DERIVATION OF THE KINETIC WAVE EQUATION FOR QUADRATIC

DISPERSIVE PROBLEMS IN THE INHOMOGENEOUS SETTING

IOAKEIM AMPATZOGLOU, CHARLES COLLOT, AND PIERRE GERMAIN

ABsTRACT. We examine the validity of the kinetic description of wave turbulence for a model
quadratic equation. We focus on the space-inhomogeneous case, which had not been treated earlier;
the space-homogeneous case is a simple variant. We determine nonlinearities for which the kinetic
description holds, or might fail, up to an arbitrarily small polynomial loss of the kinetic time scale.
More precisely, we focus on the convergence of the Dyson series, which is an expansion of the
solution in terms of the random data.
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1. Introduction

Understanding the behavior of large physical systems is a fundamental problem of mathematical
physics. With the size of the system being extremely large, deterministic prediction of its behavior
is practically impossible, and one resorts to an average description. Kinetic theory provides a
mesoscopic framework to study the qualitative properties of large systems and obtain a statistically
accurate prediction of their evolution in time.

In systems of many nonlinear interacting waves, the effective equation is the kinetic wave equation
(KWE) which describes the energy dynamics of systems where many waves interact in a weakly
nonlinear way following a dispersive time reversible dynamics. All rigorous results so far have
focused on the case where the equation is set on the torus, with space-homogeneous data, resulting
in a homogeneous kinetic equation in the limit.

In this paper, we derive rigorously, up to an arbitrarily small polynomial loss of the kinetic time
scale, an inhomogeneous (transport) kinetic wave equation. This is achieved by considering data
whose spatial correlation exhibit a two-scale structure. The inhomogeneous kinetic wave equation
approximates the average Wigner transform of the solution as the number of interacting waves goes
to infinity and the strength of the nonlinearity goes to zero. We also provide examples of equations
for which the kinetic limit might not hold.

1.1. The equation, the data, and the singular limit. Recall the notation for the Fourier
multiplier p:

o — —~

p(D)f = p(&)f(§).

We consider the following nonlinear Schrédinger equations for complex fields in R? with quadratic
nonlinearities’t

iOpu + w(D)u = AM(Mu + Mu)?, (1.1)
where

€

e w(l)=wy+ B with wg = 0 or €2, is the dispersion relation,
e M = m(eD), where m is a smooth, bounded, real valued even function,
e )\ > 0 encodes the size of nonlinear effects.

(the scaling laws for the dispersion relation and the multiplier are natural in the limit we will be
considering).
This equation derives from the Hamiltonian

% () :/;]\/w(D)u|2+83>\(9{eMu)3.

IThis also includes equations of the form id;u + w(D)u = AM (u + @)? by a change of variables.
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As we will see, the value of w and m at zero will be key for the validity of the kinetic wave
equation.

It is a convenient model for our purposes: on the one hand, it retains all the difficulties related
to the derivation of a kinetic wave equation, from a quadratic equation, in the inhomogeneous
case; and on the other hand, it avoids further technicalities related to specific equations of physical
interest (quasilinearity of the equations, singularity of the dispersion relations, vectorial nature of
the unknown...).

The initial data will be chosen to be a random Gaussian field

uazq@:uww:/@@@pﬁmwg) (1.2)

where a € %SO(RM) and dW is a Wiener integral. Equivalently, ug can be characterized by its
covariance

E [uo(w)uo(x)] = / afz, (', €)™+ de.
We will come back to this definition later, suffice it to say for the time being that this Gaussian
field exhibits random behavior at scale ~ €, with an envelope at a scale ~ 1. More precisely,
S R

as € = 0, E@wmmﬂﬂ:F( — >+m¢

where F' is a smooth, decaying function. It is convenient at this point to introduce the rescaled
Wigner transform

WG[U](x,U) = (27rl)d/2€dE/u(x—|—;)u(x _ %)ei%z dz.

Roughly speaking, it provides a measure of the amount of energy of u (in L?) localized in phase
space at position z and frequency v/e. In particular, it is such that
as € = 0, Weuo](z,v) — |a(z,v)|* = polz,v). (1.3)
Our aim is to show that
ase— 0, Weu (b)), v) = plt,z,0),

where p solves the kinetic wave equation

Opt (v Vap = Tkm%[p(x)] where T, = \2c2 (KWE)
p(t =0) = po. ¢
The collision operator € is given by
1 1 1
Slolttn,0) =ne? [ |aeo )b ymdmdopn (1 - 2~ 1)
P P1 P2 (1.4)

+ 238 o (5 + o= o) [avyden
P P1 P2
Yo =v—v — v Q- =w() —w(v) —w(ve) p=p(v) m = m(v)
{Z+ =0+ v — 2 {Q+ = w(v) + w(vy) — w(va), {pi = p(v;) {
This equation displays two (singular) time scales:
e ¢, the transport time scale, since % is the group velocity for solutions of the linear Schrédinger
equation localized at frequency ~ % In other words, € is the time over which such solutions

travel a distance ~ 1, which implies that, for ¢ > €, one expects the solution to spread and
nonlinear interactions to be damped.

m; =m(v;), i€ {l,2},
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® T, the characteristic time scale for the mixing in frequency space occuring through the
collision operator €. Notice the dependence in A\? - as opposed to \ appearing in front
of the nonlinearity of - which is characteristic of square-root cancellations caused by
randomness.

e Of particular relevance is of course the regime where both time scales agree, Ty, = €, or in
other words A = =3/

Other important time scales are

e €2, the linear time-scale. Notice that resonances only become relevant if t > €.
e A~ !, the nonlinear time-scale, after which nonlinear effects become relevant.

1.2. Background.

1.2.1. Derivation of the kinetic wave equation. The kinetic wave equation was first introduced by
Peierls [34] in his work on solid state physics, and independently by Hasselmann [26], 27] who worked
on water waves. Later, Zakharov and collaborators [41], [42] revisited the topic and provided a broad
framework applying to various Hamiltonian systems satisfying weak nonlinearity, high frequency,
phase randomness assumptions. Nowadays, the kinetic theory of waves, known as wave turbulence
theory, is fundamental to the study of nonlinear waves, having applications e.g. in plasma theory
[13], oceanography [28] 25] and crystal thermodynamics [38]. For an introduction to this broad
research field and its applications, see e.g. Nazarenko [32], Newell-Rumpf [33].

The first rigorous result regarding derivation of the homogeneous (KWE) was obtained in the
pioneering work of Lukkarinen and Spohn [31], who were able to reach the kinetic timescale for
the cubic nonlinear Schrodinger equation (NLS) at statistical equilibrium, leading to a linearized
version of the kinetic wave equation (see also [I8]). The key idea in [31I] is to employ Feynmann
diagrams to obtain control of the correlations; it has inspired most of the subsequent works.

For the cubic NLS, the derivation of the homogeneous kinetic wave equation for random data out
of statistical equilibrium was first addressed in [I0] using Strichartz estimates to control the error
term. Later, in [I1] 12], two of the authors of this paper, inspired by the ideas of [31] (construction
of an approximate solution, control of the higher order terms via Feynmann diagramms) estimated
the error in Bourgain spaces instead of Strichartz spaces and were able reach the kinetic timescale up
to arbitrarily small polynomial loss. At the same time, a similar result was obtained independently
by Deng and Hani [I4]. Recently, Deng and Hani [I5] reached the kinetic timescale for the cubic
NLS, which provides the first full derivation of the homogeneous (KWE) for (NLS).

In many situations of physical interest, the leading nonlinear term is quadratic: for instance,
this is the case for long-wave perturbations of the acoustic type (which can exist in most media),
or interaction of three-wave packets in media with a decay dispersion law. These models have
extremely wide applications, ranging from solid state physics to hydrodynamics, plasma physics
etc. Recently, under the assumption of multiplicative noise, Staffilani and Tran [39] reached the
kinetic timescale for the Zakharov-Kuznetsov (ZK) equation. In the absence of noise, the result of
[39] is conditional.

Regarding the inhomogeneous (KWE) and its connection to nonlinear waves, Spohn [38] discusses
the emergence of a kinetic wave equation, which he calls phonon Boltzmann equation. However, to
the best our knowledge, there are no rigorous results justifying a derivation of an inhomogeneous
kinetic wave equation from dispersive dynamics.

1.2.2. Derivation of related kinetic models. The kinetic wave equation is to phonons, or linear waves,
what the Boltzmann equation is to classical particles. The Boltzmann equation was rigorously
derived for hard spheres in the foundational work of Lanford [30], who used particle hierarchies in
the Boltzmann-Grad limit [23],24]. Later, King [29] derived the equation for short range potentials.
This program was recently put in full rigor by Gallagher-Saint-Raymond-Texier [20]. Short range
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potentials were also discussed in [35]. A few articles deal with the derivation of kinetic models for
higher order interactions [2] [3], mixtures [4] and quantum particles [5 [0} [7]. The derivation of the
quantum Boltzmann equation is closely related to the derivation of the kinetic wave equation, but
possibly more challenging, since dispersive equations can be thought of as an intermediary step
between a quantum mechanical model with a large number of particles, and kinetic theory.

Another direction of research focuses on linear dispersive models with random potential, from
which one can derive the linear Boltzmann equation for short times [37], and the heat equation for
longer times [16], [17].

Finally, [19 9] investigate the possibility of deriving Hamiltonian models for NLS with determin-
istic data in the infinite volume, or big box, limit.

1.3. Statement of the main result. We now state the main result of this paper, regarding the
well-posedness of equation (|1.1)) and its approximation by the corresponding kinetic wave equation.

Theorem 1.1. Let a € G°(R??) and v > 0. Consider Equation (L.1)) with initial data (1.2) and

o cither wy = € 2

e orwy =0 and m(0) = 0.
Then there exist € > 0 and k > 0 such that for any 0 < € < €* and for any 0 < T < min{e, €' Ty, },
there exists a set E of probability P(E) > 1 — €", such that on E, there exists a unique solution u to
in [0,T].
Moreover, the solution w s approzimated by the solution p of the corresponding kinetic wave

equation in the following sense:
For any t € [0,T] and ¢ € R?, there holds:

[ 1pte.60) - Welul(e.s. )l ao £ ¢ (7).
R4

kin

where

1 2RGAY €Y\ v
Wgu](z,v) = WIE []IE /Rdu (:1: + 5>u <x - §> e“’ydy] ,
E is the exceptional set of existence obtained above and p solves (KWE|) with initial data ((1.3)).

Remark 1.2. Our result has a clear homogeneous counterpart for the Fourier modes of the solution
if the equation (I.1)) is set on the torus instead of R¢.

Remark 1.3. What ranges of € and A are relevant in the previous theorem? First, the approxima-
tion is accurate in the limit € — 0; second, in order to approach the kinetic time scale Tk, up to a
small power of ¢, the above theorem requires € < T, or in other words A > e~3/2. Physically, this
means that the kinetic time scale should be smaller than the kinetic time scale; otherwise, dispersive
decay prevents nonlinear interaction from having a sizable effect.

1.4. Strategy of the proof. The proof is based on building a sufficiently good approximation of
the solution and representing it as a Dyson’s series. The iterative scheme we adopt to approximate

our solution is given by:
0 —itw(D)

u =e ug,
: n n _ 7 5 k k
iOpu" +w(D)u" = A3 g M(Muw! + Muw)(Mu® + MuF) a1 (1.5)
u(t=0) =0,
oo
Formally, the Dyson series representation of the solution is given by u = Z u"", but the question of
n=0

convergence is delicate and will be studied carefully in the rest of the paper. To efficiently achieve
that, we will represent the Dyson series by binary Feynmann graphs as will be discussed in Section
5.
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The solution u is written as the sum of the approximate solution (truncated Dyson series) and
the error term:

¢ N
u=u"P? 4", where uP =y <T> Zun,
n=0

where x is a C§° cut-off function such that x =1 for |t| < 1 and x = 0 for [t| > 2. The error u®"
satisfies the equation for |t| < 27"

10" +w(D)u”" = AL (u") + B (") + En], (1.6)
where the linearized operator £y around u®? is given by
Ln(w) = 8MReMuPPRe Mw,
the bilinear operator 8 is given by
B(w) = 4M (ReMw)?,
and the error term Ey by

Ex=4 Y M[ReMu/ReMub].

j+k>N
k=0, N

The terms on the right hand side of (1.6 are estimated in Proposition , Proposition and
Proposition [I0.1] respectively. Comparison to the kinetic wave equation is discussed in Section 4
and convergence to it will be proved combining the results obtained there with Proposition [8.1

1.5. Failure of convergence on the kinetic time scale for m(0) =1 and wy = 0. We believe
that the kinetic wave equation might fail to describe solutions to

10+ Au = (u+1)> (1.7)

on the time scale Tj;,, due to a low frequency inflation. Note that the kinetic equation is
not even well defined, as the mass of the unit ball for the measure 6(34)0(Q4)dvidvy = §(v + v1 —
v2)0(2v.(v — v2)) diverges as v — 0. This issue was already raised by Spohn, see Section 6 in [3§]
for a discussion, where an hypothesis for the non-vanishing of w(0) that is analogue to the present
one in Theorem is assumed. Hence, our convergence result of Subsection [1.3| would be sharp in
the sense that at the origin in Fourier, either a cancellation of nonlinear effects m(0) = 0, or a lack
of resonance due to a non-zero dispersion relation wy = €2, ¢y > 0, would be needed to ensure the
validity of the kinetic description.

We recall (see Section @ that the Dyson series can be represented as a sum over Feynman
interaction diagrams, and that their L? norm can be represented as a sum over paired graphs:

W= Y ug,  BO)ge = Y, F(G) forallteR. (1.8)
Geg, G'e%gh

Our second result is that the second series above is not absolutely convergent on the kinetic time
scale. This itself does not imply the divergence of E|[u"(t)||3, (Rd) B cancellations could occur, see

Remark [[.6l and Subsection [L.6l for a discussion.

Proposition 1.4. For all d > 2, there exists a Schwartz function a € S(R??) such that, for any
k > 0, the following holds true for initial data of the form (1.2) in the range:

TR <t < et (1.9)

There exists n*(d, k), such that for all n > n*, there exists a paired graph G* € G4 as defined in
Subsection for equation ((1.7)), two constants C,C" > 0 and ey > 0 such that for all 0 < e < €y:

CA)e2t=1 < F(G*) < O (M), (1.10)
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Remark 1.5. The kinetic equation can a priori only be reached provided that its time scale T}, is
shorter than the transport time scale € and that the regime is weakly nonlinear €2 < A~!. The sum
of the absolute values of the terms in the second series in diverges at a time before T};,, since
the nonlinear time scale A1 at which the estimate becomes singular is shorter than Tj;,.

Remark 1.6. We believe that the first series in does not either converge on the kinetic time
scale, that is, E\|ug(t)H%2(Rd) diverges as for some G € &,,. In [12] the last two authors were
able to show such result, for a similar counter-example graph for a cubic nonlinearity for a different
time scale. The proof showed no cancellation occurred from other pairings for the same interaction
diagram G. We believe the same strategy could be applied here. This would not imply the actual
divergence of u™, but would indicate that cancellations with another interaction diagram G’ are
required. Such cancellations were shown to exist by Deng-Hani [15] for the (NLS) on the torus, see
Subsection [I.0] for a further discussion on whether their strategy is applicable in our case.

1.6. Difficulties: the belt and the inhomogeneous setting. The main thrust of this paper is
to provide a derivation of the inhomogeneous kinetic wave equation up to the kinetic time scale,
with a loss of an arbitrarily small power, while previous rigorous works all address the homogeneous
problem.

A first difficulty is linked to the use of the Wigner transform, which leads to technical complica-
tions compared to Fourier series, which suffice for the homogeneous problem.

A second difficulty is linked to the range of available time-scales: with the scaling defined above,
only time scales less than e are of interest for the inhomogeneous problem set on R?%: past this time
scale, waves will have dispersed, since the data is localized at frequency O(e~'), corresponding to a
group velocity O(e™1).

Over such small time scales, the belt family of diagrams, which first appeared in [14, 12] in the
context of cubic problems (nonlinear Schrodinger equation - NLS), becomes a possible obstruction
to the convergence of the Dyson series. For (NLS), it was shown in the aforementioned works that
the belt diagrams would lead to a failure of convergence if only self-correlations of diagrams are
considered. But a deeper analysis in [I5] shows that surprising cancellations between diagrams
occur for (NLS), at least for time scales close to 1.

Considering quadratic problems leads to new perspectives on the belt diagrams. We chose the

most simple dispersion relation, namely w(§) = wp + ﬁ, which can be obtained by Taylor ex-
panding any smooth dispersion relation at a point; note that a linear term in £ can be removed by
using translation invariance in space. As for the nonlinearity, (9ieu)? has the advantage of being
Hamiltonian, and containing the three types of interactions: v -u — u, w-u — u, and w - u — u.

In case wy = 0, a direct analog of the cubic belt example exists for the interaction u-u — u. The
underlying kinetic equation presents a singular kernel, which may be the sign that this belt diagram
represents a true physical instability, and is not canceled by other diagrams, as was the case for
(NLS). Still in contrast with (NLS), these belt diagrams can be dampened, and convergence of the
Dyson series restored, if the structure of the nonlinear term is appropriate, namely if it provides
a cancellation at output frequency 0. Under this condition, it is possible to rely on the machinery
developed in [31], [11].

In the case wg = €2, the belt example ceases to be an obstacle to the convergence of the Dyson
series. This made us hopeful that convergence could be proved - which was indeed the case, but a
completely new argument is needed. Namely, none of the tools used to understand the combinatorics
of Feynman graphs, and to derive bounds for them, seemed to apply. In contrast to [31) 11, we
introduce a more intrinsic point of view by not assuming a given ordering of intermediate times in
the graph. We should mention that the works [15] [14] do not assume ordering of the intermediate
times either.
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1.7. Application to some physical examples. This paper focuses on model equations to simplify
the exposition, and identifies stable and unstable regimes in the weakly turbulent regime (weak
nonlinearity, scale separation, and data with decorrelated phases) as stated in Theorem and
Proposition

Quadratic interactions occuring in our model problem are of three types: u-u — u, u-u — u, and
u-u — u, with obvious notations. As for the dispersion relation, it is of the type w(§) = wo + @ (a
further requirement is that wy be either 0, or comparable to €2, but we will gloss over this precise
scaling in the following).

Our results can be summarized as follows:

e Interactions of the type u-u — u and @ - u — wu are stable on the kinetic time scale. This
means that the Dyson series converges on the kinetic time scale (up to an arbitrarily small
power), and that the average behavior is described by the kinetic wave equation.

e For interactions of the type u - u — wu, stability on the kinetic time scale holds if either
wo # 0, or the quadratic nonlinearity exhibits a cancellation at zero frequency.

e Finally, for interactions of the type u-w — w, if wy = 0 and the quadratic nonlinearity does
not contain a cancellation, the series fails to converge on the kinetic time scale.

It is natural to conjecture that these three bullet points remain true for quadratic nonlinear
dispersive equations with a scalar unknown function, and a dispersion relation w(§) with w(0) = wo.
We review below some classical examples.

The Kadomtsev-Petiashvili equation is given by
Oyu + 0y '0pu + 0w + udyu = 0.

Since it only contains interactions u-u — u, it should be stable in the weakly turbulent regime. For
the closely related Zakharov-Kuznetsov model, the kinetic time scale was indeed reached in [39] for
the homogeneous problem with random forcing.

The beta-plane equation
Ow +u - Vw = 0, A" w, w= VA lw
modeling planetary flows, falls into the same category: only u - u — u interactions occur.

The elastic beam equation
O*u+w(D)u+u®>=0
becomes, after setting v = dyu — iy/w(D)u,

— 2
U—
ov+iwDv=|—=] .
o+l = (75

This is equation (|I.1]), except for the Fourier multipliers ﬁ. If wg = 0, this Fourier multiplier
makes the zero frequency even more singular, and thus the kinetic description is unlikely to be
valid. If wy = €2, the Fourier multiplier is not singular at zero frequency, and our result applies to
validate the kinetic description.

The asymptotic behavior of the kinetic wave equation for this model set in the lattice was recently
considered in [36].

The (generalized) nonlinear Klein-Gordon equation
O*u +w(D)u+u? =0,

becomes, after setting v = dyu — iy/w(D)u,

B 2
Sy + i/ Do (W) |
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As discussed above, the stability condition is wg # 0; but quadratic resonances should also exist,
which is not the case if w(D) = wy — A. In connection with the kinetic limit, this equation was
considered by Spohn on the lattice [38], where quadratic resonances do exist.

Water waves equations have a more intricate structure. In a proper set of coordinates, the unknown
becomes a scalar function u, which satisfies the following equation

i0pu + |D|“u = Ty, (u,u) + Ty (w, @) 4+ To__ (W, @),

Here, a = % for gravity waves, and % for capillar waves, T}, stands for the pseudo-product operator
with symbol m(€,n), and cubic and higher-order terms were omitted,. We refer to [21], 22] for exact
formulas and more precise definitions. In the light of our discussion above, the condition for stability

becomes the vanishing of m__ if the output frequency is zero - and one checks that it is sastisfied!

This brief discussion only addressed some equations with a scalar unknown, excluding most
examples from plasma physics and fluid mechanics, for which some of our ideas probably also apply.

Acknowledgements. While working on this project, IA was supported by the NSF grants DMS-
2418020, DMS-2206618, and the Simons collaborative grant on weak turbulence. CC was supported
by the ERC-2014-CoG 646650 SingWave. PG was supported by the NSF grant DMS-1501019, by
the Simons collaborative grant on weak turbulence, and by the Center for Stability, Instability and
Turbulence (NYUAD).

2. Notations

2.1. Probability space. The underlying probability space is denoted €2, the probability measure
P, and the expectation E.

2.2. Fourier transform. For f a function on R¢, we denote

Iy 1 —iz.
f(é.) = (277-)d/2 Rd (-:U)e Edl‘
so that
1 Iy iz
flx) = @) S F(©)e'™ < dg.

With this convention, the Fourier transform is an isometry on L?, and furthermore E = Wf* g.

If F is a function of two variables, F'(z,v), we denote F for the Fourier transform with respect
to the first one:
1

—iz-g
7(27T)d/2 y F(x,v)e dzx.

