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There are certain dynamics while being non-Markovian, do never exhibit information backflow. We
show that if two such dynamical maps are considered in a scenario where the order of application of
these two dynamical maps are not definite, the effective channel can manifest information backflow.
In particular, we use quantum SWITCH to activate such a channel. In contrast, activation of those
channels are not possible even if one uses many copies of such channels in series or in parallel action.
We then investigate the dynamics behind the quantum SWITCH experiment and find out that after the
action of quantum SWITCH both the CP (Complete Positive)- divisiblity and P (Positive)- divisibility
of the channel breaks down, along with the activation of information backflow. Our study elucidate
the advantage of quantum SWITCH by investigating its dynamical behaviour.

I. INTRODUCTION

The theory of open quantum system deals with the
system interacting with noisy environment and hence
essentially serves as an effective tool for calculating the
dynamics of a many body system [1–7]. This is applic-
able widely since no physical system is truly isolated.
For a general Markovian evolution, the system inter-
acts weakly with large and stationary environment and
hence the dynamics are considered to be memoryless
leading to one way information flow from the system
to the environment. Therefore, the quantumness of
a system subjected to Markovian dynamics eradicates
gradually with time [8–10]. However, in the realistic
scenario, the system-environment coupling may not be
sufficiently weak and the environment can be finite as
well as non-stationary, which leads to the signature of
non-Markovian backflow of information [11–24].

In recent times, non-Markovian information backflow
has been shown to be a useful resource for several in-
formation processing tasks like perfect teleportation
with mixed states [25], distribution of entanglement ef-
ficiently [26], improving the capacity for long quantum
channels [27], extracting work from an Otto cycle [28],
controlling quantum system [29] and so on.

In view of this enormous applications of non-
Markovianity, it is therefore important to analyse the
nature of system-environment dynamics that triggers
non-Markovian traits. Usually, the signature of quantum
non-Markovian dynamics are characterized and exposed
by the properties of indivisibility [11, 19]. A dynam-
ical map Λ(t, t0) is said to be CP-divisible if it can be
represented as Λ(t, t0) = Λ(t, ts) ◦ Λ(ts, t0), ∀ts with
t0 ≤ ts ≤ t and both Λ(t, ts) and Λ(ts, t0) are completely

∗ anandamaity289@gmail.com
† samyadeb.b@iiit.ac.in

positive. However, if the dynamical map can not be
written in the above form for at least some ts, then the
dynamics will be indivisible. For any indivisible dynam-
ics, although the overall dynamics is CP [30, 31], it may
not be CP for certain intermediate time steps. Here it
is important to mention that though the definition of
quantum non-Markovianity has been recently claimed
to be more general [32–35], we are considering the divis-
ibility based definition for the purpose of this particular
work.

To this end, it is important to discuss two main ap-
proach towards quantum non-Markovianity; i.e. CP
divisibility [11] and information backflow [12]. CP di-
visibility, as defined earlier, is the property of a channel
which allows to realize it as concatenations of infinite
CP maps; i.e. the dynamics can be divided into infin-
ite such dynamical maps, whereas information back-
flow is a property of CP indivisible maps which allows
anomalous increment of distance like measures that
are monotones under divisible CP dynamics. More ex-
plicitly, the phenomena of information backflow will
take place if and only if there exists atleast one time
instant s and one pair of initial states (ρa(s) and ρb(s))
for which the distance between ρa(s) and ρb(s) grows. It
has been shown earlier [36] that information backflow is
a sufficient condition for CP indivisibility of a quantum
channel, but not necessary. Hence, although for most
of the evolutions, information backflow is the signa-
ture of CP-indivisibility, not all indivisible (and hence
non-Markovian) dynamics shows information backflow.
Therefore, for those particular dynamics, most of the
proposed measure of non-Markovianity are not sensitive
and hence the signature of non-Markovianity for those
dynamics may be undetected with that particular meas-
ures. Few of those dynamics, where non-Markovianity
is hidden with respect to the measures based on in-
formation backflow can be found in the well known
examples of eternally non-Markovian quantum channels
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[37–41]. It is worth highlighting that this form of non-
Markovianity, even though concealed concerning inform-
ation backflow, fundamentally deviates from the concept
of ‘hidden non-Markovianity’ introduced by Burgarth
et. al. [42]. In their work, it has been demonstrated that
non-Markovian open quantum systems can exhibit pre-
cisely Markovian dynamics for an arbitrarily long time.
Consequently, the non-Markovian nature of these sys-
tems remains entirely ‘hidden’, implying that it cannot
be experimentally detectable by observing the dynamics
within a finite, albeit large, time frame.

