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Although it is recognized that Anderson localization takes place for all states at a dimension d less
or equal 2, while delocalization is expected for hopping V (r) decreasing with the distance slower or
as r−d, the localization problem in the crossover regime for the dimension d = 2 and hopping V (r) ∝
r−2 is not resolved yet. Following earlier suggestions we show that for the hopping determined by
two-dimensional anisotropic dipole-dipole interactions in the presence of time-reversal symmetry
there exist two distinguishable phases at weak and strong disorder. The first phase is characterized
by ergodic dynamics and superdiffusive transport, while the second phase is characterized by diffusive
transport and delocalized eigenstates with fractal dimension less than 2. The transition between
phases is resolved analytically using the extension of scaling theory of localization and verified
numerically using an exact numerical diagonalization.

I. INTRODUCTION.

Low dimensional systems with a dimension d ≤ 2 pos-
sessing the time-reversal symmetry are critical in the An-
derson localization problem [1]. All states there must
be exponentially localized at arbitrarily small disorder
strength as was shown using the scaling theory of lo-
calization [2], analysis of conductivity [3] and extensive
numerical simulations [4, 5] (see also reviews [6–8]). This
localization is originated from the singular backscattering
due to random potential dramatically enhanced in low di-
mension d ≤ 2 where random paths inevitably return to
the origin [7].
The scaling theory of localization suggests the single

parameter scaling for the dimensionless conductance C =
G/(e2/~) dependence on the size L in the form [2, 3] (G
is the conductance)

d ln(C)

d ln(L)
= β(C),

β(C) = −cloc
C

+O(C−4), cloc =
1

2π2
, (1)

where the β-function has been evaluated using expansion
of the equivalent non-linear sigma-model [8, 9] valid at
C ≫ cloc. Eq. (1) predicts the reduction of conductance
with the system size L as C(L) = C0−cloc ln(L) where C0

is the conductance at the lower cutoff L = 1. Logarithmic
reduction of conductance with the system size results in
the inevitable localization at large sizes L.
This universal scaling is limited to systems with a

short-range hopping, while the hopping decreasing with
the distance as V (r) ∝ r−d or slower leads to delocaliza-
tion of all states [1, 10–14] except for the marginal case
of diverging Fourier transform of a hopping amplitude
[15–26]. If disorder is strong, eigenstates of the problem
with the long-range hopping V (r) ∝ r−d possess a multi-
fractal structure and the time dependent displacement of

the particle r obeys the law r ∝ t1/d, which is subdiffu-
sive in 3D [11], diffusive in 2D and superdiffusive in 1D
[12]. The long-range hopping V (r) ∝ r−2 is ubiquitous
in pure two-dimensional systems [27], where it can be
originated from the virtual exchange by two-dimensional
photons leading to the 2D dipole-dipole interaction [28]
or indirect exchange by 2D electron-hole pairs leading to
2D RKKY interaction [29]. Power-law distant dependent
hopping is crucial for the many-body localization prob-
lem [30–53], where long-range interaction can result in
localization breakdown at arbitrary disorder.
For the hopping under consideration r−d and weak

disorder, there is the transition in 3D to the standard
delocalized phase characterized by the diffusive trans-
port and ergodic dynamics [54], while in 1D eigenstates
turns out to be multifractals with the dimension smaller
than 1 [12]. 2D systems are more complicated, because
for the hopping V (r) ∝ r−d the dimensionless classical
Drude conductance diverges logarithmically with the sys-
tem size as C0(L) = c∗ ln(L) [28]. Considering the bal-
ance of this logarithmic raise of conductance and its loga-
rithmic suppression by coherent back scattering cloc ln(L)
Eq. (1), it was suggested in Ref. [28] that two delocalized
phases can exist including the superdiffusive (fast) phase
at c∗ > cloc and the slow phase with diffusive transport
at c∗ < cloc and the phase boundary realized at c∗ = cloc.
Yet it turns out that in systems, possessing time-reversal
symmetry, for isotropic dipoles considered in Ref. [28]
c∗ < cloc for an arbitrarily disorder strength so the fast
phase does not exist. This is in contrast with the sys-
tems with a broken time-reversal symmetry, possessing
the transition between fast and slow phases, character-
ized by the unstable fixed point [28].
These achievements motivated us to search for the su-

perdiffusive, fast phase using different hopping interac-
tion including anisotropic dipole-dipole interaction with
identically oriented dipoles. Our preliminary estimates
also show emergence of a superdiffusive phase for the
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2D RKKY interaction at sufficiently weak disorder that
needs a separate consideration. These interactions dif-
fer from the isotropic dipole model of Ref. [28] by the
presence of dispersive modes with the mean free path in-
creasing unlimitedly with decreasing disorder with simi-
lar increase of the logarithmic growth parameter c∗. This
makes the appearance of the fast phase with c∗ > cloc un-
avoidable. similarly the anisotropy-mediated localization
investigated in Ref. [20] where the number of such modes
is extensive, though measure zero.

The transition between phases occurring at c∗ = cloc
differs qualitatively from the typical localization transi-
tion since in the present case the renormalization group
equation for the conductance possesses the stable fixed
point. Consequently, conductance approaches infinity
with decreasing disorder strength in a continuous man-
ner and the transition point can be expressed analytically
through the single-particle green function. Consequently,
we can find the transition point analytically for the model
with the Lorentzian distribution of disorder where Green
functions can be evaluated exactly, which is unprecen-
dental for the localization problem.

