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A fast iterative PDE-based algorithm for feedback controls of

nonsmooth mean-field control problems

Christoph Reisinger∗ Wolfgang Stockinger∗ Yufei Zhang∗

Abstract. We propose a PDE-based accelerated gradient algorithm for optimal feedback controls of
McKean–Vlasov dynamics that involve mean-field interactions both in the state and action. The method
exploits a forward-backward splitting approach and iteratively refines the approximate controls based
on the gradients of smooth costs, the proximal maps of nonsmooth costs, and dynamically updated
momentum parameters. At each step, the state dynamics is approximated via a particle system, and
the required gradient is evaluated through a coupled system of nonlocal linear PDEs. The latter is
solved by finite difference approximation or neural network-based residual approximation, depending on
the state dimension. We present exhaustive numerical experiments for low and high-dimensional mean-
field control problems, including sparse stabilization of stochastic Cucker–Smale models, which reveal
that our algorithm captures important structures of the optimal feedback control and achieves a robust
performance with respect to parameter perturbation.

Key words. Controlled McKean–Vlasov diffusion, optimal gradient method, monotone scheme, neural
network, sparse control, stochastic Cucker–Smale model.
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1 Introduction

In this article, we propose a class of iterative methods for solving mean-field control (MFC) problems,
where the state dynamics and cost functions depend upon the joint law of the state and the control
processes. Let T > 0 be a given terminal time, W = (Wt)t∈[0,T ] be an n-dimensional Brownian motion
defined on the probability space (Ω,F ,P), F = (Ft)t∈[0,T ] the natural filtration of W augmented with an

independent σ-algebra F0, and H2(Rk) be the set of admissible controls containing all Rk-valued square
integrable F-progressively measurable processes. For a given F0-measurable initial state ξ ∈ L2(Ω;Rd)
and a control α ∈ H2(Rk), we consider the state process governed by the following controlled McKean–
Vlasov diffusion:

dXt = b(t,Xt, αt,L(Xt,αt)) dt+ σ(t,Xt, αt,L(Xt,αt)) dWt, t ∈ [0, T ]; X0 = ξ, (1.1)

where b : [0, T ] × R
d × R

k × P2(R
d × R

k) → R
d and σ : [0, T ] × R

d × R
k × P2(R

d × R
k) → R

d×n are
sufficiently regular functions such that (1.1) admits a unique square integrable solution Xα. The value
function of the optimal control problem is defined by

J⋆(ξ) = inf
α∈H2(Rk)

J(α; ξ), with J(α; ξ) = E

[ ∫ T

0

(
f(t,Xα

t , αt,L(Xαt ,αt)
) + ℓ(αt)

)
dt+ g(Xα

T ,LXαT )

]
,

(1.2)
where f : [0, T ]× R

d × R
k × P2(R

d × R
k) → R, g : Rd × P2(R

d) → R are differentiable functions of at
most quadratic growth, and ℓ : Rk → R ∪ {∞} is a proper, lower semicontinuous and convex function.
Above and hereafter, LU denotes the law of a random variable U , and P2(E) denotes the Wasserstein
space of probability measures on the Euclidean space E with finite second moment.

The above MFC problem extends classical stochastic control problems by allowing the mean-field
interactions through the joint distribution of the state and control processes. It describes large population
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equilibria of interacting individuals controlled by a central planner, and plays an important role in
economics [12, 1, 4], production management [31], biology [19, 9, 5] and social interactions [2, 3, 4].
Moreover, the extended real-valued function ℓ in (1.2) includes important examples such as characteristic
functions of convex sets representing control constraints [1, 47], ℓ1-norm based regularizations used to
induce sparsity or switching properties of the optimal control [19, 9], and entropy regularizations in
machine learning [53, 33].

To solve (1.1)-(1.2), we aim to construct an optimal (decentralized) feedback control, i.e., a sufficiently
regular function φ⋆ : [0, T ] × R

d → R
k such that the corresponding controlled dynamics (1.1) (with

αt = φ⋆(t,Xt)) admits a unique solution Xφ⋆ and J⋆(ξ) = J(φ⋆(·, Xφ⋆

· ), ξ).1 The existence of such
feedback controls has been shown in [47] (see also [20, Section 6.4] for special cases without mean-field
interactions through control variables). The main advantage of a feedback strategy is that implementing
the optimal control reduces to simple function evaluation at the current state of the system. Moreover,
a feedback control allows us to interpret the mechanism of the optimal control. This is particularly
important for economics and social science [41], where one would like to understand the cause of a
decision, and explain its dependence on the state dynamics and the objective function. A feedback
control also allows us to analyze the failure of certain control policies for fault diagnosis.

Existing numerical methods for MFC problems and their limitations. As analytical solutions
to optimal feedback controls of (1.1)-(1.2) are rarely available, numerical schemes for solving such control
problems become vital. Due to the nonlinear dependence on the marginal laws, it is difficult to follow
the classical dynamic programming (DP) approach for constructing optimal feedback controls. The main
challenge here is that to construct feedback controls, DP requires us to find derivatives of solutions to
an infinite-dimensional Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) defined on
[0, T ] × P2(R

d) (see e.g., [46]), which is computationally intractable. Hence, most existing numerical
methods are based on the optimization interpretation of (1.1)-(1.2).

The most straightforward approach for solving (1.1)-(1.2) is to restrict the optimization over feedback
controls within a prescribed parametric family, i.e., the so-called policy gradient (PG) method (see e.g.,
[21]). It approximates the optimal feedback control in a parametric form depending on weights θ (for
instance a deep neural network), and then seeks the optimal approximation by performing gradient descent
of J with respect to the weights θ based on simulated trajectories of the state process. By exploiting an
efficient neural network representation of the feedback control, the PG method can be adapted to solve
MFC problems with high-dimensional state processes.

However, the PG method has two serious drawbacks, especially for solving control problems with
nonlinear dynamics and nonsmooth costs in (1.1)-(1.2). Firstly, as the loss functional J is nonconvex
and nonsmooth in the weights θ of the numerical feedback controls, there is no theoretical guarantee on
the convergence of the PG method for solving nonsmooth MFC problems. In practice, even though the
PG method may minimize the loss function reasonably well, the resulting approximate feedback control
often fails to capture important structural features of the optimal feedback control, and consequently
lacks the capability to provide sufficient insights of the optimal decision; see Figures 6, 7 and 9 in Section
5.2.2 where the PG method ignores the temporal and spatial nonlinearity and the sparsity of the optimal
controls. Secondly, as the PG method computes approximate feedback controls based purely on sample
trajectories of the state dynamics, it cannot recover optimal feedback controls outside the support of the
optimal state process. Consequently, the performance of the approximate feedback control in general
can be very sensitive to perturbations of the (random) initial state ξ of (1.1); see Section 5.1 for details.
This is undesirable for practical applications of MFC problems, as the initial condition ξ describes the
asymptotic regime of initial conditions of a large number of players, and often cannot be observed exactly.

Another approach is to solve the optimality systems arising from applying the Pontryagin Maximum
Principle (PMP) to (1.1)-(1.2). Existing works consider special cases with neither nonsmooth costs
nor mean-field interactions through control variables, and design numerical methods based on either a
probabilistic or deterministic formulation (see e.g., [20, Section 6.2.4]). The probabilistic formulation
represents an optimal control α⋆ ∈ H2(Rk) as α⋆t = α̂(t,Xα⋆

t ,LXα⋆t , Y α
⋆

t , Zα
⋆

) for dt ⊗ dP-a.e., with α̂

being the pointwise minimizer of an associated Hamiltonian H, and (Xα⋆ , Y α
⋆

, Zα
⋆

) being the solution
to a coupled forward-backward stochastic differential equation (FBSDE) depending on α̂. The coupled

1φ⋆ is called a decentralized control as it acts explicitly only on the time and state variables, while the dependence on
the (deterministic) marginal laws of the optimal state and control processes is implicit through the time dependence.
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FBSDE can be solved by first representing the solution in terms of grid functions [6, 48], binomial
trees [6] or neural networks [26, 21, 28], and then employing regression methods to obtain the optimal
approximation. Similarly, the deterministic formulation represents an optimal feedback control φ⋆ as
φ⋆(t, x) = ᾱ(t, x, µ⋆t , (∇xv)(t, x), (Hessxv)(t, x)) for all (t, x) ∈ [0, T ] × R

d. Here ᾱ is the pointwise
minimizer of an associated Hamiltonian H (possibly different from H), and (µ⋆, v) satisfy a coupled
Fokker-Planck (FP)-HJB PDE system depending on ᾱ, which consists of a nonlinear FP equation for the
marginal distribution µ⋆ of the optimal state process, and of a nonlinear HJB equation for the adjoint
variable v. The FP-HJB system can then be solved by finite difference methods as in [2, 3, 4] or by neural
network methods as in [22].

We observe, however, that the above PMP approach suffers from the following limitations. Firstly,
the derivation of the optimality systems relies heavily on the analytic expression of pointwise minimizers
of the Hamiltonians, which may not be available for general control problems. More crucially, as pointed
out in [1], when there is a nonlinear dependence on the law of the control, the PMP in general cannot
be expressed in terms of a pointwise minimization of Hamiltonian (see [47] for a detailed investigation of
this issue). These factors prevent us from applying the PMP approach to solve (1.1)-(1.2) with general
cost functions and control interactions. Secondly, similar to the PG method, solving the coupled FBSDE
via regression focuses mainly along trajectories of the optimal state, and consequently would result in
an approximate feedback control that is sensitive to perturbation of the initial state (see Section 5.1).
Finally, solutions to the nonlinear FP equation in general only exist in the sense of distributions and
often admit temporal and spatial singularity. This creates significant numerical challenges, especially
when the diffusion coefficient σ of (1.1) is degenerate (as in most kinetic models) or the initial state ξ has
a singular density; see Section 5 for concrete examples. In particular, in the high-dimensional setting, one
may need to employ neural networks with complex structures to approximate such irregular solutions,
which subsequently results in challenging optimization problems for training the networks.

Our contributions and related works. This paper proposes a class of iterative algorithms to con-
struct optimal feedback controls for nonsmooth MFC problems (1.1)-(1.2).

• We construct a sequence of feedback controls φm : [0, T ]×R
d → R

k whose realized control processes
minimize the functional J . In the present setting, directly applying gradient descent to either the
stochastic formulation of the control problem over open-loop controls, or to the deterministic refor-
mulation over feedback controls has several critical deficiencies (see Sections 2.1 and 2.2 for details).
To overcome these shortcomings, we propose a heuristic combination of the two formulations, and
tailor Nesterov’s accelerated proximal gradient (NAG) method (also known as the Fast Iterative
Shrinkage-Thresholding Algorithm [15]) to our problem. At each iteration with given feedback
control, we evaluate the gradient of the smooth costs at the corresponding realized control process,
and update the feedback control by incorporating the gradient information, the proximal map of
the nonsmooth cost ℓ, and an explicit dynamically updated momentum parameter.

The proposed accelerated proximal gradient approach has the following advantages in solving (1.1)-
(1.2): (i) unlike the aforementioned PMP approach, our algorithm requires neither (pointwise)
analytical minimization of the Hamiltonian nor deriving the optimality systems, and hence can be
applied to MFC problems with general mean-field interactions through the control variables; (ii)
our algorithm shares the same computational complexity as the gradient-based algorithms in [45, 7,
53, 35], but enjoys an accelerated convergence rate and can handle general convex nonsmooth costs,
including ℓ1-regularizers and control constraints. In fact, such an accelerated gradient iteration
is known to be an optimal first order (gradient) method (in the sense of complexity analysis) for
minimizing finite-dimensional nonsmooth functions [15]; (iii) our method represents the control
iterates in a feedback form (cf., [7, 53, 35] which update controls as stochastic processes), and
avoids the curse of dimensionality in the gradient evaluation as the number of iterations tends to
infinity (see Section 2 for details); (iv) compared to directly applying NAG method to optimize
(1.2) over feedback controls, our algorithm avoids the necessity of evaluating the proximal map of
the nonsmooth cost with respect to feedback controls. This optimization enhances the efficiency of
the algorithm; see Remark 2.2 for further details.

• We present a practical implementation of the above accelerated gradient algorithm by combining
Monte Carlo and PDE approaches. At each iteration, the state dynamics with a given feedback
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control is realized by using a particle approximation and Euler–Maruyama timestepping scheme,
and the required gradient is computed by solving a coupled system of nonlocal linear PDEs, whose
coefficients depend on the empirical measure of the particle system. The coupled PDE system is
then solved with two different approaches depending on the state dimension d in (1.1), in order
to balance the efficiency and computation complexity. In the low-dimensional setting (say d ≤
2), we discretize the coupled PDE system by a class of semi-implicit monotone finite difference
approximations. To accommodate the curse of dimensionality with large state dimension, we also
propose a residual approximation approach to solve the coupled PDE system, in which the numerical
solution is decomposed into a pre-determined candidate solution and an unknown residual term.
The computation of the residual term is addressed by a mesh-free method based on neural network
approximation and stochastic optimization algorithms, such as the Stochastic Gradient Descent
(SGD) algorithm or its variants.

The proposed algorithm combines the advantages of probabilistic and deterministic approaches.
Firstly, the particle approximation allows for efficient computation of the marginal distribution
of the state process and avoids the numerical challenge in solving a nonlinear FP equation (cf.,
[2, 3, 4, 22]). This is particularly relevant for high-dimensional MFC problems with degenerate
diffusion coefficients or irregular initial distribution (see Section 5). Secondly, by exploiting the
PDE formulation of the gradient evaluation, our algorithm recovers the optimal feedback control
on the entire computational domain, rather than merely along the trajectories of the optimal state
(cf., the probabilistic methods in [6, 21, 28, 48]). This allows us to capture important structures of
the optimal control and achieve a robust performance with parameter uncertainty (see Section 5).
As alluded to earlier, such an accurate approximation of the optimal feedback control is practically
important for mathematical modelling and fault diagnosis in engineering. Finally, instead of directly
applying SGD to high-dimensional PDE systems as in [52, 22], the proposed residual approximation
approach leverages available efficient solvers to compute the dominant part of solutions (see e.g., the
Riccati-based solvers in [31, 5]), and employs a small number of SGD iterations to fit the residual
term. This significantly accelerates the convergence of the algorithm for solving high-dimensional
MFC problems (see Figure 8).