Recently, there has been substantial interest to study
whether the causal order of two events can be made in-
definite and if so, upto what extent such indefiniteness
can be exploited as a resource in several information
processing tasks. Although the concept was initially pro-
posed by Lucian Hardy [43], however, its information
theoretic application was first pointed out by Chribella et.
al [44]. Indeed, they introduced the concept of quantum
SWITCH where an additional ancillary system is used
to control the order of the action of two quantum oper-
ations E1 and E2 on some quantum system say ρ. For
example when the control bit is initialised in |0⟩, first
operation E1 will be applied and then E2 on ρ. On the
other hand when the control bit is initialised in |1⟩, the
action of these two quantum operations will be in re-
verse order i.e, first operation E2 and then operation
E1 will be carried out on the state ρ. Now, one can in
principle initialise this control qubit in superposition
basis and thus the order of the action of two quantum
operations can be made indefinite. A more general and
stronger notion of such causal indefiniteness was later
proposed by Oreshkov et. al. [45] via process matrix
formalism. Thereafter, indefinite causal order has been
shown to be extensively useful in several information
processing and communication protocols such as testing
the properties of quantum channel [46], winning non-
local games [45], enhancing the precision of quantum
metrology [47], improving quantum communication [48–
50], minimizing quantum communication complexity
[51], achieving quantum computational [52] and ther-
modynamic [53, 54] advantages and so on [55–57]. Very
recently, indefinite causal order and its advantage has
also been realised experimentally [58–60].

Motivated by the above fact, here we ask the question
whether we can utilize quantum SWITCH to activate
the information backflow of a channel which does not
show any backflow of information initially. In order to
do so, we take two copies of such channels containing
eternal non-Markovianity that do not manifest any in-
formation backflow and then use them in superposition
of two different orders using an extra ancillary qubit
system, controlling the order of actions of the channels.
After measuring the ancillary system in coherent basis,
we show that the effective channel can in general be

activated for information backflow. Therefore, after the
action of quantum SWITCH, those non-Markovian dy-
namics can also be detected through the usual measures
of information backflow.

II. A BRIEF REVIEW ON QUANTUM-SWITCH

In a fixed causal order, one can use the channels in
either series or parallel combination. Given two channels
N1 and N2, the parallel combination of the channels can
be represented by the tensor product structure as N1 ⊗
N2. On the other hand, in case of series combination,
two channels can be composed in two distinct ways:
either N2 ◦N1 or N1 ◦N2. In the former, the channel N1
acts first, followed by N2, while in the latter, the order
of channel action is reversed.

One can in principle control the order of the action
of two channels by using an additional ancillary system
called the control bit. In particular, one can use a control
bit |0⟩ when the channel N1 is applied before the channel
N2 (i.e, N2 ◦ N1) and use |1⟩ when the channel N1 is
applied after the channel N2 (i.e, N1 ◦ N2). If the Kraus
operator corresponding to channel N1 and N2 are {K(1)

i }
and {K(2)

j } respectively, then the Kraus operators of the
overall quantum channel resulting from the switching
of two channels N1 and N2 will be as follows,

Wij = K(2)
j ◦ K(1)

i ⊗ |0⟩c ⟨0|+ K(1)
i ◦ K(2)

j ⊗ |1⟩c ⟨1| . (1)

This joint Kraus acts over the target state ρ and the
control bit ωc. Therefore, the overall evolution of the
joint system (target and control) will be

S(N1,N2)(ρ ⊗ ωc) = ∑
i,j

Wij(ρ ⊗ ωc)W†
ij. (2)

Finally, the control qubit is measured on the coherent
basis ({|+⟩ ⟨+| , |−⟩ ⟨−|}) and the effective subsystem
(target state) is obtained corresponding to each outcome
as

c ⟨±| S(N1,N2)(ρ ⊗ ωc) |±⟩c . (3)

III. ETERNAL NON-MARKOVIANITY AND ITS
ACTIVATION THROUGH QUANTUM-SWITCH

Let us now consider the dynamics of Lindblad form,
ρ̇(t) = Lt(ρ(t)) where Lt(X) = ∑i Γi(t)(AiXA†

i −
1
2{A†

i Ai, X}) with Γi(t) being the Lindblad coefficients
and Ai being the Lindblad operators. For differentiable
dynamical maps [61], the necessary and sufficient con-
dition for a operation being CP-divisible is that all the
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Figure 1: The solid blue line represents that the
quantum state ρ is first traversing through channel N1
and then through N2 and the dotted orange line
represents that the state ρ is first traversing through
channel N2 and then through N1. The former take
places if the control bit, ωc is initialised in |0⟩c ⟨0| state
and the later take places if the control bit is initialised in
|1⟩c ⟨1| state. Now if ωc = |+⟩c ⟨+|, then the state ρ
will be sent to the receiver’s end through the effective
channel made of superposition of N1 ◦ N2 and N2 ◦ N1.
Finally the control qubit is accessed through
measurement.

Lindblad coefficients Γi(t) are positive ∀(i, t) [4]. How-
ever, in realistic scenario, when the system environment
coupling is not sufficiently weak, CP-divisibility may
breakdown. While this breakdown of CP-divisibility
in general leads to the backflow of information from
the environment to the system, there are certain situ-
ation where even though CP-divisibility breaks down,
information backflow may not take place. Examples of
such types of evolution can be found in eternally non-
Markovian quantum channels. Let us now contemplate
one of the simplest scenario which captures the phe-
nomenon of eternal non-Markovianity [37].

Consider the following qubit master equation

d
dt

ρ(t) = L(ρ(t)) =
3

∑
i=1

γi(t)
2

[σiρ(t)σi − ρ(t)], (4)

where γi(t) are the time-dependent Lindblad coefficients
and for our specific purposes we choose γ1(t) = γ2(t) =
1 and γ3(t) = − tanh t [37], σi are the Pauli matices and
the qubit is represented by

ρ(t) =
(

ρ11(t) ρ12(t)
ρ21(t) ρ22(t)

)
.