This is in a sharp contrast with the standard localiza-
tion transition in 3D systems with the short-range hop-
ping [6, 55] and the transition in the system similar to
the present one but with a violated time-reversal symme-
try [28]. For those models conductance instantaneously
jumps from a critical value to infinity at the transition
point, that can can be approached only numerically.

Recent experimental realizations of 2D Anderson lo-
calization [56] and long-range hopping [57] represent the
steps towards generating the settings targeted in the
present work. Consequently, we believe that its ex-
perimental realization is possible and it is strongly en-
couraged. Two dimensional r−2 dipole-dipole interac-
tion emerges in high dielectric constant films in a limited
distance range where superdiffusive behavior can be ob-
served as discussed in the end of Sec. IV.

In addition to the dipole-dipole interaction, there ex-
ists a long-range elastic r−2 interaction in isolated dielec-
tric films with a similar angular dependence to that for
a dipole-dipole interaction. Similar phase transition is
expected for that interaction without constraints like for
a dipole-dipole interaction because elastic field is located
fully inside the material. This is also true for an indi-
rect exchange RKKY interaction within two dimensional
metals. Of course for all interactions the consideration is
limited to a subwavelength transport [31].

We investigate two phases for two-dimensional Ander-
son model, described in Sec. II with a long-range hop-
ping, formulated below, using the extension of scaling
theory of localization for the long-range hopping devel-
oped in Sec. III, IV and exact numerical diagonalization
in Sec. V. The Lloyd model with the Lorentzian distri-
bution of random site potentials is used since the Green
functions can be evaluated exactly in this model [58],
and using them we can find analytically the transition
between fast and slow phases.

The phase boundary c∗ = cloc and a finite-size scaling
of conductance are identified analytically in Secs. III,
IV. The numerical study of Sec. V is targeted to check a
consistency of the analytical theory with the results ob-
tained by means of exact numerical diagonalization. Our
investigation of level statistics in Sec. VA shows the
consistency of the analytically predicted phase boundary
with the behavior of the level statistics changing from the
Wigner-Dyson statistics in the fast phase to the interme-
diate one between Poisson and Wigner-Dyson otherwise.
The finite-size scaling of an eigenstate fractal dimensions
reported in Sec. VB is consistent with the analytical
theory under the assumption of a linear dependence of
a fractal dimension on the inverse conductance, though
the proportionality coefficient differs from the earlier the-
oretical predictions. Finally, we demonstrate that a time-
dependent displacement of a particle initially localized in
a single site shows super diffusive behavior in accord with
the theoretical expectations, although the direct compar-
ison of analytical and numerical results is problematic be-
cause of an insufficient maximum size of the system and
the contribution of all eigenstates to the transport includ-
ing the “slow” ones in the spectrum tails. All numerical
results would not be fully conclusive for the infinite size
limit without the analytical theory, which is the main
outcome of the present work.

II. MODEL

Anderson model in 2D is investigated. The Hamilto-
nian of the model has the form

Ĥ =
1

2

∑

i,j

Vijc
†
icj +

∑

i

φic
†
i ci, (2)

where the summation is performed over N = L2 lat-
tice sites enumerated by indices i with coordinates ri =
(xi, yi) occupying the periodic square lattice with a pe-
riod equal to unity placed onto the surface of torus char-
acterized by the radii R = L/(2π). Independent random
energies φi obey the Lorentzian distribution

P (φ) =
1

π

W

W 2 + φ2
, (3)

having the widthW characterizing the disorder strength,
while hopping amplitudes are given by the exchange of
the dipolar excitations between interacting dipoles, ori-
ented along the x-axis, via the interaction [28]

V (rij) = V0
x2ij − y2ij
r4ij

, rij = (xij , yij). (4)

These hopping terms are formed similarly to the interac-
tion (3x2 − r2)/r5 in three dimensions [59].
The present model is different from that of Ref. [28]

because all transition dipole moments are oriented along
the x axis. To reproduce the settings of Ref. [28] we
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need to consider two degenerate states with identical ran-
dom potentials in each site with perpendicular transition
dipole moments and introduce the dipolar hopping be-
tween them accordingly. Also a short range hopping can
be added between states with identical transition dipole
moments. As noticed in the introduction in the present
model there is the transition between fast and slow phases
while it lacks in the isotropic model of Ref. [28].
For the Lorentzian distribution of random potentials

the Green’s functions, averaged over the random poten-
tial realizations, can be evaluated exactly [58] in the mo-
mentum representation because averaging of local Green
functions 1/(E − φi − iδ) with the distribution Eq. (3)
yields 1/(E − iW ) so averaging replaces all random po-
tentials with the imaginary constant iW . Then the con-
figurationally averaged Green function takes the form

G(E,q) =
1

E − V (q)− iW
,

V (q) =
∑

k

Vjke
iqrjk , (5)

where V (q) expresses the Fourier transform of the hop-

ping Vik. For small wavevectors q ≪ 1 it can be approxi-
mated by the continuous limit of the dipole-dipole inter-
action Fourier transform with subtracted self-interaction
as

V (q) ≈ 2πV0
q2y − q2x
q2

. (6)

as verified in Appendix A numerically, see also Ref. [20].
The Green functions are needed for the calculation of a
classical conductance given below. There we set V0 = 1
and use the effective disorder strength parameter W to
distinguish different phases.