• We demonstrate the effectiveness of the algorithm through extensive numerical experiments. This
includes a two-dimensional nonsmooth MFC problem arising from portfolio liquidation with trade
crowding, and a six-dimensional nonsmooth nonconvex MFC problem arising from sparse consensus
control of stochastic Cucker–Smale models. Our experiments show that the resulting approximate
feedback control correctly captures the temporal/spatial nonlinearity and the sparsity of the optimal
control, and achieves a robust performance in the presence of initial state perturbation.

The rest of the paper is organized as follows. Section 2 describes our numerical methodology, including
the accelerated proximal gradient iteration, the particle system for the state process, and the PDE system
for the gradient evaluation. We then propose a class of finite difference approximations in Section 3 and
neural network-based residual approximations in Section 4 to solve the PDE systems. In Section 5, we
present exhaustive numerical experiments for multidimensional nonsmooth nonconvex MFC problems,
which demonstrate that the proposed algorithm leads to more accurate and stable feedback controls than
the aforementioned PG method and the PMP method.

2 Fast iterative PDE-based method for MFC problems

This section proposes a class of Markovian accelerated proximal gradient methods for MFC problems
with nonsmooth running costs.

In the following subsections, we will incrementally introduce the main algorithm of the paper, in
order to highlight the main ingredients and to stress which components (at least in special cases) are
supported by theoretical results and which (at the present stage) are heuristic.2 In Section 2.1, we will
first formulate a gradient method with open-loop controls, without acceleration step and nonsmooth cost
functional ℓ. Section 2.2 is dedicated to the formulation of a gradient method when the optimization is
carried out over feedback functions.

2We thank an anonymous referee for their comments that helped bring clarity to the presentation.
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These two different approaches serve as motivation for Section 2.3, which introduces a heuristic
iterative PDE based algorithm to overcome certain deficiencies encountered in the first two formulations
(both earlier sections assume ℓ ≡ 0). Our main algorithm, which allows to incorporate nonsmooth cost
and performs an additional moment step, is detailed in Section 2.4. Finally, Section 2.5 discusses existing
convergence results for these various gradient algorithms.

2.1 First motivating algorithm: gradient descent in open-loop control

This section considers MFC problems with regular running costs (ℓ ≡ 0 in (1.2)), and derives plain
gradient-descent iterations over open-loop controls.

If ℓ ≡ 0, (1.1)-(1.2) is a minimisation problem of F : H2(Rk) → R over the Hilbert space H2(Rk):

inf
α∈H2(Rk)

F (α), with F (α) := E

[ ∫ T

0

f(t,Xα
t , αt,L(Xαt ,αt)

) dt+ g(Xα
T ,LXαT )

]
, (2.1)

where Xα ∈ S2(Rd) is the state process controlled by α satisfying (1.1). By [1, Lemma 3.1] and by
assuming differentiability of (b, σ, f), F is Fréchet differentiable with derivative ∇F : H2(Rk) → H2(Rk)
satisfying for all α ∈ H2(Rk),

(∇F )(α)t = (∂aH)(t,Xα
t , αt,L(Xαt ,αt)

, Y αt , Z
α
t ) + Ẽ[(∂νH)(t, X̃α

t , α̃t,L(Xαt ,αt)
, Ỹ αt , Z̃

α
t )(X

α
t , αt)], (2.2)

where H : [0, T ]× R
d × R

k × P2(R
d × R

k)× R
d × R

d×n → R is the Hamiltonian defined by:

H(t, x, a, η, y, z) := 〈b(t, x, a, η), y〉+ 〈σ(t, x, a, η), z〉 + f(t, x, a, η), (2.3)

and (Y α, Zα) are square integrable adapted adjoint processes such that for all t ∈ [0, T ],

dY αt = −
(
(∂xH)(t,Xα

t , αt,L(Xαt ,αt)
, Y αt , Z

α
t )

+ Ẽ[(∂µH)(t, X̃α
t , α̃t,L(Xαt ,αt)

, Ỹ αt , Z̃
α
t )(X

α
t , αt)]

)
dt+ Zαt dWt,

Y αT = (∂xg)(X
α
T ,LXαT ) + Ẽ[(∂µg)(X̃

α
T ,LXαT )(X

α
T )].

(2.4)

Above and hereafter, following [1], we use the tilde notation to denote an independent copy of a random
variable. Moreover, for a given function h : P2(R

d × R
k) → R and a measure η ∈ P2(R

d × R
k) with

marginals µ ∈ P2(R
d), ν ∈ P2(R

k), we denote by
(
(∂µh)(η), (∂νh)(η)

)
(·) : Rn×R

k → R
n×R

k the partial
L-derivatives of h with respect to the marginals; see, e.g., [1, 20] for detailed definitions.

Based on the above interpretation, a gradient descent algorithm for optimal controls of (2.1) is given
as follows: Let α0 ∈ H2(Rk) be the initial guess of the optimal control, and τ > 0 be a chosen stepsize.
Consider the sequence (αm)m∈N ⊂ H2(Rk) such that

αm+1
t = αmt − τ(∇F )(αm)t, ∀m ∈ N ∪ {0}, (2.5)

dt⊗ dP-a.e., where (∇F )(αm) is defined by (2.2).

Pros and cons of Iteration (2.5). The main advantage of (2.5) is that its convergence can be ensured
given sufficient regularity of the functional F : H2(Rk) → R in (2.1). Indeed, as a special case of
Theorem 3.1 of [15] in conjunction with Remark 2.1 therein, or by adapting [42, Theorem 2.1.14] to
the present infinite-dimensional setting, one can deduce that, if F : H2(Rk) → R is convex and its
derivative ∇F : H2(Rk) → H2(Rk) in (2.2) is Lipschitz continuous, then for sufficiently small stepsize,
the corresponding costs (J(αm))m∈N of the sequence (αm)m∈N converges to the optimal cost J⋆ in (1.2)
(with ℓ ≡ 0) with the rate O(m−1). Such a regularity condition holds in particular for commonly used
linear-convex MFC problems (see e.g., [12, 1, 31, 47]). For nonconvex F , it is well-known that gradient-
based algorithms in general can only find critical points.

However, it is difficult to implement the iteration (2.5) in practice. For each m, since αm is a
non-Markovian stochastic process, the BSDE (2.4) for the adjoint processes (Y m, Zm) is typically non-
Markovian. This prevents us from evaluating (∇F )(αm) and implementing the updates (2.5) in a pairwise
sense as for gradient-based algorithms for deterministic optimal control problems (see e.g., [8]). To be
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more precise, let us initialize the iterates (2.5) with α0 = 0. Then one can express (Y 1, Z1) as (Y 0
t , Z

0
t ) =

(u(t,X0
t ), v(t,X

0
t )) for some deterministic functions u, v (often called decoupling fields), and obtain the

stochastic processes (Y 0, Z0) by computing the functions u, v. Hence, one easily sees that α1 is a function
of X0, and consequently, the coefficients of the state dynamics (1.1) and adjoint equations (2.4) for
(X1, Y 1, Z1) would depend on both X0 (through α1) and X1. Repeating this process, one observes that
(Y m, Zm) are functions of time and the enlarged system (X0, . . . , Xm), whose computational complexity
increases rapidly as the number of iterations grows. A similar difficulty has been observed in [16] for
implementing (non-Markovian) Picard iterations to solve coupled FBSDEs.

2.2 Second motivating algorithm: gradient descent in feedback control

In this section, we heuristically derive a gradient descent method for (2.1) by restricting the optimi-
sation over sufficiently regular feedback maps.

To this end, for each sufficiently regular feedback control φ : [0, T ] × R
d → R

k, let Xφ be the
corresponding state process satisfying the dynamics: for all t ∈ [0, T ],

dXt = b
(
t,Xt, φ(t,Xt),L(Xt,φ(t,Xt))

)
dt+ σ

(
t,Xt, φ(t,Xt),L(Xt,φ(t,Xt))

)
dWt, X0 = ξ. (2.6)

Then (2.1) (i.e., (1.1)-(1.2) with ℓ ≡ 0) can be reformulated as minimizing

J̃(φ) :=

∫ T

0

∫

Rd

f
(
t, y, φ(t, y),L(Xφt ,φ(t,X

φ
t ))

)
L
X
φ
t
(dy) dt+

∫

Rd

g
(
y,L

X
φ

T

)
L
X
φ

T

(dy) (2.7)

over all sufficiently regular feedback controls φ. Recall that for any given feedback map ψ, the derivative
of J̃ at φ in the direction ψ (see e.g., [20, Chapter 6.2.4]) is

dJ̃(φ+ ǫψ)

dǫ

∣∣∣∣
ǫ=0

=

∫ T

0

∫

Rd

〈δJ̃φ(t, y), ψ(t, y)〉 LXφt
( dy) dt, (2.8)

where δJ̃φ : [0, T ]× R
d → R

k is given by

δJ̃φ(t, x)

= (∂aH)
(
t, x, φ(t, x),L(Xφt ,φ(t,X

φ
t ))
, (∇xu

φ)(t, x), (Hessxu
φ)(t, x)

)

+ Ẽ

[
(∂νH)

(
t, X̃φ

t , φ(t, X̃
φ
t ),L(Xφt ,φ(t,X

φ
t ))
, (∇xu

φ)(t, X̃φ
t ), (Hessxu

φ)(t, X̃φ
t )
)
(x, φ(t, x))

]
,

(2.9)

X̃φ is an independent copy of X̃φ, H : [0, T ]× R
d × R

k × P2(R
d × R

k)× R
d × R

d×d → R is given by

H(t, x, a, η, y, z) := 〈b(t, x, a, η), y〉+
1

2
tr
(
(σσT)(t, x, a, η)z

)
+ f(t, x, a, η),

and uφ : [0, T ]× R
d → R satisfies the following linear PDE:

(∂tu)(t, x) = −
δ

δµ

[∫

Rd

H(t, y, φ(t, y),L(Xφt ,φ(t,X
φ
t ))
, (∇xu)(t, y), (Hessxu)(t, y))LXφt

(dy)

]
(x),

u(T, x) =
δ

δµ

[∫

Rd

g(y,L
X
φ

T

)L
X
φ

T

(dy)

]
(x),

(2.10)

with δ
δµ

being the linear functional derivative with respect to the state law (L
X
φ
t
)t∈[0,T ] (see [20, Definition

5.43]).
Now gradient descent updates of feedback controls can be derived by selecting a function representation

of the directional derivative given in (2.8). For instance, let φ0 be an initial feedback control, and τ > 0

be a stepsize. For all m ∈ N ∪ {0}, suppose that the law L
X
φm

t
admits a density

dL
X
φm

t

dx with respect to

the Lebesgue measure for almost everywhere t ∈ (0, T ], then (2.8) can be written as:

dJ̃(φm + ǫψ)

dǫ

∣∣∣∣
ǫ=0

=

∫ T

0

∫

Rd

〈
δJ̃φm(t, x)

dL
X
φm

t

dx
(x), ψ(t, x)

〉
dxdt,
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which allows for interpreting the function (t, x) 7→ δJ̃φm(t, x)
dL

X
φm

t

dx (x) as the gradient of J̃ at φm with
respect to the canonical inner product on L2([0, T ]× R

d). This suggests updating φm by

φm+1(t, x) = φm(t, x)− τδJ̃φm(t, x)
dL

X
φm

t

dx (x), (t, x) ∈ [0, T ]× R
d, (2.11)

which is a direct application of gradient descent for (2.1) (or equivalently (1.1)-(1.2) with ℓ ≡ 0) over
feedback controls.

Pros and cons of Iteration (2.11). Iteration (2.11) directly updates the feedback controls, and hence
its complexity at each iteration remains the same as the iteration proceeds. It overcomes the drawback of
Iteration (2.5), whose computational complexity increases as the number of iterations grows as illustrated
at the end of Section 2.1.

However, Iteration (2.11) has several critical deficiencies. Compared with Iteration (2.5), the gradient
direction in (2.11) involves the density of the state process, which may not exist and can be computa-
tionally expensive to evaluate if the density function is irregular. This irregularity arises in particular
when the diffusion coefficient of (2.6) degenerates or when the initial state ξ has a singular density.
Moreover, extending Iteration (2.11) to general cost functionals (1.2) with nonzero ℓ is more challenging.

Observe that in the open-loop formulation, α 7→ E
[ ∫ T

0
ℓ(αt) dt

]
in (1.2) is convex due to the convexity

of ℓ and hence can be easily handled by the associated proximal map; see Section 2.4 for more details.

However, due to the nonlinear dependence of Xφ on φ, φ 7→ E
[ ∫ T

0
ℓ(φ(t,Xφ

t )) dt
]
is typically nonconvex

and evaluating the associated proximal map is computationally expensive.
Furthermore, analysing the convergence of (2.11) is technically more challenging. This is because the

mapping φ 7→ J̃(φ) in (2.7) is typically nonconvex with respect to feedback controls, even for determin-
istic linear-quadratic problems without mean-field interaction (see [30, Proposition 2.4] for a concrete
example). This implies that the convergence analysis of such PGMs is linked to analyzing nonasymptotic
performance of gradient search for nonconvex objectives, which has always been one of the formidable
challenges in optimization theory.