The corresponding dynamics can be represented by
the following completely positive trace preserving map

Λ(t, 0), such that ρ(t) = Λ(t, 0)ρ(0). More elaborately,

ρ11(t) = ρ11(0)

(
1 + e−2ξ1(t)

2

)
+ ρ22(0)

(
1 − e−2ξ1(t)

2

)
,

ρ12(t) = ρ12(0)e−ξ2(t)

ρ22(t) = 1 − ρ11(t), (5)

with ξ1(t) =
∫ t

0 γ1(s)ds and ξ2(t) =
∫ t

0 (γ1(s)+γ3(s))ds.
Since one of the Lindblad coefficient is always negative,
such a map is not Markovian. Despite having a etern-
ally negative Lindblad coefficient, the dynamics is over-
all a valid CP evolution, though certainly not divisible.
However, the channel or dynamical map does not show
information backflow and as a result, such instances of
non-Markovianity cannot be detected by several well-
known monotone based measures of non-Markovianity
[11, 12]. This is because even though the dynamics is
CP-divisible, it always retains its P-divisibility, i.e. all
intermediate maps, while certainly not CP, remain posit-
ive. Hence, several distance measures like trace distance,
retain their monotonic property under a positive trace
preserving map [37].

In principle, the Kraus operators corresponding to
this dynamical map can be written as follows:

K1 =
√

A2(t)
(

0 1
0 0

)
, K2 =

√
A2(t)

(
0 0
1 0

)
,

K3 =

√
A1(t) + A3(t)

2

(
1 0
0 1

)
,

K4 =

√
A1(t)− A3(t)

2

(
−1 0
0 1

)
. (6)

with A1(t) = A3(t) = 1+e−2t

2 and A2(t) = 1−e−2t

2 which
can be evaluated from Eq. (5). This also implies K4 = 0.

Let us now take two states ρa =

(
1 0
0 0

)
and

ρb =

(
0 0
0 1

)
. The distance between two such states

can be represented as D(ρa, ρb) = 1
2 ||ρa − ρb||1 where

||X||1 = Tr[
√

X†X] denotes the trace distance. It be-
comes evident that under this evolution, the distance
falls monotonically, reaching zero only after an infinite
time (see fig. (2)). Hence, despite the non-Markovian
nature of the dynamics, there is an absence of informa-
tion backflow.

Now the question arises, given exactly similar several
copies of such dynamical maps whether we can activate
this non-Markovianity such that information back flow
can be triggered. In order to do that, the channels may
be used in series or in parallel connection. However,
one may show that this dynamical map can not be activ-
ated even if one uses several copies of such dynamical
maps either in series or in parallel when no additional re-
sources are available. For the interested readers, we have
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explicitly proved this fact in the Appendix A. Next, one
may also ask whether any convex mixture of the action
of two copies of such channels in two different causal
order can lead to the activation phenomena. To address
this question, let’s consider a convex combination of
causal orders of the action of two general channels say
N1 and N2 on some target state ρ. To illustrate, suppose
with probability p, the order N2 ◦ N1 has been applied

on the target state ρ and with probability (1 − p), the or-
der N1 ◦N2 has been applied on the state ρ. If {K1

i } and
{K2

j } represent the set of Kraus operators corresponding
to the channel N1 and N2 respectively then after the
action of quantum SWITCH, the joint state of the target
and control system becomes

∑
i,j
(
√

pK(2)
j ◦ K(1)

i ⊗ |0⟩c ⟨0|+
√

1 − pK(1)
i ◦ K(2)

j ⊗ |1⟩c ⟨1|)(ρ ⊗ ωc)(
√

pK(2)
j ◦ K(1)

i ⊗ |0⟩c ⟨0|+
√

1 − pK(1)
i ◦ K(2)

j ⊗ |1⟩c ⟨1|)† (7)

where ωc is the initially prepared state for the control
qubit. Now in order to have the convex mixture of two
causal order, we trace out the control system and have
the expression

∑
i,j

p(K(2)
j ◦ K(1)

i ρK(1)†
i ◦ K(2)†

j

+ (1 − p)(K(1)
i ◦ K(2)

j ρK(2)†
j ◦ K(1)†

i .

One may note that since i, j are dummy in-
dexes and two channels are exactly same (i.e,
N1 = N2 = N ), above expression is nothing but

∑i,j(K
(2)
j ◦ K(1)

i ρK(1)†
i ◦ K(2)†

j = N ◦N (ρ). Therefore any
convex mixture of causal order can never activate the
information backflow.

Let us now exploit these two channels in superposition
of two causal orders using an additional control bit.
Preparing the initial state of the control bit in |+⟩c ⟨+|
and after performing the switching action (as presented
in the section II), we calculate the evolution of the states
ρa and ρb through the effective channel. The final state
can be obtained after measuring the control qubit in the
{|±⟩c ⟨±|} basis. The general form of the state ρ after
the action of quantum SWITCH will look as

ρSWITCH =
1

n(t)
[c ⟨+| S(ρ ⊗ |+⟩c ⟨+|) |+⟩c] =(

A(t)ρ11(0) + B(t)ρ22(0) A(t)ρ12(0)
A(t)ρ21(0) B(t)ρ11(0) + A(t)ρ22(0)

)
(8)

with A(t) = 3+2e2t+3e4t

−1+2e2t+7e4t , B(t) = 4(−1+e4t)
−1+2e2t+7e4t and n(t) =

7+2e−2t−e−4t

8 is the success probability of getting ‘+′ out-
come.