ﬁ(&vv) =

Given a function f(¢,z) on R x R?, we denote is space-time Fourier transform as:

Flr.€) = 1 —i(tT+z-€)
(7€) (zﬂ)‘i;rl/ﬂj\)/wf(t,:r)e dz dt.
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2.3. Bourgain spaces. We will use the scaled Sobolev spaces with norm
£l = [{eD)” fl| L2,

and their associated Bourgain spaces X! * with norm

lull oo = e Prul)ll s, = 1(e€) (T + w(€)’U(T, )| L2(xma)-

More details regarding Bourgain spaces are given in Appendix [A]

For ¢ > 0 and n € Z%, we now define C" = {r € R% |z — ¢ 'n| < ¢71/2} to be the cuboid

of side €' and center e 'n. For R > 0 and an integer I > 1 we define the dyadic annulus

AL, = {x € RY, 2I71R < |z| < 2'R}, as well as A% = {z € R?, |z| < R}. Their characteristic
functions are denoted 1¢n and 1 AL and enables us to define the projection operators

Q'=1cn(D) and Ak = 1 (D).

€
Finally, we let
Fen=1co,, ~1co,
These operators are bounded on LP spaces, 1 < p < oo and provide decompositions of the identity:
> Qr=1d.
nezad

2.4. Wigner transform and space correlation. To derive the kinetic wave equation we use the
framework of the averaged Wigner transforms. It is defined for random fields, either in Fourier or
in physical space, by

Wiu)(z,v) = (271r)dE/Rdu (a:—i— g) u (a; — %) eV idy = (2717)dE/R¢ ety <v — g)ﬂ (v—i— g) dé.

With this normalization, there holds

Wlu)(z,v) dv = Elu(z)|?, Wu](z,v) dz = Ela(v)|>
Rd R4

The problem we consider enjoys a separation of scale between the fluctuations and the envelope,
whose typical space scales are respectively € and 1. This leads us to defining the rescaled Wigner
transform

W (2,v) = e Wy (ac %)
= o L (e (=) evay

The advantage of this definition is that W€[u|(x,v) has L> norm ~ 1, and concentrates most of
its mass in the region |z| + |v| < 1, for the ansatz ((1.2).

Note that -
=, . 1 _ [v 5 [v 5
T bt6 ) = g (8 (2 -5)(2+3))

or E[@@)(¢)] = @m)* W) (¢ - € 5 +€))-

The space correlation is encoded by the correlation function:

B =@ (55 50 ) @) =2 (ue+ Dt D).

or equivalently
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so that one has the relation (where %, stands for the Fourier transformation with respect to y):

1 * M€
d/ngQ (i’y)

Welu)(z,v) = W

3. The initial data

3.1. The general ansatz. We consider initial data of the form (1.2) where a : R?¢ — C and W is
a complex Wiener process. We will assume throughout that

a(n,§) € 65°.

Making use of the Ito formula,

B | [ 10w [owaw)| = [ st e
B | [ 10w [ g aw] <o

we find that the pointwise correlation is given, in physical space, by
8 {muo(x/)} - / a(z, Ea(x/, e e @) g
E [uo(z)uo(z)] = 0,

and in Fourier space by
B (@) = [ae-Lmae - L
E [uo(&)uo(€)] = 0.

Since @ € €§°, note that the above is zero unless |¢ — ¢| <1 and [¢],|¢/] < 1.

Correlation function The initial correlation function is Qf, defined by

Bl =6 (T35 ).

€

It can be expanded as
@5 (@9) = [ ale+ L Oala - Lpeevag
— [ latw, e 47 dg + 0o
=(2m)*2F (la]*(x,)) (y) + O(e),

()0 )l sty
=]

where the implicit constant in O is S [|a|| ;cop1.00 + SUD, 4
T 3 ’

Wigner transform Turning to the rescaled Wigner transform,

Wi (2, v) = Weluo)(z,v) §/;/ (e — L )0 dy de

:W//Ww,a)\zez OV dydg + 0(e)
= la(z,v)|* + O(e)
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. .. . . Ha( 7')7 (xlf)llws,l(Rd)
where the implicit constant in O is < HaHLgOWES"’O + sup, ./ = for s > d.

Taking the Fourier transform in the first variable,

Wé(é,v)zW/a(n—gav—en>a<n+§,v—en> . (3.1)

We learn from this formula (and the fact that @ € €§°) that there exists a compact set K such that
Supp(W¢) C K for all €, and that, uniformly in €, for any o and 3,

O8] WS (&, 0)] Sapp 1. (3:2)
Finally, note that

E [@(©)io(§)] = (2m) /26! (¢ — &, S (6 +€)) - (3.3)

3.2. The envelope ansatz. Let
U()(J)) = A(x)h€($)7

where A : R¢ — C and h, is a stationary Gaussian field:

he(w)= [ H(E)e " dW (§).
£cRd

This is obviously a particular case of the general ansatz, for which
a(z,§) = A(x)H(§)
The correlation for the translation invariant field h reads
Effcaine(a')] = [ 1P s = 2 (2 )
so that for the initial condition there holds:

E[uo(z)uo(a')]
A (T) ‘2 H? <:” . x’> +or (A(a:)A(:n’) - 'A <” J; $/>
() () o

where the implicit constant in O is < || A1, HWHLOO Thus,

= (2n)?

= (2n)?

Qy(z,y) = (2m) |A(x)* [H[(y) + O(e).
Finally,
W (x,v) = [A(2)P|H (0)]? + O(e)

where the implicit constant in O is < || Allyee||lyF T H|?) || 11
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4. Proof of Theorem [1.1]

Using the results obtained in the rest of the paper, we are able to prove our main result namely
Theorem [Tl

Proof of the first part of Theorem Recall equation ([1.6)) for u". For the existence part,
we aim to apply Banach’s fixed point theorem in Bxg,-,b(O, p), where s > % — 1 and p > 0 to be fixed
to the mapping

t t
D :u— x(t) / !t D) g v (u) ds + x (t) / x (s) e T=DINB (1) ds
0 0

0 [0 (e (7))

(the precise choice of cutoff functions of the form x(t¢) or x (%) is merely technical, and has to do
with the exact definition of the Bourgain space over which the contraction argument applies).

By propositions and for any large L > 0, the error term can be made smaller than e
in X? ’b, after excluding a set of size < %e“, by choosing N sufficiently large. This leads to choosing
p = 2el. Moreover, by Proposition the linear operator £ has an operator norm less than one, if
one excludes a set of size < %e*”” and chooses b sufficiently close to 1/2. By Proposition the
bilinear term ‘B acts as a contraction on B Xes,b(O, p). Therefore, the contraction mapping principle

gives a fixed point 4" of ®, which satisfies the bound [[u®"||sp S b

Proof of the second part of Theorem Let E the exceptional set obtained in the first part
of the proof. Forgetting for a moment about the set E, by Proposition [5.3] it suffices to control

(27T)d/26d/ (h.o.t.)dv
R4

N
= [ | X e[f@wen] + S [Fea ) + Feae)] + 5 [Feeren)|
R |45 =0
ij<N
uniformly in time, where we use the notation £~ = 2 — g, £t = °+ % By the Cauchy-Schwarz
inequality, we obtain
hot. SE |Tp | Y u' @)l llw! @)l + w2 D ' @)z + [[u" (17
it+j>4 i=0

1,j<N

2
s (i)
~ Tkm ’

after using estimate from Propositionand the bound for u" in X5 (hence in L°L2). This
concludes the proof of the main theorem, except that we need to take into account the characteristic
function 1g in the main term. But one can check that the main term enjoys better integrability
properties: this is achieved by raising it to a high power, and taking the expectation. Therefore,
using Holder’s inequality, the error resulting from 1z is at most O(e“*).
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5. Comparison to the kinetic wave equation

The aim of this section is to provide a heuristic derivation of the kinetic wave equation, by
comparing the first terms in the expansion of the kinetic equation on the one hand, and in the
expansion of the correlation (Wigner transform) of the solution of the Hamiltonian problem on the
other. Without loss of generality, we present the derivation for the case m(0) = 0 and wy = 0.
This heuristic derivation will ultimately be justified by a control of the remainder in the expansions,
which is the main achievement of the present article.

In order to slightly simplify notations, we will work under the standing assumption that

62<t<€,

which is the relevant time scale for the phenomena we want to observe.

5.1. Expanding the kinetic equation. We consider the kinetic equation

8w
0 Ly . V.p = 4 1
(7 P Tron (] . Thin = e (5.1)
p(t =0) =W
where
Cg[p] (t,l',’l)) =m 5(2—)6(9—)m1m2pp1p2 - - -
P P11 P2
) 5 11 1
+26(24)0(Q24 )mimapp1p2 | — + — — — | | dvi dvs,
P P1 P2
and
Yo =v—v— v Q- = uf? = Jvi* = fvof? pi = p(t, x,v;)
Yi=v+v — v Qp = [v]? + |v1]? — |v2)? m; = m(v;)
Define r(t,z,v) = p(t,z + tv,v). Then r satisfies
Opr = 87r mlmg (rire —rry — rrg) dvy dvy
+ T m I(X4)0(Qp)mims (rire + rry — rra) dvy dvg
kin
where r; = r(t z+ (v —v;),v;), i € {0,1,2}. Taking the spatial Fourier transform, we have
o= / 3(€ — m — )3 )3 ) (01 )m ()
( FEOOR(E, my, 1 )P(E, 12, v2) — €¢I 11, 0)F(m2, v2) — €42 T(t, w1 )7 (772,U)> dv,2 dm2
1671'
b em?(o) [ 86~ m — m)S(E)5@ (e

( e (t 77171)1) (t77727v2) +€iga1?(ta 77171))?(77271)2) - 616&2 (t 77177)1) (ta 7]27’0)) d’U172 d77172
where

ag=v-&—v1-N — V22
a1 =v-E—v-n — VM
ag=v-{—v1-N —V-1N2
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Integrating the above, and using that 7(t,£,v) = €€ <p(t, £, v), r(t = 0) = p(t = 0) = W, we

obtain

4(27‘1’)1 P z
Tkm

Bt €,0) — e EE5(E €, 0) o€, v) = /5 € m1— m)B(E )G ) (oy)m? (v2)
[ </0t gleao dr> Wé(m,m)Wo (M2, v2) — </0 eleo d7> We (1, )WO (112, v2)

t
— </ ele d7’> W§(m, v1) W (n2, )} dvi 2 dn 2

(o) [ 36~ m — m)S(E)5(0 (w1 (v
t —~ ——~
[ </ el a0 d7'> Wo(nl,vl)W (2, v2) + </ eltal dT) W (m, v)W§(n2,v2)
0 0
¢
— </ ele 2 d7'> Wg(nl,vl)WS(ng,v)} dvy o dni 2
0

o <Tlfm>2 2

5.2. Expanding the solution u. We consider the quadratic dispersive equation (|1.1))

iOu + Su = MAN(Mu+ Mu)?,
u(t =0) = uo,

with initial data wug is given by (1.2]). We write the solution as
N
u = uPP 4 " = Zun + U (53)

where

{ O™ + %un = )‘Zj—i-k:n—l M(Muj —I—]WB)(]WU’C +Mﬁ) n>1

u"(t=0) =0. ’
Throughout this section we will focus on the first three iterates. Taking the Fourier transform, and

using the identity 5(¢) = 0(—€) we obtain expressions with respect to the initial data for the linear
term

20() = e F a0 6), (5.4)

the bilinear term

4 L 1el2 t ) )
a(€) = weﬂtlg /o /£§1+§2 m(e§1)m(eéz) (628190‘1’2%(51)170(52) + 1901200 (=€) )do (&)

+2¢P1820.1. 275 (— §1)UO(€2)> d&y 2 ds1,
(5.5)
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and, finally, the trilinear term

2m € 2
ﬁ2(§):2)\(27r)( it // /ggﬁ& m(e€1)m? (eSa)m(e€])mo(eh)e™ 0121 (&)

=£1+&

(Q - 2’uo<§1>u0<52>+e”0“21/ 2 Tg (=& Vo (—&h) + 2e™02 2 T (— £1>uo<§2>> dg; 5 d¢y dso,

)\2 2
P e [ ﬁ§1+§ (c61)m? (c&a)m(e€] Jm(e€g) e 20T (&)

=£1+&)

€011 =2/ g (€] ) o (€3) + €022 o (—E€] )T (— &) + 26021 —2 g (- 51)UO(§2)))d§i,2d€1 dso,1

2me 2
+2/\(27T)( o // /§€1+§2 m(e&1)m® (e€a)m(e€t)m(ech)e’ P12 T (=& )

=£1+&

(e'LSOQ 212G (€] )Uo (€5) + €0 -21/2 T (=€) )l (— &) + 25021/~ G (— 51)“0(52)>)d5372d€1 dso,1

2 2
+M s / / /éms (e€1)m™ (e&a)m(e€q)mega)e™™ ™0 12T (61)

€1+§2

(ewog 22T (€ Vo (&h) + €0 -20"2 T (— &7 Yo (—&h) + 20 -21"—2' T (— fl)w(éz)))déi,zd& dso,1-
(5.6)

Above, we denote Qo,—1,-2 = 5(|€[* — [&1]> — [€2[*), Qo,1,—2 = 5(IE]° + [&1]* — [&2]), etc...

5.3. Expanding the correlations. Recall that the rescaled Wigner transform is given by

Weul(€v) = (2m) 2R [a (€ )a (7)) | (5.7)

with
& =v-3% . le=e e
Er=1+% v=5(Er+€).
We will also make use of the formula
E [@€a()] = @n) W & - &, 5 @ +&)|. (5.8)

Inserting the expansion (5.3)) in the definition of Wﬁ[u],

(2m)"2e W< u](€, v) = E [@0(€)a°(") (5.9)
+E [@(€)a(eh)] +E [@0)at ) (5.10)
+E [aT(E)at )] (5.11)
+E (@) +E [@E a2 (5.12)
+ h.o.t (5.13)
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where
h.ot = Z E [uz u] 5—&-)] iE [W err(g—&-) +aeT (e )AZ(£+):| +E [aerr(ff)aerr(g—k)] :
>4 =0

(5.14)

and to obtain (5.14]) we used the fact that there is cancellation for i 4+ j = 3 due to Wick’s formula.
The linear-linear term (5.9). By (5.4)), we have

E [DE)a(eh)] = e 506 PE [G@)an(eh)] = e emP2eiWs(e ) (5.19)

The linear-bilinear term ([5.10). It vanishes by Wick’s formula.

The bilinear-bilinear term (5.11). It will be convenient to write u' under the form

1/, ot idm(e€t) il
0,67 = <l [T etimiey

<ezle+ —1,-2/ 7], (51)71/0(52) + €lSIQ+ 1,2/ 7 ( 51) UO( 52) + 26181 1, Q'ZL()( él)u0(£2)> dfi,Z dsll’

where Qv o = 5(I€7* — [¢1° — [€]?), etc... and

—2 t . ___
T = a5 [ mletmiets) (0 TG + (6ol

+ 2e~ -2 (— fl)uo(&)) €y o ds;.
Using these formulas, we obtain
(2m) N2 R (@12 € )i (1,67
M IE) [l micmicim(eemices) [ [t g,

§T=a11&
E [0(€) 0 (€2)i0(€)t0(6h)] de1adeh

topt
meENm(es) [l g mlccomictm(eeimlegs) [ [ i) asy as
§T=811&2

E [a <—§1>ao<—§2>ao<—si>ao<—£§>} dé1 2 €}

A m(e) [ meemim(emieey) [ [ it ean) g
§T=61+&

E [fio(—€1) 0 (€20 (—€]) 0 (&) d€12 dh
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By Wick’s formula, this is

= 20 (e Il ) [y miccm(cmicemict) [ [ e sy ay
§T =61+

W (& -5 (6 +6)) W (& — 2. 5 (52+52)) dé1z2dh,  (5.16)

o) (€ mlee ) [ micemicmeemicey) [ [ ei0ramn o) as,ay
57751-&-52

W (& -5 (-6 -6)) Wi (¢ &5 (- - 55)) d12d8ly (5.17)

AR () [, mlem(eta)m(em(eg) / [t eas) sy,
57*51-&-52

Wi (& -5 (-6 —€)) Wi (8- &5 (& +8&)) dirads,  (5.18)

t rt
+402m) (e Im(eET) [ gy m(eC)mles)m(egt)m(e6s) (A1 o =18-2) g, )
44@ b

W (=6 =5 (=€) Wi (6 + &5 (65— €1)) deradi,  (5.19)
Term (5.16)) We perform the change of variables

m=E& —& n2 =& — &
v = 5(§1 + 1) vy = §(&5 + &2),
which is of Jacobian €?, when restricted to the domain on integration. By our choice of data,

[nil, [vil = O(1) for i € {1 2}. Moreover,
E= - =+ -&=m+mn=0()

and
v=SETHE) = SE G+ a+E) = v+ =0(1)

This change of variables leads to the expression

B-10) = 2(27)%e m(v—i— 5) (v—f)é o 10 m(vzi2m)

v=v1+vg 1€{1,2}

t t
/ / (1 v =919 12) gy A TS (my, 1) TG (2, v2) dia dvs

_ dd 2 2 2
= 2(2m)%"“m*(v) Aﬂn-&-nzm (v1)m=(ve)
V=v1+v2
// Uporr2=919-122) iy TS (1, 01) WG (12, v2) digna duvy 2 + O(£262),

where the resonance moduli expressed in the new variables are

1 1 1
Qp v = 55 (0 = 1" = [oof*) + - (v- € —vi-m = va-m) + §(|§\2 = [m[* = |n2f*),

2¢
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and
2= i(’vp = lo1? = Jvaf?) — i(” =i —v2m2) + 1(’5\2 = [m]? = n2l?).
T 262 2¢ 8
We have
977:1}2_2}2_1}2
Qp 1o +Q_ 1 o= QO 7= + 70 0’_1’ 2= [vI” = |oa]” — o]
O yy =y = Qo =v-§—v1T =TT
+, ) ) ) € 70 _ O(l)

Changing variables 7 = 81+31, o= 81231 we have

. Q
// Q-9 1 d81d31—2/ / TET W dodr, 0= min{r,t—7)

¢ , sin(0 (QO =2 4 70))
= 4/ ir<d 5 dr
0 Qo124

We will now rely on the

Lemma 5.1 (Dirichlet kernel). Let f € €§° be such that H(?i“f”oo S 1 for any k € N. Then, for
any M € N,

/ Mf(:c) dz =7f(0)+0 (A™M)

X

Proof. For a cutoff function y, decompose

[0 0y a0 = | Wf(a:) [1 - x(ﬁm} o [ ) (VAr) d

. N
/sm (Ax) Z f (V) da +/smfx)\:rr) [f(x) 7 Z f(:?!(O) s
n=0

—I+II+III+IV.

Using integration by parts, one sees that I and II] decay faster than any power of A\. A direct
estimate gives [IV] < A~N/2. Finally, the leading contribution is given by /1, and the constant is
provided by the identity (Dirichlet integral) [ ®22 dz = 7. O

This lemma can be expressed as the formula

Sin;“) =25+ 0(1+A) (5.20)

(which is understood by duality with a smooth, rapidly decaying function, whose derivatives are
pointwise O(1)). Coming back to the expression involving resonance moduli, and denoting Z =
Qo,—1,—2 + €279, we obtain

t a0
/ / + 1,9t 519 -1, 2) d$1d81—4€ / eiTO‘TOSln(?Z) d7'
0 A
t ap t 9
:47T625(Z)/ e dr+0 <62/ (1+ :2)_]\[ d7'>
0 0

x(VAz) dz
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(notice that, since ¢t < €, the function '™ has all its derivatives < 1, which makes the application
of (5.20) legitimate - this is not true close to a critical point of Q4 1/ _o/, but we shall gloss over
this technical point).

Since Z = Qp,—1,—2 + O(€), the above is

t e
e = 4me?5(Qo,—1,-2) / e dr + O(eh),
0

which finally leads to

(o-16) = 4(277)d+16d+2m2(”)/5(§ — 1 — 102)8(X0,-1,-2)0(Q0,-1,—2)m” (v1)m? (va)

t
</ e d’]’) W§ (m,v1) W (2, v2) dni2 dvy o + O(t26d+2 + ed+4), (5.21)
0
where ag =v-§—v1 -1 —v2 12, Lo 1,2 =v—v; —vg and Qp _1 2 = [v]? — |v1]? = |va?
Term (5.17) We perform the change of variables
m=2E& —& ne =&y — &2
v = 5(=& — &) vy = §(=& — &),
which gives the relations
= - =8+ -G -S=m+mnm
€ _ €
v = §(§++§ ) = 5(514‘554-51 + &) = —v1 — va.

With these new integration variables,

BI7) = 2(27)%dm (v + %5) m (v - %g) /§n1+n2 IT = (_Ui + %n)

v=—v1—vg 1€{1,2}

t t
. - .
et ) sy s () W () dina o

0 0

_ d.d, 2 2 2
= 2(2m)%"“m*(v) /g_me2 m=(v1)m=(ve)
V=—11—V2

t ot
/ / (510 1 =519 11, 42) o0 dstW§ (m,v1) W§ (n2,v2) dm 2 dvy 2 + O(t26d+2)
0o Jo
The resonance moduli above are given by

1 1 1
iz = 55 ([0 + o1 + [val”) + (v €+ o1 m + w2 mo) + 2 (€7 + Iml* + [naf)

2¢
1 1 1
Q_12= @(MQ + [v1]? + [v2]?) — 2*6(0 “E v v m2) + §(|§|2 + [+ n2)?)

By the same argument as for (5.16]), this term will give no contribution besides O(t2¢%*2 4 e@+4)
since it contains a factor 6(€2,1,2), and Qg 12 only vanishes at a point.

Term ([5.18)) We perform the change of variables

m=£& —& n =& —&
v = §5(=& — &) vy = §(&5 + &2),
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which gives the relations
E=E" - =+ —6=m+mn
€ €
v = §(§+ +&§7) = 5(51 + &+ &+ &) =~ + e

Then we can write

3 = st (v 50)m (o 59) [ TL (00 )

v=—v1+v2 1€{1,2}

t t
/ / ez(le+,1/,72/—5197,17,2) dsy dS&WS (771, ’Ul) Wé (772, 1)2) d’)7172 deg
0 0

— 4(2n)lelm? (o) / m2(v1)m? (v3)
E=m+mn2
v=—0v1+v2

t gt
/ / e 12—y =510 1-2) o) AN WS (1, v1) WE (12, v2) dm 2 dvy 2 + O(t2€?2).
0o Jo

g=-2+y  fo=-%-u
g=2+% le=2-%

the corresponding resonance moduli are

Since

1 1 1
Q-2 = 272(|U|2 + o2 = o)+ —(v-E—vr - — vz ) + g(\ﬂ? + [ = n2f?)