In fact, it is unclear how to choose a suitable function space to analyze Iteration (2.11). By (2.9)
and (2.11), the regularity of φm+1 depends on the regularity of Hessxu

φm . As uφ
m

satisfies (2.10) whose
coefficients involve φm, it is expected that the regularity of Hessxu

φm is controlled by the regularity
of Hessxφ

m. This suggests that estimating the derivatives of φm+1 requires bounds on higher order
derivatives of φm, and it is unclear how to close this norm gap.

2.3 A heuristic modification of gradient methods in feedback control

This section proposes a novel iterative method for MFC problems with regular running costs (ℓ ≡ 0
in (1.2)) by combining the features of Iterations (2.5) and (2.11). On one hand, the algorithm directly
updates the feedback controls as Iteration (2.11), and hence the computational complexity of the adjoint
variables do not change with respect to the number of iterations. On the other hand, it heuristically
replaces the gradient direction over feedback controls by the functional derivative in Iteration (2.5). In
particular, at the m-th iteration, we will update the present feedback map by evaluating the functional
derivative of J(·; ξ0) at the open-loop control αφ

m

induced by the current policy φm, and then obtain
the update direction based on a Markovian representation of the gradient. The latter can be seen as
a simplified version of Iteration (2.11) that does not require computing the state process’s density, the
derivative of feedback functions, or the prox operator in the space of feedback functions in the case of
non-smooth costs (see Remarks 2.1 and 2.2, respectively).

We shall represent the control αm as αmt = φm(t,Xm
t ) with some deterministic feedback function

φm : [0, T ] × R
d → R

k at each iteration. The update direction of φm is obtained via the functional
derivative in (2.5). More precisely, at the m-th iteration, given φm, consider the associated the controlled
state dynamics: X0 = ξ, and for all t ∈ [0, T ],

dXt = b(t,Xt, φ
m(t,Xt),L(Xt,φm(t,Xt))) dt+ σ(t,Xt, φ

m(t,Xt),L(Xt,φm(t,Xt))) dWt. (2.12)

Let Xm be the solution of (2.12); we then seek the adjoint processes (Y m, Zm) satisfying (2.4) with
(Xα, α) replaced by (Xm, φm(·, Xm)), in order to evaluate the gradient of F at the corresponding control
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process φm(·, Xm) as in (2.2). The feedback structure of αm implies that there exist deterministic
decoupling fields um : [0, T ]× R

d → R
d and vm : [0, T ]× R

d → R
d×n such that

Y mt = um(t,Xm
t ), Zmt = vm(t,Xm

t ), dt⊗ dP-a.e. (2.13)

Moreover, the functional derivative ∇F (αm) admits a Markovian representation (∇F )(φm(·, Xm))t =
(∇F )(φm)(t,Xm

t ), dt⊗ dP-a.e., with the function (∇F )(φm) : [0, T ]× R
d → R

k defined by

(∇F )(φm)(t, x)

:= (∂aH)(t, x, φm(t, x),L(Xmt ,φ
m(t,Xmt )), u

m(t, x), vm(t, x))

+ Ẽ[(∂νH)(t, X̃m
t , φ

m(t, X̃m
t ),L(Xmt ,φ

m(t,Xmt )), u
m(t, X̃m

t ), vm(t, X̃m
t ))(x, φm(t, x))],

(2.14)

where H is defined in (2.3). Hence, once the functions (um, vm) are determined, one can compute the
Markovian representation (2.14) of the functional derivative (∇F )(φm), along with a gradient descent
step can be applied to obtain the updated feedback map φm+1; see (2.20).

To compute the decoupling fields (um, vm) in (2.13) for each m, we connect them with solutions to
some PDE system. In fact, the nonlinear Feynman–Kac formula in [44] shows that, if um is sufficiently
smooth, then vm(t, x) = (∇xu

m)(t, x)σ(t, x,LXmt ) for all (t, x) ∈ [0, T ]×R
d, and um solves the following

system of parabolic linear PDEs (depending on φm and the law of Xm):

(∂tu)(t, x) + (Lmu)(t, x) = −fm(t, x, u, v), (2.15)

with u(T, x) = hm(x) and v(t, x) = (∇xu)(t, x)σ
m(t, x) for all (t, x) ∈ [0, T ]×R

d, where Lm is the (vector-
valued) differential operator such that for each ϕ = (ϕ1, . . . , ϕd) ∈ C1,2([0, T ] × R

d;Rd), i ∈ {1, . . . , d}
and (t, x) ∈ [0, T ]× R

d,

(Lmϕ)i(t, x) =
1

2
tr
(
σm(t, x)σm(t, x)T(Hessxϕi)(t, x)

)
+ 〈bm(t, x), (∇xϕi)(t, x)〉, (2.16)

with bm : [0, T ]× R
d → R

d and σm : [0, T ]× R
d → R

d×n given by

bm(t, x) = b(t, x, φm(t, x),L(Xmt ,φ
m(t,Xmt ))),

σm(t, x) = σ(t, x, φm(t, x),L(Xmt ,φ
m(t,Xmt ))),

(2.17)

and the functions fm and hm satisfy for all (t, x) ∈ [0, T ]× R
d (cf. (2.4)),

fm(t, x, u, v) = (∂xH)(t, x, φm(t, x),L(Xmt ,φ
m(t,Xmt )), u(t, x), v(t, x)) (2.18)

+ Ẽ[(∂µH)(t, X̃m
t , φ

m(t, X̃m
t ),L(Xmt ,φ

m(t,Xmt )), u(t, X̃
m
t ), v(t, X̃m

t ))(x, φm(t, x))],

hm(x) = (∂xg)(x,LXm
T
) + Ẽ[(∂µg)(X̃

m
T ,LXmT )(x)]. (2.19)

Algorithm 1 summarizes the above gradient descent method for (1.1)-(1.2) (with ℓ ≡ 0), which will
be referred to as the iterative PDE-based (IPDE) method hereafter.

Algorithm 1 Iterative PDE-based method for MFC problems

1: Input: Choose the initial feedback control φ0 : [0, T ]× R
d 7→ R

k and stepsize τ > 0.
2: for m = 0, 1 . . . do
3: Compute the law of the state process Xm governed by (2.12).
4: Compute the decoupling fields (um, vm) of (Y m, Zm) by solving (2.15) based on the law of Xm.
5: Update the controls such that for all (t, x) ∈ [0, T ]× R

d,

φm+1(t, x) = φm(t, x) − τ(∇F )(φm)(t, x) (2.20)

with (∇F )(φm) defined by (2.14).
6: end for

Remark 2.1. For the avoidance of doubt, the update (2.20) is neither a gradient step for the stochastic
formulation of the problem using a Markovian representation of the open-loop controls, nor is it a gradient

8



step with respect to the feedback map. It is not the former because the update (2.20) is not equivalent to
the corresponding gradient step (2.5), since subtracting feedback controls is not equivalent to subtracting
the corresponding stochastic processes. It is not the latter because the update direction does not involve
the density of Xφm

t , and (um, vm) in (2.14) is different from (∇xu
φm ,Hessxu

φm) in (2.9), as they are
solutions to different PDEs. To see this, assume for simplicity that all coefficients are independent of the
measure components. Then the PDE (2.15) for um simplifies to

(∂tu)(t, x) + (Lmu)(t, x) = −(∂xH)(t, x, φm(t, x), u(t, x), (∇xu)(t, x)σ
m(t, x)). (2.21)

On the other hand, formally differentiating the PDE (2.10) for uφ
m

with respect to x suggests that ∇xu
φm

satisfies the following equation:

(∂tu)(t, x) + (Lmu)(t, x) = −(∂xH
m)(t, x, u(t, x), (∇xu)(t, x)), (2.22)

where H
m : [0, T ]× R

d × R
d × R

d → R is defined by

H
m(t, x, y, z) := 〈b(t, x, φm(t, x)), y〉 +

1

2
tr
(
(σσT)(t, x, φm(t, x))z

)
+ f(t, x, φm(t, x)).

It is clear from the chain rule that ∂xH
m consists of both the term ∂xH in (2.21) and an additional term

involving the derivative ∂xφ
m.

The above observation indicates that the modified gradient update (2.20) imposes weaker regularity
requirements on the iterate φm than the vanilla gradient descent (2.11), as it avoids evaluating the
density of Xφm and the derivatives of φm in the computation of the gradient (∇F )(φm). This difference
in gradient evaluation not only enhances the stability of (2.20) (by preventing numerical instability
when computing an irregular density and differentiating the feedback controls), but is also essential for
analyzing the convergence of (2.20); see Section 2.5 for details.

Concrete numerical methods for solving (2.15) (and consequently the functions (um, vm)) will be given
in Sections 3 and 4. Here, we point out the following three features of the PDE system (2.15), which
are crucial in the design of numerical methods: (i) As the Hamiltonian H defined in (2.3) is affine in the
components y and z, the function fm is linear in u and v, and hence (2.15) is a linear PDE system. (ii)
Due to the measure dependence in fm, (2.15) is nonlocal in the sense that the value of the solution um

at each point evolves based on the weighted average of other values of um with respect to the marginal
laws (LXmt )t∈[0,T ] of the process Xm. (iii) Even though the i-th component of the differential operator
L

m in (2.16) only involves the i-th component of the solution um, the function fm in (2.15) in general
results in a coupling among all components of u and their gradients v. In the special cases where the
diffusion coefficient σ of (1.1) depends only on time (see Section 5 for concrete examples), the function
fm is independent of v and hence the system (2.15) is only coupled through the solution um.

We emphasize that, a key feature of the IPDE method is that it computes the functions (um, vm) for
each (t, x) ∈ [0, T ]× R

d based on a PDE formulation, in contrast to the pure data-driven algorithms in
[6, 21, 28, 48], which solve (um, vm) merely along the trajectories of Xm. Hence, the IPDE method leads
to a more accurate approximation of the optimal feedback control, especially outside the support of the
optimal state process of (1.1)-(1.2). In particular, the IPDE method is capable of recovering important
structural features of the optimal control, and the performance of the approximate feedback control is
robust with respect to perturbation of model parameters; see Section 5 for a detailed comparison between
the (F)IPDE method and several data-driven algorithms.

2.4 A heuristic acceleration of gradient methods with nonsmooth cost

This section extends Algorithm 1 in Section 2.3 to MFC problems (1.1)-(1.2) with nonsmooth costs
and further accelerates the algorithm convergence by incorporating an additional moment step. To
handle the nonsmooth term ℓ : Rk → R ∪ {∞}, for each τ > 0, we consider the following proximal map
proxτℓ : R

k → R
k:

proxτℓ(a) = arg min
z∈Rk

(
1

2
|z − a|2 + τℓ(z)

)
, a ∈ R

k,

which is well-defined as ℓ is proper, lower semicontinuous and convex. For many practically important
nonsmooth functions ℓ, the proximal function proxτℓ can be evaluated either analytically (see e.g., [13,
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Chapter 6]) or approximately by efficient numerical methods (see [51] and the references therein). The ac-
celeration of (2.20) is inspired by Nesterov’s accelerated proximal gradient (NAG) method (also known as
the Fast Iterative Shrinkage-Thresholding Algorithm [15]) tailored to the present setting. The algorithm
is summarized as follows and will be referred to as the fast iterative PDE-based (FIPDE) method.

Algorithm 2 Fast Iterative PDE-based method for MFC problems

1: Input: Choose the initial feedback control φ0 : [0, T ]× R
d 7→ R

k and stepsize τ > 0. Set ψ0 = φ0.
2: for m = 0, 1 . . . do
3: Compute the law of the state process Xm governed by (2.12).
4: Compute the decoupling fields (um, vm) of (Y m, Zm) by solving (2.15) based on the law of Xm.
5: Update the controls such that for all (t, x) ∈ [0, T ]× R

d,

φm+1(t, x) = proxτℓ (ψ
m(t, x)− τ(∇F )(ψm)(t, x)) , (2.23a)

ψm+1(t, x) = φm+1(t, x) +
m

m+ 3
(φm+1(t, x)− φm(t, x)), (2.23b)

with (∇F )(ψm) defined by (2.14).
6: end for

The ratio m
m+3 in (2.23b) is often referred to as the momentum parameter, whose selection adheres

to the general guideline provided by [15].3

Remark 2.2. Further to Remark 2.1 for Algorithm 1, Algorithm 2 is a heuristic combination of the
NAG method applied to the stochastic formulation of the control problem over open-loop controls, and
to the deterministic reformulation over feedback controls discussed in Section 2.2. The computation of
the prox in (2.23a) is the one for the formulation of the problem with stochastic processes. It aims to
overcome the difficulty in computing a suitable prox for feedback maps caused by the lack of convexity of

φ 7→ E
[ ∫ T

0
ℓ(φ(t,Xφ

t )) dt
]
(see the end of Section 2.2). In particular, we have exploited the structure of

the nonsmooth functional G : α 7→ E
[ ∫ T

0
ℓ(αt) dt

]
and explicitly expressed the proximal of G : H2(Rk) →

R∪{∞} via a pointwise composition of the proximal of ℓ. The addition/subtraction of controls in (2.23a)
and (2.23b) is the addition/subtraction of feedback maps and is not equivalent to the addition/subtraction
of the corresponding processes.