Now, after calculating the distance between these two
states D(ρa

SWITCH, ρb
SWITCH), one can find that the distance

does not fall monotonically rather a revival will take
place (see fig. (2)). It can thus be concluded that in-
formation backflow has occurred after the switching
action even if the original channel does not show any

information backflow. Since an exactly same channel is
used twice in order to activate the information backflow
phenomenon and no additional channels are used, we
say it to be self activation.

D(ρa,ρb)

D(ρaSWITCH,ρ
b
SWITCH)

0.0 0.5 1.0 1.5 2.0
0.0

0.2
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Figure 2: The distinguishability D(ρa, ρb) of two states
ρa and ρb is plotted with time. The solid gray curve
represents the monotonically decreasing behaviour of
D(ρa, ρb) for eternal non-Markovian evolution. The
dashed red line (obtained after the switching two same
channels showing eternal non-Markovianity) shows the
non-monotonic behaviour of D(ρa

SWITCH, ρb
SWITCH)

representing the activation of eternal non-Markovianity
through quantum-SWITCH.

Before delving into the detailed analysis of the
switch induced dynamical map, let us first clarify its
divisibility aspect. The CP divisibility of a quantum
dynamical map as defined earlier, can be determined
by the eigen-spectrum of the corresponding Choi state,
iff the channel is invertible. Moreover, for a invertible
dynamical map, the P-divisibility property can be
determined by checking whether all intermediate maps
of the dynamics are positive or not. However, if the
quantum channel under question, is not invertible, these
criteria are no longer valid. Interestingly, the switch
induced map (Eq. (8)) violates the invertibility condition
[62, 63] at a particular time t∗, where A(t∗) = B(t∗) = 1

2 .
We call this time, t∗ to be the characteristics time that
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has been discussed elaborately in section IV. At this
point, the output of the map is maximally mixed state
irrespective of any initial state. It is straight forward
to check that such maps are not invertible. For such
non-invertible dynamical maps the criteria for verifying
divisibility of the operation changes [62–65].

If we have a non-invertible Pauli channel Λ(.) and
Λ(σi) = λiσi where σis represent Pauli matrices, then the
map is CP divisible if there is only one k ∈ {1, 2, 3}, for
which λk ̸= 0 [63, 64]. For the switched dynamical map
in (8), we find that λ1 = λ2 = B(t), λ3 = A(t)− B(t).
It is straight forward to check that B(t) ̸= 0 except at
t = 0. Therefore λ1 and λ2 remains non zero always,
proving the map is not CP divisible. Furthermore, the
condition for retaining P-divisibility for a non-invertible
Pauli channel is λ1λ2λ3 ≥ 0 [63, 64]. For the switch-
induced dynamical map (of (8)), the condition therefore
becomes: B(t)2(A(t) − B(t)) ≥ 0, or B(t) ≤ A(t). It
can be directly checked from the following plot that this
condition is violated when ever B(t) ≥ A(t), proving
the map is not also P-divisible.

A(t)

B(t)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t

Figure 3: A(t) and B(t) are plotted with respect to t to
check when the condition for P-divisibility is breaking.

IV. DYNAMICS OF THE ACTIVATION OF ETERNAL
NON-MARKOVIANITY

We are now interested to see the dynamics when
switching action has been taken place. For this, consider
the initial state to be ρ(0) and after the switching action
the state becomes ρ(t). The dynamical map for the
switch induced evolution is represented by Eq.(8), in the
previous section.

Let us now derive the exact canonical master equation
of the Lindblad type for the dynamical map generated
by quantum SWITCH. Here it might be noted that after
the action of quantum SWITCH, the control bit is finally
measured (say in {|+⟩ ⟨+| , |−⟩ ⟨−|} basis) and although
there is a certain probability of obtaining each outcome

(‘+′, ‘−′), we are considering dynamics corresponding
to a particular outcome only. Therefore, apparently it
may seems difficult to derive a Lindblad type master
equation since the trace preservation condition is not
maintained. However, one may also note that in our
case, the probability of obtaining ‘+′, or ‘−′ is independ-
ent of the initial state rendering the dynamics linear
and trace preserving upto that probabilities and hence
the final state (8) depends linearly on the initial state.
Consideration of the post-selected state is also justifiable
since in quantum switch mechanisms, the advantages
are primarily showcased when focusing on conditional
or post-selected states determined by the measurement
outcomes. However, the average state obtained after
tracing out the control, does not yield any advantage.

Let us now represent the dynamical map as

ρ(t) = Ω[ρ(0)]. (9)

The equation of motion will be of the form

ρ̇(t) = Λ̃[ρ(t)] (10)

where Λ̃[.] is the generator of the dynamics. Now fol-
lowing Ref. [17, 37], we can find the master equation
and generator of the dynamics.