III. CLASSICAL CONDUCTANCE

Long-range hopping results in a logarithmic diver-
gence of a classical conductance. To characterize this
divergence, let’s consider the generalized definition of a
wavevector-dependent conductance [3, 6, 28] that is a
target of the renormalization group analysis. It reads

Cab(q) =

∫
dp

∫
dp1

∂V (p+ k/2)

∂pa
〈Img(p+ k/2,p1 + k/2)Img(p1 − k/2,p− k/2)〉 ∂V (p1 − k/2)

∂p1b
, (7)

where g(p,p1) stands for the Green functions taken at the energy of interest E before the configurational aver-
aging 〈...〉.

FIG. 1. Classical (A) and quantum (B) and (C) contributions to the dimensionless conductance.

The conductance can be expressed using diagrams [3, 6, 60] shown in Fig. 1, where solid lines stand for
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configurationally averaged Green functions Eq. (5) and
dashed lines indicate correlations of two Green functions
appearing due to the contributions of identical sites to
both Green function. This series represents the conduc-
tance expansion in the ratio of the wavelength and the
mean free path thus giving the quantum corrections Fig.
1.B to the classical conductance shown in Fig. 1.A. For
the classical conductance input and output wavevectors
are identical p = p1. This classical conductance has a
logarithmic divergence due to the squared group velocity

terms like ∂V (p)
∂pa

2
∝ p−2, Eq. (6) lacking for the short-

range hopping.
For the quantum corrections to the conductance shown

in Fig. 1.B p 6= p1 and, therefore, no logarithmic diver-
gence emerges. Consequently, the correlations between
two Green functions are neglected, when defining a pos-
itive logarithmically diverging contribution to the con-
ductance, which we are interested in. This logarithmi-
cally diverging part is evaluated below exactly since in
the present model exact Green functions are known Eq.
(5).
The classical dimensionless conductance tensor at

given energy E takes the form (see Eq. (7) and Refs.
[3, 7, 28])

C
(0)
ab (q) =

∫
dp

π(2π)d

(
∂V (p+ q/2)

∂pa

)(
∂V (p− q/2)

∂pb

)
ImG(E,p+ q/2)ImG(E,p− q/2), (8)

where G(E,q) is the retarded Green function at energy
E and wavevector q defined in Eq. (5).

The conductance in Eq. (8) diverges logarithmically
at small wavevectors p corresponding to long distances.
This divergence is caused by the divergence of the mean
squared displacement

∫
d2rV (r)2r2 within the Fermi-

Golden rule approach. At long distances the Fourier
transform continuous representation becomes exact so
the use of the hopping amplitude Fourier transform in the
form of Eq. (6) is completely justified. Below we evaluate

analytically the diverging part needed for the character-
ization of the phase transition for the anisotropic dipole
- dipole hopping.
For the dipole-dipole hopping Eqs. (4), (6) the inte-

gral for the classical conductance Eq. (8) diverges log-
arithmically at p = 0. Since this divergence takes place
within the domain q < p < 1 (for meaningful wavevectors
q > 1/L) the conductance tensor diverging components
in Eq. (8) can be evaluated with the logarithmic accuracy
as Cxx = cx ln(1/q), Cyy = cy ln(1/q), cxy = cyx = 0,
where

cx =
∂C

(0)
xx

∂ ln(L)
=

4

π

∫ 2π

0

dφ
cos(φ)2 sin(φ)4W 2

[(E − π cos(2φ))2 +W 2]2

=
(π2 −W 2 − E2)Im(

√
E2 − (π − iW )2) + πWRe(

√
E2 − (π − iW )2)

4π3
√
(E + π)2 +W 2

,

cy =
∂C

(0)
yy

∂ ln(L)
=

42

π

∫ 2π

0

dφ
cos(φ)4 sin(φ)2W 2

[(E − π cos(2φ))2 +W 2]2

=
(π2 −W 2 − E2)Im(

√
E2 − (π − iW )2) + πWRe(

√
E2 − (π − iW )2)

4π3
√
(−E + π)2 +W 2

. (9)

In the middle of the band E = 0 the conductance is
isotropic, Cxx = Cyy = c∗ ln(L), and the logarithmic
growth rate c∗ is given by

c∗ =
1

2W
√
π2 +W 2

. (10)

It is noticeable, that in the weak disorder limit (W →
0) the rate parameter c∗ in Eq. (10) approaches infinity,
so the transition to the superdiffusive regime should take
place at a finite disorder strength W where c∗(W ) =

cloc = 1/(2π2) in contrast with the isotropic dipole-dipole
hopping [28].