In practice, we represent the feedback maps (φm, ψm)m∈N and the decoupling fields (um, vm)m∈N

in suitable parametric forms, whose precise choices depend on the dimension of the problem and the
numerical methods used to solve the PDE system (2.15) (see Sections 3 and 4 for details). Given a
parameterized feedback map ψm, the law of the controlled state process Xm in Step 3 of Algorithm 2 can
be approximated by a particle method and an Euler–Maruyama discretization of (2.12). For instance, let
N ∈ N be the number of particles and {0 = t0 < . . . < tM = T } a partition of [0, T ] with time stepsize

∆t = T/M for someM ∈ N. Then we consider the discrete-time interacting particle system (X l,N
t )t∈[0,T ],

l = 1, . . . , N , such that X l,N
0 = ξl, for j = 0, . . . ,M − 1 and t ∈ [tj , tj+1), X

l,N
t = X l,N

tj
, and

X l,N
tj+1

= X l,N
tj

+ b(tj , X
l,N
tj

, ψm(tj , X
l,N
tj

), µX,ψ
m

N,tj
)∆t+ σ(tj , X

l,N
tj

, ψm(tj , X
l,N
tj

), µX,ψ
m

N,tj
)∆W l

j , (2.24)

with µX,ψ
m

N,tj
(dx) = 1

N

∑N
l=1 δ(Xl,Ntj ,ψm(tj ,X

l,N
tj

))(dx), where (ξl)l=1,...,N and (W l)l=1,...,N are independent

copies of ξ and W , respectively, ∆W l
j = W l

tj+1
− W l

tj
for all j, l, and δx denotes the Dirac measure

supported at x for all x ∈ R
d.

Compared with the deterministic methods in [2, 3, 4, 22], (2.24) avoids the numerical challenge in
solving the nonlinear FP equation, and allows for efficient computation of the marginal distribution of
the state process, especially for MFC problems (1.1)-(1.2) with degenerate diffusion coefficient σ or initial
state ξ with singular density. In fact, it is well-known that, for sufficiently regular feedback maps ψm, the

3By [15, Theorem 4.4], NAG method (or FISTA) with the momentum step ym+1 = xm+1 +
θm+1−1

θm+2
(xm+1 − xm)

converges for convex optimisation problems, provided that θm+1 ≥ 1 and θ2m ≥ θ2m+1
− θm+1 for all m ≥ 0. For all m ∈ N,

(2.23b) corresponds to θm = (m+ 1)/2, while [15] chooses θm+1 ≥ 1 such that θ2m = θ2m+1 − θm+1.

10



empirical measure µX,ψ
m

N converges to the law of (Xm, ψm(·, Xm)) in the Wasserstein metric as M,N
tend to infinity; see also [18, 10] for the convergence rates of (2.24) in terms of M and N . For our
numerical experiments in Section 5, we choose sufficiently largeM and N such that the presented results
are not influenced by those choices.

As numerical approximations of (2.12) are relatively well-understood, in the subsequent sections, we
focus on the numerical approximations of the PDE system (2.15) with given parameterized feedback

function ψm and empirical approximations µX,ψ
m

N,· of the law of (Xm, ψm(·, Xm)). In particular, we shall
propose a class of monotone schemes in Section 3 for (2.15) with spatial dimension d ≤ 3, and neural
network-based schemes in Section 4 for the high-dimensional setting.

2.5 Convergence of Algorithms 1 and 2

We begin by recalling the discussion of convergence for the NAG method with open-loop controls
at the end of Section 2.1. Furthermore, as shown in Theorem 4.4 of [15], including a momentum step
after (2.5) yields an improved convergence rate O(m−2) for minimising smooth convex functionals J ,
which is the optimal convergence rate of gradient-based algorithms (see [15] and references therein). The
same convergence rate also holds when convex nonsmooth costs are incorporated through an application
of a proximal operator. Additionally, if the controls are updated with approximate proximal operators,
one can still recover the same convergence rate, provided that the errors made in the calculation of
the proximal operator decrease at appropriate rates [51]. For nonconvex functionals, it is known that
the momentum step can produce highly oscillatory solutions. Additional monitoring steps are typically
necessary to ensure a sufficient descent of the function values and the convergence of the iterates to
critical points [14, 39, 29, 40].

Unfortunately, existing convergence results of the NAG method cannot be applied to Algorithm 2.
As pointed out in Remarks 2.1 and 2.2, Algorithm 2 is not a direct application of the NAG method (or
FISTA) to the stochastic formulation of the problem (1.1)-(1.2) nor to the deterministic reformulation
discussed in Section 2.2. The gradient direction and the proximal map in (2.23a) are computed using
the stochastic formulation over open-loop controls, whereas the updated policy is obtained forming an
addition of feedback functions which, in general, is different to the corresponding combination of open-
loop controls. Hence, although our numerical results in Section 5.2 indicate that Algorithm 2 performs
reasonably well even for nonconvex control problems, a convergence analysis of Algorithm 2 remains an
open question.

Note that a comparable discrepancy between two formulations arises even in the absence of the mo-
mentum step (2.23b) (i.e., ψm = φm for all m). In the recent work [49], such an algorithm has been
analyzed via a contraction argument for specific drift-controlled nonsmooth control problems without
mean-field interaction. We identify conditions under which the algorithm generates uniform Lipschitz
feedback controls (φm)m∈N, and further establish that the associated control processes converge to a
critical point of the functional J in (1.2). The convergence result holds when the diffusion coefficient is
uncontrolled, and in addition one of the following five cases is satisfied: (i) time horizon T is small; (ii) run-
ning cost is sufficiently convex in control; (iii) costs depend weakly on state; (iv) control affects state
dynamics weakly; (v) state dynamics is strongly dissipative. Note that the conditions allow for nonlinear
state dynamics with degenerate noise, and nonconvex and nonsmooth cost functions. We refer the reader
to [49] for rigorous statements of the convergence results.

The main result in [49] shows that in the case without mean-field interaction and without the mo-
mentum step, convergence of Algorithm 2 to stationary points can be proven, despite the aforementioned
mismatch appearing in our formulation. This in particular shows the convergence of Algorithm 1 without
mean-field interaction. The proof exploits regularity estimates for the decoupling fields (um, vm)m∈N in
(2.13) and does not require the convexity of the cost landscape. We conjecture that similar convergence
results also hold in the mean-field setting, whose rigorous proof require establishing the regularity of the
decoupling fields in the measure component, and is left for future research. However, at the present stage,
it is unclear if this mismatch when applying an additional momentum step (2.23b) in the policy update
can be overcome, even under the assumptions of [49].
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3 Implementation of the FIPDE method via finite differences

In this section, we discuss the practical implementation of the FIPDE method in Section 2 for low-
dimensional state dynamics (1.1). In particular, we shall propose a class of semi-implicit monotone
finite difference approximations for solving (2.15) at the m-th NAG iteration, which achieves an efficient
performance in terms of the computation time if (1.1) has a spatial dimension d ≤ 2.

Throughout this section, we focus on the m-th NAG iteration with m ∈ N ∪ {0} and assume the
feedback function ψm and particle approximation (X l,N )l=1,...,N of Xm are given (see the discussion
below Algorithm 2). Then, we need to solve the following nonlocal parabolic PDE system (cf. (2.15)):

(∂tu)(t, x) + (Lm
N u)(t, x) = −fmN (t, x, u, v), (3.1)

with u(T, x) = hm(x) and v(t, x) = (∇xu)(t, x)σ
m(t, x) for all (t, x) ∈ [0, T ] × R

d, where the operator
Lm
N (resp. the function fmN ) is defined similar to (2.16) (resp. (2.18)), but depends on the empirical

measure µX,ψ
m

N,t (dx) = 1
N

∑N
l=1 δ(Xl,Nt ,ψm(t,Xl,Nt ))(dx) instead of the law L(Xmt ,ψ

m(t,Xmt )) for all t ∈ [0, T ].

To simplify the presentation, we shall focus on the uniform spatial grid {xk}k = hZd on R
d with mesh

size h > 0 and a time partition {tj}Mj=0 with time stepsize ∆t = T/M for M ∈ N, but similar schemes
can be designed for unstructured nondegenerate grids as well.

We start by introducing a semi-implicit timestepping approximation to (3.1). Observe that the i-
th component of the differential operator Lm

N depends only on the i-th component of the solution u,
and all nonlocal and coupling terms appear in fmN . Hence, we shall adopt implicit timestepping for
the local operator Lm

N and explicit timestepping for fmN , which leads to the following (backward) time
discretization of (3.1): UM (x) = hm(x) for all x ∈ R

d and for all j = 1, . . . ,M , x ∈ R
d,

U j(x)− U j−1(x)

∆t
+ (Lm

N U j−1)(x) = −fmN (tj , x, U
j , V j),

where for all x ∈ R
d, U j(x) is the approximation of u(tj , x) and V

j(x) = (∇xU
j)(x)σmN (tj , x). Note that

the implicit timestepping for Lm
N enables us to enjoy a less restrictive stability condition than that for

fully explicit schemes, while the explicit timestepping for fmN avoids solving the dense system resulting
from the mean-field terms, and allows us to solve for each component of U j independently, given U j+1.

We proceed to perform spatial discretization of Lm
N . Note that the i-th component of Lm

N depends
only on the i-th component of u, and all components of Lm

N have the same coefficients (see (2.16) and
(2.17)). Then, as shown in [17], one can construct monotone and consistent approximations of Lm

N

such that for any ϕ = (ϕ1, . . . , ϕd) ∈ C2(Rd;Rd), i = 1, . . . , d, j = 0, . . . ,M , k ∈ Z
d, Lm,jN,h[ϕ]k =

(Lm,jN,h[ϕ]1,k, . . . , L
m,j
N,h[ϕ]d,k) satisfies

Lm,jN,h[ϕ]i,k =
∑

q∈Zd

am,Nh,j,q,k[ϕi(xq)− ϕi(xk)],

|(Lm
N ϕ)i(tj , xk)− Lm,jN,h[ϕ]i,k| → 0, as h→ 0,

(3.2)

with coefficients am,Nh,j,q,k ≥ 0 for all q, k, j. The precise construction of such numerical approximations
depends on the structures of the coefficients bm and σm. In particular, one can adopt the standard finite
difference schemes in [11, 37] if the diffusion coefficient σm(σm)T is diagonally dominant, and use the
semi-Lagrangian scheme in [25] for general cases. We refer the reader to Section 5 for more details.

It remains to discretize the term fmN (t, x, u, v). By (2.3) and (2.18), we have

fmN (t, x, u, v) = fm,reN (t, x, u) + fm,exN (t, x, u),

with the terms

fm,reN (t, x, u) :=
(
(∂xb)(t, x, ψ

m(t, x), µX,ψ
m

N,t )
)T
u(t, x) + (∂xf)(t, x, ψ

m(t, x), µX,ψ
m

N,t )

+ E
µXN,t

[(
(∂µb)(t, ·, ψ

m(t, ·), µX,ψ
m

N,t )(t, ψm(t, x))
)T
u(t, ·)

+ (∂µf)(t, ·, ψ
m(t, ·), µX,ψ

m

N,t )(t, ψm(t, x))
]
,

fm,exN (t, x, u) :=
(
(∇xσ)(t, x, ψ

m(t, x), µX,ψ
m

N,t )
)T(

(∇xu)(t, x)σ(t, x, ψ
m(t, x), µX,ψ

m

N,t )
)
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+ E
µXN,t

[(
(∂µσ)(t, ·, ψ

m(t, ·), µX,ψ
m

N,t )(t, ψm(t, x))
)T(

(∇xu)(t, ·)σ(t, ·, ψ
m(t, ·), µX,ψ

m

N,t )
)]
,

where E
µXN,t [ϕ(·)] := 1

N

∑N
l=1 ϕ(X

l,N
t ) for given function ϕ : R

d → R
d, and fm,exN uses v(t, x) =

(∇xu)(t, x)σ
m(t, x). Note that if σ is independent of the state variable and the marginal law of the

state variable (see Section 5 for concrete examples), then fm,exN (t, x, u) ≡ 0 and hence fmN is independent
of the gradients of u.

Now let (U jk)k∈Zd be a discrete approximation of u(tj , ·) on the grid {xk}k∈Zd . We approximate fm,reN

by replacing u(tj , ·) with the monotone interpolation of (U jk)k∈Zd :

fm,reN,h (tj , xk, U
j) :=

(
(∂xb)(tj , xk, ψ

m(tj , xk), µ
X,ψm

N,tj
)
)T
U jk + (∂xf)(tj , xk, ψ

m(tj , xk), µ
X,ψm

N,tj
)

+ E
µXN,tj

[(
(∂µb)(tj , ·, ψ

m(tj , ·), µ
X,ψm

N,t )(tj , ψ
m(tj , xk))

)T
ih[U

j](·)

+ (∂µf)(tj , ·, ψ
m(tj , ·), µ

X,ψm

N,tj
)(tj , ψ

m(tj , xk))
]
,

(3.3)

where ih is the piecewise linear/multilinear interpolation operator such that for all ϕ = (ϕ1, . . . , ϕd) :
hZd → R

d, i = 1, . . . , d, x ∈ R
d,

(ih[ϕ])i(x) =
∑

k∈Zd

ϕi(xk)ωk(x;h),

with the standard “tent functions” {ωk}k satisfying 0 ≤ ωk(x;h) ≤ 1,
∑

k ωk = 1, ωk(xj ;h) = δkj
4 and

suppωk ⊂ {x ∈ R
d | |x− xk| ≤ 2h}. To approximate fm,exN , we observe that

fm,exN (t, x, u) =

d∑

i,l=1

(
bmN,il(t, x)(∂xlui)(t, x) + E

µXN,t
[
cmN,il(t, x, ·)(∂xlui)(t, ·)

])
, (3.4)

for some functions bmN,il : [0, T ] × R
d → R, cmN,il(t, x, ·) : [0, T ] × R

d × R
d → R depending explicitly on

σ,∇xσ, ∇µσ, ψ
m and µX,ψ

m

N,t . Based on the signs of bmN,il and c
m
N,il, we discretize the terms bmN,il(∂xlui)

and cmN,ij(t, x, ·)(∂xjui)(t, ·) by the upwind finite difference schemes:

D
m,j,b
N,h,i,l[u(tj , ·)](x) = bm,+N,il (tj , x)

ui(tj , x+ elh)− ui(tj , x)

h
+ bm,−N,il (tj , x)

ui(tj , x− elh)− ui(tj , x)

h
,

D
m,j,c
N,h,i,l[u(tj , ·)](x, y) = cm,+N,il (tj , x, y)

ui(tj , y + elh)− ui(tj , y)

h
+ cm,−N,il (tj , x, y)

ui(tj , y − elh)− ui(tj , y)

h
,

where {el}dl=1 ⊂ R
d is the standard basis of Rd, and b± = max(±b, 0) for any b ∈ R. In practice, to

evaluate D
m,j,c
N,h,i,l[u(tj , ·)](x, ·) on the particles (X l,N

tj
)l=1,...,N , we shall replace the grid function (U jk)k∈Zd

by its monotone interpolant, which leads to the following approximation:

fm,exN,h (tj , xk, U
j) :=

d∑

i,j=1

(
D
m,j,b
N,h,i,l[U

j](xk) + E
µXN,t

[
D
m,j,c
N,h,i,l

[
ih[U

j]
]
(xk, ·)

])
. (3.5)

Therefore, the fully discrete scheme of (3.1) reads as: UMk = hm(xk) for all k ∈ Z
d, and for all

j = 1, . . . ,M, k ∈ Z
d,

U j−1
k −∆tLm,j−1

N,h [U j−1]k = U jk +∆t
(
fm,reN,h (tj , xk, U

j) + fm,exN,h (tj , xk, U
j)), (3.6)

with Lm,j−1
N,h defined as in (3.2), fm,reN,h defined as in (3.3) and fm,exN,h defined as in (3.5). As the scheme

adopts explicit timestepping for the gradient of u but is implicit in the second order terms, we can set
∆t = O(h) for numerical stability.