Here {Gi} denotes the orthonormal basis set with the
properties G0 = I/

√
2, G†

i = Gi, Gi are traceless except
G0 and Tr[GiGj] = δij. The map (9) can be represented as

Ω[ρ(0)] = ∑
m,n

Tr[GmΩ[Gn]]Tr[Gnρ(0)]Gm = [F(t)r(0)]GT

(11)
where Fmn = Tr[GmΩ[Gn]] and rn(s) = Tr[Gnρ(s)]. Tak-
ing time-derivative of the above equation, we shall get

ρ̇(t) = [Ḟ(t)r(0)]GT . (12)

Let us now consider a matrix L with elements Lmn =
Tr[GmΛ̃[Gn]]. We can therefore represent Eq.(10) as

ρ̇(t) = ∑
m,n

Tr[Gm]Λ̃[Gn]Tr[Gnρ(t)]Gm = [L(t)r(t)]GT .

(13)
Comparing above two equations we find

Ḟ(t) = L(t)F(t) =⇒ L(t) = Ḟ(t)F(t)−1. (14)

One may note that L(t) can be obtained if F(t)−1 exists
and F(0) = I.

Now considering the dynamics (8) and the orthonor-
mal basis set Gl = { I√

2
, σx√

2
, σy√

2
, σz√

2
}, we evaluate the

explicit form of L(t) matrix to be

L(t) =


0 0 0 0

0 Ȧ(t)
A(t) 0 0

0 0 Ȧ(t)
A(t) 0

0 0 0 Ȧ(t)−Ḃ(t)
A(t)−B(t)

 . (15)
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Using the expression of L(t), Eq. (13) may be written in
the simplified form

ρ̇(t) = LxxTr[Gxρ(t)]Gx + LyyTr[Gyρ(t)]Gy

+ LzzTr[Gzρ(t)]Gz

since other Lij terms vanishes. One may also evaluate
that

LxxTr[Gxρ(t)]Gx =
Ȧ(t)
A(t)

(
0 ρ12(t)+ρ21(t)

2
ρ12(t)+ρ21(t)

2 0

)
,

LyyTr[Gyρ(t)]Gy =
Ȧ(t)
A(t)

(
0 ρ12(t)−ρ21(t)

2
ρ12(t)−ρ21(t)

2 0

)
, and

LzzTr[Gzρ(t)]Gz =
Ȧ(t)− Ḃ(t)
A(t)− B(t)

(
ρ11(t)−ρ22(t)

2 0
0 ρ22(t)−ρ11(t)

2

)
.

The equation of motion can be written in the simpli-
fied form

ρ̇11(t) =
Lzz

2
ρ11(t)−

Lzz

2
ρ22(t),

ρ̇12(t) = Lxxρ12(t), (16)

with Lij being the elements of L matrix. Above equation
represents the rate of change of quantum state when
the state is transferred through two channels (which
initially do not exhibit information backflow) subjected
to a quantum SWITCH.

Let us now derive the Lindblad-type master equation
from the above equation. Eq.(10), can be represented as
[37],

ρ̇(t) = Λ̃[ρ(t)] = ∑
l

Al(t)ρB†
l (t) (17)

where Al(t) = ∑m Gmaml(t) and Bl(t) = ∑m Gmbml(t)
with {Gm} are the basis vectors as defined earlier. Now
exerting the expression of Al(t) and Bl(t), above equa-
tion can be represented as

ρ̇(t) = ∑
m,n=0,x,y,z

zmn(t)Gmρ(t)Gn (18)

where zmn(t) = ∑l xml(t)yln(t)∗ are the elements of a
Hermitian matrix. Let us now represent above equation
in the following form

ρ̇(t) =
i
h̄
[ρ(t), H(t)]

+ ∑
m,n={x,y,z}

zmn(t)[Gmρ(t)Gn −
1
2
{GnGm, ρ(t)}]

(19)

where H(t) = i
2 h̄(H(t)−H†(t)) with H(t) = z00(t)

8 I +
∑m

zm0
2 Gi and {.} represents anticommutator. Therefore,

the canonical form of master equation of the Lindblad
form will be

ρ̇(t) = Lt(ρ(t))
= Γ1(t)[σxρ(t)σx − ρ(t)] + Γ2(t)[σyρ(t)σy − ρ(t)]

+ Γ3(t)[σzρ(t)σz − ρ(t)]. (20)

This equation represents a general form of the Lindblad
type Master equation. However, for the dynamical map
generated by the quantum SWITCH, Γ1(t), Γ2(t) and
Γ3(t) are given by

Γ1(t) = Γ2(t) = − Lzz

4
= −1

4
Ȧ(t)− Ḃ(t)
A(t)− B(t)

,

Γ3(t) =
Lzz

4
− Lxx

2
=

1
4

Ȧ(t)− Ḃ(t)
A(t)− B(t)

− 1
2

Ȧ(t)
A(t)

. (21)

The Lindblad coefficients Γ1(t), Γ2(t) and Γ3(t) are plot-
ted with time in fig.(4).
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Γ3(t)
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Figure 4: The Lindblad coefficient Γ1(t), Γ2(t) and Γ3(t)
of the dynamics after the action of quantum SWITCH
are plotted with time.

The previous discussion has covered the CP-
indivisible property of the dynamical map. Let us now
focus on the Lindblad-type Master equation for analyz-
ing the activation of information backflow. To investig-
ate this fact in a more detailed manner, we prove the
following statements.

Statement 1: The sufficient condition of having no
information backflow (i.e, non-increasing trace distance)
for two arbitrary qubits undergoing general depolarizing
dynamics of the form given in equation (20) is given by
Γi(t) + Γj(t) ≥ 0 for all i ̸= j.