The generalization to the arbitrary distribution of ran-
dom potentials can be made by the replacements E →
E − ReΣ(E, 0) and W → −ImΣ(E, 0) in Eqs. (9),
(10), where Σ(E, 0) is the self-energy evaluated at en-
ergy E and wavevector q = 0. One should notice that
Σ(0, 0) = 0. Finding the self-energy for arbitrary dis-
tribution of random potentials remains a challenge; yet
this problem is much easier compared to the localization
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problem itself. The classical conductance serves as an
input to the renormalization group equation for the con-
ductance derived below in Sec. IV.

IV. RENORMALIZATION GROUP EQUATION.

Here we derive the β-function determining the size de-
pendence of conductance in Eq. (1) within the one-loop
order. The derivation below is given for the isotropic
regime of symmetric conductances cxx = cyy while for the
anisotropic regime we give the results in the end of the
present section. The isotropic regime is approximately

valid for the system under consideration at zero energy
(see Eq. (10) in Sec. III).

We examine the renormalization of conductance
C(q, p1) for the orthogonal (possessing the time-reversal
symmetry) sigma model within the one-loop order assum-
ing that the conductance is much greater than one, which
is true near the transition point, where it approaches in-
finity. Here q is the current momentum and p1 is the
maximum momentum [9] reduced during renormalization
procedure. The renormalization of the conductance is as-
sociated with the reduction of the maximum momentum
to the new value p2 ≪ p1. This renormalization can be
expressed as [9, 12] (q ≪ p)

q2(C(q, p2)− C(q, p1)) ≈ −
∫ ′ dk

π(2π)2
C(|k+ q|, p1)(k + q)2 − C(k, p1)k

2

C(k, p1)k2
, (11)

where integration
∫ ′

is taken over the domain of mo-
menta p2 < p < p1 that is getting excluded during
the renormalization procedure. This is the one-loop or-
der correction to the conductance similar to Eq. (25)
in Ref. [12], where it was considered for a one dimen-
sional model with the long-range hopping. The terms
C(k, p1)k

2, C(|k + q|, p1)(k+ q)2 in the denominators
are identical to the terms |q + k|σ and |k|σ in Ref. [12].

The initial conditions to Eq. (11) at large p1 = O(1)

are set using the classical order conductance as

C(q, 1) = c∗ ln(1/q), (12)

where the inverse wavevector q serves as the cutoff radius
in the definition of the conductance. The long-range in-
teraction enters into the consideration through this initial
condition.
In the limit q ≪ p1 one can expand the expression in

the numerator to the second order in q as (the first order
disappears because of the integration over angles)

C(q, p2)− C(q, p1) ≈ −
∑

α,β=x,y

qαqβ
2q2

∫ ′ dp

π(2π)2
∂2(C(p, p1)p

2)

∂pα∂pβ

1

C(p, p1)p2
. (13)

Evaluating derivatives and averaging over angles of vector p we get

C(q, p2)− C(q, p1) = −
∫ ′ dp

π(2π)2

[
C(p, p1) +

∂C(p, p1)

∂ ln(p)
+

1

4

∂2C(p, p1)

∂ ln(p)2

]
1

C(p, p1)p2
. (14)

Assuming that the logarithmic derivatives of the con-
ductance are smooth functions (this is justified by the
logarithmic size dependence of conductance in the initial
condition Eq. (12) and can be verified using the solution

of the equation) one can perform logarithmic integration
in the right hand side of Eq. (14) and express this equa-
tion in the standard differential form similarly to Ref.
[9]

∂C(q, p)

∂ ln(p)
=

1

2π2

[
1 +

1

C(p, p)

∂C(p1, p)

∂ ln(p1)

∣∣∣∣
p1=p

+
1

4C(p, p)

∂2C(p1, p)

∂ ln(p1)2

∣∣∣∣
p1=p

]
. (15)

Since the right hand side of Eq. (15) is independent of
the wavevector q one can evaluate logarithmic derivatives

using the initial condition Eq. (12) as

∂C(p1, p)

∂ ln(p1)

∣∣∣∣
p1=p

= −c∗,
∂2C(p1, p)

∂2 ln(p1)

∣∣∣∣
p1=p

= 0.
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Then Eq. (15) takes the form

∂C(q, p)

∂ ln(p)
=

1

2π2

[
1− c∗

C(p, p)

]
. (16)

The renormalized conductance at the given momentum
p can be determined with the logarithmic accuracy as
C(p, p) and it can be denoted as C(p) for the convenience.
Using the initial condition Eq. (12) for the derivative
with respect to the first argument we end up with the
renormalization group equation in the form

dC(p)

d ln(p)
= −c∗ +

1

2π2

[
1− c∗

C(p)

]
. (17)

For the size L dependent conductance one can express
the relevant wavevector p as η1/L for η1 = O(1). This
leads to the renormalization group equation for the size
dependent conductance in the form

dC

d ln(L)
= c∗ − cloc +

c∗cloc
C

+O(C−2),

cloc =
1

2π2
. (18)

Assuming that C ≫ cloc we can ignore higher order
terms. Then for cloc > c∗ the steady state solution reads

C =
c∗cloc
cloc − c∗

. (19)

It is a stable fixed point. This solution is applicable in
the infinite-size limit and for cloc−c∗ ≪ cloc where higher
order terms in 1/C can be neglected. In the opposite case
c∗ > cloc the solution approaches infinity for L→ ∞.