2€
1 1 1
Qo = ooy (0 + oaf? = oaf?) = - (0 € — w1 — w2 m2) + (&2 + Il — ).

By a similar argument to that used for (5.16]), we obtain
(5.18) = 8(27r)d+16d+2m2(v) /5(5 —n — 172)(5(20717_2)5(90,17_2)7712(vl)m2(vg)
t
</ i d7'> W§ (m,v1) W§ (12, v2) dni 2 dvoy g + O(t%e?+2 4 414, (5.22)
0

where ag =v- & —vi - —v2 M2, Xo1,—2 =v+v1 —vp and Qo 1,2 = [v]2 + |v1)? — |vg|?.

Term ([5.19) This term is degenerate and we cannot take advantage of any oscillations. However,
as we will see, it will become negligible in the limit. It can be equivalently written as

BI9) = 4(2m)te¥im(e ym(ee™) / / mlec)m (e (6 — &) mle€ym (e (€7 — &}))

/Ot /Ot RTINS PN (—5‘,% (& - zgl)) We <§+é G 251)) dé, de!

so performing the change of variables

V1 =
Vg =
which is of Jacobian e

F19) = 4(27T)dm(e§+)m(ef_)//m <€§ - U1> m <€§2 4 m) m (65; - m) m (65; 4 v2>

topt _ —~
/ / i ($124 17—z =510, 2) dsy dsyW§ (—5_, vl) Ws (§+, UQ) dvy dvo
0o Jo

(& —26)
(T —2¢)

Nl N

24 we take
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Notice that by (3.2)), the above expression is non zero only when [£7],[¢T| = O(1) or equivalently
when |v| = O(€). Therefore, when (5.19) is integrated against v it will produce a term of order
O (126142),

The trilinear-linear term (5.12)) By definition of %2,

(2 A2 B ()
—— (e [ [ g i sttt s
- E [Wao(fl)mao(&)} d&1,3,4 dso ds
+amieen) [ [ g g micmamcimiceeteemn

=£3+64

E{%@ Vo (&1) o (—E3) (54)} d&1,3,4 dso dsy
~2m(e”) // AJr —etes m(e&1)m? (e€a)mi(e€a)m(ey)e’ (112 F 5002 5, 4)

€3+&a
E [mao(&,)ao(@)} 6154 dso dsy
e [ [ o emcimtsmigg

E [ao(ﬁ_)ao(—51)a0(53)170(§4)} d&1,3,4 dso ds;.



DERIVATION OF THE KINETIC WAVE EQUATION IN THE INHOMOGENEOUS SETTING 23

By Wick’s formula and symmetry, this is

= et 6§+/ / A ey, €)M (ko m (e )m(ega)e! (1m0 )

3+§4

W (=€ 5 (6+ s—)) Wi (61 + 6,5 (61— &) déagadsods: (5.23)
-senimie) 1 [ g it

§3+§4
W (fl -& .3 (51 + F)) W§ (53 + &, = (54 — 53)) d€134dsodsy (5.24)
( d 2d €f+ . (652) (553) (654) (5194, —1,2+50Q2—-2,3,-4)
/ / A E;ié
W (54 &,z (54 +€7)) W§ <§1 +&3, (51 53)) d€13.4dsodsy  (5.25)
+ d(2m) e m(ec”) ‘ m? () mebg)m(e€y)e! (1ot zn oy
/ / /5 fs;zi
WO <£1 -, (51 + 57)> W§ (53 + &4, = (54 — 53)) déi134dsodst (5.26)
d 2d + 1(51Q4,1,—2+50Q2,-3,-4)
— 4(2m) e et / I é —_— m2(c€)m{cés)m(ea)e
Wi (54—5‘ *(€4+£ ))Wé (€3+€1,§(§3—€1)) dé1 3.4 dsodsy  (5.27)
d 2d + 1(s1Q4,1,2+50Q2—-2,-3,-4)
+ 4(2m) e (et / | L 55154 m(e6a)m{e€a)m(e€)e 1%

Wo <§4 - f_ (54 +f )) ({3 + §1, (63 - {1)) d§1’3,4 dSo d81 (5.28)

Term ((5.23) We perform the change of variables

m==& —§&
n2 = &1+ &3 (5.29)
vy = §5(& —&3)

which is of Jacobian €. In these new variables,

E=¢ - =4+ - =a+&E+4—E =m+n

St E) = Smra) =S 9 =0

Therefore,

t S1
E23) = —42m)em (v + 5¢) / / / m (w2 + Sma) m (—va + S
0 JO JE=m+n2

€ € . — € o~
m? (v —vg + 5771) m (v + 3 (m — n2)> 61(819+**1’*2+5092v3’*4)W(f (771, v — 57]2) W§ (2, v2) dm 2 dva dsg dsy
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The resonance moduli expressed in the new variables are
1

Qp 1, 2=:5
+=1 2¢2

1 1
(Jof? = Jv2? = [v — v2]?) + % (v-&—v2-m2— (v—w2) -m)+ 3 (1€1* = |m2l® = Im %)
and

1 2 2 2 1 1 2
Dos-1= 55 (Jv = val® + |v2]? — [0]?) + ¢ (w=w2)-m —vp-mp—v-(m 1)) + ¢ (Im|
Their sum and difference are

Q= P = [oaf* — o - vaf?
glzv-f—v'm—?&‘%

B1,71,M1 = O(1).

, 0 = 2570 we obtain

Q1,2+ Q23 -a=L+7
Qp 10— Qo3 4= % + 18 +%

Therefore, performing the change of variables 7 = sogsl

t S1 t 0 Q Bl , ~
. . roq ; 1 1 .
/ / 51904, —1,—2+50022,3,4) 10 dgy = 2/ / MO o dr, 0 = min{r,t — 7}
0 Jo 0 Jo

At this point, we will resort here to the following lemma.

Lemma 5.2. For a compactly supported function f such that ||0Ff|| <g 1, for any X\ > 0, and for
any N € N,

A
/ /0 €% do f(x) dz = 2n(B4 £)(0) + O(N),

where P is the projector on positive frequencies, in other words the Fourier multiplier with symbol
Lio,00)-

Proof. Since the Fourier transform of fOA e do is / 271, ), and by self-adjointness of P,

//OA % do f(x)dr = /[p+ [/_/\)\ glox da] f(z)dz = //:\ ¢9% do P f(x) da.

The desired conclusion now follows by Lemma O

The conclusion of this lemma can be written somewhat formally as
A
/ €% do = 2w, (z) + ON™N),
0

where ¢ is the distribution defined by (4, f) = (P4 f)(0). For the expression that we are trying
to approximate, this implies that

t st b . - 0
/ / el(5104, 1, 2450223, -4) o0 dg) = 2/ el (ZH 1) 2 [27r5+((21 +eB1 + 6271) +O0((1+ 3)_N) dr
0o Jo 0 €
t . al
= 47é? / €T 6, () do 4 O(eh).
0
Therefore,
t
(5.23) = —8(27r)d+16d+2m2 (v) / / mz(vg)mZ(v — vg)e”?l dr 64 ()W (1, v) W (2, v2) dni 2 dva
E=m+n2 J0

+ O(t2€d+2 + €d+4)

+ 2l = I — 772\2)
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Setting v; = v — vg, or equivalently adding §(3¢ —1,—2) = d(v — v1 — v2) to the above integrand, this
expression can be written as

(.23) = —8(2W)d+1m2(v)€d+2/5(§ + 71+ 12)8(0,-1,-2)61 (Q0,-1,-2)m?* (v1)m? (va)

t
/ T dr W§ (m,v) W (2, v2) dii 2 dvuy 2 + O(t2ed+2 + ed+4)
0

The other term in ((5.12)) will give, by a similar calculation projection to positive frequencies.
So adding those two, we obtain the same term without any projection. This gives a combined
contribution of

—8(2m) e m? (v) /5(5 — 1 — 12)8(X0,-1,-2)8 (0, —1,—2)m*(v1)m? (va)

¢
/ T dr W§ (m,v) Wg (12, v2) dini g dvr o + O(t26d+2 + ed+4).
0

Term ([5.24) As we will see this terms is degenerate and will vanish in the limit. For the term
(5.24]) we perform the change of variables

m=~& —§
=& +& (5.30)
= 5(64— &)

which is of Jacobian €?. In these new variables,
=" =+ - =a+G+a - =m+n

G = fm A = St~ =v—m

2 2
Therefore,

€ €
B22) = —4(2m)%m U + g / / / v + S (m - 772)) m?(eny)m <v2 - *"72) m (vz + *772>
3 771+772 2 2 2
ei(s1Q4 1, —a+s0Q2,3, 4)W <171, v — 2772) /WS (m2,v2) dn 2 dva dso
— O(12e4+2),
since |n2| = O(1).

Term ([5.25) We perform the change of variables (5.30) which yields

t S1
S 9 & BNCICE BRI
0 J0 E=m+n2

€ € . . —~ € P
m? (v — V2 + 7171) m (v + 2 (m — n2)> e (51824, —12+5002-2.3,-4) e (m,v - 5?72) W§ (n2,v2) dm 2 dvadsp,

2
where the resonance moduli are
1 1 1
Qp _12= 22 (Jof? = Jv2? + [v — v2]?) + % (v-&—=va-m2+ (v—w2) M)+ 3 (11> = [m2]* + [m[?)
1 1
o23-1= 55 (—v = va* + [vaf* = [0]*) + = (= (v —v2) -1 — v2 -2 — (1 — 72) - ©)

2¢
|2

1
+ 3 (|772|2 — m|® —|m — 772|2) .
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Their sum and difference are

Q2 = |v]* = [va|* + |v2 — v]?

a1 =v-£E—v-n] —vy 1Mo

Y2, B2, 72 = O(1)

By a similar argument to the one used for , we obtain, after adding with the symmetric term

in (5.12)), a contribution of

8(2m) e m? (v) / (& —m —12)0(Z0,1,-2)8(Q0,1,—2)m> (v1)m? (v2)

Q12+ Q034=+%
Qi 12— Qoa34=%+247,

t
/ <€”Tl dT) W5 (m1,0) W (2, v2) dni o dvi g + O(t2€d+2 + ed+4)
0

where 20’1,72 =v+wv; —vg and 9071’72 = |U‘2 + |U1|2 — |’U2|2.
Term (5.26). This term is degenerate and gives a contribution O(t2¢4+?) similarly to (5.24)).
Term (5.27)) We perform the change of variables

m==~&+&
ne =28 —§ (5.31)
v = 5(& —&1)

which is of Jacobian €. In these new variables,

E=¢ ¢ =4+ - =a+8&E+4—E =m+n

SE+E) =S +26) = S0+ %” ) =wv—

2
Therefore,

t S1
6 st (o) [ [ e i) (o)
0 JO E=n1+n2

€ € - o - €
m? <v +uv + 5772) m (v + 3 (m2 — 771)) e!(e1 %1, —2 802, 3~ e (g vy) WS (772, v — 5771) dm 2 dvy dsg 1.

The resonance moduli are given by

1 1 1
Qy1-2=55 (|U\2 + |vi]? - \U+Ul|2) +—(W-&—=v2-n — (v+wr) M)+ 3 (\§|2 + m* - ”'72’2)

2¢ 2¢
1 1 1
Qo _3_4= 32 (Jo+v1f? = Joi |2 = [v]?) + % (v+wv1) m—vi-m—v-(n2—m))+ 3 (Im2l* = Im|* = In2 —m?)

with sum and difference

Q3 = |[v]2 + |v1|? = [v +v1]?
g =0v-&—V1-M — V12
3, 83,73 = O(1).

By a similar argument to the above, we obtain a combined contribution with the symmetric term

n
— 8(2m) et 2m? (v) /5(5 — 1 — 12)8(S0,1,-2)8(Q0,1,—2)m? (v1)m? (v2)

Qy1, 2+ 3 4="%2+ V3
Qg o— Qo 3-a=%+18+7

t . «@ —_~ —~
/ (e”?2 dT) W§ (m1,v1) W (n2,v) dii 2 duy 2 + O(t2ed+2 + €d+4).
0
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Term (5.28) We perform the change of variables ([5.31]), which yields

t S1
629 6" (04 58) [ ) o () (o)
0 J0 E=m+n2

€ € . . — € o~
m2 (v T+ 5772) m (v + 5 (02 — 771)) ez(slQ**LQ"'ZSOQ*Q’*S*"‘)Wg (m’v _ 5772) WE (12, v2) din o dvy dsg dsy,
with resonance moduli

1 1 1
Qp12= 2a2 (”012 + [va]® + v +711’2) + 2% (v-&—=va-m+ (v+uv2)-m)+ 3 (|§’2 + |m2)? + \771\2)

1 1
Qo _3-4=—55 (Jv+v>+ 2] + [01) + = (—(v+v2) -1 — v2 - 2 — V(11 — M2))

2¢ 2
— < (Il + P+ = maP?).
We have
Qo,1,2 = [v* + [v2]? + v + v2|?
ag=(v—uvg)-mp=v-&=202-m—v-(m — 1)
Y4, Ba,72 = O(1)

By the same argument as above, this term will give no contribution besides O(e3t+e*t-+e?+2 min{t, €2}),
since it will have a factor §(€20,1.2).

Q+’1’2 + 9_21_3,_4 = %7 +Y4
iz —Qozs-a=5+2 4+

1

2z We obtain

Combining all the above, and using the fact that t << €, T, =

4(2m)

iy
fﬁkm%w/b@—nrwm&zuszwm1,ﬁm%mmﬁwﬁ

WTul(€,v) =W (&, v) + =7

X [ </ T d7'> W5 (n1,v1) W§ (n2,v2) — </ s d7‘> W5 (n1,0) W§ (n2, v2)
0 0

t . «@ —_~ —_—~
— </ Piars dT) W5 (1, v1) W5 (12, U):| dni 2 dvy 2
0

8(271')17%

+ Teit5'2m2(v)/5(§ —m = 12)6(20,1,-2)8(Qo.1,—2)m? (v1)m?(va)
kin

t t
X [ (/ eI dT) W5 (1, v1) W5 (n2,v2) + (/ T dT) W5 (1, v) W§ (n2, v2)
0 0

t
— </ 6”?2 dT) I/VOE (771, ’Ul) Wé (772, U)] d77172 dULQ
0

+ X2 x (5.19) + O(A2et) 4 (2m) 4274 x (h.o.t.) (5.32)

where

Thin = 322

20,-1,-2 =V — U] — U
¥0,1,—2 = v+ v — V2
Qo,—1,-2 = [vf* — [v1]* — v2]?
Q01,2 = [0 + |v1]* — |v2f?
ag=v-&—v N — V2N
ap=v-&—v1 N — V-
Qe =0v-§— VM — V212,




28 IOAKEIM AMPATZOGLOU, CHARLES COLLOT, AND PIERRE GERMAIN

and the higher order terms are given by (5.14)).

5.4. Conclusion. Gathering the above computations gives the following proposition.

Proposition 5.3. In the regime €2 < t < min(e, Tyin) there holds

2
) +O(A264)+(2W)d/26d/ (h.ot)dv,  (5.33)
Rd

[ 19t €.0) = Wefult ¢, v} dv = 0 <Tt

kin
where the higher order terms are given by ((5.14)).

Proof. Again, we prove the result for m(0) = 0 and wy = 0. Combining (5.2)) and (5.32)), we obtain
that

2
p(t, €, v) = Weu)(t, &,v) + O (Tt ) + 232 x (5.19) + O(N2eY) + heot. (5.34)
kin

Since integrating (5.19) gives a contribution O(#2¢4*2) and t < €, we obtain

2
/|ﬁ(t,§,v) - We[u] (t,&,v)|dv=0 <Tt > +O(\%eh) + (27r)_d/26_d/ (h.o.t.) dv.

kin R4
O

The aim of the rest of the present paper is to estimate the higher order terms and show they are
smaller than the leading term.

6. Graph analysis for the diagrammatic expansion of the solution

Proceeding as in [II] (based on [31]), we perform a diagrammatic expansion and write u" as a
sum over Feynman graphs. There are numerous differences between the framework developed in
that paper, and the one needed in the present manuscript. First, the equation here is quadratic,
instead of cubic, resulting in a binary instead of a ternary tree; second, waves of arbitrary parities
might interact; third, the problem being set on the whole space R?, certain sums are replaced by
integrals and new "slow" variables 1 appear. Most importantly, we handle the time constraints in
a completely novel way, in order to deal with dispersion relations which are nonzero at the origin

2
w(€) =e2+ %7 resulting in the introduction of new and different tools for graph analysis.

6.1. Main result. The main result from this graphical expansion is the following: the expectation
in probability of Lebesgue, Sobolev and Bourgain norms for the approximating series ) u" can
be computed as a sum of oscillatory integrals in large dimensions. In this sum, each oscillatory
integral is completely described by an associated graph. Moreover, the oscillatory phases in each
oscillatory integral can be divided between those of degree zero, those of degree one and linear, and
those of degree one and quadratic, according to their dependance on interaction free variables. This
distinction will be useful later on.

For the expectation of the L? norm, the outcome of this analysis is the following. All objects
mentioned in the Proposition below are defined rigorously afterwards in the rest of this section.

Proposition 6.1. For each n > 0, the following holds true. There exists a finite set €5 of paired
graphs of depth n and, for each t > 0, a function F; : €5 s C such that:

Ellu"()|22 = ) F(C). (6.1)

Gegh
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For each G € €%, there holds the formula:

F(G) = (2m) \2nedlnt) / / / Ay(s)de! dn ds (6.2)
QERg(nJrl) §f€Rd(n+l) §€R2+n - -
T € —15y 5 0]
Ma(€) T W 5 (000 + 00,i0.,5) 11 e Zoeat)
{i,j}eP vEY;

where we wrote n; j instead of ny; jy to simplify notationﬂ and where we used the motations:

® n=(Nij)ijep € (R4 gre the slow free variables.

Rg(n—i-l) _ {Q c Rd(nJrl)’ Zni,j _ 0}.

7; = {v1,...,v2,} gathers the interaction vertices, ordered according to the integration order.
s = (sy)pe7; € R2" gathers intermediate time slices.

P = P(QG) is a pairing, a partition of {1,2n+ 2} into pairs {i,j} uniquely determined by G.
¢ = (f{, ...§£+1) € (RH"*! gre the interaction free variables.

A, is the indicatriz function of a set: the set of intermediate time slices s satisfying the time
constraints of the graph.

Mg () encodes the effects of the Fourier multiplier m:

2n+2 2n

Ma(§) = [] m(eos) [T m*(cér)
=1 k=1

2t (v) C % is the set containing v and the vertices up on the right of v in the graph. It is
such that for 1 <k < k' <2n, vp & n"(vp).

There exists two disjoint sets of degree zero vertices 79 and degree one vertices 7' such that
V=707 and #7° = #71 =n. The set 7' can be labeled by indices 1 < ki < ... < k, < 2n,
in other words ¥' = {Vkys s Uk, }- This set can be further partitioned into linear and quadratic
vertices 7't = %1 U%I with %1 ﬂ%l = (. The frequency associated to the left edge below vy, is an

interaction free frequency, denoted 5{

(i) For each 1 <k < 2n, & is the frequency on top of vg, given by:

- B f B ) B R
ﬁk = E ck,jfj + E Ck,i' j' M’ 5 with Ck,j> Ck,i!j' € {—1, 0, 1}.
1<5<n, ijk {i’,j’}GP,i’<j’

(ii) For every {i,j} € P, there holds that oo; € {£1} and:

n

0 = E @',jf]f + E Cii My with G j,¢ 5 € {—1,0,1}.
=0 (i j/YePi'<j'

MOT‘@OUET, the map ((5{)1§i§n+1a (ni,j){z’,j}ep) — (0'071'50,1' + (T(),jf()d‘,771'7]‘){1-’]'}6137 i<j s a bi-
jection onto RU™H1) x Rg("+1),
(i) Assume 1 < k < 2n is such that k = k; for some 1 < i < n, so that v € 1 Then there

exist two signs oy, oy, € {£1}? such that, if v € 7}':

L5 12 : _ &g
Oy = opéy-€f 3 (0% + o) 8k| e =5 6.3
K ngk fz + { 5k€72+%(5k+0k)‘§k|2 ZfW(f) _ %4—672, ( )

2This abuse of notation will be made throughout the paper
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and if v € %1:

1/~ c 12 .
Qu, = —opel (e + &) + 4 2Tk~ owl& - w@)=
7kt (&) { (% — 20)e 2 + 5(G% — o) &> ifw(E) ="

(iv) Assume that 1 < k < 2n is such that ki1 < k < k; for some 1 <i < n, so that v, € 7°.
Then ,, is a quadratic polynomial which depends only on the variables {ni,j}{i,j}eP i<js

)

‘2
. ’+ s (6.4)

and on the variables (fjf)jzi.

Remark 6.2. One crucial information in Proposition [6.1]is that for all 1 <i < n:

e For k = k;, the quantity ¢ Zoest ) B does not depend on the previous free variables

fjf for j < i. Moreover, only §2,, actually depends on ng and its dependance is explicit,
given by and .

e For k > k; either if vy, is a degree zero or degree one vertex, the quantity e
does not depend on the previous free variables fjf for j <.

iSuy, Zﬁe,ﬁ(vk) Q5

The rest of this section presents the diagrammatic expansion for the Dyson series, and in particular
defines rigorously all the objects mentioned in Proposition [6.1} leading eventually to its proof at
the end of Subsection [6.5] Some elementary facts from graph analysis are given without proofs, in
which case we refer to [11] for the details.

6.2. Graphical representation of the Dyson series. This subsection explains how u" can be
represented as a sum of functions represented by graphs.