Proof. Let us consider two arbitrary qubits of the form

τi(t) =
1
2
(
I + t⃗i(t).⃗σ

)
with i = (1, 2),

where the time dependent Bloch vectors t⃗i =
(ti

1(t), ti
2(t), ti

3(t)) and σ⃗ = (σx, σy, σz) are represen-
ted in the usual form. The trace distance between



7

these two states can be calculated as D(τ1(t), τ2(t)) =
√

a1(t)2 + a2(t)2 + a3(t)2, with ak(t) = (t1
k(t) − t2

k(t))
for k = (1, 2, 3). The time derivative of the trace distance
can thus be calculated as

d
dt

D(τ1(t), τ2(t)) = lim
ϵ→0

√
a1(t + ϵ)2 + a2(t + ϵ)2 + a3(t + ϵ)2 −

√
a1(t)2 + a2(t)2 + a3(t)2

ϵ
, (22)

where

a1(t + ϵ) = a1(t)(1 − 2ϵ(Γ2(t) + Γ3(t))),
a2(t + ϵ) = a2(t)(1 − 2ϵ(Γ1(t) + Γ3(t))),
a3(t + ϵ) = a3(t) (1 − 2ϵ(Γ1(t) + Γ2(t))) . (23)

Usually, when Γi(t)+ Γj(t) ≥ 0 ∀i ̸= j then the first term
of r.h.s of Eq. (22) will always be less than the second
term since ϵΓi(t) << 1, making d

dt D(τ1(t), τ2(t)) to be
negative. Hence, there will be no information backflow
as the trace distance is non-increasing.

Statement 2: The necessary condition of information
backflow (i.e, increasing trace distance) for general de-
polarizing dynamics of the form given in equation (20)
is given by Γi(t) + Γj(t) < 0 for any i ̸= j.

Proof. The derivative of the trace distance (Eq. 22) and
the expression of ai(t + ϵ) (Eq. 23) implies that if for
any i ̸= j, Γi(t) + Γj(t) < 0, we can choose initial state
such that ai = aj = 0 so that only Γi(t) + Γj(t) term
corresponding to negative value can survive. In that
case, since other terms are zero and ak(t + ϵ) > ak(t)
(where k ̸= i ̸= j), the derivative of the trace distance
will be positive indicating information backflow.

statement 1 and Statement 2 are quite general to
the family of dynamics given by Eq. (20). Below we
explicitly analyse Statement 2 for the dynamical map
generated by quantum SWITCH. For that particular dy-
namical map, it is straightforward to show (from Eq.
(21)) that

Γ1(t) + Γ3(t) = Γ2(t) + Γ3(t) = − Ȧ(t)
2A(t)

> 0, (24)

where the inequality follows from the fact that A(t) > 0
while the derivative of A(t) is negative. On the other

hand Γ1(t) + Γ2(t) = − Ȧ(t)
2A(t)−1 ≤ 0 after certain time t∗.

This obvious fact can be checked from the expression
of A(t) and the value of t∗ has been calculated latter.
Therefore, under the condition ϵΓi(t) << 1, if we choose
initial states to be ρa = |0⟩ ⟨0| and ρb = |1⟩ ⟨1| (which
implies only a3(t) survives), after time t∗ the first term
of the numerator in the right hand side of the equation
(22) will be greater than the second term, since the con-
ditions Γ1(t) + Γ2(t) < 0 hold and hence there will be
information backflow.

On the otherhand, if we consider the original channel
given in (4) with γ1(t) = γ2(t) = 1 and γ3(t) = − tanh t,
it can be checked that the positivity of the infinites-
imal dynamics is retained with the condition tanh t ≤ 1,
which is always true. It has been shown [37] that for this
types of eternal non-Markovian channels, monotones
like trace distance and a few others do not show inform-
ation backflow. This is because although the dynamics
is breaking CP-divisibility (and hence non-Markovian),
at every instant of time the positivity of the infinites-
imal maps are always retained. As we have shown in
the previous analysis, by using quantum switch, this
particular property can be altered and hence a self activ-
ation (activation using same channel) of non-Markovian
information backflow can be initiated.

Fig. 2 suggests that after a certain characteristic time
t∗, the information backflow prevails. Let us now define
and evaluate that characteristic time for our case. The char-
acteristic time is the earliest time at which information
backflow can be triggered. In order to find an explicit
expression for the characteristic time, one need to look
at the cross over time at which the time derivative of
D(τ1(t), τ2(t)) changes its sign from −ve to +ve. There-
fore, from Eq. (22), we need to determine the condition
for d

dt D(τ1(t), τ2(t)) = 0. After simplification, one can
see that above condition holds for

lim
ϵ→0

3

∑
i=1

ai(t∗ + ϵ)2 − ai(t∗)2 = 0. (25)

Since ϵ is sufficiently small, from the expressions of ai(t+
ϵ) one may note that above condition can be re-written
as a1(t∗)2[−2ϵ(Γ2(t∗) + Γ3(t∗))] + a2(t∗)2[−2ϵ(Γ1(t∗) +
Γ3(t∗))] + a3(t∗)2[−2ϵ(Γ1(t∗) + Γ2(t∗))] = 0 or
a1(t∗)2[Γ2(t∗) + Γ3(t∗)] + a2(t∗)2[Γ1(t∗) + Γ3(t∗)] +
a3(t∗)2[Γ1(t∗) + Γ2(t∗)] = 0.