After obtaining the discrete solution (U jk)j,k, we follow (2.23) to update the feedback controls φm+1

and ψm+1, which requires us to evaluate (∇F )(ψm)(tj , xk) for all j = 0, . . .M and k ∈ Z
d. Observe from

(2.18) and (2.14) that fm and (∇F )(ψm) have similar structures, except from the fact that fm depends
on (∂xH, ∂µH), and (∇F )(ψm) depends on (∂aH, ∂νH). Hence, one can construct an analogue approx-
imation of (∇F )(ψm)(tj , xk) by replacing (∂xb, ∂µb, ∂xσ, ∂µσ) in f

m,re
N + fm,exN with (∂ab, ∂νb, ∂aσ, ∂νσ).

This enables us to evaluate φm+1 and ψm+1 at all grid points (tj , xk), and subsequently to obtain a par-
ticle approximation of Xm+1 for the next NAG iteration based on (2.24) and the monotone interpolant
of ψm+1 over the grids.

4Here δkj is the Kronecker delta.
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4 Implementation of the FIPDE method via residual approxi-

mation

Despite the finite difference approximation in Section 3 being very effective in solving low-dimensional
MFC problems, it cannot be applied to MFC problems with high-dimensional state processes, due to un-
affordable computational costs. In this section, we shall propose a neural network-based implementation
of the FIPDE method, where at each NAG iteration, we compute an approximate solution to (2.15) by
minimizing a proper residual over a family of neural networks.

As in Section 3, we focus on them-th NAG iteration and seek a vector-valued function u : [0, T ]×R
d →

R
d satisfying the following nonlocal parabolic PDE system:

(∂tu)(t, x) + (Lm
N u)(t, x) = −fmN (t, x, u, v), (4.1)

with u(T, x) = hm(x) and v(t, x) = (∇xu)(t, x)σ
m(t, x) for all (t, x) ∈ [0, T ]×R

d. The operator Lm
N and

the function fmN (which is affine and nonlocal in u, v) are defined as in (3.1), which depend on a given
feedback control ψm (represented by a multilayer neural network) and the empirical measures of a given
particle approximation (X l,N )l=1,...,N of the state process Xm for the present NAG iteration.

In the following, we shall reformulate (4.1) into an empirical risk minimization problem over multilayer
neural networks, which is then solved by using stochastic gradient descent (SGD) algorithms; see e.g.,
the Deep Galerkin Method (DGM) in [52]. However, instead of directly applying DGM to (4.1), we shall
consider an acceleration method by first decomposing the solution u into:

u(t, x) = ū(t, x) + ũ(t, x), (t, x) ∈ [0, T ]× R
d, (4.2)

where ū is an approximate solution to (4.1) computed by some efficient numerical methods, and ũ is a
residual correction of ū based on neural networks. By computing the dominant part of the solution u
efficiently and merely applying SGD algorithms for the small residual term, we can obtain an accurate
and stable approximation of u with a small number of SGD iterations, and subsequently reduce the total
computation time for solving PDE systems at all NAG iterations.

In general, the numerical solver of ū should be designed in a problem dependent way. For many
practical MFC problems (see, e.g., [31, 5]), we can first linearize the dynamics (1.1) around the target
states and approximate the cost functions (1.2) by suitable quadratic costs. This leads to a linear-
quadratic (LQ) approximation of the MFC problem (1.1)-(1.2), and the approximate solution ū of (4.1)
can be chosen as the solution of the (matrix-valued) differential Riccati equations for the resulting LQ
MFC problem. Consequently, the decomposition (4.2) can be viewed as a neural network-based nonlinear
correction to the (suboptimal) linear feedback control. We refer the reader to Section 5.2.2 for more details
on the LQ approximation of MFC problems with nonsmooth costs.

Given the approximate solution ū : [0, T ] × R
d → R

d, we see from (4.1) that the residual term
ũ : [0, T ]× R

d → R
d satisfies for all (t, x) ∈ [0, T ]× R

d,

(∂tũ)(t, x) + (Lm
N ũ)(t, x) = −f̃mN (t, x, ũ, ṽ), ũ(T, x) = hm(x)− ū(T, x), (4.3)

where ṽ(t, x) = (∇xũ)(t, x)σ
m(t, x), and

f̃mN (t, x, ũ, ṽ) = fmN (t, x, ũ+ ū, ũ+ v̄) + (∂tū)(t, x) + (Lm
N ū)(t, x).

We then extend the residual based method for scalar PDEs in [52, 34] to the coupled PDE system (4.3).
In particular, let D ⊂ R

d be the chosen computational domain and Nu = {uθ : [0, T ]×R
d → R

d | θ ∈ R
p}

be a family of multilayer neural networks with some prescribed architectures and sufficiently smooth
activation functions. Then we seek the optimal neural network in Nu to approximate ũ by minimising
the following loss function over the weights θ :

E(θ) = ‖(∂tũ
θ)(·, ·) + (Lm

N ũθ)(·, ·) + f̃mN (·, ·, ũθ, (∇xũ
θ)σm)‖2[0,T ]×D,ν1

+ η1‖ũ
θ(T, ·)− (hm(·)− ū(T, ·))‖2D,ν2 + η2‖ũ

θ(·, ·)‖2[0,T ]×∂D,ν3
.

(4.4)

Here, νi, i = 1, 2, 3, are some given probability measures on [0, T ]×D, D and [0, T ]×∂D respectively, and
η1, η2 > 0 are some given weighting parameters (possibly different among all NAG iterations) introduced
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to balance the interior residual and the residuals of the boundary data. Note that ũθ takes values in R
d,

and (4.4) contains residuals of all components.
In practice, the loss function (4.4) can be minimized by using SGD based on a sequence of mini-batches

of pseudorandom points or quasi-Monte Carlo points. More precisely, for the j-th SGD iteration with
j ∈ N, we first generate Nin points from [0, T ]×D, Nter points from D and Nbdy points from [0, T ]× ∂D
according to the measures ν1, ν2 and ν3, respectively, then evaluate the following empirical loss with the
current weights θj ∈ R

k:

Eem(θj) =
1

Nin

Nin∑

i=1

|(∂tũ
θj)(ti, xi) + (Lm

N ũθj)(ti, xi) + f̃mN (ti, xi, ũ
θj , (∇xũ

θj)σm)|2

+
η1
Nter

Nter∑

i=1

|ũθj(T, xi)− (hm(xi)− ū(T, xi))|
2 +

η2
Nbdy

Nbdy∑

i=1

|ũθj (ti, xi)|
2,

(4.5)

and finally obtain the updated weights θj+1 = θj+1 − τj(∇θEem)(θj) with a stepsize τj > 0. The above
SGD iterations are performed until the index j meets the maximum iteration number or an accuracy
tolerance is satisfied.

Finally, we discuss the implementation of Step 5 in Algorithm 2 based on an approximate solution ũθ

to (4.3) and the current feedback control ψm, where both are represented by a multilayer neural network.
By (4.2), the solution um to (4.1) is now approximated by uθ := ū + ũθ, which leads to a pointwise
approximation (∇F )(ψm, θ) of the function (∇F )(ψm) by replacing um in (2.14) with uθ. Note that the
required derivative ∇xu

θ for approximating the function vm can be computed analytically if ū and ũθ

are differentiable. However, in contrast to the grid-based representation of feedback controls in Section 3,
the neural network representation of the feedback control prevents us from obtaining the updated control
ψm+1 in (2.23) via simple operations applied to the parameters. This is due to the fact that a linear
combination of multilayer neural networks with nonlinear activation functions in general can only be
expressed as a neural network with more complicated architectures (see e.g., [50, Lemma A.1]). Hence,
exactly following the update rules in (2.23) would require us to save all (ψm)m∈N∪{0} and (um)m∈N∪{0},
which increases both the memory requirements and the computational cost for Steps 3 and 4 of Algorithm
2 if the NAG iteration m is large. To overcome this difficulty, we shall follow (2.23) approximately and
obtain the updated controls as follows:

φm+1 ∈ argmin
φ∈Nφ

‖φ−
(
proxτℓ(ψ

m − τ(∇F )(ψm, θ))
)
‖2[0,T ]×D,ν1

,

ψm+1 ∈ argmin
ψ∈Nψ

‖ψ −
(
φm+1 + m

m+3 (φ
m+1 − φm)

)
‖2[0,T ]×D,ν1

,
(4.6)

where Nφ and Nψ are families of multilayer neural networks with prescribed architectures and unknown
parameters. These supervised learning problems can be easily solved by performing gradient descent
based on sample points from [0, T ]×D.

5 Numerical experiments

In this section, we demonstrate the effectiveness of the FIPDE scheme through numerical experiments.
We present two MFC problems with nonsmooth optimization objectives: a portfolio liquidation problem
with trade crowding and transaction costs in Section 5.1, and sparse consensus control of two-dimensional
and six-dimensional stochastic Cucker–Smale models in Section 5.2. For both examples, we benchmark
the FIPDE method with existing pure data-driven algorithms, including the empirical regression method
in [38] and the neural network-based policy gradient method in [21], which lead to approximate feedback
control merely along trajectories of the optimal state process. Our experiments show that compared with
pure data-driven approaches, the FIPDE method leads to a global approximation of the optimal feedback
control, and achieves a robust performance in terms of model perturbations.

5.1 Portfolio liquidation with trade crowding and transaction costs

In this section, we consider a portfolio liquidation problem where a large number of market participants
try to liquidate their positions on the same asset by a given terminal time T > 0 (see [12, 1]), while taking
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into account (possibly nonsmooth) execution costs and the permanent price impact caused by their trading
actions. The cooperative equilibrium leads to a MFC problem for a representative agent.

Let (αt)t∈[0,T ] be the trading speed chosen by the representative agent, the state dynamics of the
MFC problem is given by: for all t ∈ [0, T ],

dQt = αt dt, dSt = λE[αt] dt+ σ dWt,

where Q = (Qt)t∈[0,T ] is the inventory process with a random initial state Q0 representing the initial
inventories for all participants, S = (St)t∈[0,T ] is the price process with a deterministic initial state
S0 = s0 ≥ 0, and λE[αt] with λ ≥ 0 represents the permanent market impact on the asset price due to
the trading of all participants. Here, the processes Q, S and W are all one-dimensional.

The objective of the agent is then to minimize the following cost functional

J(α; (S0, Q0)) = E

[∫ T

0

(
αtS

α
t + (Qαt )

2 + k1|αt|
2 + k2|αt|

)
dt−QαT (S

α
T − γQαT )

]
, (5.1)

over all possible trading speeds α, where (Qαt )
2 penalizes the current inventory, k1, k2 ≥ 0, and QαT (S

α
T −

γQαT ) with γ ≥ 0 is the liquidation value of the remaining inventory at terminal time. Note that the
nonsmooth term k2|α| models proportional execution costs such as the bid-ask spread, the fees paid to the
venue, and/or a stamp duty (see, e.g., [32]). In the following, we shall perform experiments with different
choices of Q0 and k2 (whose values will be specified later) while fixing the other model parameters as:
T = 1, s0 = 2, λ = 0.5, σ = 0.7, γ = 0.5 and k1 = 1.

We initialize Algorithm 2 with stepsize τ = 1/6 and initial guess φ0 = 0. At the m-th NAG iteration,
given an approximate control strategy ψm : [0, T ]× R

2 → R with associated state processes (Sm, Qm),
we consider the following decoupled system of PDEs (cf., (2.15)): for all (t, s, q) ∈ [0, T )× R× R,

(∂tu1)(t, s, q) + (Lmu1)(t, s, q) = −ψm(t, s, q), u1(T, s, q) = −q, (5.2a)

(∂tu2)(t, s, q) + (Lmu2)(t, s, q) = −2q, u2(T, s, q) = −s+ 2γq, (5.2b)

with Lm such that for each ϕ ∈ C1,2([0, T ]× R
2;R) and (t, s, q) ∈ [0, T ]× R× R,

(Lmϕ)(t, s, q) = 1
2σ

2(∂ssϕ)(t, s, q) + λE[ψm(t, Smt , Q
m
t )](∂sϕ)(t, s, q) + ψm(t, s, q)(∂qϕ)(t, s, q). (5.3)

We implement the FIPDE algorithm with the monotone scheme (3.6) to solve the system (5.2). We
first approximate the expectations in (5.3) by empirical averages over N = 104 particle approximations of
(Sm, Qm) generated by (2.24) with ∆t = 1/50, localize the equation on the domain D = [−2, 6]×[0, 4] and
impose boundary conditions as the terminal condition, i.e., (u1(t, s, q), u2(t, s, q)) = (−q,−s + 2γq) for
all (t, s, q) ∈ [0, T ]× ∂D. Our experiments with larger computational domains indicate that this domain
truncation and boundary condition leads to a negligible domain truncation error. Then we construct an
implicit first-order monotone scheme (3.6) for the localized system (5.2) by discretizing the first-order and
second-order derivatives in (5.3) via the upwind finite difference and the central difference, respectively,
The chosen time stepsize is ∆t = 1/50, and the spatial mesh sizes hs = 8/50, hq = 4/50.