Formally Eq. (18) goes beyond the one-loop order ex-
pansion since the term inversely proportional to the con-
ductance is comparable to the two-loop order contribu-
tions. However, since there is no contributions to the
conductance up to four-loop order [9], we believe that we
do not need to go beyond the one-loop order.

The renormalization group equation for the anisotropic
conductance can be derived similarly to the isotropic
regime. In the one-loop order we got

dCx

d ln(L)
= c∗x − cloc

Cx√
CxCy

+
2c∗x√

Cx(
√
Cx +

√
Cy)

+
Cyc

∗
x − Cxc

∗
y

4
√
CxCy(

√
Cx +

√
Cy)2

+O(C−2),

dCy

d ln(L)
= c∗y − cloc

Cy√
CxCy

+
2c∗y√

Cy(
√
Cx +

√
Cy)

+
Cxc

∗
y − Cyc

∗
x

4
√
CxCy(

√
Cx +

√
Cy)2

+O(C−2). (20)

Similarly to the isotropic case Eq. (19) this equation
has a stable fixed point at c∗xc

∗
y < c2loc. In the infinite-

size limit the steady state solution for conductance at
that point can be approximated by

(
Cx

Cy

)
=

2c2loc
c2loc − c∗xc

∗
y

(
c∗x
c∗y

)
(21)

Conductance approaches infinity in the infinite-size limit
for c∗xc

∗
y ≥ c2loc. Consequently, the transition to the su-

perdiffusive regime is defined as

c2loc = c∗xc
∗
y. (22)

According to Eq. (18) conductance diverges logarith-
mically for L → ∞ under the condition c∗ > cloc (the
fast phase), while it remains finite otherwise (the slow
phase). Setting c∗ = cloc one can find critical disorder
separating phases.
For the dipole-dipole interaction the isotropic regime is

realized only for the band center E = 0, where the critical

disorder is given by Wc = π/
√
(1 +

√
5)/2 ≈ 2.47. With

decreasing disorder the fast phase emerges first at that
energy. For the anisotropic regime realized at E 6= 0
the transition emerges at c∗xc

∗
y = c2loc, Eq. (22). Us-

ing the analytical results, Eq. (9), for the logarithmic

0 1 2 3 4
-4

-2

0

2

4

0.4

0.45

0.5

FIG. 2. Phase diagram of the 2D interacting dipoles model
and the color code shows the average level-spacing ratio 〈r〉,
Eq. (23) characterizing the level statistics [61], evaluated for
the system size L = 201 and averaged over 1000 realizations
separately for each value of W .

The solid line shows the analytical predictions for the phase
boundary in the infinite system determined using Eq. (22).

growing rates c∗x and c∗y we determine the phase diagram
depicted in Fig. 2, where solid lines indicate analyti-
cal predictions for the boundary between slow and fast
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phases determined using Eq. (22).
The dipole-dipole hopping distance dependence r−2

emerges in high-dielectric-constant films. For the film
of the thickness h possessing a dielectric constant ǫ sub-
stantially exceeding that of the environment (ǫenv), 1/r

2

hopping amplitude distance dependence emerges for dis-
tances r belonging to the domain h < r < Lmax =
hǫ/ǫenv [62, 63] If the system is in the fast phase the
conductance will grow within this domain reaching its
maximum C(Lmax) ≈ (c∗ − cloc) ln(ǫ/ǫenv). At longer
distances L > Lmax there is no long-range hopping con-
tribution so the renormalization group equation takes the
form dC/d ln(L) = −cloc as for the short-range hop-
ping. Then at distances exceeding Lmax a weak lo-
calization behavior of conductance is expected C(L) =
C(Lmax)− cloc ln(L/Lmax) until reaching the length l ≈
h(ǫ/ǫenv)

c∗
cloc where C(L) = 0. At that scale two di-

mensional Anderson localization is expected, so the size
l determines the localization length. It seems to be an
exciting experimental challenge to investigate the exci-
tation displacements vs. time in high-dielectric-constant
films to observe all three regimes. For the hopping asso-
ciated with elastic or RKKY interactions in isolated films
there is no constraints like that for the dipole-dipole in-
teraction so the superdiffusive behavior can be seen there
at longer distances.

V. NUMERICAL RESULTS

Fast and slow phases should be distinguishable numer-
ically and below we investigate the transition between
them using exact diagonalization and considering the
level statistics (Sec. VA), fractal dimension (Sec. VB)
and transport kinetics (Sec. VC). Since the Hamilto-
nian matrix is not sparse, i. e. most of its elements
are different from zero, the recently developed advanced
diagonalization methods of large matrices [64] are not ap-
plicable to our problem of interest and the maximum size
of the system is limited to 300× 300. Yet our results are
quite consistent with the expectations of the analytical
renormalization group theory.