6.2.1. Definition of an interaction graph. An interaction graph of depth n is an oriented binary
planar tree G = {7, vq, v, vy, p, o) Where:

o 7 = Z7RrUZ;U%Z is the collection of vertices. 7 = {vr} contains the root vertezr (represent-
ing uc(§r)). 7o # 0 contains the initial vertices (representing the initial datum ug(&y,))-
7; contains the n interaction vertices (each representing an iteration of the nonlinearity).

e v, UV, = Vi UVR, vy : Y — PoUZ;, and v, : 7, U PR — 75 UZ; represent the positions
of the vertices. v,(v), v;(v), and v,.(v) are respectively the vertices above, below on the left,
and below on the right of v. They satisfy the following:

(i) There exists a unique top vertex viop € 7o U%; such that ve(veep) = vr. By convention,
it is at bottom right of the root vertex: viop = vy (VR).
(i) For all v € 7;, there holds v;(v) # v,(v) and these are the only antecedents of v by v,
Le. {0 € ZUZ, v,(0) =v} = {u(v),v(v)}.
(ii) For all vy € 7, there exists a unique v,(vg) € Zr U 7 such that (v, v,) € &.
We also denote e, (v) = (v,v4(v)), €;(v) = (v,v;(v)), and e,(v) = (v,v,(v)).
e & C 72 is the set of oriented edges (representing a free evolution e**2), and is equal to:

7" = {(viop; vRr)} Uve; {(i(v), ), (vr(v),v)}.

Above, (viop, vr) is called the root edge and for v € 7;, (vi(v),v) and (v,(v),v) are called
interaction edges.
o0 : 7;U? — {—1,1} is the parity (encoding if complex conjugation was taken in the
iteration of the nonlinearity). For (i) above, it must satisfy that o, = +1. We extend it to
a parity function for the edges o : & — {—1,1} (slightly abusing notations) as follows: if
e = (v,v") then o, = 0, is the parity of the vertex below. The total parity of G is defined
as og = Hve%u% Op.
With this definition, the graph G is a connected tree with n+1 initial vertices. The set of interaction
graphs of depth n is denoted by €(n).



DERIVATION OF THE KINETIC WAVE EQUATION IN THE INHOMOGENEOUS SETTING 31

6.2.2. Frequencies and Kirchhoff laws. To each edge e € & we associate a frequency variable &, € RY.
The Kirchhoff laws of the graph specify that, at each interaction vertex, the two frequencies of the
edges below add up to the frequency of the edge above, end that the output frequency of the edge
on top of the graph is {g. This is written as:

AER (é) - 6(53 - gea(vtop))A(§)7 with A(§) - H 5(5&;(1}) - gel(v) - ger(v))'

vEY;
The frequency multiplier M (&) is then expressed as:
M(ﬁ) = m(6£ea(vtop)) H m(egea(vo)) H m2(€£ea(v))' (65)
v0€Z0 UE%\{Utop}

6.2.3. Interaction time variables and time constraints. A forward path of length [ is a finite collection
of edges 2 = (e, ..., ;) such that for each 1 < i <i+ 1 <, writing ¢; = (v,v’) and e;11 = (0,7'),
there holds v' = ©. We can thus write alternatively with a slight abuse of notations z = (v1, ..., v;11)
where e¢; = (v;,v;+1). We then say that z leads to v;;1. We remark that for each initial vertex
v € 7p, there exists a unique forward path z = (vg,v1,...,vg) ending at the root vertex.

Given any two initial vertices vy # v € 70, we say that vy is at the left of v, if, denoting by
72 = (vo,v1,...,0,7,...,ug) and z = (v, v],...,0',7,...,vr) their forward path ending at the root
vertex, they intersect at ¥ € Z; and there holds that © and ¢’ are at the left and right respectively
of U, namely 0 = v;(v) and ¢' = v,(v). This defines a total order on the set of initial vertices, so
that we order it as 75 = (vo,1, ..., Vo,n+1) from left to right. We adapt the notation for the frequency
variables and write &, (v, ,) = o, for 1 <i <n+1.

Given any two vertices v # v’ € 77, we say that v is above v/ (or v’ is below v) and write v > v/
(or v' < w), if v belongs to the unique forward path starting at v’ and ending at the root vertex.
This defines a partial ordering for the vertices of the graph, called the time order.

To each vertex we associate a time variable. The time variable of any initial vertex vy € % is
ty, = 0. To the root vertex we associate the total time ¢,, = t. To each interaction vertex v € 7;
we associate an interaction time variable t, € Ry. We require that ¢, < t,» whenever v is below v'.
The time constraint function is thus:

A(t) =06ty —t) T 1t <tw).

v €Y, v<v!

6.2.4. General formula. We describe the expansion (|1.5) which encodes iterations of Duhamel for-
mula ([1.5)) via diagrams. For all n > 0:

u'= Y ug, (6.6)
Geg(n)
where the sum is performed over all graphs G in the set of all interaction graphs of depth n denoted
by €,, and where for each G € &,,,
ug = ug + Ug,
where ug and ug stand for the decomposition between positive and negative times, i.e. ug(t) =
1(t > 0)ui(t), and are given by:

_ emiteten) (A "y
e = (T ) 0 [ [ @80 (6.7

n+1

M(¢) H Uo(&0,i500,:) H e ity
=1

VEY;
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and
— — —itw(&R) —iA " _1\0g+n
e = (T ) e [ [ dedtda©a a0 6:9)
n+1 '
M) ] @o(€osr004) T ™",
i=1 VEY;

where we used the following notations:

e To each graph G € &, is associated a parity function ¢ = ¢(G). It determines the total
parity of the graph o € N which records how many complex conjugations are taken in the
interactions in the graph. To each vertex v, it associates a parity o, € +1. In particular,
it determines (0¢;)1<i<n+1 € {£1}"! which records, for each initial vertex, the parity
(whether u or W interacts).

o £ = (&)eer € RIH) gathers all the frequency variables and determines (£9;)1<i<ns1-

o t = (ty)verury € R gathers all the interaction time variables for each interaction vertex

v € 7Z;, and the time variable of the root vertex.

o A¢,(§) encodes the Kirchhoff laws of the graph.

e A(t) encodes the time constraints of the graph.

e M (&) is a product of multipliers corresponding to M, i.e. to which form of the nonlinearity

was taken.

o Go(&, +1) = To(€) and Go(€, —1) = Wo(€) = To(—E).
e The resonance modulus corresponding to the interaction vertex v is:

Q= Uva(v)w(gva(v)) - Jvl(v)w(évl(v)) - Jvr(v)w(gvT(v))' (69)

The formulas and are very similar. This is due to the following symmetry: if u(t) solves
(1.1)), then w(—t) is also a solution. We will thus from now on focus on positive times and consider
, as adaptations for negative times are straightforward.

An example, treated in the next subsubsection will probably be most helpful. The precise
definitions of all the objects above in are given in subsubsections [6.2.1} [6.2.2] and 6.2.3]

6.2.5. Basic examples. We give as an illustration the most basic graph that represents the Fourier

transform of the function ﬁ Ot dt' e~ D) ML (M e @(Plyg)? evaluated at (t,Eg) (where ¢ is

renamed as t,, ):

VR
- Root vertex

le = +1 5111

Qul = W(fvl) - W(f(u) - w(fuz)

———————————————————————————————————————————————— } Interaction vertices

toy o1 =+1[ &1 002 =+1| &2

e . o Initial vertices
V0,1 V0,2

It is one of the four elements in the sum ) ;e in the formula (6.7) for @'. The three remaining
elements, corresponding to the development (M u + Mu0)? = (Mu®)? + MuOMu® + MuOMu® +
(Mwu9)?2, are represented by the graphs below:
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6.3. Solving time constraints. We present here a change of variables t — s from time variables
to time slices, which is more suitable for understanding the interplay between the time constraint
A; and the oscillatory phases e~ in .

6.3.1. Mazximal upright paths. We study here specific paths that are used in the next subsubsection
to solve the time constraints.

A path is said to be up and to the right, or upright, if is a forward path 2 = (v1, ..., vs41) whose
vertices are all (except possibly the last one) at the bottom left of the vertex above them, namely
v; = v(vig1) for i = 1,...,£. An upright path z = (v1,...,v¢11) is said to be mazimal if it starts at
an initial vertex v1 € 70, and if it finishes at a vertex that is at the bottom right of the vertex above
it: vgy1 = vp(ve(ves1)). The set of all maximal upright paths is denoted by 2,,(G). The number
of such paths is denoted by:

nm(G) = #Pn(Q).

For any v € 7;, there exists a unique maximal upright path z € 9, containing v. We denote
it by 2(v). By convention, we write z2(vg) = {vgr} (slightly abusing notations since {vgr} is not a
path). We denote the bottom and top parts of this maximal path at v by:

727 (v) ={v € p(v), v >0} and 27 (v)={v' € z(v), v <v}.

For any maximal path 2z = (vy,...,vp41) € P, we say that the vertex above the last vertex of
the path, v = v4(ve41) € 7 U 7R, is the junction vertex of 2 and denote it by v = vj(z). The set
of all vertices that are junction vertices is denoted by 7. Note that vgp € #7 for n > 1. Given a
junction vertex v € 77, we denote by 2;(v) the maximal upright path such that v = v;(z;(v)).

We say that a vertex v € Z;U%R is constraining p € Py, if it belongs to the upright path leading
to vj(2) which is equivalent to v € 27 (v;(2)) . We then write 2 <v. By convention, vg > 2(vtop)-

Below is an example of a interaction graph detailing its maximal upright paths, the vertices just
above them, and which vertices constrain which maximal paths.

vr = vj(724) Vertices constraining
ve = vj(21) maximal paths:

v3 B 729

V4 D j29

Vs D 21, UsD p23

Ve D> 721

— Maximal paths up and to the right

6.3.2. Solving the time constraints. The time constraint function A; is then completely determined
by the mazimal upright paths.

To any edge e = (v,v’) that is to the left in the sense that v = v;(v'), we associate a time slice
Se. Time slices s, are equivalently associated to all vertices v € 7" the following way:
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o If v € 7; then there exists a unique edge e at its bottom left, which is e = (v;(v),v). We
then associate to v a time slice s, which is the same as that of e, i.e. s, = 5.

e If v € 7 then we set s, = 0.

o If v = vR then we set s,, =t.

The set of all time slices of interaction vertices and of the root vertex is denoted by s = (sy)vez; U7 -

We impose that the time variables and the time slices of the interaction vertices satisfy the
following compatibility condition. Given a vertex v, its time variable %, is equal to the sum of the
time slices along the unique upright path leading to v:

ty = Z S5, forall v e 7.
v€n~ (v)

The time constraint function A;(¢) imposes that t,, < t,, whenever v’ is below v. This is equivalent

to the following condition for the time slices. Given any maximal upright path z € &,,, and given

its junction vertex v;(z), then the sum of the time slices of 2 is less than or equal to the sum of
the time slices of the upright path leading to v;(z). This is written as:

At) =1 = st < qu; for all » € P, and s,, =t
veERN o> 72

Note that, for the last maximal path p(viop) Whose initial vertex is vg, 1, the inequality above on the

right means:
Z sy < t.

Ueﬂ(vtop)
We can eventually define the time constraint function for time slices, that we still denote by A¢[G](s)
with some slight abuse of notations, by:

Ar(s) =6(svy —t) JT 1[Dstw) <D s(0)] . (6.10)

REPm vER o> 72
The oscillatory phases in the formula (6.7)) are rewritten in terms of time slices as:
e—ithv — e_in deﬂf(v) 517’

so that the product of all oscillatory phases in the formula (6.7 is rewritten as:

H ot _ H o150 Xiept(v) Vo (6.11)

VEY; vEY;
We have now fully solved the time constraints of the graph, and can rewrite (6.7)) as:
. n
¥ _ itw(en) [ TA _1\oc
UG(tvéR) ‘ ((27T)d/2) (=1) /Rd(Qn-s-l) /Riﬂ d§d§dSUR Aen (§)At(§) (6.12)
n+1
H (€04, 004) ] e Zoeut (o P

vEY;
Expressing the time constraint function A;(s) as a product of oscillatory integrals will be helpful
later on. The following Lemma is a variant of Lemma 4.2 in [I1].

Lemma 6.3. There exists positive constants cqg > 0, ¢, > 0 for v € 7; and c, > 0 for p € Py,
such that for allt € R, n> 0 and (sy)pey; € R":

tn
¢ (10t > aw @) —Com)
dsy, Ai(s) = ¢ / doe™ "7 wtop) S () =2 540 @) —Co
R, vR (2m)"m Jpnm ﬂg a, —i—chn H




DERIVATION OF THE KINETIC WAVE EQUATION IN THE INHOMOGENEOUS SETTING 35

where we wrote o = (0u,) peg,, -

Proof. We order P, (G) = (21, ..., 72n,,) from right to left with respect to the initial vertices of the
paths. Namely, there exists 1 = iy, < ... <11 < n such that z; starts at vo;; € 7 (then vo,i; 18
at the left of vy, whenever j > k). Note then that the last maximal path z,,, leads to the vertex
Ugop that is just below the root vertex, so that v;(zy,,) = vr and that by convention vg is the only
vertex constraining g, , ie. {v € 7, v p,, } = {vr}.

Recalling the Fourier transformation 1(z < 0)e® = 5= acR & +; da for ¢ > 0, we write for each
72 € P, for some ¢, > 0 to be chosen later on:

/ieiaﬂ (Zvep SU—Z'D’D/J Sv/)

SHPS 310 IR ST Tt
vEn Vb 2 ap€R Qp +1CHT
As for the last maximal path, 37 ., s(v) = sy, =1, this leads to the formula:
/ ds A (S) — M / daeiiaﬂ«utop)t H H 6 ﬂ('U) Zﬂ’qu aﬂ/) T]( 71(”) Zﬂ v cﬂ/))
R, VRS 2m)m Jrnm ay, a, +ic,m zc,m '

REPm

Above, for the set of maximal paths &, = (71, ..., 22, ), it is always possible to choose the constants
Cuyy Cuys -+ 5 Cpy,, ONE after another to ensure ¢, () — Zp,qv ¢, > 0 for all v € 77. This proves the

Lemma upon taking ¢, = ¢ - Zﬂ/qv ¢, for all v € 77 and cg = e“nm . ]

2(v)

Applying Lemma [6.3|to (6.12)) with n = ¢t~!, and then integrating along the s variables yields the
alternative formula:

- ; —ix \" (=1)%c
-+ t — —ztw(ﬁR) G G/ / d d A Oéﬂ(vto )t 1
ug(t,Er) = € (27)d/2 (2m)mm Jrden+1) Jrom Edafeq(E)e ' (6.13)
. n+1 .
i
M [ —= Huo (&0.,004) ] —.
PEPm Qp + ﬂ vEY; Xp(v) — Zﬁdv Az — Zﬁe;ﬁ(v) Q5 + =

6.4. Paired graphs.

6.4.1. General formula. We will now take the expectation of the L? scalar product of two functions
in the sum , corresponding to two graphs G! € €, and G € &,. The left graph G is described
with variables with a [ superscript, and the right graph G, with a r superscript. It will often be
convenient to concatenate both kinds of variables, which we will denote without superscript for ease
of notation. For instance, the set of interaction vertices is 7; = %l U7Z;" and

(UO,i)1§i§2n+2 = (U(l),p . 7U(l),n7 06,1, ceey Ug,n)v

(50,i)1§i§2n+2 = (56,17 o 7£é,n7 66,17 ... 756,71)7

and so on. Wick’s formula and the Wigner transform identity (3.3]) imply that:

2n+2
—~ 4 475 €
E ( 11 uo(&mi?ao,z-)) =Y TI o2 Wity 5(00:60 + 00,60.5))

i=0 P {ij}ep

where 7; ; = &o,i + 503, and P is a pairing of {1,...,2(n+ 1)} that is consistent with o, that is, it is
a partition of {1,...,2n + 1} into pairs {3, j}, such that 0g; = —og; for all {4,j} € P. The sum
above is performed over all possible pairings, and, by convention is equal to zero if no such pairing
exists.
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The formula corresponding to for the expectation of the L? norm of u" is for ¢t > 0

Ellu™(#)||72 = ZJ,:GP (6.14)

where the sum is performed over all possible combinations of:

e G = (G, @) is the tree G which we now describe. It is composed of one left and one right
sub-trees which have depth n, G! € €, and G" € &,,. The root vertices of the two sub-trees
v% and v}, are merged in a unique root vertex vg = v% = vj. We use the convention that
pj(véop) = 72;(v{yp) = VR, and that e;(vg) and e,(vg) do not belong to any upright path.
Furthermore, the signs of the left sub-trees are flipped, and

e P is a pairing of {1,...,2(n+ 1)} that is consistent with o. By convention, if no such pairing
exists, the value of the corresponding empty sum is equal to zero.

Given a tree G = (G',G") and a pairing P, we represent it as a paired graph G = (G',G", P). The
set of all possible paired graphs G is denoted by €%. Thus, the formula ([6.14]) corresponds to (6.1)).
To do so, we add all the following to the tree G:

e a lower pairing verter v_s y; ;3 and an upper pairing verter v_y g; j; for each {i,j} € P.
They have no associated parities and time variables.

e [ower pairing edges (v_l,{tj},v_g’{i,j}) joining the two pairing vertices, and upper pairing
edges (v_y i 3, v0,i) and (v_1,v0,:) joining the upper pairing vertex to the initial vertices
vo; and vo j, for all {7, j} € P. To the edge e = (v_g 1 j1,v_1 {,j}) We associate the frequency
variable & = n;; € R%. To the edges ¢’ = (v_1 g j3,v0,i) and €” = (v_15,v0,) we associate
frequency variables & and & which will be forced by the Kirchhoff laws to be equal to &y ;
and &p ; respectively. The pairing edges have no associated parities and time variables.

e We require the output frequency is 0. After integrating all Kirchhoff laws from bottom to
top in the graph, we find that this output frequency is g(véop,vR) + E(v{op,vR) = Z{i,j}eP Mij-

We thus require that n € Rd(nH)

The Kirchhoff laws for frequen(nes are naturally extended to the paired graph:

Ac(&n) =Ac(€. &) =0 > mi))AEHAE) T 0o+ oy — niy)-

{i,j}eP {i,j}eP

Explicitly:

Fi(G) = (2m) 2 \2edn D) / / / Ac (&) At A(t)dE dn dt’ dt”
H W5 Ui,jvi(ffwﬁo,i +00,j§o,j)) H e Hhoto H e~ Kt (6.15)

{z’,j}eP veEG! veEGT

where { = (fl &), M(§) = (5 YM(E"), with §l and ¢ (resp. £ and t") being the frequency and
time Varlables of the left subtree (resp. of the right subtree) which have been defined in the previous
Subsection The new variable n = (7727]){2,]}6 P, i<j comes from the Wigner transform identity
B3).

The set of all maximal upright paths is denoted by %,, = P! U P’ and the set of junction
vertices by 77 = 73 U 7", Given v € G and n € P,,, we say that v is constraining z if either
(v,2) € G' x P and v is constraining z in the left subtree G!, or if (v, 2) € G" x P’ and v
is constraining 2 in the left subtree G" (recall that vg by convention belongs to both subtrees).
We extend the notation and still write v > z. We concatenate the time slices of both graphs:
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s = (80)veziuzy, = (8%, 8"). Injecting (6.11)) in (6.15)) yields:
F(G) = (2m) S A2+ / / A (€ n) A (s)de dy ds

— € s, S i
[T Wotni 5(00ié0i +00s60) [ e >eerre ™ (6.16)
{i,j}eP vE;
where we A(s) is still given by (6.10)) but defined with the maximal paths of the paired graph G.
We apply the resolvent formula of Lemma [6.3] to both the left and right subtree, and concatenate
the variables by writing: a = (o!, a”) and the identity (6.15) becomes

(_1)UGZ+UGrC LCG™ y2n _d(n
F(G) = o Wci A2 edn+1) /// dé dn daAa(€,m) (6.17)
—il0, TG
e Aoy T op) H 771,37*Uo,ifo,i-FUo,jfo,j))
i.jyep

7 )
H wﬂ H 7~ Zf;e]ﬁ-(v) Q5 + %

PPy, An + vEY, Qp(v) — Zﬁqv Az

6.4.2. Ezample. Below is an example of a paired graph. The pairing is P = {{1,2},{3,5},{4,6}}.
—— Time order

} Root vertex
Interaction vertic

} Initial vertices

Pairing vertices

V_2{1,2} V9 (1,2} V-2 {12}

6.4.3. Time and integration orders. Given a paired graph G = (G!,G", P) € €}, given two v,v' € 7,
we say that v is below v’ if there exists a forward path in G going from v to v'. This defines an
order for 7, still called the time order. It extends the time orders of G and G

When we will estimate integrals of the type , we will consider the contribution of each
oscillatory phases in the right hand side of one after another, according to an integration
order that we now describe.

An integration order for a paired graph G is an enumeration of the set of interaction vertices
and of the root vertex 7; U Z7r = {v1,v2, ..., vap+1} such that for all 1 <i < j < 2n + 1 the vertex
v; cannot be above v;. This property is equivalent to the fact that for all 1 <1 < 2n + 1, the set
{v1,...,v;_1} contains all the vertices that are below v;. Moreover, vo,+1 = vg is always the root
vertex, and vy, € {véop, Viop) is the top vertex of either the left or the right subtree. There always
exists at least one integration order. For all paired graphs G € €%, we fir once for all a unique
integration order that will be used throughout the article. The picture in the proof of Proposition
shows an example of an integration order.
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We extend this integration order to the set of edges and frequencies. Given two edges e, e’ € &,
we say that e is after ¢’ for the integration order if one of the following holds true:

e cis any edge and ¢ is a pairing edge.

e neither e nor €’ is a pairing edge, and, writing e = (v,v,(v)) and ¢ = (v/,v,(v")), either
they are below the same vertex v,(v) = v,(v'), or the top vertex v,(v) of e is after the top
vertex v,(v') of € for the integration order of G. In the case v,(v) # v, (v') we say that v is
strictly after v’.

We extend this terminology for frequencies and say that & is after £ for the integration order
whenever e is after ¢/ for the integration order.