As a benchmark for the FIPDE scheme, we also implement an empirical regression (EMReg) method
to solve (5.1), where for each NAG iteration, we solve the adjoint BSDE (2.4) by projecting the decoupling
fields (um, vm) of (Y m, Zm) on prescribed vector spaces of basis functions, and evaluating the coefficients
by performing regressions based on simulated trajectories of (Sm, Qm) (see, e.g., [38]). In particular, we
partition the computation domain D = [−2, 6]× [0, 4] with the same meshsize hs = 8/50 and hq = 4/50
as that of the FIPDE method, and choose the indicator functions of all subcells as the basis functions in
the regression. We also employ (2.24) with the same parameters N = 104 and M = 50 as those for the
FIPDE method to generate state trajectories, in order to ensure a fair comparison. Other implementation
details are given in Appendix A.1.

We first examine the performance of the FIPDE and EMReg schemes for solving the linear-quadratic
(LQ) MFC problem (5.1) with Q0 ∼ U(1, 2) (the uniform distribution on (1, 2)) and k2 = 0. Extending
the arguments in [54] to (5.1) yields that for any square-integrable initial condition Q0, the optimal
feedback control of (5.1) is of the form:

φ⋆(t, s, q) = atq + btE[Q
⋆
t ], ∀(t, s, q) ∈ [0, T ]× R× R, (5.4)
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where Q⋆ is the optimal inventory process, and at, bt : [0, T ] → R are solutions to some Riccati equa-
tions depending explicitly on T, λ, γ and k1, but independent of s0 and Q0. Despite the fact that both
the FIPDE and EMReg schemes achieve less than 1% absolute error for value function approximations
within 5 NAG iterations (see Figure 11 in Appendix A.1 for more details), these two methods generate
qualitatively different feedback controls. Figure 1 compares the exact feedback control (5.4) and the
approximate feedback controls obtained by the FIPDE and EMReg schemes after 20 NAG iterations, for
which we evaluate the feedback strategies at s = 2 and (t, q) ∈ [0, 1]× [0.5, 2.5]. One can clearly observe
that the approximate feedback control from the FIPDE scheme is in almost exact agreement with the
analytic solution on the entire computational domain. In contrast, the EMReg method produces a much
more irregular control strategy, which is only accurate on a certain part of the domain. Recall that we
initialize the NAG iteration in Algorithm 2 with φ0 = 0, and Figure 1 (right) indicates that the EMReg
method does not update the initial guess for q > 2. In fact, as the EMReg method approximates the
adjoint processes by performing regression based on the simulated trajectories of the state process, the
EMReg method not only suffers more from statistical errors, but also cannot recover the exact feedback
control beyond the support of the simulated trajectories. As we shall see soon, such a local approximation
property makes these pure data-driven approaches unstable with respect to model perturbation.
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(c) The EMReg scheme

Figure 1: Feedback controls of the LQ optimal liquidation problem with Q0 ∼ U(1, 2) obtained by using
different methods.

We proceed to investigate the robustness of feedback controls obtained by the FIPDE scheme and
the EMReg scheme with respect to perturbation of the random initial condition Q0, which models the
initial inventories of all market participants. As it is practically difficult to obtain the precise distribution
of Q0, it is desirable for the feedback control to be stable in terms of the uncertainty in the initial law
(see, e.g., [27]). In particular, we first obtain approximate feedback controls by applying the FIPDE and
EMReg schemes to solve (5.1) with Qpre

0 ∼ U(1, 2), and then examine the performance of these feedback
controls on perturbed models with Q0 ∼ U(Q0,min, Q0,max) for Q0,min ∈ [0.5, 1.5] and Q0,max ∈ [1.5, 2.5].

Figure 2 illustrates the performance of these precomputed controls on models with different Q0 in
terms of the absolute performance gap |J(φpre)−J⋆|, where J(φpre) is the expected cost of a precomputed
feedback control φpre on the perturbed model, and J⋆ is the optimal cost of the perturbed model. One
can clearly observe from Figure 2 (left) that the precomputed feedback control from the FIPDE scheme
is very robust with respect to perturbation of Q0, as it yields extremely small performance gaps for all
perturbed models. Moreover, the absolute performance gaps remain almost constants for different Q0

with the same expectation. This is because the feedback control from the FIPDE scheme captures the
precise spatial dependence of the optimal feedback control of a perturbed problem (i.e., the function φ⋆

in (5.4)), while it keeps the measure dependence the same as that for the unperturbed model. As the
optimal feedback control of the LQ MFC problem (5.1) depends on the law of Q0 only through its first
moment, the absolute performance gap |J(φpre)−J⋆| for the FIPDE scheme is purely determined by the
perturbation of E[Q0].

In contrast, as shown in Figure 2 (right), the approximate feedback control from the EMReg scheme
is very sensitive to perturbations of Q0, where absolute performance gaps are typically a few magnitudes
larger than those of the FIPDE scheme. This phenomenon is more pronounced if the support of the
perturbed Q0 is not contained by the interval [1, 2], i.e., the support of the original Q0. This is because
the EMReg scheme (and other pure data-driven algorithms) computes approximate feedback controls
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merely based on trajectories of the original state process, and consequently the resulting feedback control
performs poorly along the trajectories outside the support of the original system. In particular, since it
is critical to execute a proper strategy for large values of Qt in the present liquidation problem, a slight
perturbation of Q0,max will significantly worsen the performance of the precomputed control.
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Figure 2: Absolute performance gaps of precomputed feedback controls from the FIPDE scheme (left)
and the EMReg scheme (right) on perturbed models with Q0 ∼ U(Q0,min, Q0,max).

The improved robustness of the FIPDE scheme over the EMReg scheme can be better analyzed by
the relative performance gaps |J(φpre) − J⋆|/|J⋆|, whose distributions (with fixed Q0,min and varying
Q0,max) are summarized by the box plots in Figure 3. We can clearly see that the precomputed control of
the FIPDE scheme achieves a relative error of less than 2% on most perturbed models (Figure 2 (left)),
while the precomputed control of the EMReg scheme will typically lead to a relative error ranging from
20% to 103% (Figure 3 (top-right)).5
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Figure 3: Relative performance gaps of precomputed feedback controls on perturbed models with Q0 ∼
U(Q0,min, Q0,max); from left to right: results for the FIPDE and EMReg scheme; from top to bottom:
distributions of relative errors for fixed Q0,min and varying Q0,max ∈ [2, 2.5] and Q0,max ∈ [1.5, 2], where
on each box, the central line is the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to non-outliers extreme data points, and outliers are plotted individually.

Finally, we examine the performance of the FIPDE scheme for solving the nonsmooth MFC problem
(5.1) with k1 = k2 = 1 in (5.1). We initialize Algorithm 2 with τ = 1/6 and φ0 = 0, and for each NAG
iteration, discretize the PDE system (5.2) by using the same monotone scheme as that for the LQ case.
Note that for all τ > 0, the proximal operator of τ | · | is given by proxτ |·|(x) = sgn(x)(|x| − k2τ) for all
|x| ≥ k2τ and proxτℓ(x) = 0 for all |x| ≤ k2τ .

We carry out the FIPDE scheme with 20 NAG iterations, whose convergence is shown in Figure 11
in Appendix A.1; note that in fact 4 NAG iterations are sufficient to approximate the value function
accurately. The resulting approximate feedback control is independent of the variable s but nonlinear
in the variable q. Figure 4 (left) presents the approximate feedback controls for s = 2 and (t, q) ∈

5We have ignored the outliers (marked as plus signs) in Figure 3 (top), which resulted from evaluating relative errors
with optimal costs J⋆ very close to zero.
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[0, 1]×[0.5, 2.5], which clearly shows that the nonsmooth cost enhances the sparsity of the optimal strategy,
especially near the terminal time. We then analyze the robustness of the FIPDE scheme by exercising the
feedback control φpre computed with Q0 ∼ U(1, 2) on perturbed models with Q0 ∼ U(Q0,min, Q0,max).
Due to the absence of analytic solution for the nonsmooth MFC problem, we compare the expected cost
J(φpre) of φpre on the perturbed model against the numerical approximation J(φpert) of the optimal cost
of the perturbed model, where φpert is the feedback control obtained by the FIPDE scheme with the
perturbed Q0. Figure 4 (right) depicts the absolute performance gaps |J(φpre) − J(φpert)| for different
Q0. Due to the nonsmooth cost function, the optimal feedback controls of (5.1) depend nonlinearly on
the law of Q0, and hence the performance gaps are no longer constant along the diagonals (cf., Figure 2
(left)). However, the absolute performance gaps remain small for all perturbations, which demonstrates
the robustness of the FIPDE scheme in the present nonsmooth setting.
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Figure 4: Numerical results of the FIPDE scheme for the nonsmooth optimal liquidation problem with
k2 = 1; from left to right: approximate feedback control for Q0 ∼ U(1, 2), and absolute performance gaps
of the precomputed feedback control on perturbed models with Q0 ∼ U(Q0,min, Q0,max).

5.2 Sparse consensus control of stochastic Cucker–Smale models

In this section, we study optimal control of the multidimensional stochastic mean-field Cucker–Smale
(C-S) dynamics (see, e.g., [43] and [20, Chapter 4]), where the controller aims to enforce consensus
emergence of an interactive particle system via (possibly sparse) external intervention. In its general
form this leads to a nonsmooth nonconvex MFC problem.

Given a terminal time T > 0 and a d-dimensional adapted control strategy (αt)t∈[0,T ], we consider
the following 2d-dimensional controlled dynamics with additive noise, which can be viewed as the large
population limit of the finite-particle model studied in [24]: for all t ∈ [0, T ],

dxt = vt dt, dvt =

(∫

Rd×Rd

κ(xt, vt, x
′, v′)L(xt,vt)( dx

′, dv′) + αt

)
dt+ σ dWt, (5.5)

with initial state (x0, v0) ∈ L2(Ω;Rd × R
d), where W is a d-dimensional Brownian motion defined on a

filtered probability space (Ω,F , {Ft}t∈[0,T ],P), σ ∈ R
d×d and κ : Rd × R

d × R
d × R

d → R
d is given by

κ(x, v, x′, v′) =
K(v′ − v)

(1 + |x− x′|2)β
, with some β,K ≥ 0.

It is well-known that for uncontrolled deterministic models (with σ = 0 and α ≡ 0), a time-asymptotic
flocking behaviour (i.e., all trajectories of the velocity process tend to the same value as t → ∞) only
appears for β ≤ 1/2 or for specific initial conditions if β > 1/2; see [24, 23, 9] and references therein.
Moreover, as shown in [24, 43], even when the deterministic counterpart exhibits a time-asymptotic
flocking behaviour, the additive noise may prevent the emergence of flocking in the stochastic model.

The aim of the controller is to either induce consensus on models that would otherwise diverge, or to
accelerate the flocking for an initial configuration that would naturally self-organise. More precisely, for
given constants γ1, γ2 ≥ 0, we consider minimizing the following cost functional

J(α; (x0, v0)) = E

[∫ T

0

(
|vt − E[vt]|

2 + γ1|αt|
2 + γ2|αt|1

)
dt+ |vT − E[vT ]|

2

]
(5.6)
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over all adapted control processes α taking values in R
d, where | · |1 is the ℓ1-norm of a given vector.

Note that in general, the cost functional J is neither convex nor smooth in the control process α, due to
the nonlinear interaction kernel κ in (5.5) and the ℓ1-norm in (5.6). However, in the special case with
β = γ2 = 0 and γ1 > 0, (5.5)-(5.6) is a LQ MFC problem whose optimal feedback control can be found
via Riccati equations (see, e.g., [54, 12]).