A. Level Statistics

Energy level statistics is different for localized and de-
localized states [65]. For delocalized states it approaches
the Wigner-Dyson random matrix energy level statistics
due to energy level repulsion, while energies of localized
states are independent of each other and can be charac-
terized by a Poisson statistics. Usually, Wigner-Dyson
level statistics indicates ergodic behavior [61, 66], see,
however, Ref. [67].
Eigenstates in the slow phase, characterized by a finite

conductance, are expected to have a fractal dimension D
reduced compared to a system dimension d = 2 [11, 12].
Consequently, the level repulsion should be reduced and

-5 0 5

0.4

0.45

0.5

FIG. 3. Level-spacing-ratio r-statistics vs. energy for different
disorder strengths W . The vertical dashed lines at E = ±2.7
(V0 = 1) indicate the fast phase borders for the smallest dis-
order strength W = 1.

we do not expect Wigner - Dyson statistics and, conse-
quently, ergodic behavior in the slow phase. However,
one can expect it to appear in the fast phase similarly
to the counterpart transition in 3D [54]. This expecta-
tion turns out to be consistent with the numerical studies
reported below.
The level statistics is represented in terms of the aver-

age ratio of the minimum to maximum of adjacent energy
level splittings defined as [61]

〈r〉 =
〈
min(δn, δn+1)

max(δn, δn+1)

〉
, δn = En+1 − En, (23)

where En represent energies of eigenstates arranged in
the ascending order. In the localized phase one has 〈r〉 =
2 ln(2)−1 ≈ 0.386, while in the delocalized, ergodic phase
characterized by the Wigner-Dyson statistics 〈r〉 ≈ 0.531
[66].
In Fig. 3 we show the level statistics for the system

of the size L = 291 with the anisotropic dipole-dipole
hopping Eq. (4) and different disorder strengths averaged
over 200 realizations.with the energy resolution δE = 0.1.
For the minimum disorder strength W = 1, a substantial
fraction of states with energies |E| < 2.7V0 indicated by
the dashed line should belong to the fast phase (in all
graphs we set V0 = 1). The average level spacing ratio
parameter 〈r〉 approaches the Wigner-Dyson limit 0.53
in this domain as we expected for the fast phase. The
intermediate disorder strength W = 2.5 approximately
corresponds to the last moment when the fast phase is
present at E = 0. For the strongest disorder W = 4 all
states suppose to belong to the slow phase. It is visually
clear in Fig. 3 that our numerical findings are consistent
with the assumption of ergodic behavior in the fast phase
and its lack in the slow phase. The data for the level
statistics are also presented in the phase diagram Fig. 2.
They are consistent with the analytical results shown by
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the solid line. The results are shown for the maximum
probed system size L = 251. The results for smaller sizes
are quite similar to those in Fig. 2 so we do not see any
remarkable scaling of the level spacing ratio similarly to
the earlier work [20]. This is in contrast with the fractal
dimension scaling reported below.

B. Fractal dimension

The numerical investigation of a fractal dimension re-
ported in this section is targeted to verify a finite-size
scaling of a conductance. predicted by the renormaliza-
tion group theory Eq. (18) taking the advantage of the
earlier predicted connection of conductance and dimen-
sion [68]. We define the fractal dimension using the in-
formational dimension D1 [69, 70] that can be expressed
in terms of the average eigenstate wavefunction Shannon
entropy ξ(L) = −〈∑i |ci|2 ln(|ci|2)〉, where the ampli-
tudes ci represent eigenstate coefficients of the problem
in the real-coordinate basis of sites i with the energy E
close to zero (−0.1 < E < 0.1) and averaging is per-
formed over all such states and different realizations of
random potentials.
The informational dimension is connected to the frac-

tal dimension Dq of the multifractal eigenstate defined
for the specific exponent q as [20, 71]

〈
∑

i

|ci|2q〉 ∝ L(1−q)Dq . (24)

It corresponds to the limit of q → 1, where the geometric
averaging emerges naturally after both sides expansion in
1−q [71]. In this limit the fractal dimension is less sensi-
tive to fluctuations thus reflecting a typical wavefunction
behavior, which is our target.
For numerical calculations we define a size-dependent

informational dimension as D1 = dξ/d ln(L), cf. Ref.
[72]. The dimension is estimated calculating the func-
tions ξ for the sequence of lengths L1, L2, ... Ln ar-
ranged in ascending order and then numerically differ-
entiating them. This yields n − 1 estimates for fractal
dimensions D1(lk) = (ξ(Lk+1)− ξ(Lk))/ ln(Lk+1/Lk) as-

signed to geometrically average sizes lk =
√
LkLk+1 for

k = 1, 2...n− 1.
Numerical results should be compared with analyti-

cal estimates for fractal dimensions obtained using the
generalized theory Eq. (18) and the connection between
the dimension and the system conductance. established
within the non-linear sigma model in Refs. [8, 60, 68, 73].
It was shown there that the informational dimension D1

of a two-dimensional system with a finite conductance
is smaller than the system dimension 2. The difference
of dimensions is inversely proportional to the dimension-
less conductance at large conductance C ≫ cloc. Con-
sequently, the fractal (informational) dimension can be
expressed as D1 = 2 − ηdcloc/C at C ≫ cloc. Theory
suggests [8, 68] ηd = 1 for the non-linear sigma model
with a short-range hopping.