6.5. Solving the frequency constraints. We aim at understanding how to integrate over the
variables (,7) on the support of the Kirchhoff laws function Ag (which encodes Kirchoft’s law), in

a way which is takes advantage of the oscillations of the functions e®*$**. Proposition provides
a suitable subset of the frequencies &, the interaction free frequencies (§Zf Ji<i<n+1, from which all
frequencies § can be recovered. Moreover, the phases e have an expression that is suitable with

the ordering 5{, . §£+1, see Lemmas

Proposition 6.4. For any paired graph G € €} with integration order {v1, ..., von+1}, there exists an
associated complete integration of the frequency constraints Ag in the following sense. There exists
a set of free edges &f = {(v=2.4ij}» V=1 4ij}) Hijyep U {e{,...,e{,eiﬂ} consisting of all pairing
edges, of a sequence of interaction free edges {e{,...,e,{,} C & and of the root edge of the left
subtree ef; 1= (viop, vR), with corresponding slow free frequencies ) and interaction free frequencies

g = (fzf) <i<n+1 Where ng =&, s for 1 <i<n+1, such that the following properties hold true.

e Order compatibility with integration order. For all1 <i < j<n+1, el

J
f) 1s different from va(e{), and posterior for

1s strictly after elf
for the integration order (in other words, v,(e
the integration order).

e Basis property: The family (g, n) is a basis for the Kirchhoff laws in the following sense:
the map (€,1) — (&7, n), with domain the support of Ag, is a linear bijection onto R4 1) x
Rgl(n—i-l)‘

e Basis compatibility with integration order: Any edge which is not a free edge, i.c. e ¢ &,
is called an integrated edge and, on the support of Agq,

e = Z Ce,kglf + Z Ce,i’ j' T’ 5" with Ce,k Ceit j' € {_17()’ 1}7
1<k<n+1 {i",5'}eP

with ce . = 0 if & appears strictly after 51{ for the integration order.

Proof. This proof is very similar to that of Theorem 4.3. in [II] (inspired by [31]). Thus we only
sketch the proof, and refer to [I1] for the details. We construct iteratively the spanning tree G*,
whose set of edges is the set of all integrated edgeeﬂ &\&7. Its edges are (for the moment) unoriented,
so we write them under the form {v,v'}. The construction algorithm is as follows: first, at Step 0,
add all upper pairing edges {{v_1 {; j},v0,i} }1<i<2+2n to the spanning tree under construction G0,
Then, at Steps 1 to 2n consider the interaction vertices one by one, according to the integration
order: first vy, then vo, etc. until vy,.

3With a slight abuse of notation since the edges of G° are unoriented
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— Edges of the spanning tree
----- Free edges

UR

Step 1
The vertex at the bottom
left is added as it

Step 1
would create no loop ep

_ The vertex at the
bottom right of
vy is added

Step 0
All upper pairing

All lower pairing edges { edges are added

are free edges

' ' '
' ' '
° L[] L]

The order {vy, ..., v4, g} is an integration order

At the beginning of Step k, we have constructed G**~! and we reach v;,. We first add the edge
on the right below vy, which is e,(vg). Next, we consider the edge on the left below v which is
er(v): if adding it creates a loop in the spanning tree under construction, then we do not add this
edge and declare it to be a free interaction edge; if adding it does not create a loop, then we add
it to the spanning tree. With these additions the spanning tree under construction is renamed G**
and we move on to the next vertex vgy; and start Step k + 1.

At the last Step 2n + 1, we add the edge on the right below the root vertex {v{,,,vr} to the
spanning tree, and we do not add the edge on its left {véop, vr} that we declare to be a free edge.
The graph obtained at this last Step is the spanning tree G*.

UR

Step 2
The vertex at the bottom
left is not added as “”
this would create a loop

Step 2

The vertex at the
bottom right of
vy 1s added

The spanning tree is indeed a tree, since it has no loop by construction. A path in G® is a sequence
(v1,...,vx) of vertices such that v; # v; for i # j, and that for each 1 <¢ <k —1, {v;,v;41} is an
edge of G®. Each vertex is then connected to the root vertex by a unique path.

We define an orientation for G*® as follows: an integrated edge e = {v,v’'} goes from v to v’ if
v’ belongs to the path from v to the root vertex. This also defines a partial order: we say that
u = w if w belongs to the path from w to the root vertex; in particular, v < u. We denote by
P(u) = {w, w = u} the set of vertices w such that u belongs to the path from w to the origin.
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----------- —— Orientation in the
P(”?}) = (U47 00717 UU.Q; U—l,{l.Q}) /"‘ Spanning tree
3

Leaves —

4.6

Frequencies of integrated edges are expressed in function of free frequencies. Given an (oriented)
edge e = (v,v"), and v we define the parity of the edge with respect to the vertex v as

oy(e) =

+1 if v’ is above v for the time ordering,
—1 if v/ is below v for the time ordering.

Given a vertex v, # (v) denotes the set of free edges f that have one extremity at v. Given e = {v,v'}
an integrated edge going from v to v/, on the support of Ag, the formula for its associated frequency
is then

Ee=—ou(e) >, oulHEs (6.18)

weP(v), fEF (w)

To finish the proof of Proposition [6.4] we need to show that if e is an integrated edge, then it
is only a linear combination of the slow free frequencies n and of the interaction free frequencies

fzf appearing after e for the integration order of G. Assume f = {v’,v} is a free edge, with v’
below v for the time ordering. This means that during the construction of the spanning tree, at the
step where the vertex v is considered, f is not added as this would create a loop in the spanning
tree in construction. At that step, all edges in the spanning tree are before f for the integration
ordering. Hence there exists a path p in the spanning tree, going from v to v/, and all its edges
are before f for the time ordering. Also, there exist unique paths p and p’ in the spanning tree,
going from v to the root and from v’ to the root respectively. These paths intersect at a vertex vg.
By their uniqueness, vp has to belong to p. Consider now the formula above: k; can only appear
in the integrated frequencies on the paths from v and v’ to the root. Moreover, after the vertex
vp, the two contributions from v and v’ in this formula cancel. Hence k¢ can only appear in the
integrated frequencies on the path from v to vg, and in the integrated frequencies on the path from
v’ to vp. These belong to p hence are indeed before ky for the time ordering. This also shows that
¢ie € {—1,0,1}. O

If an interaction vertex v € %; is such that (v;(v),v) is a free edge, then we say that v is a degree
one verter. If not, we say that v is a degree zero vertex. The sets of degree zero and degree one
vertices are denoted by 7't and Z°° respectively.

Let then ng and n; denote the number of degree 0 and 1 vertices respectively. On the one hand,
the total number of interaction vertices is 2n, so that

ng +n1 = 2n;
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and on the other hand, the total number of interaction free variables apart from §£ 41 18 m, so that
n1 = n. Therefore,

ng =ni =n. (6.19)
Let v be a degree one vertex. We say that it is linear if the two vertices below it have opposite parity:
o(v(v))o(v.(v)) = —1, and that it is quadratic if they have the same parity o(v;(v))o (v, (v)) = +1.
The sets of degree one linear vertices and degree one quadratic vertices are denoted by %1 and ‘qu
respectively.

Lemma 6.5 (Degree one linear and quadratic vertices). Assume v is a degree one vertex, with

associated free frequency &7, and denote by & = Sea(v) the frequency of the edge above it.
o If v is linear, then:
1 2 ~ _ e
—o(eNé- ¢ + 5(6{(5) (5 ))lﬁl ifw(€) =5, 6.90
T { o@e? + 3@ + o€ Fui = Lrer
e [f v is quadratic, then:
1 (F 2 - _ lep
el ef— g+ ) 3@ =€) ) e =5
T { (0102 + 0@~ e ok~ et
6.21

o Moreover, in the two formulas above, & only depends on the slow free variables 1 and on the

interaction free variables flf appearing strictly after 1 for the integration order.

Proof. For a degree one vertex, one has that &, () = ¢ — & from the Kirchhoff law at v.
If v is linear, then o(v;(v)) = 0(&f) = —o(v,(v)) by definition and the formula gives:

Q= o (€7) (W€ — ') —w (&) + a(Ow(é).

) = % rw(é) =e?2+ |€‘2 in the above formula yields (6.20)). If v is quadratic, then
¢ = o(v.(v)) by deﬁnltlon and the formula gives:

)
Qy = —o (&) (W(E) + w€ - &) + a(Ew(é).
y=e€2+ % in the above formula yields ([6.21)).

Plugging w(¢
o(v(v)) = o

. 2
Plugging w(€) = - or w(¢

O

Proof of Proposition[6.1] . For all G € €%, we choose fix an arbitrary integration order 7; U 73 =

{v1, ..., v2n+1} and we define o, = o((vi(vg), vx)), 6 = o((vg, va(vy))) and ék = &e,(vy) for 1 <k <
2n + 1. Then Proposition is a direct consequence of the formulas (6.14)) and (6.16|) which yields

(6.2) upon applying Proposition and Lemma .
U

Finally, let us mention that if one applies the resolvent identity of Lemma to (6.2), and we
define o = o + oG, Ny, = ml +n;, and cg = cgicgr and simply write ¢, = ¢,,, > 0 we obtain:

1
F(G) = ()7%)\2” d(n+1) / o / / d¢! dn da (6.22)
(2m)"m= E nerITD Jef erdnt1) JaeRrm
—i(a R ) €
e (ko) TR WEop) 3 H W0 Mijs 5(00,1'{071' + U()J'fo,j))
{i,j}GP

- ﬁ :
1073 k=1 vE) T Zﬁﬂvk Qp — ZT)Ep*(vk) Q5 + ZCTk

REPm, aﬂ
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7. The belt counter example

We prove here Proposition Throughout this section we study equation [I.1 with the Laplace
dispersion relation and m(§) = 1:

{ iOu — AU = Nu+1)?, (7.1)

u(t =0) = ug.

Before proceeding the proof, we describe the paired graph G*, and give a formula for % (G*). The
graph G* is made of a left subtree with unprimed variables, and of a right subtree with primed
variables.

e The interaction vertices are vy, ..., Uan, U}, ..., Vh,,, and vp o, ..., V0.2n, V) s -+ Uy 2y, are the initial
vertices. There is the root vertex vg. 7 7

e The interaction and initial vertices are linked by the following edges. For k = 1,...,n there
is an edge (vag—2, vog—1) With parity —1 (with the convention that vy stands for vy ) and an
edge (vo,2k—1,v2k—1) with parity +1, and (v5, _,,v5, ;) with parity +1 and (v6’2k71, Vi )
with parity —1. There is (vog—1,v2r) With parity +1, (vo,2k, vor) With parity —1, (v),_,,v5;)
with parity —1 and (v( o, vy;) with parity +1.

There are two edges (vo 2n, vg) With parity —1, and (067%, vR) with parity +1.

e The pairing P is defined as follows: vg is paired with U6,0 with slow free variable 7, and
for k=1,...,n, v or_1 is paired with vy 9 with variable 7, and U6,2k—1 is paired with ”6,%
with variable 7).

e The resonance modulus at vy, is Q (resp. at vy, is )). The time slice at vy is sz (resp.
at v is s_q).

The integration order we choose is (v], ..., v},,, v1, ..., Van, vr). We apply Proposition to deter-
mine the free variables. This corresponds to the following paired diagram:

The belt counterexample G*
—— Edges’ orientations in spanning tree
+  Edges’ parities
é_v 517 eeey fn-, 517 sy é‘;m

ﬁ: Ty o5 Niny 7]/17 ceey 7/;,

} Free frequenciesv

Note that the left subtree is equivalent to the right subtree with reversed parity signs (up to
changing the display of the edges and vertices). Hence G* is indeed a paired graph as defined in
Subsection We have chosen this representation for convenience.

Above, the free variables are indicated by dashed lines for the corresponding edges. However, in
order to find a suitable formula for % (G*), we change certain variables (£, Ely s EL My e ml)
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(67 517 ceey én, ﬁl, ceey ﬁn) where:

. = : n
M= = —EFmt et g,
G=&+E—m— == — = — .

After a direct computation of Kirchhoff’s laws, one finds the following values for the resonance

moduli with respect to these new variables, for k =1,...,n

Qop—1 = — (f— g - = 77k+1> Lk Qo = <§— g - = — "7k> Lk
/ N ﬁ . . 2 Qo — - ﬁ . . N
U1 = §+2 — M = o = =1 | &k, o =— &+ 5 T Lk

with the convention that n_y = 7—1 = 0. The sum of cumulated resonance moduli is thus for
k=1,...,n

2n ~ n
Z Q; = Z& 5> > o= <€—g—n1—-.-—nk> S— > G,

i=2k—1 =2k i=k+1

2n o 77 n
Z Q—mej, ZQ;=—<5+2—m—...—m).sk—zZfj.ﬁj.
1=2k—1 =2k i=k+1

We introduce the following notation to ease the computations:

2n—1 2n—1
Snt = {(so, ey 8215 805 -y Sop_1) € R} X RY, Z s; <t and Z sh < t} .

One thus ends up with the formula:

Fo(G*) = 2mxtnetCr / dE dij dg d€ dn dij s ds'6 <ﬁ+Zm —m)
Rd(4n+2) - - - - 1

Cg’nt
- 7 U
k
We 4 — e — dE
5 (7, €€) 1:[ <77k7 5 T & m - Mk—1 2))
s 7 i
(.~ = s . . k
[1Ws <nk,s<s+ g T & =i — = — 2))
k=1
n — ~
H eis2b—2 22 g §imi g —is2k—1 (6= F =M= =) £ =227 g1 &i1i)

e
Il

1

e—isék72 E?:k éth e_islgk,1((E‘i'g_ﬁl_-“_flk)'ék‘i'zzn:k-;_l ézﬁz)

=

B
Il

1

We change variables again:
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and define:
i i - i
=& - o M T T k-1 T Wk = <77k Z SimlemgTMm— 77k>32k1> , (7.2)
£, N . AQH, L i
=&+ 5 — e = N1 — ?, W = <77k ; S; — (f + 5 - — ... — nk)32k1> . (7.3)

This gives the following formula:

F(GF) = 2w\ / d€ dij dv di dn diy ds ds's | 77+ > n; — i
Sn p Rd(4n+2) 1

n n

“;k . R . L d

WO na 65 H nk,Uk + ka> e H WS (nk,vk + 5wk) e~ k-2
k=1 k=1

We introduce the inverse Fourier transform:
©(n,¢) =/ W5 (n,v)e™dv,
R4

which, after integration over the variables v1, ..., vy, 01, ..., U, transforms the expression into:

Fi(G*) = 2nAIned / / d€ dij dv do dn diy ds ds's | 7 + Z ni — T
é’n,t Rd(2n+2) 1

(7, €€) 1;[ (Uk, ) TRk <77k7 :) etk (7.4)
With the formula at hand we can prove Proposition
Proof of Proposition[1. We now choose n* as:
n* =10[—]. (7.5)

and decompose the domain in the integral (7.4)) above in different subsets:

=1,....2n

D:{(s’sl’fmnv’)e&n,thd@"“% 7+ _sup \nkmnzwﬁﬁ”%},

IF o~ / = LA
DlZ{(@L&%Q@)EQ €] < er0t 2},
D2 = {(Svl)gvﬁan)n,) € D7 |Z| > G%t_% and sup  Sg2k—1 + sup 5,2k;_1 S 61_1’3’&_1}
- k=1,..n k=1,...n
D3 =< (s,5,€,1, ) €D, [¢> €t"2  and SUp Sop_1 -+ Sup So,_q > 61_%@_1 ,
k=1,...,n k=1,...,n
D/:{(§7i/ ( nthdQHJrZ)\D}
so that

F1(G*) = 2n A1l </+/D1 ...+/Dz...+/DB...> (7.6)

Step 1 Subleading terms. In this step we estimate the D’, Dy and D3 contributions with the sole
assumption on a that it is any Schwartz function. Note that with this hypothesis and (3.1]), W§
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and ¢ are Schwartz functions and that any seminorm of the Schwartz space of these functions is
uniformly bounded in the range 0 < € < 1. In particular we bound the integrand in (7.4)) by:

n A
~ T wk‘ . o R wk . R
VV(‘)E (17, Ef) I | © (nk’ ?) e zwk-wkw <77ka 6) ezwk.wk
k=1

< ()M T L)~ ) K () K (YK (1)

for any choice of a large constant K > 0. ~
For the contribution of D', we further decompose D' = D" U D] U...U D], U D{ U ...U D, where

~ 1 _« 1 _« 1 _«
D' =D'n{lil > 3¢ B}, Dy=Dn{lml> e B}, DY =D'0{l> o)

On D, there holds that:

N+ > ni—1 VK < Ok, K)elo.
/ﬁ>e1%/4 ( Z )

Therefore from (7.4) and (7.7)), after integration first over 7, then over &, m1, ..., M, 71, ..., I Which
produces a ¢€(@n)

’/ . ‘ e d+1o/§ /Rd(2 . dé dndids ds'( KH () K (i) K < Ningin K
/ n t n

for any K’ > 0, up to choosing K large enough. The integrals over D) and Dy for k =1, ...,2n are
estimated similarly, resulting in:
/.ug

To estimate the contribution from D9 we define for R > 0 the set:

factor, and finally over s, ..., S2n—1, Sh, ..., $h_, which produces a t*" factor:
y y y ey » 20 2n—1 p

(M) el (7.8)

! / 1-& p—1
gn,t,R = (§7 i) S CSjn,ta Sup Sgokg—1 + Sup Sok—1 <e 1R .
k=1,...,n k=1,...n

We then perform the following estimate, integrating first over the 7,7, n’ variables using (7.7) and

the definition of Dy, and then the constraints |sop_1|, |sor—1] < €710 |¢]~1 and |sop), |sox| < t for
k=0,...,n

n

'/ ’ < )\4"ed/ d€ dij dn di) ds ds'5 (ﬁ +> i n> (@) T [ome) ™" () ™™
Do Do 1

1

§A4ned/ L dé dsds’ < )\4"6d5(11%)2"t2”/ L=
E>efors Jssnes,, g [E>etiez €7

S )\4nt4n <€d+2n—1—"0(4n—d)t—n—g> 5 )\4nt4n63d (79)

where we used (1.9)) and (7.5) for the last line.
We now turn to D3, that we decompose as D3 = D3 U ..U D3, U Dé,l U...U ng where

D3y = D3N {28951 > ¢ " 10[€|7'} and Dy = D3N {2sy | > e=16|€|~1}. On D3 there holds
using (7.2)), and the inequalities 25}, | > 0 |E|7Y, |mi| < €10, 2t > s9; and (1.9):

2k—2 ~ _ A _ K

w1 _ - € 10 9 € 10

‘?) 2 € 1 (|€52k_1| — |77k; E S; + (g —+ m —+ 77k)52k|> Z 5 — CEl()H 2 4
=0
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KK

for € small enough. This implies that (<1)~% <& 0. We inject this bound in (7.7) and estimate
the D31 contribution as:

/ §A4"e"1’5+d/ dEdijdndijdsds's {7+ ni—i; | < Aeinel
D31 D31 o 1

for any K’ > 0, for K large enough. The other contributions of D33, ..., D3 n, D5 4, ..., D3, can be
estimated similarly, resulting in:

/ ‘ < Ningingdt K (7.10)
D3

Step 2 Leading term. We now choose a of the following factorised form:
a(z,v) = x(z)x'(v)
for two non zero Schwartz functions x and x’ such that:
x(2) >0, %(2)>0, x(2)>0, and F(x?)(z)>0 for all z € R%
The formula and the above nonnegativity properties imply that for all € > 0:

W§(n,v) >0 and @(n,w) >0 for all n,v,w € R%. (7.11)
We then perform a first order Taylor expansion estimate on Dy:
ek =1 4 O(|wp.wi|) = 1+ O(e3), R Tk — 1 4 O(e5) (7.12)

where we used that s; < ¢, || < €/19t1/2 and |n;| < e */10 for the first inequality above, and
where the second inequality is obtained similarly. The following identity then follows from ([7.11))

and (7.12)
2m4“ed/ =21 (1 n O(e%)) )\4"ed/ dE dii dn diy ds ds'6 (17 + Z”i . n>
D1 D1 -

n . Wk
(7, €€) H (7714:, ) (le, > :
- (7.13)
We define the following sets:

€
- and sup Sok_ 1+32k 1 <
t 1<k<n |§|

Dllem{Eyg%}, Dlleﬂ{\ﬂ

On D; there holds from (T.9) and |n;], |7;] < e /10 (where |, | is the Lebesgue measure of |, ¢|):

Wr| <

~
€

— w
€] < e, |2 | S| = 17,

)

€

so that using the nonnegativity (7.11)) and the fact that W = a? + O(e) in the Schwartz space:

c(i)dt‘mg/bl dfdndndndst(S(nJer m) WE (7, €) kHlso(nk’ w5 (ﬁk’wk>

1 /eNd
< = (,) gin (7.14)
c \t
for some ¢ > 0. On D; we change variables (80, ..., $2n—1; 8hy -+, Sap_1) = (805 s 82n—1, 85 -+, Sap_1)

where:
_ € _ = / _ €y d s, — 15
Sok_1 = ES%’ Sok = tS9k, Sop_1 = ES%’ and sy, = t59;.



DERIVATION OF THE KINETIC WAVE EQUATION IN THE INHOMOGENEOUS SETTING 47

The set &, is changed into:

n

cS’m = {(507"'75711756" o Sn_ 1) ER” XRi, Z§Ql+ ‘5’ —359;,1 <1 and ZS2%+ — 52z 1 < t} .
0

On D; there holds |n;], 7] < e*/19 hence since t < €' in these new variables from (7.2):

Wg é 1 we & 1
?_ |g| S2k— 1+O( ) € - |E’S2k 1+O( )

Hence, applying (7.7) and the above change of variables one finds:

o< [ e[ ] | dedpdydpdsds's i+ > i
D |E|2§ Rd2n+1) J§, o 1

2n n
@J<Wm@%ﬂmww%wﬂm*@mwf

< e / g < ()i, (7.15)
> t

where the lower bound is a consequence of the nonnegativity ([7.11]). Therefore, injecting (|7.14)) and
(7.15) in ([7.13]), the contribution of the Dy part in % (G*) is, for some constant ¢ > 0:

enging2di=d < o \ined / . < L yingin 2d;-d. (7.16)
Dy ¢

Step 3 Conclusion. We inject the bounds ([7.16), (7.8]), (7.9)) and (7.10)) in the decomposition ([7.6]),
this establishes the desired formula ((1.10) upon choosing K’ large enough.