For our case, we have Γ1(t) = Γ2(t) as given in Eq.
(21). Therefore, above condition implies

a1(t∗)2 + a2(t∗)2

a3(t∗)2 = −Γ1(t∗) + Γ2(t∗)
Γ1(t∗) + Γ3(t∗)

. (26)

Now since, a1(t) = a1(0)A(t), a2(t) = a2(0)A(t) and
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a3(t) = a3(0)(A(t)− B(t)), above condition suggests

a1(0)2 + a2(0)2

a3(0)2
A(t∗)2

(A(t∗)− B(t∗))2 = − 2A(t∗)
(A(t∗)− B(t∗))

(27)

where a1(0), a2(0) and a3(0) are decided by the initial
state. One can further simply to have the condition

2
A(t∗)− B(t∗)

A(t∗)
= −χ(0) (28)

where, χ(0) = a1(0)2+a2(0)2

a3(0)2 is a function of initial state
parameter. Solution of this equation gives rise to the
characteristic time i.e, the earliest time at which informa-
tion backflow can be triggered which however depends
on the initial state parameter χ(0).

For our particular case, the initial state has been con-

sidered as τ1(0) =
(

1 0
0 0

)
and τ2(0) =

(
0 0
0 1

)
. For

that case the condition for earliest information backflow
reduces to

A(t∗)− B(t∗) = 0 (29)

Solving above equation, one may evaluate the charac-
teristic time, t∗ = 1

2 ln (1 + 2
√

2) ≈ 0.67 which perfectly
matches with Fig. 4.

V. DISCUSSIONS

Certain evolution or dynamical maps which although
are non-Markovian, do not attribute information back-
flow. For such dynamics, the non-Markovian feature is
not captured by the usual measure of non-Markovianity
based on information backflow. We investigate that in-
formation backflow can never be activated for those
channels even when many copies of such channels are
used in series or in parallel combination. However, ex-
ploiting two such channels in superposition of differ-
ent orders, we find that information backflow can be
restored. We then find out actual cause of this phe-
nomenon of activation of information backflow by look-
ing at the reduced dynamics of the effective switched

channel. We show that though the original invertible
dynamics, is not CP-divisible, but it always preserve
P-divisibility and hence is unable to generate inform-
ation backflow. However, for the switched evolution,
along with its invertibility, both CP-divisibility and P-
divisibility of the dynamics also breaks down. Moreover,
the presence of the switching action also leads to the
activation of information backflow.

Before concluding, a few remarks are in order. In this
work, we are neither demanding that the way of activ-
ating information backflow presented in this paper is
the only procedure to activate such things nor activation
of information backflow is impossible by any higher
order quantum process [66]. Therefore, further study
regarding the activation of information backflow using
causally ordered quantum comb [66] are in order. On the
other hand, finding out the fundamental cause behind
the activation of quantum channel exploiting indefinite
causal order is one of the most important open prob-
lems which are yet to be addressed. Although in this
paper, we address the question partially, the question re-
mains open for the advantages of indefinite causal order
in other tasks especially for quantum communication.
Despite the recent attempts to establish the connection
between non-Markovianity and causal nonseparability
[67, 68], this work explores the dynamical perspectives
of indefinite causal order from the backdrop of Lind-
blad type evolution. Since both indefinite causal order
and non-Markovianity are fundamentally related to the
memory of quantum systems, further investigations are
in order, to decipher the connections between these two
novel phenomena.
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Appendix A: For invertible dynamical maps, information backflow can not be activated by series and parallel action of the
channels

The fact that information backflow can not be activated by series and parallel action of the channels can be proved
through the following statement.
Statement 3: Since, the invertible dynamical map given by Eq.(4) does not show information backflow, the usage of
several copies of such dynamical maps either in series or in parallel will never lead to the activation of information
backflow when no additional resources are allowed.

Proof. Let us consider two dynamical maps Λ(t
′
1, t0) and Λ(t

′
, t

′
1) for some t

′
> t

′
1 > t0. In case of series action of

two channels, the second channel will act on the output state of the first channel and the second channel being a
valid physical map it should be reset again from some initial time say t0, and hence Λ(t

′
, t

′
1) ≡ Λ(t

′ − t
′
1 − t0, t0).

If we consider t
′
1 = t and t

′
= 2t and set t0 = 0, the two maps will look like Λ(t

′
1, t0) ≡ Λ(t, 0) and Λ(t

′
, t

′
1) ≡

Λ(t, 0). The series connection is different than usual concatenation of two maps Λ(t, t
′
) ◦ Λ(t

′
, 0) = Λ(t, 0) because

in that case, the latter map, Λ(t, t
′
) may not be CP. Therefore, for the series connection

Λ(t, 0)(Λ(t, 0)ρ(0)) = e
∫ t

0 L(ρ(t))dte
∫ t

0 L(ρ(t))dtρ(0)

= e2
∫ t

0 L(ρ(t))dtρ(0) = e
∫ t

0 L′
(ρ(t))dtρ(0) (A1)

where L′
(ρ(t)) = 2L(ρ(t)). Therefore,

dρ

dt
= L′

(ρ(t)) = 2
3

∑
i=0

γi(t)
2

[σiρ(t)σi − ρ(t)]. (A2)