We were unable to fit the numerical data using the an-
alytical expression with ηd = 1 (see Appendix B), but
obtained an excellent agreement between analytical and
numerical results setting ηd = 1.3 (D1 = 2 − 1.3cloc/C).
In Fig. 4 we present analytical results for the fractal
dimension (solid line) together with its numerical esti-
mate for the zero energy states of the system with the
hopping due to the anisotropic dipole-dipole interaction.
The conductance was evaluated integrating Eq. (18) and
solving numerically the resulting transcendental equation
that expresses size-dependent conductance as

C + C∞ ln

(
1− C

C∞

)
= (c∗ − cloc) ln

(
L

L0

)
. (25)

Here C∞ = c∗cloc/(cloc − c∗) represents the infinite-size
limit of conductance in the slow phase c∗ < cloc and
L0 is the unknown integration constant. We define this
constant for each line shown in Fig. 4 minimizing the
deviation of analytical (2− 1.3cloc/C) and numerical es-
timates of fractal dimensions. at largest sizes where the
theory is most relevant.
The failure of the expression for D1 with ηd = 1 in the

present model can be due to the long-range character of
hopping.

0 0.1 0.2 0.3 0.4
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

FIG. 4. Finite-size scaling of the fractal dimension vs. the
predictions of the modified scaling theory of localization (see
the text). The number of realizations is 40000 for the mini-
mum size L = 11 decreasing with increasing the size to 2000
for the maximum size L = 251.

C. Transport

Finally, we consider the particle transport that is the
main distinction of two phases. Our goal here is just to
demonstrate that the superdiffusive transport, indeed,
exists at small disorder strength in a reasonable agree-
ment with the predictions of the analytical theory. We
do not attempt to compare the predictions of analyti-
cal theory with numerical results in detail because the
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transport includes many eigenstates with different ener-
gies and different transport rates that makes an accurate
analytical consideration overcomplicated.

As we explained earlier it is expected to be superdiffu-
sive in the fast phase and diffusive in the slow phase. For
the initially localized particle its typical displacement R
increases with the time following a sort of diffusion law
R2 ∝ C(R)t since conductance and diffusion coefficient
are synonyms in two dimensions. In the fast phase a con-
ductance C(R) increases logarithmically with the size R
leading to a superdiffusive behavior in contrast to the
linear dependence expected in the slow phase where con-
ductance remains finite. This expectation is consistent
with Ref. [11], where the behavior R ∝ t1/d was pre-
dicted for the slow phase in a d- dimensional system. For
d = 2 this is equivalent to the diffusive behavior in con-
trast to the subdiffusive behavior for d = 3 [11] or the
superdiffusive behavior for d = 1 [12].
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FIG. 5. Time dependence of typical squared displacement at
different disorder strengths W indicated near each graph for
the system size L = 251, averaged over 300 realizations.

To verify these expectations we investigate the time
evolution of the state ci initially (t = 0) localized in the
origin i = 0 (ci(0) = δi0, where δi0 is the Kronecker
symbol). We set a random potential in the origin to zero
(φ0 = 0, see Eq. (2)) to have the average energy of
the state of interest equal to zero 0, where delocalization
emerges in the maximum extent. Different strengths of
random potentials were investigated including W = 0.1,
0.5 and 1.5 for the fast phase, W = 2.5 for the transition
point and W = 3.5 for the slow phase. For W = 0.1, 0.5
or 1.5 the fast phase is realized for the majority of the
states, except for a small fraction of the “slow” states in
the tails of the spectrum that don’t affect the particle
transport. The choice of a zero random potential in the
origin where the particle was placed at t = 0 reduces
the contribution of slow tail states to the wavefunction
evolution.

The particle transport has been characterized using the
logarithmically average displacement Rlog(t) (excluding

10
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FIG. 6. Time dependence of relative conductance C∗/C∗(1)
(C∗(t) = R2

log(t)/t) at different disorder strengths W indi-
cated on the right of each graph for the same conditions as in
Fig. 5.

the origin), defined as

ln
(
Rlog(t)

2
)
=

∑

i6=0

|ci(t)|2 ln(R2
i ). (26)

We do not consider the most often used mean squared
displacement because the power-law tails of the wave-
function can lead to the overestimate of the actual move.
Indeed, even at short times a mean squared displacement
diverges with the system size because of the wavefunc-
tion asymptotic behavior ψ(R) ∝ R−2 emerging in the
first order perturbation theory in a hopping. Although at
short times the particle is localized nearby the origin R =
0, the average squared displacement

∫
d2R|ψ(R)|2R2 di-

verges logarithmically for ψ(R) ∝ R−2 for the system of
an infinite size, while logarithmic averaging does not lead
to any divergence. at a finite time.
The results of the calculations for Rlog(t)

2 vs. t are
shown in Fig. 5. Based on these results it is still diffi-
cult to characterize the transport because at very short
times t < 1, 1/W one has |ci(t)| ≈ Vit (Vi is the cou-
pling strength of the initial site and the site i) leading to
Rlog(t) ∝ t , while the saturation at around the system
size takes place at long times t > 100. To focus on the
relevant time domain for the superdiffusive transport we
restrict our consideration to times tmin < t < tmax with
tmin = 1 and tmax = 100. The time dependence of the
relative conductance C∗(t)/C∗(1) (C∗(t) = Rlog(t)