0

8. Estimates on the expansion
The aim of this section is to prove the following proposition.

Proposition 8.1. The iterates u™, defined through (1.5)), satisfy the bounds
o For equation (I.1)) with wg = ¢~ 2 or wg =0 and m(0) = 0, for any v > 0, there exists b > %

such that
(A)*" if |t] < €,
n 2 <
E ”U (t)”L2 ~ { ( t ) ’10g6‘2 n+1) Zf |t‘ Z 62, (81)
t 2 T \"
e n < oV > 2‘ )
EHX <T)u (t) o Se (Tkzn> forT > € (8.2)

e For equation (1.1)) with wg =0 and m(0) # 0,

Ellu™()[7. S (A)"

. 2

i n < n
E HX (T) u"(t) o S (AT)™.
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8.1. The L? estimate. We denote B™(r) the Euclidean ball of radius r in dimension m, and
Bp(r) = B™(r) NRY. Given v € 7' we define four sets which will distinguish whether v is
degenerate or not, and, if not, which type of degeneracy happens at v. In the case where v € 77 is
a junction vertex we set:

- Z Qn' —

o>z’ v€pt(v)
S2 = {(am,€7) € B () x BT (K) x B (Ke™), (6o > 0¢ ')
S = {(e:n, f)e Bnm(e_K/) X Bg(n+1)(K) x Bd(nﬂ)(Ke_l)? ’aﬂj(v)’ > de?},
St =B (%) x B (K) x BIHD(Ke™) \ (Ujm 2,387)

St = {(a,n,&7) € B (Ke ™) x BI™D (K) x BA D (ke

3
3

(the constants K, K’,§ > 0 will be fixed later). In the case where v ¢ 77 is not a junction
vertex, then we define S} and S2 as above, we set S% = ), and S* = B (¢ K") x Bg(n+1)(K) X
Bd("+1)(K6_1) \ (Uiz1,25%).

Definition 8.2. Let § > 0. Given a set S C B" (e %) x Bg(nJrl)(K) x BUHD(Ke 1), we say

that a degree one linear vertex v € 7! is degenerate on S if for all (a, 7, §f) € S the following three
conditions are met simultaneously:

o~ Lo~ Yl
>z’ vent(v)
|§(v,va(v))| < et )
ifv € 77 is a junction vertex then o, )| < de 2
Equivalently, v is degenerate on S if S C Si.
We say that a vertex v € 7; U7x is nondegenerate on S if either v € PR, or v is a degree zero or

a degree one quadratic vertex, or if v is a degree one linear vertex such that for each (a,n, §f) es
at least one of the three conditions above fail.

We will partition the domain of integration in (6.2)) according to the non-degeneracy/degeneracy
of each vertex. For this aim, given a function 8 : 7;* — {1,2,3,4}, we define:

Sg = ﬁve%lsf(”). (8.3)

Note that any vertex v € 7! is either degenerate (if 8(v) = 4) or nondegenerate (if B(v) = 1,2, 3)

on such a set Sz. Note also that B™ (e~ K") x Bg("ﬂ)(K) x BU ) (Ke=?) = UgSs. Degenerate
degree one linear vertices have implications for the vertices above them, as stated below.

Lemma 8.3. Assume that w(€) = e 2 + @ and K,K' > 0, then for 6(K) > 0 small enough the

following holds true. Given any set S C B™ (e ) x Bg(n+1)(K) x B D)(Ke™l) and v € 7' a
degenerate degree one linear vertex on S, then:

(i) If v is at the left of the vertex above it (v = v(ve(v))) then at vy (v), for all (a,n, éf) es

Z ap— Y. > 67 (8.4)

% o€t (va(v)

(ii) If v is at the right of the interaction vertex above it (v = v, (vo(v)) and vy (v) € 7;) then
by definition ve(v) € 77 is a junction vertex with z2;(v,(v)) = z2(v), and one has for all



DERIVATION OF THE KINETIC WAVE EQUATION IN THE INHOMOGENEOUS SETTING 49

(g,g,gf) €s:
2
Qs (va (o)) | = R (8.5)
(iii) If v € {vl,p, V},p} is one of the top vertices then one has for all (a1, ¢hes:
2
|aﬁ(v)\ > 7 (86)

Remark 8.4. The above lemma implies in particular that if v is a degree one linear vertex that
is degenerate on S, then the vertex above it, namely v,(v), is nondegenerate on S. In particular,
given any partition function 3 : %1 — {1,2,3,4}, if for some v € %1 one has v, (v) € %1 then if 8
requires degeneracy at both vertices, i.e. 8(v) = B(v,(v)) = 4, then Sz = 0.

Proof. Since v is degenerate, ((6.20)) implies that:

-2
1= 2~ o@o(€NE + L1+ o@o(eER > e~ Ko 22> X (8
for 0 small enough. We now let v/ = va(v) and define four cases A, B, C and D. In case A one has
v=1(v") and v € 77 is a junction vertex. In case B one has v = v;(v') and v ¢ Z7. Cases A and
B cover (i) in the Lemma. In case C one has either v = v,(v) or v € {véop,vgop}, and v € 77. In
case D one has either v = v.(v') or v € {v{y,, v, }, and v & 7. Cases C and D cover (ii) and (iii)
in the Lemma.

By definition, we have in case A that 2(v) = 2(v") and {#’, v> 2’} = {#/, V> 2’} U 2;(v), in
case B that z2(v) = (V') and {#/, v> 2"} = {#/, V"> 2"}, in case C that {#',v> 2"} = {#z;(v)},
and in case D that {z',v> 2"} = 0.

For (i) we have therefore

Zap/— Z Q5 = ay Zaﬁ/_ Z Qs +{ v Oz,fé(rv)case]f;rcaseA,

v'>p! v€nt(v) vz’ vent(v 2
which, using and the degeneracy of v, yields for § > 0 small enough

N ay- Y Qy>36 — 202>

v'> ! vERT (V')

and proves the lemma in this case. For (ii), we have

o Dy + gy (v) for case C,
B Z On' Z & =ape) - { Q, fé)r case D.

o>z’ v€nT(v)
which, using (8.7) and the degeneracy of v, yields for § > 0 small enough
3e 2 o €2
(@) 2 == = 2067 2 -
and proves the lemma in this case as well as 2(v) = 2j(vq(v)). O

We will study carefully degenerate degree one linear vertices by including them in larger clusters.

Definition 8.5. Given a set S C B (¢ K") XBg(nH)(K) x BX D) (Ke1), we say that € C ZU7R
s a degenerate cluster on S if either of the three following possibilities occur:
o Type I: € = {v,v'} with v being at the bottom left of v/, i.e. v = v (v'), and is such that
v E %1 is degenerate on S, and v’ is nondegenerate on S.
o Type II: € = {v,v'} with v being at the bottom right of V', i.e. v =v,(v"), and is such that
v E %1 is degenerate on S, and v’ is nondegenerate on S.
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o Type III: € = {v,v',v"} with v and v being at the bottom left and right of v", i.e. v = v, (V")
and v' = v, (v"), and is such that v,v' € 7;' are degenerate on S, and v" is nondegenerate

on S.

The lemma below states that, given any set Sg in the partition of the domain of integration, one
can always decompose the graph as a disjoint union of degenerate clusters and of a set of vertices
that are all nondegenerate.

Lemma 8.6 (Decomposition into nondegenerate vertices and degenerate clusters). For any set of
the form Sg, there exists €1, ..., € (a,p) disjoints degenerale clusters on Sg such that:

V;UPRr = %U%l ... I—l%nd(G,B)
where 7 only contains non-degenerate vertices on Sg.

Proof. Let v € 7! be degenerate on Sg, and let @ be the other vertex that is below v, (v). If ¥ is
nondegenerate, we define the degenerate cluster €, as €, = {v,vq(v)}. If ¥ is degenerate, we define
the degenerate cluster €, = €y as €, = {v, 0, v4(v)}.

From Remark @, is indeed a degenerate cluster on Sg as v,(v) is non-degenerate on Sg.
Since, in each degenerate cluster, the vertex above is nondegenerate, then the degenerate clusters
that we have defined are disjoint. We order them as €7, ..., €, ,(q,s), and by definition the remaining

vertices in (7; U WR)\(U;Z(IG’B ))%”j are all nondegenerate.
([

We now turn to the proof of Proposition 8.1}

Proof of in Proposition .
Step 1 Preliminary reduction. We only prove the result for ¢t > 0, as the computation for ¢ < 0 is
the same from . From Proposition it is enough to prove that given any G € €% and ¢t > 0
there holds:

(At)2" if0<t<eé

L/’t(G)‘ S C{ (ﬁ)nuogep(n—i—l) if 62 <t

(8.8)
where C' = C(n) > 0. We now fix G and t. We first prove the result for 0 < t < ¢2. Bounding all
oscillatory phases and M in (6.16]) by 1, and then applying Lemma we obtain:
—~ €
F(6)| s ety [[[ de dndsii(s) T g0 & (00:0i + 00,600
Rd(”+1)XRg(n+l)XR3_n o 2
{i.jteP
(8.9)
Note that, from (3.1)), Ko = diam(W§) is bounded uniformly for 0 < e < 1. Hence, in (6.2) the
product [T; sy p Wi (015, §(00,:0,i+00,5€0,7)) is 0 unless |1; ;| < Ko and [09,i€0,i+00,5€0,j] < 267 Ko
for all {i,j} € P. Recalling that n;; = & + &; and that og;00; = —1, this implies that
1€0,i| < 2Kope ! for all i = 1,...,2n + 2. Let now §f be a free variable, associated to an edge
(v,v") where v is below v'. Then, integrating the Kirchhoff laws in G from initial vertices up to
v, we see that ¢/ = D w0 €%, vy 1<v S0,i- Hence 1€f] < 2(n 4+ 1)Koe ! = Ke™! as there are at most
n + 1 vertices below v. Therefore, the integrand in (6.2)) and in is zero for (n, &) outside of
BIM (K) x BAn+D) (K e 1),
In , integrating with respect to g produces a e~ 4D factor, over 1 a 1 factor, and over s
a t2" factor, so we eventually arrive at:

|7 (G)] S (M)



DERIVATION OF THE KINETIC WAVE EQUATION IN THE INHOMOGENEOUS SETTING 51

We next prove the result for t > €2. We first reduce the integral to B"m(K'e~2) x Bg(n+1)(K) X
B+ (Ke 1) for some K (n,a) and K’(n,a) independent of . We claim in this step that for any
K' > 2 large enough, (8.13)) can be upper bounded by

F(C) ST+ Fras (8.10)
B
where

gt,G,ﬁ = )\Zned(TH*l) /// dgdﬂdgM(f) H zc, H (811)
(ang)esy | i 1Ok

PEPm | +
and where we introduced for convenience the notation
Ok = Or(t, &) = appy — Y ap— > Qq~,+%. (8.12)
AW vent(vi)
We now prove (8.10). Using , the above discussion on the restriction for g and 7 to
Bg(n+1)(K) x B+ (Ke1) and putting absolute values we obtain:

|F(G)] < \2n d(n+1) /// dgdnd§f|...|, (8.13)
(g’ﬂ’éf)E]an XBg(”‘H)(K) x BA(n+1) (Fe—1) AT

Next, let for some K’ > 0 to be fixed later and 72 € P,,:

5 = {(a.n.&)) € R™ x BE"V(E) x BID(Ke), Ja] > ),
S ={lan. &) e R x B V(K) x B (K), Jay| > e and Jay| = sup |y},
72/

Then S C U,S,. Fix now z € %, There exists at least one v € 7 such that v € n. We
decompose P, = {n} UPL U P2 where Pl = {n' € Py, v> '} and P2, = P, \PL \{72} and
n(v) = #PL . Then, for (n,&f) € BI™™(K) x BU+D (K1), there holds Q| < C(K)e2, and
applying several times the inequality yields for any C > 0:

/ log |aﬂ]dqﬂ / d(ay) g . 1 A
lool2e o+ FE Sap) e RO 10 = D O = et () o + venes, |0n + |

C ’

5/ log |Oiﬁi| ! —da, < €.
|y >e K |a72 + %| |aﬂ - Zv’e;z*(v) Q, + %|

We then estimate the integral (8.13) restricted to the set S, as follows: first we integrate over the

(@) preg2, variables the

Nm—1—n(v)

terms which produces a log || factor, then we integrate

1 g
o, +51
over the () e 21 U} variables and apply the inequality above producing a e factor, and finally
we integrate over the n and g variables which produces a e ¢¥) factor, yielding:

/// o SO < A
5,

for K’ large enough depending on K. Hence, since S C Uﬂgﬂ we get fff§ e S ¢ for any arbitrary
constant K’ > 0. We thus get the inequality (8.13)) by noticing that S =[] 558

We now first treat the hardest case of (I.1]) with wg = €2, and relegate the easier proof of (1.1))
with m(0) = 0 to Step 4.
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The basic idea will be the following: consider all interaction vertices following the integration
order; when reaching the vertex vy, if it is of degree 1, integrate over the free variable below it;
and if it is a junction vertex, integrate over a . (y,)- Whlle this plan can be followed literally in the
absence of clusters, complications arise if they are present.

Step 2 Upper bound for in absence of clusters. We assume first that all interaction vertices
are non-degenerate on Sg, in the sense of Definition We prove by integrating over the
variables ¢/ and « iteratively, according to an algorithm that considers the interaction vertices and
the root vertex vy, ..., Vop+1 € % UZR one after an other, where vy, ..., von+1 is the integration order
on G.

We define for 1 < k < 2n+1 the set Py, 1, = {2 € P, vj(2) is after vy, for the integration order}

and the variables a;, = (a,),es,, , and f,’: = (§Zf)k12k Importantly, note that ©y only depends
on ay, n and §,]: from Proposition and the definition of the integration order. Let n,,, =
#H Pk N0k :#{v € 7Y, v is strictly before vy, for the integration order} and nij, = #{v €
7!, w is strictly before vy, for the integration order}. Note that P,,1 = Py, that Ppony1 =
{p(véop),p(vgop)}, that noo = n1p = 0 and np2p+1 = N0 = Ni2p41 = N1 = n from .
We define Sg . as the image of Sg by the projection map (a,n,&”) — (&, 7, f{;) We claim that for
all 1 <k <2n+1:

‘%G,,B < )\Qn d(n+1) (2—d)nq ktn0k’10g€|2nlk /// dOé dﬁ dék H
(akﬂlf )ESB K

PEP, ’ 7—?

zcﬂ‘ H |@£’

(8.14)

which we now prove by induction. It is trivially true for £ = 1. We assume now it is true for some
1 <k <2n. We prove it for k + 1 by considering four cases depending on the vertex wvy.

Case 1: v € 79 and vy, ¢ 7. In this case Pk = Prmk+1, ok = Nok+1 — L and 1y = Ny g41-

There is no variable to integrate over: oy = ag41 and f,’: = 51{ 41 We first plug these equalities in

the integral in the right hand side of (8.14) at step k. Then for all (a4, 7, §£) € gk = S k+1, We

simply upper bound the term |©|~! < ¢ in the integral. The right hand side of (8.14)) at step k is
then bounded by that of (8.14) at step k + 1.

Case 2: v, € 7% and vy € 77. In this case P = Prrr1 U {2j(vk)}, nox = nox+1 — 1 and
nik = Ny k1. We will integrate over the variable Q. (vy)» DOLING that aj = (aﬂj(vk),akﬂ) and

= §k+1'

By definition of the integration order and of junction vertices, all the vertices in z;(vy) have
already been considered by the algorithm, i.e. 2;(vy) C {vi,...,v5-1}, and for all £ > k + 1, the
vertex vy is not constraining z;(vi) so that {v € {ve}i>p, vov y} = {vk}. Thus, in the integrand

in (8.14) at step k, the terms |, (o) T w’ﬁ#rl and

74 (Vi

ic
Ok =~ () +7 + (8.15)

are the only ones depending on the variable « where v € R has an explicit expression but

725 (vk)»

is independent of a, (). In the integral (8.14) at step k, for a fixed (ag41,n, flf;_l) € Sgr+1 we
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integrate over the variable v, (,,) using (8.15) and (B.7), producing:

/ A0, (u) 1
iC, .
0 o) | <K (o m L) €S |0 o) + w’ |Ok|

do
S
|aﬂj(vk)|§E_Kl |O[

and get the inequality (8.14)) at step k + 1.

75 (0%) ! <t
iC, . ic ~
7&;%) | | - Qpi(o) TV T Tk|

7i(e) T

Case 3: v € 7’1 and vy, ¢ 77 In this case, Pk = Prmk+1, M0k = Nok+1 and ny g = ng g1 — 1.

There is a free variable §Zf attached to vy (which is f}; for ¢ such that k; = k) to integrate over. We
have 5}5 = (ff , fl{ +1) and ag = a1 We note that by definition of the integration order, and from
the construction of the free variables g (as stated Lemma , forall £ > k+1, for all v € 27 (vp),
the quantity €2, is independent of §{ . Thus, in the integrand of at Step k,

Or =7 — Qu, + % (8.16)

is the only quantity which depends on ff . Moreover, v is independent of flf , and €, is given by

Lemma . For any fixed (o, 7, f,{H) € Sgk+1, using (8.16), and then either (6.21]) and (B.4) if
vy is quadratic, or (6.20) and (B.2) if vy is linear (because from the assumption of this Step 2, vy
is then nondegenerate on S/g), we get

1 1 _
/f ; @d€;f§/f ; N i dng < €27 loge|.
e |<Ke1, (apme)eSs s Okl e/ |<Ke 1, (anmel)eSan |7 — Qo (6F) + X

In the inequality (8.14]) at Step k, we integrate over §{ using the above inequality, and obtain (8.14))
at Step k + 1.

Case 4: v, € 7! and v, € 7. In this case Pk = Prj+1 U {2j(ve)}, nok = nok+1 and nyy =

ny k41 — 1. There are two variables to integrate over: a free variable flf attached to vy and a (),

and we have f,{ = (flf, f,]:H) and a = (04, (v,), Qk)- By definition of the integration order, and from
Proposition for all £ > k + 1, the quantity ©, depends neither on «

the integrand of (8.14)) at Step k, the terms \aﬂj(vk) + M\ and

12(vg)+ 1OT ON ﬁlf Thus, in

ick
O =7 — Qpj(vp) — Qu, + —

: (8.17)

are the only ones which depends on flf and o, (y,)- Above, v is independent of flf and o, (y,), and
Qy, (¢7) is given by Lemma For any fixed (o, 7, §l£+1) € Sgi+1, using (8.17) and then either
(6.21)) and (B.4) if vy is quadratic, or (6.20) and (B.2) if vy is linear (because from the assumption




54 IOAKEIM AMPATZOGLOU, CHARLES COLLOT, AND PIERRE GERMAIN

of this Step 2, v;, is then nondegenerate on Sz and in the integral below |a

/ / :
0y |02 JIEl IS, (&) |, ) + 2080 |!9 |

2| < Se2), we get

df do

7j (vr)

- / dag, ) / de/ |
~ o, . |<de—2 ’a o) + M’ ‘§[|§Ke_17 (%7ﬂ7i)esﬁ,k h/ = Qpi(vy) — ka (ﬁf) + ZCTk‘

’Uk)

da :
5/ ﬂj(”ck).( v 627d|10g6| S 627d|10g6’2.
‘Oé/_, (vk)|<66 |aﬁj(’l)k) _|_ %’

For the part of the integral for which |aﬂj(vk)| > de~2 we inverse the order of integration by Fubini,
simply bound |a,, () + M\fl < €2 and find:
[—— 1

sy w2062 Il |<Ke 1, (@un€lIeSon [a, () + L0 |@k’
N / dgz‘f/ : o) : ien 1 9% (or)
1<Kt a0 12062, (@en€DESsk [ay ) + S| 1Y = Q) — Qo () + 554

5/ d§if€2 < 2
lef|<Ket

Combining the two inequalities above yields (8.14]) at Step k + 1.

delda, )

By induction, we obtain that (8.14) holds for all 1 < k < 2n + 1. To prove the final estimate
(8.8), we take k = 2n+1 in (8.14)), and then integrate over the « 20l ) Qn(ol,.) variables producing
op O

a |loge|? factor, over fgn 41 producing a ¢~ factor, and over the 7 variables producing a 1 factor:

%Gﬁ < \2n¢ d(n+1) |10g6‘2n (2— d)ntn ///
%ol or ),77§n+1)€><B2(0,e*K')><Bd(”+1)(K)><Bl(Ke*1)

1 1

f
do‘ﬁ(véop) daﬁ(vfop) dﬂd§n+l ica . »
7(viy,) |

ol
)+ tmp ‘ |a7](”€op) + I

(vtop

< A\27¢ d(n+1) |10g6’2n (2— d)ntn67d|log€|2 — ( |10g6|2 n+1

t
A2 2 )"
where we used _xr doja +i/t]71 < [loge|. The inequality (8.8)) is proved, concluding Step 2.

|| <e ~

Step 3 Upper bound for in presence of clusters. We now treat the general case for which
there exist degenerate vertices in the sense of Definition We apply Lemma and gather them
into clusters €7, ..., €,,, and recall the decomposition 7; U7 = 7 U ..U Gn,(G,8)- As in Step
2, we prove by integrating over the variables ¢/ and « in iteratively, according to an
algorithm that considers again the interaction vertices and the root vertex V1, .oy Vo1 € ViU PR
one after the other according to the integration order.

The outcome of the strategy in Step 2 can be summarised as follows: each degree 0 vertex produces
a factor ¢, and each non-degenerate degree 1 vertex produces a factor €2~%|loge|?. Given a cluster
€ containing ng(€) € {0,1} degree zero vertex and ny1(€) € {1,2,3} degree one vertices, when
reaching one of its vertices during the integration algorithm, we will perform different estimates.

We will prove, overall the same estimate for this group of vertices, that is, that € produces a
£70() (2= loge| )™ factor
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We now consider each vertex vy, ..., van+1 € Z;UZR one after the other according to the integration
order and assume we reach vg. Suppose vy € %; does not belong to a cluster. Then we proceed as
in Step 2. As a result if vy is of degree zero this produces a t factor, and if vy is of degree one this
produces a factor €2~ %[loge|?. Suppose now we reach vy € € the first (according to the integration
order) vertex of a cluster €. Suppose in addition that the vertex above v is not the root vertex,
which will be treated after. By definition v is degenerate in the sense of Definition [8.2

Case 1: € = (vg,vp) is a type I cluster (in the sense of Definition [8.5) and vy € 7°. Then ng(%€) =

n1(%) = 1. Assume first vy, vy ¢ Z7. Denote by &/ the free variable at v;. At vj, we simply bound
|Ok|~! < t and integrate over &7:

1
/ —de! < / tde! < ted, (8.18)
e/ |<Ke 1, (axm&l)ess |Okl €f|<Ke?
We then pursue the algorithm and consider the next vertices vgy1, vgy2, ... . When the algorithm

reaches vy, we bound |O/|~! < €2 by applying (8.4)) since € is a type I cluster. Combining the
factors we got at vx and vy, we find that € produced a te~de? < t70(€) (2=d|loge|) (%) factor.
If v, € 777, then at v, we start by integrating over Q. (vy,) USING (B.7) and get

/ 1 da, (v

iCp . (o o o _ icl
|t o 1€, (o 1.64) €S ‘aﬂj(vk) + w‘ [ o) 2754% Q7 Zﬁ€ﬂ+(vk) Q5 + 5|
< 1

‘aﬂ(vk) T Qjon) Zﬁ%k Qp — Zf)Eﬂ""(Uk) Q5 + wTk’

and we are back to the previous reasoning for the case vy, ¢ 77. If vy € 77 then the analogue
estimate at vy, integrating first over Q. (v,)» Sends back similarly to the previous reasoning for the
case vy ¢ 77. Hence the same bound for € holds in the cases where v, € 77 or v € 77.