In the subsequent two sections, we demonstrate the effectiveness of the FIPDE method (i.e., Algorithm
2) to solve (5.5)-(5.6) with different choices of β, d and γ2. For the m-th NAG iteration, given the
approximate feedback control ψm : [0, T ]×R

d×R
d → R

d with associated state processes (xmt , v
m
t )t∈[0,T ],

the FIPDE method seeks functions u1, u2 : [0, T ]×R
d×R

d → R
d satisfying the following coupled system

of 2d-dimensional parabolic PDEs: for all (t, x, v) ∈ [0, T ]× R
d × R

d,

(∂tu1 + L
mu1)(t, x, v) = −fm1 (t, x, v, u2), u1(T, x, v) = 0, (5.7a)

(∂tu2 + L
mu2)(t, x, v) = −fm2 (t, x, v, u1, u2), u2(T, x, v) = 2(v − E[vmT ]), (5.7b)

with the operator Lm and the source terms fm1 , f
m
2 satisfying for all ϕ ∈ C1,2([0, T ]× R

2d;R),

(Lmϕ)(t, x, v) = 1
2 tr

(
σσT(∂vvϕ)(t, x, v)

)
+ vT(∂xϕ)(t, x, v)

+
(
E[κ(x, v, xmt , v

m
t )] + ψm(t, x, v)

)T
(∂vϕ)(t, x, v),

fm1 (t, x, v, u2) = E[(∂xκ)(x, v, x
m
t , v

m
t )]u2(t, x, v) + E[(∂x′κ)(xmt , v

m
t , x, v)u2(t, x

m
t , v

m
t )],

fm2 (t, x, v, u1, u2) = u1(t, x, v) + 2(v − E[vmt ]) + E[(∂vκ)(x, v, x
m
t , v

m
t )]u2(t, x, v)

+ E[(∂v′κ)(x
m
t , v

m
t , x, v)u2(t, x

m
t , v

m
t )],

(5.8)

where for each w ∈ {x, x′, v, v′}, ∂wκ denotes the Jacobian matrix such that (∂wκ)ij = ∂wiκj . In practice,
we approximate the expectations in the coefficients of (5.8) by the corresponding empirical averages over
particle approximations of (xm, vm), which are generated by (2.24) with sufficiently large N,M ∈ N. The
PDE systems with approximated coefficients will be solved by using the finite difference approximation
in Section 3 or the residual approximation method in Section 4, depending on the problem dimension 2d;
see Sections 5.2.1 and 5.2.2, respectively, for more details.

We shall also compare the FIPDE method with the neural network-based policy gradient (NNPG)
method, which is a pure data-driven algorithm proposed in [21] to solve MFC problems. The NNPG
method considers minimizing (5.6) over a class of feedback controls represented by multilayer neural
networks with weights θ, and obtains the optimal weights by applying gradient descent algorithms based
on simulated trajectories of the state process (5.5) (see Sections 5.2.1 and 5.2.2 for more details). As we
shall see soon, the proposed FIPDE method achieves more accurate and interpretable feedback controls
than the NNPG method, in both the low-dimensional and high-dimensional settings.

5.2.1 Consensus control of two-dimensional C-S models

This section studies (5.5)-(5.6) for two-dimensional C-S models with different communication rates
β. In particular, we shall perform experiments with the following model parameters: T = d = K = 1,
σ = γ1 = 0.1, γ2 = 0, β ∈ {0, 10}, and (x0, v0) follows the two-component Gaussian mixture distribution
with mixture weights (0.5, 0.5), mean (1.2, 1.8) and covariance 0.01I2 for component 1, and mean (1.8, 1.2)
and covariance 0.01I2 for component 2, where I2 is the 2× 2 identity matrix.

We now discuss the implementation details of the FIPDE algorithm with finite difference approxi-
mation for the present two-dimensional setting. The FIPDE algorithm is initialized with τ = 1/6 and
φ0 ≡ 0. At the m-th NAG iteration, given an approximate feedback control ψm, we first generate particle
approximations (xm,l, vm,l)l=1,...,104 of the state process (xm, vm) with time stepsize ∆t = 1/50 (i.e.,
(2.24) with N = 104 and M = 50), and replace the expectations in (5.8) by the empirical averages over
particles. The PDE system with approximate coefficients is then localized on the domain D = [0, 5]×[0, 4]

with boundary conditions being the terminal values, i.e., (u1(t, x, v), u2(t, x, v)) = (0, 2(v− 1
N

∑N
l=1 v

m,l
T ))

for all (t, x, v) ∈ [0, T ]× ∂D. We further construct a semi-implicit first-order monotone scheme (3.6) for
the localized system (5.7) by adopting the time stepsize ∆t = 1/50 and mesh sizes hx = 5/50, hv = 4/50,
and discretizing the first-order derivatives in (5.8) via the upwind finite difference and the second-order
derivative in (5.8) via the central difference.
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For the LQ MFC problem (5.5)-(5.6) with β = 0, we compare the approximate feedback control from
the FIPDE scheme with the optimal feedback control given by

φ⋆(t, x, v) = − at
2γ1

(v − E[v⋆t ]), (t, x, v) ∈ [0, T ]× R× R, (5.9)

where a : [0, T ]×R satisfies a′t−2Kat−
1

2γ1
a2t +2 = 0 with aT = 2, and v⋆ is the optimal velocity process

(see, e.g., [54, 12]). The blue line in Figure 5 (left) presents the expected costs of the approximate feedback
controls obtained by the FIPDE method at all NAG iterations, which converge exponentially to the
optimal cost in terms of the number of NAG iterations; a linear regression of the data shows the absolute
error for them-th iteration is of the magnitudeO(0.55m). The FIPDE method is benchmarked against the
iterative PDE-based (IPDE) algorithm Algorithm 1 (i.e., ψm = φm for allm), whose convergence is shown
by the red line in Figure 5 (left). Note that the FIPDE and IPDE methods take a similar time to perform
one gradient descent iteration, but the FIPDE method requires much fewer iterations to achieve high
accuracy. This shows that the momentum step indeed accelerates the algorithm convergence, and justifies
the terminology “fast” in FIPDE. We further depict the approximate feedback control φ (generated by
the last NAG iteration) with t = 0 and (x, v) ∈ [1, 2]2 in Figure 5 (right), which approximates the optimal
feedback control φ⋆(0, ·, ·) (see (5.9)) with a relative error of 1.7% in the L2-norm. One can clearly observe
that the approximate feedback control captures the affine structure of φ⋆ in v, constant in x.

0 2 4 6 8 10 12 14

Iteration m

0.025

0.027

 0.03

0.035

 0.04

0.045

 0.05

0.055

 0.06

0.065

J
(φ

m
)

FIPDE
IPDE
Analytic

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

v

-1.19

-0.95

-0.71

-0.47

-0.23

0.00

0.24

0.48

0.72

0.96

Figure 5: Numerical results of the FIPDE scheme for two-dimensional C-S model with β = 0; from left
to right: convergence of the FIPDE method in terms of NAG iterations, and the approximate feedback
control at t = 0.

Then we proceed to study the (nonconvex) MFC problem (5.5)-(5.6) with β = 10, where the uncon-
trolled velocity process does not exhibit a flocking behaviour; see Figure 12 in Appendix A.2. In the
following, we apply the FIPDE method (with the same discretization parameters as above) to design
feedback controls and induce consensus for such models. We shall further benchmark the performance of
the FIPDE method against a neural network-based policy gradient (NNPG) method (see Algorithm 1 in
[21]), whose implementation details are given in Appendix A.2. In particular, we seek an approximate
feedback control among a family of neural networks whose flexibility is sufficient to capture the nonlin-
earity of the optimal feedback control in (t, x, v), and obtain the optimal neural network approximation
by running the Adam algorithm [36] with sufficiently many iterations.

Figure 6 exhibits the approximate feedback controls and the associated costs from the FIPDE and
NNPG methods. From Figure 6 (left), we see that despite the nonconvexity of the control problem, the
FIPDE method converges exponentially in the value function approximation as the iteration index m
tends to infinity, with the absolute error O(0.5m). Compared with the IPDE method, the momentum
step in Algorithm 2 accelerates the algorithm’s convergence also in the present nonconvex setting. We
refer the reader to Figure 12 in Appendix A.2 for the flocking behaviour of the controlled velocity process
obtained by the FIPDE method.

More importantly, the FIPDE method generates a more interpretable approximate feedback control
compared to the NNPG method, which helps us understand the mechanism of the optimal control process.
Note that for the uncontrolled C-S model (5.5) with β > 0, the interaction kernel κ indicates that a par-
ticle’s velocity is largely affected by the velocities of particles in the nearest neighborhood. Consequently,
for a given particle whose velocity is above the average velocity, the further it is away from the population
with small velocity, the less internal attraction exists for the particle’s velocity to the average velocity,
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and the stronger external intervention is required to induce consensus (and similarly for particle whose
velocity is below the average velocity). Such a nonlinear dependence of the optimal feedback control on
the variable x is correctly captured by the approximate feedback control φ of the FIPDE method, whose
values at t = 0 are depicted in Figure 6 (middle). Recall that at t = 0, the average velocity is 1.5, and
particles with velocity below and above 1.5 cluster around the points x = 1.8 and x = 1.2, respectively.
Hence, the absolute magnitude of the function x 7→ φ(0, x, v) is minimized near 1.8 if v > 1.5 and near 1.2
if v < 1.5, which confirms our theoretical understanding of the model. By contrast, the NNPG method
produces a less interpretable approximate feedback control with no clear dependence on the variable x,
as shown in Figure 6 (right).
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Figure 6: Numerical results of the FIPDE and NNPG methods for two-dimensional C-S model with
β = 10; from left to right: convergence of the FIPDE scheme in terms of NAG iterations, the feedback
control of the FIPDE method at t = 0, and the feedback control of the NNPG method at t = 0.

5.2.2 Sparse consensus control of six-dimensional C-S models

This section examines the performance of the FIPDE method (i.e., Algorithm 2) for solving (5.5)-(5.6)
with possibly nonsmooth costs in a six-dimensional setting, where the corresponding PDE systems (5.7)
are solved by using the residual approximation approach introduced in Section 4. We carry out numerical
experiments with d = 3, T = K = 1, σ = 0.1I3, γ1 = 0.3, (x0, v0) ∼ U([0, 1]6) (the uniform distribution
on [0, 1]6) but different choices of β, γ2 ≥ 0. For the sake of presentation, we shall only specify the neural
network architectures used in our computation, and refer the reader to Appendix A.2 for the detailed
implementation of the empirical risk minimization problem (4.5).

Let us start with the LQ MFC problem by choosing β = γ2 = 0. We initialize Algorithm 2 with
φ0 = 0 and τ = 1/5, and adopt feedforward neural networks with the same architecture to approximate
each component of φm, ψm : [0, T ] × R

6 → R
3 and um : [0, T ] × R

6 → R
6 for all NAG iterations.

More precisely, for each m, we have φm = (φθ1, . . . φ
θ
3), ψ

m = (ψθ1 , . . . ψ
θ
3) and um = (uθ1, . . . u

θ
6), where

φθi , ψ
θ
i , u

θ
i are some fully-connected networks with the sigmoid activation function, depth 2 (1 hidden

layer), and the dimensions of the input, output and hidden layers being 7, 1 and 20, respectively. We
then apply the residual approximation method to solve (5.7) on the spatial domain D = [−1, 2]6. Note
that approximating each component of the solutions individually allows us to capture the heterogeneity
among components with shallow networks, and consequently makes the empirical residuals relatively easy
to optimize. Moreover, we set ū = 0 on [0, T ]× D for the decomposition (4.2), since in the present LQ
case, there is no obvious candidate solution to (5.7), except the exact solution based on Riccati equations.

We carry out the FIPDE method with 15 NAG iterations and summarize the numerical results in Table
1. It is clear that the approximate controls and their associated costs of the FIPDE method converge
rapidly to the optimal control process and the optimal cost function obtained by Riccati equations.
Moreover, a sensitivity analysis of the neural network architectures indicates that the convergence of
the FIPDE method is very robust with respect to the network depth L, the dimension H of hidden
layers, and the (smooth) activation functions. Figure 13 in Appendix A.2 depicts the trajectories of
the uncontrolled and controlled velocity processes, which demonstrates that the approximate feedback
control of the FIPDE method effectively accelerates the emergence of the flocking behaviour.

We then examine the accuracy of the FIPDE method for approximating the optimal feedback control
φ⋆, which satisfies φ⋆(t, x, v) = At(v − E[v⋆t ]) for all (t, x, v) ∈ [0, T ]× R

3 × R
3, with A ∈ C([0, T ];R3×3)
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Table 1: Impact of the network architecture on the convergence of the FIPDE method. Shown are:
(a) the absolute error |J(φm) − J⋆| of the numerical value function J(φm), and (b) the absolute error

(E[supt∈[0,T ] |α
m
t − α⋆t |

2])
1
2 of the numerical control process αm.

NAG Itr m 1 3 6 9 12 15

L = 2, H = 20, ̺ = sigm (a) 0.0401 0.0121 0.0050 0.0023 0.0010 0.0007

(b) 0.2650 0.1549 0.1015 0.0632 0.0400 0.0283

L = 4, H = 20, ̺ = sigm (a) 0.0396 0.0122 0.0045 0.0019 0.0008 0.0005

(b) 0.2676 0.1667 0.1082 0.0721 0.0470 0.0346

L = 2, H = 40, ̺ = sigm (a) 0.0395 0.0127 0.0053 0.0024 0.0012 0.0009

(b) 0.2638 0.1594 0.1015 0.0663 0.0412 0.0300

L = 2, H = 20, ̺ = tanh (a) 0.0412 0.0197 0.0086 0.0041 0.0022 0.0013

(b) 0.2659 0.1936 0.1261 0.0860 0.0557 0.0346

being the solution to a differential Riccati equation, and v⋆ being the optimal velocity process. As shown
in Figure 7 (left), although the FIPDE method is implemented with feedforward neural networks taking
inputs (t, x, v), the resulting approximate feedback control correctly captures the important structures
of the optimal control φ⋆, i.e., the affineness in v and the independence of x. To further highlight the
advantage of the PDE-based solver over pure data-driven approaches, we implement the NNPG method
with the same neural network architecture (see Appendix A.2 for more details), and compare the resulting
feedback control against the FIPDE method and the analytic solution. Comparing Figure 7 (middle) and
(right), we see the FIPDE method recovers the exact feedback control accurately on (cross-sections of)
the entire space-time domain, while the NNPG method only approximates the exact control on certain
sub-domains (depending on the trajectories of the optimal state process), and fails to capture the time
dependence of the exact control.
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Figure 7: Feedback controls for six-dimensional C-S model with β = γ2 = 0; from left to right: feedback
control of the FIPDE scheme at t = 0 and different (x3, v3), feedback controls of the FIPDE scheme and
the analytic solution at different (t, v3), and feedback controls of the NNPG scheme and the analytic
solution at different (t, v3), where the remaining components are set to 0.5.