2/t in
that time domain in shown in Fig. 6 for various disor-
der strengths. Relative conductance is used since we are
interested in the time dependence of the diffusion coef-
ficient (conductance) rather than its absolute value. If
the transport is superdiffusive this effective conductance
should increase with the time. logarithmically, saturat-
ing at long times due to a finite-size effects.
According to Fig. 6 the superdiffusive transport, in-

deed, emerges for the weakest disorder at W ≤ 1.5 in
accord with the theoretical expectations. At short times
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the conductance time dependence is consistent with the
expected logarithmic growing for W = 0.1 and W = 0.5,
while for W = 1.5 the growing domain is too narrow to
make any conclusions possibly due to finite-size effects.
For stronger disorder the conductance slowly decreases
with the time. At the transition point W ≈ 2.5 cor-
responding to the zero energy, Eq. (18) predicts the

superdiffusive behavior C ∝
√
ln(L), that we do not

see, possibly because of dominating contributions of slow
states with energies different from 0. The reduction of the
diffusion coefficient (conductance) with the time (size) for
W > 1.5 can be due to the renormalization of coupling
constant occurring for the dipolar hopping and dipoles
oriented within the same direction for strong disorder
[74]. Although disorder is not strong, some reduction of
the effective coupling constant can still take place.

VI. CONCLUSIONS

We show the emergence of a superdiffusive fast phase
in two-dimensional Anderson model with long-range hop-
ping V (r) ∝ r−2, possessing the time-reversal symmetry,
at sufficiently small disorder. The fast phase is charac-
terized by delocalized, ergodic eigenstates occupying the
whole space and fostering the superdiffusive transport.
The complementary slow phase is non-ergodic. In this

phase eigenstates are delocalized, while their fractal di-
mension is less than 2. The transport there is expected to
be diffusive but restricted to the maximum displacement
substantially smaller than the system size.
The conductance of the system is finite in the slow

phase and infinite in the fast phase. It continuously
approaches infinity in the transition point in contrast
to the other known localization-delocalization transitions
[6, 28]. The boundary between two phases is determined
analytically, which is unprecedented for Anderson local-
ization problem with the only exception of the celebrated
self-consistent theory of localization valid for the Bethe
lattice [75].
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Appendix A: Fourier transforms of hopping

amplitudes

The anisotropic dipole-dipole interaction, responsible
for the hopping in the model under consideration, is de-
fined by Eq. (4). Here we calculate numerically its
Fourier transform V (q) =

∑
j Vije

iqrij needed to eval-

uate the classical conductance, Eq. (9).
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FIG. 7. Comparison of analytical and numerical Fourier
transforms for dipole-dipole interaction (at fixed ratios
ky/kx). Numerical Fourier transform is evaluated for the sys-
tem of the size L = 100. Analytical results is shown by dashed
lines and numerical results are shown by solid lines.

It turns out that dipole-dipole interaction Fourier
transform can be well represented by its continuous limit
given by

V (q) = 2V0π
q2y − q2x
q2

, (A1)
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This approximation works reasonably well for the peri-
odic square lattice of the size L = 100 as illustrated in
Fig. 7. It becomes exact for the system size approaching
infinity since the logarithmic divergence of the classical
conductance emerges at q → 0 corresponding to long dis-
tances. In this limit the regular correction to Eq. (A1)
disappears because the sum of all dipole-dipole interac-
tions is zero.

Appendix B: Connection of conductance and

informational dimension.
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FIG. 8. Comparison of the numerical estimate of eigenstate
fractal dimensions with the analytical theory of Ref. [28]. The
only exception is the case of W = 3 for the present graph,
where we cannot fit those data even choosing the minimum
possible value of L0 → 0, corresponding to the infinite-length
limit of the fractal dimension., as shown by the dashed line..

Here we show that the numerically calculated fractal
dimension D1 cannot be fitted by the analytical theory
[68] predicting the dependence of this dimension on the
conductance in the form D1 = 2 − cloc

C in contrast with
the dependence D1 = 2 − 1.3 cloc

C used in the main text.
We evaluated a conductance using the scaling equations
derived in the present work and in Ref. [28], which can

be both written in the form

d ln(C)

d ln(L)
=
c∗ − cloc

C
+ ζ

c∗cloc
C2

, (B1)

with ζ = 1 for the present work and ζ = 1/2 for Ref.
[28].
The conductance C is found integrating Eq. (B1) as

(see Eq. (25) in the main text)

C + C∞ ln

(
1− C

C∞

)
= (c∗ − cloc) ln

(
L

L0

)
, (B2)

C∞ = ζ
c∗cloc
cloc − c∗

.

We choose the optimum parameter L0 in Eq. (B2) as in
the main text minimizing the deviation of analytical and
numerical results at largest sizes.
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FIG. 9. Comparison of the numerical estimate of eigenstate
fractal dimensions with the analytical theory of the present
work. We always used L0 = 10.

In Figs. 8, 9 we show the comparison of the numerical
results for the dimension D1 (the numbers of realizations
are as in Fig. 4) and the analytical theory 2− cloc/C for
two choices of the parameter ζ = 1/2 and 1, respectively.
It is clear from Figs. 8, 9 that in both cases the analytical
theory does not provide an acceptable fit of the data.
However, if we set D1 = 2 − 1.3cloc/C, and employ Eq.
(B1) with the parameter ζ = 1, then we get an almost
perfect agreement of numerical and analytical results as
reported in the main text, Fig. 4.