Case 2: € = (vg, vp) is a type I cluster and vy € Z°1. Then no(€) = 0 and n1(%) = 2. Denote by
¢ the free variable at vy, by £/ that at vy, and assume vy, vy ¢ 7. Since (vg,vy) is the edge
above vy, and is at the bottom left of vy, we have that in the formula at v, there holds é: flf in
(6.20), so that this formula gives O}, = —o(££)2¢F .67 + 4+ MT’“ where v is independent of ¢/. When
the algorithm reaches vy, we integrate over & using and obtain:

1 1 1=d]
/ o' s [ : L LR ERT)
ef|<ke, (arnel)eSs. 1Okl ef|<iet | — o(€0)26F.60 4y + 1| €71

When later the algorithm reaches vy we bound O]~ < € by (8.4), and integrate the |¢/|~!

factor produced by (8.19)):

de'lt < 4.

[ D[ o
€' |<Ke, (o m &l a8 1€ unc ' f)<xet €7]

Combining the factors at vy and vy, € produced a €' ~[loge|e3~® < t70() (2= d|loge|)"1(€) factor.

If v, € 777 (resp. vy € ‘73)‘, integrating ﬁrst'over Qpi(vy) (TESP. @y (y,,)) using (B.7) sends back
to the previous case vy ¢ 77 (vesp. vy ¢ 7). Details for this procedure are given in the last
paragraph of Case 1 and we shall omit them here and later. Hence our method for vy, vgs ¢ 77 also
covers the cases v, v € 777,
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Case 3: € = (vg,vp) is a type II cluster and vy € 770, Assume v, ¢ 77. When reaching v, we

simply bound |©;]|~! < ¢ and integrate over &/:

/ Ldgf <t / del <te (8.20)
ef|<Ke, (apme])eSsr 1Okl €f|<Ke1

Next, when reaching vy, we apply (8.5) and get vy € 77 with \aﬁj(vk,)\ > de~2. Writing O, =

Y = Qi(v) T “k where « is independent of Q. (v,)» IDbegrating over o

bound we get:

2;(vy) using the previous

2
/ 40 (0y) 1 / T ) < 2p1oge]
_ iCh (v ~ _ _ k| ’
|aﬂj(”k/)|§6 K’ (%’@Q)GS&,C/ ’aﬂj(’vk) + w‘ |@k| Se 2§|aﬂj(”k’)|§6 K' |f}/ Qi (vyr) + 7 ‘

The factors we got at v and vy thus give that & produced a te~%€*[loge| < t70(®) (24[loge| )1 ()
factor. As in Case 1 and 2, the case vy € 77 can be dealt with the exact same way by integrating

first over @, (4,), we refer to the last paragraph of Case 1 for details.

Case 4: € = (vg, vpr) is a type II cluster and vy € 7L, Assume vy, ¢ 7. Let ¢7 and §/f be the free
variables at v; and vy respectively. Let é (resp. §~’ ) denote the variable associated to the edge on
top of vy ~(resp. vgr). As € is a type II cluster, we have by Kirchhoff law at vy that £ = g — {lf
and that £ depends neither on ¢/ nor on £, Hence (6.20) gives Oy = o() (€7 = &) - &¢f +~v+ o
where v is independent of £/. At vy, we integrate over &/ using this identity and (B.1]), giving:

/ o= [ . et < & lose]
e <Ket, (axmel)ess s Okl 7 T St <ot |o(€N) (€ — €) - €0 + v + | €7 &

B (8.21)
Next, at vy, we apply so that vy € 77 with |O‘p]-(vk/)’ > §e2 on Sg k. Moreover, O =

—Qpi(vy) T v 4+ chk, with " independent of Q. (v,)- We first integrate over « using these

7j ()
bound and equality, producing a factor €2|loge|, and then integrate the [/ — ¢'|~1 gained from
(8-21)) over &f', producing an €'~ factor, resulting in:

, 1 1 1
dov,y (o 1dE7 . : < €37 loge|.
7 (vgr) ' 1Ch (v A &

|0‘ﬂj(vk/)|§5_Klv ‘5/”3[{6_2 (Oék’ﬂ’i)esﬁ,k' ’ ’6 /- 5,‘ ’aﬂj(vk/) + M‘ ’@k ‘

The factors obtained at vy, and vy give a total factor for & of €'~ ?|loge|e>~¢[loge| < t"0(€) (2=4|loge|)™ ().

Again, as in all previous cases, the subcase v, € 77 can be dealt with the exact same way by inte-

grating first over a,.(y,), see Case 1 for details.

Case 5: € = (vg, Vi, vp) is a type III cluster and vpr € 70, s0 ng(€) = 1 and ny (&) = 2. Assume
Uk, U & 7. Assume firstly v, = v(vpr) is before vy = v,(vgr) in the integration order. Let &f

and f/f be the free variables at vy and vgs respectively.
At vj, we bound |0 ™! <t and integrate over ¢/:

1
/ —def < / tde! < tem (8.22)
ef|<ke, (arnel)eSs . |Okl e/ | <K e

At vgy we first upper bound the factor associated to vgr as |©x| 1 < €2 by applying (8.4]), bound

)+ wﬂ%’“)]_l < €2 by applying (8.5)) and write O = ()t + %2 where 7 is independent
) in the right hand side

‘ap(vk/

of a,(y,,)- Note that these three terms are the only ones depending on a(,,,



DERIVATION OF THE KINETIC WAVE EQUATION IN THE INHOMOGENEOUS SETTING 57

of (8.14) at Step k’. After plugging these bounds, we integrate with respect to Q4 (v,,) Producing a
lloge| factor, and then over £/ producing a e~ factor, and obtain:

/ 1 1 1
iCy . (v
|aﬂ(vk/)|§€_Klv |£lf‘§K€_2 (O‘k”ﬂ’i)esﬂ’k/ ‘aﬂ(vk/) + %| ‘@k/| ’@k//|

davy () dET < €4 logel.

(8.23)

When reaching v, we do not do anything, resulting in a 1 factor. Combining the factors obtained
at vg, v and vy give a total factor for € of te~%e*~%|loge| < t0(%) (2~ [loge|)™ (@),

Assume secondly vy = v, (vgr) is before vy, = v;(vgr) in the integration order. The same reasoning
applies. Indeed, when reaching vy, we perform the estimate (replacing the k notation by &’
in this inequality). Next when when reaching v we perform the estimate , integrating over
¢ and Q(v,,) (Which is permitted as O = 7' — () + ZCT’“ with 4/ independent of a,(,,,) since
vg, > 22(vgr)). This produces the same te*=2¢|loge| factor for &.

Again, the subcase v, vy € 77 can be dealt with in the same way by integrating first over Qi

and a, (y,,), see Case 1 for details.

V)

Case 6: € = (vg, Vi, vp) is a type 111 cluster and vpr € 7L, Assume vy, vy ¢ 77, Assume firstly

v, = vy (vgr) is before vy = v, (v in the integration order. Let &f, ¢'7,€"T be the free variables at
Uk Uty Vgt
At v, we note that §”f is the variable associated to the edge above vy, so that (6.20) gives
O = —o(eN2e" e+~ + % with v independent of ¢/, We integrate over ¢/ using (B.1)) and get:
6 [<Ke 1, (awnl)ess . Ol ef|<ket | — o (80)267 &0+ + 42|

1-d
fo€ [loge|

v we first upper bound the factor associated to vgr as [©r|~ < € by applying (8.4)), boun
At first bound the fact iated t O 1 <eb lying (8.4), bound
[ %Fl < €2 by applying (8.4) and write O = () +~'+ MT’“' where 4/ is independent

of & (y,,)- We integrate with respect to a,(,,,) producing a lloge| factor, and then over ¢'f producing

a e~ ¢ factor, and obtain:

1 1 1
do

'f < A—d 1
iCh (0 ﬂ(Uk/)d§ ~ € | Ogd'
popl S EIISKE? (o m&l VS |y, + —2iw)| O] O]

(8.25)

When reaching v, integrate over the variable fﬁf the \§Hf |~ factor produced by (8.24)), giving

f\g”f|§K€—1’ (€L ES |§Nf|_1d£”f < €79, Combining the factors obtained at vy, vy and vy

give a total factor for & of €' ~%|loge|e*~%|loge|e! ~¢ < t70(€) (2~ [loge|)™ (¥).

Assume secondly vy = v, (vgr) is before vy, = vj(vgr) in the integration order. We reason the
same way. When reaching vy the variable associated to the edge on top of vy is by Kirchhoff
law 5/ — ¢"f where §~” is independent of &/, §/f, §Hf. We perform the estimate (8.24]), producing a
el_d\g/ — §”fH10ge| factor. Next when when reaching v we perform the estimate , integrating
over &/ and Q(v,r) (which is permitted as O = 4" — Ap(v) + % with " independent of QA (v,)
since vy, > 2(vy)), producing a e*~?|loge| factor. At wys, we integrate over the variable £/ the
\5” —&"F|71 factor produced at vy, giving a €' ~? factor. The total factor for € is again e5=3¢[loge|?.

Again, the subcase v, vy € 77 can be dealt with in the same way by integrating first over Qi

and a4, ), see Case 1 for details.

V)

End of the proof. After all interaction vertices have been considered, the last step of the algorithm
considers the root vertex.
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In the first case, vg € 7 does not belong to a cluster. We perform the same estimate as in the
end of Step 2, resulting in the same e ¢|loge|? factor. As each degree zero vertex (resp. degree

one vertex) considered in the non-degenerate set 7” or in a cluster €, produced a t factor (resp. a
€2=4loge|? factor), the final estimate is, using (6.19):

J’tGB < A\2ne d(n+1)tno( 27d‘10g6‘2)n167d‘10g6’2 5 (

which proves (8.8]).

In the second case, vg € € belongs to a cluster. Then € = {vgr} U @’ with €’ being either
{vlop}s {vlop} or {vlop, viop}. Let v € €' and assume the algorithm reaches vy, with free variable

. Assume vg, ¢ 7. Then (8.6) implies that |
with + independent of «

t
= 5)" lloge|?" 1), (8.26)

Ca(vg) 2 - ick
aop) T 7| S €. Moreover, O = () +7+ 3

We use these bound and equality and integrate with respect to «

72(vg)" 2(vg)

do,(v,,) 1 < € da,(yy) Qlloge\
|ox <K' (akngf)es icﬂj(vk) ’@k’ ~ se2<| |< |Oé +v+ |
> y \ QKT8 B,k ’aﬂ(vk) -+ f| €“ S0y (v IS€ET 'Uk) ¥

(v

We then integrate with respect to ¢/ producing an additional e~? factor. If vy, € 7%, as in all
previous cases, we first integrate over . (,,) and then we are back to estimating as in the case
v, ¢ V%, see the end of Case 1 for details. Hence at vy we obtained a ¢2~%|loge| factor, which is the
same as in Step 2 for a nondegenerate degree one vertex.

We perform this estimate for all the vertices in €', so that €’ produced a total factor of

(2= |loge[)"1(€) as in the previous cases of Step 3. Finally, when reaching vg, we integrate the

remaining |o ”t(“) |dav,(vy terms for v € {Uéop, Viopt \E' (if any), giving in a |loge|>~#%¢" factor,

n(v) t 2
and we integrate dfn+1 over the ball |££+1| < Ke~ !, producing a e factor. Hence in this second
case we got the same estimate as in the first case, and (8.26|) is obtained as well, ending the proof

of .

Step 4 The case of equation (1.1) with wy = 0 and m(0) = 0. This case is simpler since it
corresponds to Step 2 and avoids the use of clusters to deal with degenerate vertices. More precisely,
in this case it suffices from (6.5)) to prove the bound (8.8)) for expressions of the form:

2n ng
1 m
Frap = A\2ned(nt1) /// dgdgdg H - H (@ffk)7 (8.27)
(angf)ess PEPm, lo, + 1 Ol
We estimate again according to an algorithm that considers the vertices vy, ..., v2,41 one after

another according to the integration order. When the algorithm reaches a vertex vy, if vy is non-
degenerate on Sg, we apply the same study as in Step 2. As a result, a degree 0 vertex (resp.
degree 1) produces a t factor (resp. a €2~ %|loge|? factor). Assume now vk is a degree one linear
vertex with free variable &/ that is degenerate on Sg. Then the variable £k that is associated to
the edge above vy, satisfies |€;| < de! from Definition so that m(e&;) = O(|e&y]) for & small
since m(0) = 0. Using this and (6.20), we integrate m(€,)|Ok| ™! with respect to the variable &/
applying Corollary , and get a factor €27%|loge|. Hence at this vertex we get the usual estimate

for nondegenerate vertices. The rest of the proof of (6.5)) is exactly the same as in Step 2.
O

8.2. The X*® estimate. The proof follows the same strategy as that of the L? norm, we will
simply highlight what are the necessary modifications. Recall the identities u" = ) 5cq uc and

ug = ug—l—u(_; Apply the resolvent identity of Lemmawith n= % to (6.12]), and then integrating
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along the s variables one obtains

t
ub(t, Eg) = e M(ER) ( ! > ) G / / dé da A (i)t
G( §R) (27[')d/2 Cew Rd(2n+1) Rnm 5 gR (5)
. n+1 .
2
M(g) T C, uo 50170'01) o
- pg ptiF Hl vle_[% ) = Lijaw 7~ Lisept(v) b +IF

(a similar formula holds for u, using ) This yields the following expression for the spacetime
t

Fourier transform of 1(¢ > 0)u" (notice that the ¢ factor has been absorbed in the cut-off x(¢/T)
to simplify notations):

¢ n =i\
F <x (T> 1(t > 0)u ) (1,€r) = <(2W)d/z) 2 (amyrtd /R - /R . d¢ da Agp, (€)

TX(T(7 + w(ER) + A p(viep)) ) M (E)

n+1 .

11 [ @o(€o:70) :
P ’ _ U - Co
e, 047_7+1T i1 ve; aﬂ(v) Zﬁqvaﬂ Zﬁ€p+(v)Q”+ZT

(again, a similar formula holds for 1(¢ < 0)u" from (6.8))). We keep all notations from Subsection
. The identity corresponding to (6.1)) is now

(3

with, given a paired graph G € &} (recalling that for such a graph f’ué + &ur . =0, and changing
op O

- Y 7@

s,b
Xe’ Gegh

variables 7 — 7+ w(§,; )):
top

Z — ﬁ 2n d(n+1) adr €€, V25(r\2b
F@) = J[[] dgdadrnai@ieey, > e (8.28)

—~ € "
[T Wo(is: 500080 + 00,360 ) TX(T(T +
{ijtep

NTUT( + apr, )

UtOp)

1 1
H iCp H L Z@€ﬁ+(v) Qf) n ZCTU .

PEPy X7 + 7 pey;, Ynlv) — Zﬁqv @z

Proof of in Proposition . We prove the desired bound for n > 1 and 1(¢ > 0)u™. Indeed,
the bound for u°, the free evolution of the initial datum, is a direct computation, and the proof of
the bound for 1(¢ < 0)u™ for n > 1 is the same as that for 1(¢ > 0)u™ using (6.8). The proof is so
similar to that of that we only highlight the differences.

It suffices to estimate . We solve Kirchhoff’s laws with Proposition and reduce the

integration over the free variables ¢/ and 1. We put absolute values in the integrand. Next, we
upper bound T'x(Tz) < |z + %|_Qince ); is in the Schwartz class. Arguing exactly as in the
beginning of the proof of (8.1)), the product [Ty ;1ep W (i, £(00,i€0,i + 00,5€0,5)) is zero unless
1] < Ke ! for some K(a,n) > 0. In particular, |£v€0p| < ¢! on the support of the integrand, where
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we simply bound (efvé )28 < 1. This gives:
op

1 1
(@) < ey [[[ def dnda dr (7)? ; :
<K i<k T+ uut,) Tl + Q) + 7

) ] 1icﬂ|H P
72<1'u

PEPm oz v€°7| 7(v _Zvefﬁ(v)Q + wv

— \2ned(n+1) /// o 4 AZedn L) ///
l¢f|<Ket, |n|<K, |(a,)|<e K € 1<Ket, |nI<K, |(ar)|>e K’

=F1,7( =% T( )

(8.29)

Arguing as in the first step of the proof of (8.1)), for any b € (%, %] the second term is of higher
order and enjoys the estimate:

|For(G)| S €
We are left with estimating % r(G) that we decompose as in the proof of Proposition as
|F1,7(G)| < 35 Fr.c,5 where:

Frap = \eredmt) / / /
(g,g,gf)esﬁ, |7|<e— K’

In the integrand in (8.29), the only novelty when comparing with the identity (6.22)) for the com-
putation of the L? norm, is the addition of the 7 variable and of the (7)2°|7 + ol ) T L7 +

Aoy, ) T %|f1 factor. Note that this factor only involves 7, « 2(ol,) and o 200" We will estimate
the integral 1 ¢ g by considering vertices one by one according to the 1ntegratlon order. For each
vertex v ¢ {vg, Uéop?vtop} that is neither one of the top vertices nor the root vertex, we perform
the exact same estimates as for the proof of | . We will thus only perform different estimates at

l
VR, Vtops Vfop Which we now describe.

Step 1 If m(0) = 0, or wo > €2 and vg is not in a cluster. In this case, when reaching vtop and
Viop We perform the same estimates as in the proof of . thus, the same estimates as in the
proof of . have been performed at all interaction vertices). When reaching the root vertex, this
produces the intermediate estimate:

O i,
|T|<eX”, 16, |<Ke™?, ‘(aﬂ(véop)vo‘ﬁ(v&,p))|§57K

1 1

da i yda,r (1) . ,
7 (Vhop) 02 (4Hop) |7+ Y (vl,,) + 7l + Apr, ) T T ﬁ@“’p)

v
Utop) ﬂ( top

l)7L HOJ )+
op

vtop

We integrate over a y and Ap(or,) using (B.7)), then over 7 and finally over 57]; 41 and get:

I

1 1
" [r<e, Jg)I<Ke o T+ 7|7+ 7l

t

S )\2n62ntn|10g6|2n+d67K’(2b71) 5 67!{( )n

kin

for any k > 0 if b > % has been chosen close enough to %
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Step 2 Ifwg > ¢ 2 and vg is in a cluster €. Let € = €\{vr}. Then either € = {vlp}, = {vtop s
or € = {véop, Viop ) and we treat all cases simultaneously.
Let v € € be the first vertex in € for the integration order, and denote by &/ the free variable

attached to v. When reaching v, we perform the following actions.
First, if v € 777 is a junction vertex, then we integrate over o, (,) using (B.7) and obtain:

1 1 1
i 70, 0) S i
|anj(v)\§e—K’ ’aﬂj (’U) + T’ |a7.’1('l}) = Opi(v) — Q, + T| |Oé71(v) —Q, + T|
So this produces a [a,,) — 2y + Z| 71 factor. If v ¢ 777, then we do nothing for this first action,
and note that a |a () — Qy + %\*1 factor is already present in the integrand in this case.

Second, we bound |a ()| S €2 from , then we integrate over a () using (B.7)), and over ¢f
using the support estimate |¢/| < Ke™!, and obtain:

// 1 1 1 d e
. - - (074
il <e—, (€< e [0p(e) T 2 T+ Oty + | [pey — o + 2| )

2 2—d
S / ———d¢f 5 —
|ef |[<Ke—1 ‘7‘ + Qv + %| lnf‘ﬂSCC—Q |7’ -7+ %|
where C' is a fixed constant depending only on K. The total factor produced at v after these two
actions is 62_d(inf‘7~.|goe_2 T — 7+ %)%
If € contains two vertices, then when reaching the second vertex, we perform the exact same
computation as we did for v, producing another 62*d(inf‘;|gcﬁz |7 — 7+ £[)~! factor.

We now assume that the algorithm reaches the root vertex vg. In the first case, if € contains
two vertices, then the above estimates produced a 64*2d(inf‘;|g(;€72 |t — 7 + #%|)~? factor. In the

second case, if € contains one vertex, let v/ be the other top vertex that does not belong to €. We
then estimate using that:

/ devy () . i . S 11‘ S s : ~
0oy < K |y + 7l 1T+ apw) + 71 T T+ 7| T inflpcoez [T = T+ 7

(v

which produces an additional (inf|z<ce—2 |7 — 7 + Z])~* factor. Hence in both cases, this produces
a(lr—7+ %D_2 factor. The quantity 7 ¢ s has been estimated at this step of the algorithm by:

1
Frap S AU logel*” / dr dé) . (r) s
|T|S6—K'/7 |££+1|SK6_1 lnf|7':‘§0672 |7' — 7+ T|

S/\2n€2ntnHongne—K’(Qb—l) S 6—/{( t )n
Tkin

9. Control of the linearized operator

The aim of this section is to provide an estimate on the linearization around the approximate
solution u®? = x(t/T) erjzo u". Without loss of generality we present the proof for the case of
equation (I.1)) with wy = €2, since the case wg = 0, m(0) = 0 is simpler. The linearization operator
is given by

Lyw = 4AReuPRew = 2Reu™P (w + W).
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Notice that from the diagrammatic expansion the operator £y can be decomposed as

N
Lyw = Z Z Z La,w, (9.1)

J=0 GEY; 1e{+1)2

where for each G € &; and « = (01,02) € {£1}*

t
’QG,Lw =X (T) UG, 01 Woqy

where ug s, = ug if 01 = +1 and ug,,, = uq if 01 = —1 and similarly for w,,. Moreover, each £,
can be localized in frequency annuli of radii ~ 2'e=4 by studying La,Ad llq, where [ € {0,1,2,...} and
R = ¢ 4 for A to be fixed large later on. We state the main result of this section:

Proposition 9.1. If N € N, > 0, s > 0, there exists b > 1/2 and a set En s of probability
IP’(EN,M,S) > 1 — " on which the operator norm of £n can be bounded as follows:

N T
Hx<t> et ey S .
0 X5t xsb Thin

The following lemma is the main step in the proof of Proposition Notice that the estimate
for [ > 1 is much better than for [ = 0. This means that interactions between high frequencies
~ 2te=4 for the remainder and low frequencies ~ ¢ ~2 of the approximate solution are much weaker
than low-low interactions. This is intimately related to the fact that we consider the equation on
the whole space, as such interactions would be more delicate to estimate on the torus.