Now we proceed to apply the FIPDE method to the nonsmooth MFC problem (5.5)-(5.6) with β = 0
and γ2 ∈ {0.1, 0.3}. As initial feedback control φ0 for Algorithm 2 we use the approximate feedback control
for the LQ problem (with γ2 = 0) obtained by the FIPDE method, and choose the stepsize τ = 1/5.
At the m-th NAG iteration, the residual approximation (RA) approach in Section 4 is implemented to
solve (5.7) on the domain D = [−1, 2]6. In particular, we decompose the numerical solution into the form
ū+ ũm, where ū : [0, T ]×R

6 → R
6 is the approximate decoupling field of the above LQ problem obtained

by the FIPDE method, and ũm : [0, T ]×R
6 → R

6 is an unknown nonlinear residual correction. We then
approximate the components of ũm by neural networks with the sigmoid activation function, depth 4 (3
hidden layers), and the dimensions of the input, output and hidden layers being 7, 1 and 40, respectively,
and determine the optimal neural network representation by minimizing the empirical loss (4.5) with 100
SGD iterations (see Appendix A.2). In the following, we refer to the method as “RA with 100 SGD”.
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To demonstrate the efficiency of the RA approach, we compare the performance of the above FIPDE
method to those of the Direct Method and the NNPG method. In the Direct Method, we do not
decompose numerical solutions in a separable form (i.e., we set ū = 0 in (4.2)), and directly minimize
the residuals of (5.7) over neural networks. For each NAG iteration, we choose the same trial functions
(4-layer networks with hidden width 40), numbers of training samples and learning rates of the SGD
algorithm as those of the FIPDE method, and perform q SGD iterations with different choices of q ∈ N,
which will be referred to as “DM with q SGD” in the following discussion. In the NNPG method, we
minimize the objective (5.6) over all feedback controls parametrized by 4-layer networks with the same
architecture (see Appendix A.2 for more details).

Figure 8 depicts the convergence of value functions from “RA with 100 SGD” and “DM with q SGD”
(with q ∈ {200, 500, 1000}) for solving (5.5)-(5.6) with γ2 = 0.1, where we take the value function from
the NNPG method as a reference value. It clearly demonstrates that the residual approximation requires
significantly less number of SGD iterations than the Direct Method for solving the PDE system (5.7)
at each NAG iteration; in particular, the approximate feedback controls of “RA with 100 SGD” (the
red line) at all NAG iterations consistently achieve lower costs than those of “DM with 1000 SGD” (the
blue line). Observe that for each NAG iteration, the computation times of the residual approximation
approach and the Direct Method scale linearly with the number of SGD iterations. Thus the residual
decomposition (4.2) reduces the total computational time of the Direct Method by roughly a factor of
10. A similar efficiency enhancement of the residual approximation approach has also been observed in
the nonsmooth problem (5.5)-(5.6) with β = 0 and γ2 = 0.3.
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Figure 8: Efficiency improvement of the residual approximation approach over the Direct Method for
six-dimensional C-S model with β = 0 and γ2 = 0.1.

Figure 9 presents the approximate feedback controls of the nonsmooth problem (5.5)-(5.6) with dif-
ferent γ2 > 0, obtained by using the FIPDE and NNPG methods. Due to the ℓ1-norm in (5.6), the
optimal feedback control is nonlinear in v and admits a sparse structure. That is, the optimal decision
is to act only on the particles whose velocities are far from the mean and to steer them to consensus,
without intervening with the particles near the consensus manifold [19]. As shown in Figure 9 (left) and
(middle), the approximate controls of the FIPDE method correctly capture the sparse features of the
optimal control, where the zero-control region shrinks as the terminal time approaches and expands as
the parameter γ2 increases. On the other hand, the NNPG method results in a (suboptimal) non-sparse
linear strategy, which suggests to control all agents with mild strength. It also fails to capture the time
dependence of the optimal control, as already observed in the LQ setting (see Figure 7). Consequently,
for γ2 = 0.3, the control of the NNPG method has a 2.4% higher expected cost (5.6) than that of the
FIPDE method (in terms of the relative error); the expected costs for the NNPG and FIPDE methods
are 0.1635 and 0.1596, respectively.

Finally, we apply the FIPDE method to solve the nonconvex MFC problem (5.5)-(5.6) with β = 1 and
γ2 = 0. As in the two-dimensional setting studied in Section 5.2.1, the uncontrolled velocity process does
not form a consensus, and the optimal feedback control in general depends nonlinearly on (t, x, v). Similar
to the above nonsmooth problem, we use the LQ feedback control as the initial guess φ0 in Algorithm 2,
choose the stepsize τ = 1/5, and employ the residual approximation approach to solve (5.7) at all NAG
iterations, with the candidate solution ū being the approximate decoupling field of the LQ problem. The
components of the residual ũm and the controls φm, ψm are approximated by 7-layer neural networks
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(c) NNPG for γ2 = 0.3

Figure 9: Feedback controls for six-dimensional C-S models with β = 0 and γ2 > 0, where the controls
are evaluated at different (t, v3) with the remaining components being 0.5.

with hidden width 60 (see Appendix A.2 for more details). Figure 10 compares the uncontrolled velocity
process and the controlled velocity process obtained by the FIPDE method (with 6 NAG iterations),
which clearly demonstrates the effectiveness of the FIPDE method on inducing consensus. Compared
with the NNPG method (implemented with the same neural networks), the FIPDE method results in
a similar value function but a better consensus at the terminal time; the value functions of the FIPDE
and NNPG methods are 0.111 and 0.114, respectively, while the final variances E[|vT −E[vT ]|

2] obtained
by the FIPDE and NNPG methods are 0.007 and 0.01, respectively. Moreover, similar to the above
examples in Figures 7 and 9, the FIPDE method captures the nonlinear time dependence of the optimal
control, while the NNPG method leads to an approximate control that is constant in t (plots omitted).
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Figure 10: Uncontrolled and controlled six-dimensional C-S models with β = 1 at different times.

Appendix A Supplementary materials for Section 5

A.1 Supplementary materials for Section 5.1

Convergence of the NAG iteration. Figure 11 presents the expected costs of the approximate
feedback controls obtained by all NAG iterations of the FIPDE and EMReg methods for the optimal
liquidation problem (5.1) with Q0 ∈ U(1, 2), k1 = 1 and k2 ∈ {0, 1}. To estimate the optimal expected
cost for the LQ setting (with k2 = 0), we implement the exact feedback control (5.4) with time stepsize
∆t = 1/50, and replace the expectation in (5.1) by the empirical average over 106 sample trajectories
of the state processes. It shows that for both the LQ and nonsmooth MFC problems, the FIPDE and
EMReg methods give convergent approximations to the optimal cost functions as the number of NAG
iterations tends to infinity. Moreover, a linear regression of the data indicates that the FIPDE method
approximates the value function with an absolute error of the magnitude O(m−2.7) for the LQ case.
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Figure 11: Convergence of the FIPDE and EMReg methods for approximating the value functions of
optimal liquidation problems (5.1) in terms of NAG iteration.

Computational time. The FIPDE method is implemented by using Matlab R2016b on a laptop
with 2.2GHz 4-core Intel Core i7 processor and 16 GB memory. The computation takes around 1 second
per NAG iteration. The EMReg method is implemented by using Matlab R2020b on a PC with 2.1GHz
6-core Intel Core i5 processor and 16 GB memory. The computation takes around 5 minutes per NAG
iteration based on our implementation.

A.2 Supplementary materials for Section 5.2

Effectiveness of the FIPDE method for two-dimensional models. Figure 12 compares the un-
controlled two-dimensional C-S model with β = 10 and the controlled model obtained by the FIPDE
method, where the scatter plots are generated based on 104 simulated trajectories. One can clearly ob-
serve that the uncontrolled velocity process does not admit a time-asymptotic flocking behaviour, and
the feedback control from the FIPDE method effectively induces the consensus of the velocity process.

Effectiveness of the FIPDE method for six-dimensional models with β = 0. Figure 12 com-
pares the uncontrolled six-dimensional C-S model with β = 0 and the controlled model obtained by the
FIPDE method with quadratic costs (i.e., γ2 = 0 in (5.6)), where the scatter plots are generated based
on 5 × 103 simulated trajectories. One can clearly observe that the feedback control from the FIPDE
method accelerates the consensus of the velocity process.

Implementation of the NNPG method for two-dimensional models. We implement the neural
network-based policy gradient (NNPG) method using PyTorch for the optimal control of two-dimensional
C-S models with β = 10 as follows. The set of trial functions for feedback controls consists of 7 layer fully-
connected networks with the sigmoid activation function and the dimensions of input, hidden and output
layers being equal to 3, 70 and 1, respectively. The optimal weights θ of the network are obtained by
running the Adam algorithm [36] with 5× 104 iterations and a decaying learning rate scheduler. At each
iteration, we generate 102 trajectories of (5.5) by using (2.24) with time stepsize ∆t = 0.02, approximate
the functional J in (5.6) by the empirical average of simulated trajectories, and perform gradient descent
based on the empirical loss. The learning rate is initialized at 0.0005 and will be reduced by a factor of
0.3 if the loss does not decrease after 10 iterations. The minimum learning rate is set to be 10−6.

Implementation of the NNPG method for six-dimensional models. We state the PyTorch
implementation of the NNPG method for six-dimensional C-S models with different choices of β, γ2 used
in Section 5.2. As the chosen neural network architecture for each example has been specified in Section
5.2, it remains to discuss the implementation of the Adam algorithm. For β = 0 and γ2 ∈ {0, 0.1, 0.3}, at
each SGD iteration, we generate 103 trajectories of (5.5) by using (2.24) with time stepsize ∆t = 0.02,
and perform gradient descent based on an empirical approximation of J in (5.6). We choose the same
“reduce on plateau” learning rate scheduler as the above two-dimensional case and perform a sufficiently
large number of iterations until the empirical loss stabilizes. For β = 1 and γ2 = 0, we reduce the
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Figure 12: Uncontrolled and controlled two-dimensional C-S models with β = 10 at different times.
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Figure 13: Uncontrolled and controlled six-dimensional C-S models with β = 0 at different times.

number of simulated trajectories per iteration to 102 and keep the remaining configurations. This helps
to accommodate the increasing computational cost of simulating (5.5) with β > 0.

Implementation of the FIPDE method for six-dimensional models. We state the PyTorch
implementation of the FIPDE method for six-dimensional C-S models with different choices of β, γ2 used
in Section 5.2. Before stating the configuration details, we remark that the algorithm’s hyperparameters
have not been optimally tuned and hence the following choices may not be the optimal combination. The
neural network architectures for all examples have been specified in Section 5.2.

For all NAG iterations, we sample N trajectories of (5.5) by using (2.24) with ∆t = 0.01, where
N = 4 × 104 for β = γ2 = 0, and N = 5× 103 for the remaining cases. Then, for all choices of β, γ2, we
apply the Adam algorithm to solve the corresponding risk minimization problem (4.4) with the initial
learning rate 0.005. The learning rate will be decreased by employing the same “reduce on plateau”
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scheduler as the above NNPG method for the examples with β = 0, γ2 ∈ {0, 0.1, 0.3}, while for the
example with β = 1, γ2 = 0 it will be decreased by a factor of 0.8 for every 5000 SGD iterations.

At each SGD iteration, a mini-batch of points with size 20 is drawn by following uniform distributions
from the interior and boundaries of the domain (i.e., Nin = Nter = Nbdy = 20 in (4.5)). Based on these
samples, we compute the empirical loss (4.5) with certain η1, η2 > 0 depending on the model parameters.
In particular, for β = γ2 = 0, we choose η1 = 5, η2 = 10 for the first 6 NAG iterations and η1 = 2,
η2 = 5 for the remaining NAG iterations to balance the interior and boundary losses, while for β = 0,
γ2 = {0, 1, 0.3} and β = 1, γ2 = 0, we choose η1 = 1, η2 = 1/400 and η1 = 1, η2 = 1/800, respectively,
across all NAG iterations. The total number of Adam iterations is chosen as 9000 for β = γ2 = 0, 100
for β = 0, γ2 ∈ {0.1, 0.3}, and 20000 for β = 1, γ2 = 0.

To solve the supervised learning problem (4.6), we carry out the Adam algorithm with initial learning
rate 0.001, which will be reduced by employing the same scheduler as that for solving (4.4). We shall
randomly draw a mini-batch of points with size 20 at each iteration, and run the algorithm with sufficiently
many iterations until the loss stabilizes.

Computational time. For the two-dimensional C-S models, the FIPDE method is implemented in
Matlab R2016b on a laptop with 2.2GHz 4-core Intel Core i7 processor and 16 GB memory. The
computation with 15 NAG iterations takes around 30 seconds for β = 0 and around 10 minutes for
β = 10, due to an increased computational cost in evaluating the interaction kernel κ for general β > 0.
The NNPG method is implemented in Python 3.8.5 on a PC with 2.1GHz 6-core Intel Core i5 processor
and 16 GB memory. The computation with 5× 104 Adam iterations takes around 2 hours.

For the six-dimensional C-S models, both the FIPDE and NNPG methods are implemented by using
Python 3.8.5 on a PC with 2.1GHz 6-core Intel Core i5 processor and 16 GB memory. The NNPG method
typically takes around 20-40 minutes, where the precise computation time depends on the complexity of
the problem and the number of SGD iterations used in the simulation. The FIPDE method takes around
20 minutes per NAG iteration for β = 0, and around 8 hours per NAG iteration for β = 1. Note that
these times can be shortened if we fine tune the hyperparameters (e.g., the number of SGD iterations)
and perform the computation on GPUs.
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Smale type flocking: Linear analysis and perturbation equations, IFAC Proceedings Volumes, 44
(2011), pp. 4471–4476.
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