Now we need to show that above dynamics actually retains P-divisibility. For that consider small time approximation
of the dynamics, Λ(t + ϵ, t)(ρ(t)) = (I + ϵL′

)(ρ(t)). In fact, here we are taking the Taylor series expansion of the
total dynamical map exp

(∫ t
0 L′

(ρ(t))dt
)

, up to first order. Hence checking the positivity of this infinitesimal map
will be sufficient to determine that whether all possible intermediate maps are positive or not. Now, for checking
positivity of this infinitisimal dynamical map, it is sufficient to check the positivity of the map over all possible pure

states. Let us take the general form of a pure state |ϕ⟩ =
(

ϕ1
ϕ2

)
. Then the action of the map on the state |ϕ⟩ ⟨ϕ| will

look as(
(1 − ϵ[Γ1(t) + Γ2(t)])|ϕ1|2 + ϵ[Γ1(t) + Γ2(t)]|ϕ2|2 (1 − ϵ[Γ1(t) + Γ2(t) + 2Γ3(t)])ϕ1ϕ∗

2 + ϵ[Γ1(t)− Γ2(t)]ϕ∗
1 ϕ2

(1 − ϵ[Γ1(t) + Γ2(t) + 2Γ3(t)])ϕ∗
1 ϕ2 + ϵ[Γ1(t)− Γ2(t)]ϕ1ϕ∗

2 (1 − ϵ[Γ1(t) + Γ2(t)])|ϕ2|2 + ϵ[Γ1(t) + Γ2(t)]|ϕ1|2

)
(A3)

The P-divisibility of the map is determined by the positivity of the output matrix presented in the previous equation,
for any arbitrary state |ϕ⟩. The positivity of an arbitary matrix can be determined by the Sylvestor’s criteria [69],
which states that any matrix is positive semi-definite, if all of its principal minors are non-negative. For our case of a
2 × 2 matrix, the principal minors are its diagonal elements and the determinant. Now one can check that diagonal
elements are always positive since ϵ is very small. In order to check whether the map is positive or not, it is now
sufficient to check the positivity of the determinant of the above matrix for any value of ϕ1 and ϕ2. Below we explore
under which condition determinant of the above matrix will not be positive. The determinant of the matrix can be
calculated as

ϵ[Γ1(t) + Γ2(t)]{1 − ϵ[Γ1(t) + Γ2(t)]}(|ϕ1|2 − |ϕ2|2)2 + |ϕ1|2|ϕ2|2{1 − (1 − 2ϵ[Γ2(t) + Γ3(t)])2}

+ 2ϵ[Γ1(t)− Γ2(t)](1 − ϵ[Γ1(t) + Γ2(t) + Γ3(t)])
[
|ϕ1|2|ϕ2|2 − Re(ϕ1ϕ∗

2 )
2
]

, (A4)

where “Re" stands for real part of the quantity. It might be noted here that since for our case Γ1(t) = Γ2(t), the last
term of the determinant will not survive. Considering the complete positivity of the overall dynamics and under the
condition ϵΓi(t) << 1 (∀i), the above term will be positive under the conditions

(Γi(t) + Γj(t)) ≥ 0 ∀i ̸= j.
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Therefore, above conditions will always be retained leading to no information backflow (eventually all the Lindblad
coefficients are just scaled by a factor of 2 from the original dynamics).

For the case of parallel connection, two or more channels will act parallelly on different copies of the initial
state. The parallel action of the channel can be represented as (Λ(t, t0)⊗ Λ(t, t0))(ρ1(0)⊗ ρ2(0)). Here we only
allow separable states on which the map is supposed to act. The reason behind excluding entangled states is that
entanglement in itself as a nonlocal correlation can act as a resource to create some information backflow, whereas for
separable states, this possibility is excluded. Therefore, under this restriction we can state the following. It is evident
Λ(t, t0) ⊗ Λ(t, t0)(ρ1(0) ⊗ ρ2(0)) = Λ(t, t0))(ρ1(t0)) ⊗ Λ(t, t0))(ρ2(t0)) will not show any information backflow,
because it is acting on a product state. Now from linearity of the operation, this statement can be generalised to
the separable states. Hence we can say ∑i pi(Λ(t, t0)(ρ

i
1(t0))⊗ Λ(t, t0))(ρ

i
2(t0)) will also not show any information

backflow. Therefore, when the P-divisible map acts on both sides of a separable state, no information backflow can
be observed. Here, only exception might happen, if the maps are applied parallely on an entangled state. This can
be seen from the Theorem 1 of Benatti et.al [70], which states that any one parameter family of maps {Φt} is CP
divisible iff {Φt ⊗ Φt} is P-divisible. Since our map Λ(t, t0) is not CP-divisible, Λ(t, t0)⊗ Λ(t, t0) is not P-divisible
and hence when acted upon entangled states, information backflow can be observed. However, by Statement 3, no
entangled states are allowed. Hence, acted upon only on separable states, the map Λ(t, t0)⊗ Λ(t, t0) will not show
any information backflow. This proves our claim that parallel action of the p-divisible channels will also will not
show information backflow. A point to remember is that the proof we present here is valid for invertible dynamical
maps only. Since we start with such a map, the proof is sufficient for our purpose. The question of non-invertible
initial maps, remains open.
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