

is the quotient of R̂(N,F2)1⊕1 subject to the purely local level-N shape condition (1.4.1), whereasR′(N,F2)1⊕1
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a priori satisfies a global condition (see also the discussion in subsection 1.4). One can show that the surjec-
tion fromR(N,F2)1⊕1 to A(N,F2)1⊕1 factors throughR′(N,F2)1⊕1, so that there are natural surjective maps

(15.3.1) R(N,F2)1⊕1 ։ R′(N,F2)1⊕1 ։ A(N,F2)1⊕1.

Furthermore, Corollary 11.2 implies that all three rings have the same reduced quotient.

(2) Is the second map in (15.3.1) an isomorphism?

(3) Does the first surjection in (15.3.1) have a nontrivial kernel? Note that by Corollary 14.2 this map

is an isomorphism if and only if the structure map R(N,F2)1⊕1 →R(N,F2)
pf
1⊕1 is injective.

(4) For N = 3, 5, is the map R̂(N,F2)1⊕1 ։ A(N2,F2)1⊕1 from (15.1.1) an isomorphism?

(5) In general, given a modular representation ρ̄ : GQ,Np → GL2(F) and a prime ℓ ∤ Np, can one
determine the structure of the level Nℓ Hecke algebra A(Nℓ,F)ρ̄ from the structure of the level N
Hecke algebra A(N,F)ρ̄?

References

[AGM] S. Anni, A. Ghitza, and A. Medvedovsky, Elementary symmetric functions and deep power-sum congruences. To appear
in Integers. Available at http://math.bu.edu/people/medved/Mathwriting/1algthm.pdf.

[AL] A.O.L. Atkin and J. Lehner, Hecke operators on Γ0(m). Math. Ann., 185:134-160, 1970.
[AM] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading,

Mass.-London-Don Mills, Ont., 1969.
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[BeI] J. Belläıche, Image of pseudo-representations and coefficients of modular forms modulo p. Adv. Math. 353 (2019) 647–721.
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(1971/1972), Exp. No. 416. Springer, Berlin, 1973, pp. 319–338. Lecture Notes in Math., Vol. 317.
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