Lemma 9.2. For k > 0 and € > 0 small enough, there exists for alll = 0,1, ... a set E,; of measure
greater than 1 — 27'e® such that in this set, for any j € {0,..,N}, G € ; and v € {£1}?, the
following operator norm estimate holds

T 2 . .
, € ifl=0
€60 Rl og oy Sq N ’
’ XT2=X"T2 _L A/ 7 2 . .
27 8¢3 <T—) llel.
kin

With Lemma [9.2] in hand, we are able to prove Proposition [0.1

Proof of Proposition [9.1 using Lemma
Using the estimate (A.2) and the identity (9.1)) yields:

t
i(1—g)Aw
HX/(; el(t s) QWSNdSHXés,b_LXs,b S |’£NHX€s,b_>X§,b—1 S E HSG7LHX§,b_>XS,b—1
j7G7L

so that it suffices to prove the following estimate:

_ T
1260l e, xps S €y 7

(9.2)
Almost locality: We decompose the input in frequency cubes as:

£G,Lw: Z Q?lSG,LQ?w

n,n/ €74

Since £g,, corresponds to convolution in frequency with kernel localized in a ball of size Ce b if
|n —n/| > R for some R > 0, we have that Q?ISQLQZLU) = 0. This in turn implies that

HEG,LHX:,%_)XS,f% ~ [|€a. (9.3)

€

1 1.
x%2 5 x%~2
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Indeed, this follows since the main part of £¢, is a convolution in space frequency and the weights
of X%2 and X2 cancel for In —n'| < R as by duality

[Evem

b d = e Lae) 7l o g

S, 5
X, 25X, 2 2

X
= sup Z

0
€
el o3 =0l o3 =1 1u i<

_1
T2

(€6 QM (e€) " u, QT (€)*v)

—~

n/>8

(n)®

= sup

lell o3 =10l o 3=1 | wicr

(L6, Q1 (n)* (&) ~*u, Q' (n') % (e€)*v)

S HgG,L”X?’%%XS’i%

using the Cauchy-Schwarz inequality and that (n)®(e€)™® is bounded on the dyadic cube C? on
which Q7 projects for the last inequality.

Bound from X%3 to X% 3: Let E = MiE\; where E,;; is given by Lemmam Then E has measure
greater than 1 — € (up to taking a smaller x in the lemma). On FE, by almost orthogonality we
have

- 1/2
l
”’SG,LwHXO,—% S Z "!:G’,LﬂRUJHiOﬁ%
_lZO
- 1/2
l l
< Z||’2G,L‘Q{RHA2X(),%%X0,7%H‘Q{Rwuio,,%
| >0 : ¢
i ) 1/2
Lo T\ —2k (| ogl 0112
S 22 * T € ”‘Q{Rw|’X07,%
_120 kin
T i+l
2
< —K
() ol 0.9

Bound from X9 to X%° and interpolation. Since X% is merely L?L2 and u¢ is localized in a ball
of radius Ce™ !, the norm of the operator £¢, from X%° to X% is bounded by [|uZ1(wst > 0)|r~ <
2 ||ug|| xsb- By (which was actually showed for ug for all G € &;) and Bienaymmé-
Tchebychev inequality, for k& small enough, we can find a set E' with P(E') > 1 — € on which
||ugHX€s,b < 1. Hence, the operator norm from X*9 to X*0 can be bounded by e~%/2.

Interpolating between this bound and the X%2 to X*~2 bound (19.4), we obtain a bound from

X370 to X*3+% with a loss ¢ % where k can be made arbitrarily small choosing ¢ sufficiently
small. Finally, we choose b > % such that b — 1 < —1 — § to obtain (9.2) as desired.

9.1. Estimate on the trace. It remains to prove Lemma Pick a graph G € @; an integer [.
We prove it for simplicity in the case M = 1 and wy = ¢ 2. We only need to prove the bound for
L =Lq 41,41t > O)AlR for j > 1 as the proof for the other operators is similar. Using space-time

Fourier transformation, and including the X¢ b weights in the operator, it suffices to estimate the
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continuity norm on Lz ¢ of the convolution operator

R: LR x RY) — L3R x RY)

w(70,&o) —>//K(TZ,TO,&,&)W(TO,EO)dTodﬁoa

with kernel

K (3,70, €2,€0) = Mro+w(€)) "% (m+w(€)) / ]lAlR(go)X(%)ug(T? —70,61)0(6a — &0 —&1) d&

& ERA

Changing variables (&, &1, &2) — (&2, —&1,&0) and (79, 71, 72) — (72, — 71, T0), We compute the adjoint
kernel

/ ﬂA%(é.?)X(%)%(TQ_TOv51)5(52_50_51)dgl
& eRE

[V

* _1 —
K*(72,70,82,&0) = Mro+w (o)) 2 (r2+w(§2))
Iterating, we obtain that the the operator 9" = (%*R)" has kernel

MN (14, 70, €an, €0) = ANV (Tunv + w(Ean)) ™Y (10 + w(&o)) L2 // dry...dryn_2d&1... d§an 1

2N—-1 N 2N—-1
T 6(comse = Gomer = &om) T Tar (€am) TT (rom +w(Eom)) ™
=0 m=0 m=1

t

m
N
t, 4 -
H X(T)Ug(7'4m—2 - T4m—4a§4m—3)X(T)ug(T4m = T4m—2, §4m—1)-

m=1
The trace of the operator 9% is therefore:
2N

N—-1
Tr Dth — )\2N // dTg...dT4N dfl...d&lN,l(;(To — T4N)A(§) H ]lAfR(@lm) H <T2m +w(§2m)>—1
m=0

m=1

t

T)@@Zm — T4m—2, £4m71)-

N
1T X(;)UJ(E(MmJ — Tam—a, Eam—3) X (

m=1

where A(€) = 6(€an — &)3(Tan — 70) [0 0(Eamrz — Eamtr — Eom). Above, x(=)ugd(t, Eam—3)

(resp. x(7)ud(t,&am—1)) is given by the identity with graph G (resp. (6.13) with graph G
where all parity signs are reversed, and where the factor e ~#«(&m—-3) ig replaced by (1) eit”(f“"L*l)).
Applying time Fourier transformation, changing variables by renaming 7o, +w(&2:,) as 7o, taking
the expectancy following the framework of Section [6] we arrive at the diagrammatic formula:

E[Tr MY] =) F1(G, N, P) (9.5)
P
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where (integrating the 27 and CZT factors in the cut-off x(¢/T') to reduce notations)
Fr(P,G, N) =\¥N NG+ / / / / dédndrdad(ro — Tan)A(€, ) (9.6)

H 71071 H WO Wz,Ja*(UOZfoz‘i‘UO,JfO,J))

pe?m 2 VT (ij)ep

i N-1

V€T (ot} O T 2epaw @A T 2uvent ) U T n Dy

2N
[T o) ' TR(T (rom = Tom—2 = o) = Oom)
m=1

where for m =1,..., N,

Qom—1 = w(&m—2) — W(&m-1) — W(Eam—3), Qom = w(&am) — w(€am—2) + w(€m-1)-  (9.7)

The above formula is associated to a graph that we now describe.

It is made by a branch of vertices 1)8, . 1)2N that are linked by edges (v? Upnys 21-5—1) form=0,...,2N—

1. For m =1,..., N, below the vertex v2m 1 (resp. below ”Sm) is placed a copy of the tree G with

top vertex vggg 1 (resp. G with reversed parity signs and top vertex vZ™), linked to v5,,_; by an
edge (vfgg L 1) (resp. to v5, by an edge (v, v5,)). We denote by 7% = {vb, ..., 04} the
collection of vertices above the trees. The collection of all vertices of the trees and of the vertices
{full’, e v?\,} is the set of all interaction vertices 7; of the graph.

There is a root vertex vg, and two edges (v8,vg) and (v4y,vR).

To the edge (v8, fn+1) we associate the frequency o, and to the edge (v4y,vg) the frequency
§an. To the edge (vtop,vzl) we associate the frequency £2,,—1. We impose Kirchhoff laws at each

vertex of the graph, except at Uo where we impose 50 + f (WQwr) = 0, so that the law at vy then

reads &4y = 50 The edges (v2,, fn_H) for m=0,...,2N — 1, and (UQN,’UR) have all parity +1. In
particular, ) agrees with .

The Collectlon of all maximal upright paths of each of the trees G, or G with reversed parities,
is the set of maximal paths denoted as &,,. The collection of all their initial vertices, is the set of
initial vertices denoted as 7. P is a pairing for the set of initial vertices, and pairing vertices are
defined as in Subsection [6.4] The resulting graph is as follows.

+ YR

G with

reversed ===

parities G Wl,t b
reversed
parities
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To estimate (9.6]), we use the following estimate, obtained by bounding T'|{(Tz)| < |z+iT 7! as
X is in the Schwartz class and integrating over drgdms...dryn iteratively using the second inequality

in :

2N
/ ar6(ry — 7x) ] (o) T (o — Tom — iy ) — Oon)
m=1
2N

1 1
< /d75(7'0 ) [ .
m=1

m ] [Tom — Tom—2 — Q) — Qo + o

so that we estimate by:

N-1

F2(P,G,N)| 3V [ [ [ ardgandas(n - )& [T L 6m)  ©05)
m=0

1 A €
H T H (W5 (0i,irs 5 (00,i€0,i + 00,ir0,i7))|

REPm |O[72 + T’ (i,i")EP 2
I1 1
weT\ (b} 1020 T 2ipaw @5~ Divept (o) B T T

2N

H 1 1
_ |72
m=1

m + | |Tom — Tom—2 — Ap(um ) — Om + a

We define the set of junction vertices 7 to be the union of the collection of junction vertices
in the graphs G, and G with reversed signs, and of {v%,...,v5,} ; we say that for m = 1,...,2N,
S 7(v{p,) constraints the maximal upright path leading to vfy,.

An integration order is chosen for the interaction vertices of the graph, defined similarly as
in Subsection [6.4 We choose the integration order so that vertices in the trees G or G with
reversed parities are considered first, after what the vertices vll’,vg, ...,vg n are considered. Given
this integration order, we can apply the same proof as that of Proposition [6.4] in order to find the
free interaction frequencys. There are N(j + 1) + 1 interaction free frequencies in total.

Notice that £ = & is a free interaction frequency, and that & € AZR is in the support of the
integrand of Notice that there are N (j+ 1) remaining interaction free frequencies, which thanks
to Kirchhoff’s law are all linear combination of the frequencies of the initial vertices in the trees
G or G with reversed parities. Hence, on the support of the integrand of [0.§| they are bounded by

Ke ! where K depends only on j and on the support of W,. Hence §f € AlR x BWNI(Ke™h).

We say that for m = 1,...,2N, the vertex v, is linear if the edge (’U(’(}p, v’ ) is a free edge, and if
Q,, is given by . Note that this coincides with the definition of linear degree one vertices of
Subsection for the vertices in each of the subtrees G, or G with reversed parities.

We adapt the definition of degenerate degree one linear vertices, given in Definition [8.2] to vertices
in 7% as follows. Given a degree one linear vertex v = vfn € 7% for some m = 1, ..., 2N we define five
sets which will distinguish whether v is degenerate or not, analogously to the sets S? for i = 1,2, 3,4

defined at the beginning of Subsection We let § = B2N+1H+nm =K'y Bg(n+1)(K) x Al x
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BINI(Ke!) and set:

SV = {(1,a,1,&7) € S, |Tom — Tom—2 — () = | > de )
Su? =z an.&) €5, &upup, ) > 06"

SV = {(1,a,1,&7) € S, |Tam—2| > S 2},

Sot = {(z.a,n,€7) € 8, ayup)| > 0%,

Definition 9.3. Let 0, K, K’ > 0. Given a set S C B2*Nt1tnm(¢=K') Bg(n+1)(K) x Al x

BINI(Ke™ ), we say that for m = 1,...,2N a degree one linear verter v%, € 7'° is degenerate

on S if for all (T,a,n, éf) € S the following three conditions are met simultaneously:

|T2m — Tom—2 — aﬂ(”;ﬁp) — Qm| < 56_2, (99)
’g(vfn,vlr’n+l)| < 56717 (910)
[Tom_o| < 62, (9.11)
|y )| < e (9.12)

Equivalently, w2, is degenerate on S if S C 53’5.
We say that for m = 1,...,2N a vertex vfn € 7% is nondegenerate on S if either v is a degree
zero or a degree one quadratic vertex, or if v is a degree one linear verter such that for each

(T, .7, §f) € S at least one of the four conditions above fail.

We partition the domain of integration in according to the non-degeneracy/ degeneracy of
each vertex. For this aim, given a function 3 defined on 7! with B(v) € {1,...,4} for v € ZH\7°
and B(v) € {1,...,5} for v € 7%, we define:

Sp = Nyer1 Sy (9.13)
The result of Lemma naturally adapts for degenerate vertices in 7°°.

Lemma 9.4. For all K > 0, for 6(K) > 0 small enough the following holds true for any set
S C R2NHL  Rm Rg(nJrl)(K) x Ay x BINI(Ke™1). Forl=0, for anym =1,...,2N — 1, if v,
is degenerate, then Ufnﬂ is non-degenerate and there holds:

-2

€
|7-2m‘ > 7 (9~14)

For anym =1,...,2N, if vy, is degenerate, then vfn 1s non-degenerate and there holds:

672

ﬂ(vgpﬂ Z 7 (915)

o
Forl > 1, if A > 2 then for all € small enough, for all m = 1,..,2N we have that vy, is always
non-degenerate and
—A
[€ubot, o m 2 (9.16)
Proof. Assume first that v?, is degenerate for some m = 1,...,2N —1. Thanks to (9.10) the inequality
(8.7) is valid, so that ,, > 26*2. Using this, (9.9), (9-11)) and (9.12)) shows

3 _ _
’72m| > ‘Qm| - ‘TQm — T2m—-2 — O‘ﬁ(v{gp) - Qm’ - |72m—2’ - ’Odp(vggp)| > 16 2 3de 2

which shows (9.15]) for 6 small enough.
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Second, assume that v{g, is degenerate for some m = 1,...,2N. Then Qv{gp > %6_2 by (8.7). In
the case where v{p, is not a junction vertex, then by Definition @ we have

3
— Quop| > 1672 — o 2.

In the case where vig, is a junction vertex, then by Definition we have

’ vtop | = |Qvtop| - |ap(v{gp)

3 -2
@)l 2 o, | = l0mm,) = Qi) = Qoopl = |y ()] 2 777 — 20677

In both cases, we obtain (9.15)) for § small enough.
Next, consider the case [ > 1. Notice that from the Kirchhoff laws in the graph all frequencies

in the trees G or G with reversed parities are bounded by ¢ 2. Hence € (m mow oy S e 2 for all

m = 1,...,2N. by the Kirchhoff law, Ewp vt b= &{ +> 0 Ewp o o) Since |&| ~ 2le=4
& € ALy, we deduce ([9-16).

We adapt accordingly the definition of degenerate clusters from Definition

Definition 9.5. Given a set S C R2VHL x RPm x Rg(n+1)(K) x R x BWNI(Ke™Y), we say that
€ C 7" is a degenerate b-cluster on S if either of the three following possibilities occur:
o Type b-1: € = {v?;p,vfn} form =1,..,2N, and is such that vy, is degenerate on S, and

v}, is nondegenerate on S.

o Type b-1I: € = {v°, 1,05} for some m = 2,...,2N, with v2,_, degenerate on S, and v?, is
nondegenerate on S.

o Type b-III: € = {vi2,, vh,_1,vb,} for some m = 2,.., N, with vj}, and v5, | degenerate on
S and v%, non-degenerate on S.

We adapt naturally the definition (8.3 of the partition sets Sg to take into account the inequalities
for degenerate vertices in °° in Definition . The result of Lemma then naturally extends to
include degenerate b-clusters.

Lemma 9.6 (Decomposition into nondegenerate vertices and degenerate clusters). For any set of
the form Sg given by (9.13)), there exists €1, ..., Cp (a5 disjoints degenerate clusters or b-clusters

in the sense of Definitions and on Sg such that V=7 1% U..U Cna(c,p) where 7 only

contains non-degenerate vertices on Sg.
Proof. Using the result of Lemmas [8.3] and [0.4] the proof is exactly as that of Lemma [9.6] O

We now estimate in two slightly different ways in the cases [ = 0 and [ > 1, and obtain in
the latter case a much better estimate.

9.1.1. The case l = 0. In this case, 1, (Eam) = 1(|€gm| < €4) = 1(|€0| < €4) in the integrand
of . Notice that is very sumlar to - that was estimated very precisely in the proof
of (8.1} ., except only for the last factor H ~q Tom | Yo — Tom—2 — Q) — Qo + T| L. The
exact same strategy used in the proof of ( . can be applied here, and the contribution of these

additional factors can be estimated the exact same way. We therefore only sketch the adaptation.
We first partition the domain of integration using the sets Sg defined by (9.13)). The same proof

as that leading to (9.17)) shows that

(PG, N)| S % + 3 F(P,G,N, ), (9.17)
B
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where

(PG, N, 5) vevdan [[[] drdgdndad(m — min)AE, 1) H L (€om) (9.15)
(rangfess -
M-— I :
e |0+ E e e 1 1920) = g ¥~ L) o+

2N

H 1 1
_ ’7—2 )
m=1

m T 7’| ’TQm — T2m—-2 — aﬂ(vggp) - Qm + %‘ .

We then pick a set Sg and apply Lemma which partition the graph into non-degenerate
vertices, degenerate clusters, and degenerate b-clusters. One estimates the contribution of each
interaction vertex one after another vy, ..., van(j41), according to the integration order. We integrate
over the variables §f a and 7 iteratively accordingly. The variables 74, g, n §k and the set Sg
at the k-th step are defined analogously as in the proof of Proposition [8.1] We adapt the notation

(8.12) for the factors in (9.18):

0. = ) @) T Lgan, @2~ Liept o) o+ o if v, € 7\P
g TQm—sz—Q—Oéﬁ(vggp)—Qm+% if vy, € 00, for some m = 1,...,2N.

At step k of the algorithm, the algorithm reaches the vertex vg. If vy € Z\Z® and is not in
degenerate b-clusters, we perform the exact same estimates as in the proof of . We recall that
the outcome of the estimates of steps 2 and 3 in the proof of is that each degree 0 vertex
produces a factor T, and each degree 1 vertex produces a factor 2~%|loge|?.

Estimates for a non-degenerate b-vertex. Assume the algorithm reaches v = 05, € 7P for
some m = 1,...,2N which is non-degenerate. Consider first the case that Um is a degree one linear

vertex and that (9.11)) fails. Let fzf denote the free interaction frequency at vi. Then we bound

using O = 7oy — Tom_2 — S Q,, + % and (B.7), and then |72, 2| = €2 by the failure of
(19.11)):
dov,(ym \dTom—odE!
/ , , il Uit o (9.19)
loa (o ) IT2m—2|Se™ 57, 1€ |SK e, (zh,0,m,85 ) €S8,k | Tam—2 +i‘|0‘ﬂ(vfgp) + %”@H
< / d7'2m72d5,-f A
~ |7'2m_2|§e—K/7 |€[|§K6_1 |7-2m72 + i||7_2m — T2m—2 — Qm + %|

dTom—
sef, 2o djloge]
gll<ke " Jimamosl<e ¥ [Tom — Tom—2 — Qm + 7

In all other cases, i.e. that vy is of degree one linear and that (9.9), or (0.10) or (9.12) fails, or that
v is of degree 0 or of degree 1 and quadratic, we start by integrating over the dro,,_o variable using

O = Tom — Tom—2 — O‘ﬂ(vggp) - Q + % and "
dTom—2
Cagopn)
)+ =710k
1

/ —K' f
[rom—2| <™, (T0o0k 6 )ESB 0 |1y, _g + i 0

vtop

<
~ Cp(vm ]
‘Oé,](vggp) ﬁ” Tom — aﬂ(vzﬁp) — Qm + %‘
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Thanks to the above inequality, we are back to performing exactly the same estimates as in step 2
of the proof of , and obtain a factor T or a factor €2~ ?[loge|? for a degree 0 vertex or a degree
1 vertex. Combining with , we obtain in all cases a factor T for a degree 0 vertex and a factor
€2=4loge|? for a degree 1 vertex.

Estimates for a degenerate b-clusters. Let € denote a degenerate b-cluster in the sense of
Definition which contains ng(€) degree 0 vertices and n;(%) degree 1 vertices. The estimate
we will show below will produce a T70(€) (e24[loge|?)™ (%) factor.

In comparison with the estimates for clusters in the proof of , the sole difference is the
appearance of the extra 7, ..., 7oy variables. The same strategy as that used to estimate clusters in
the proof of applies, up to integrating over these extra variables. We will only give the details
in the most complicated case of a type III b-cluster € = (vg, vgs, v ) With vy € 7L, as all other
cases are simpler.

In this case we have € = (vggl,vfn,vf;ﬁl) for some m = 1,...,2N — 1. Assume first v, € 7.

Let ¢/, §/f, §Nf be the free interaction frequencys at vy, v, vgr. The algorithm reaches first vgy. We
. " " Cu, T

have using and ¢'1 = f mEL ) that @ = —o(£)2¢"f.ef — Qpi(op) + 7 + —F where v

depends only on ({k ,ak, 1) but not on &/ and Qp(vy)- We integrate over a, (y,) using and

then over &/ using and get:

/ dav,, (o) dET
@y o SR, JENSKe, (rrarm )€ [y, () + 5 ||
< 1 f o< e'~4|loge| 9.90
~ 7 Cy '3 ~ //f ( : )
lef|<ket | — o (E5)28" .60 + v + =] 1€77]

Then, the algorithm reaches vy. We first integrate successively over a,, (,,,) and d7om—2 using
and O = |1 — Tom—2 — Qo) — Q + 7|. We then bound |, -I—Z] 1< €2 by (9.15 - and

icvm+1 /
lay iy + —52—| < €% by (9.15)). We finally integrate over o a(wm+1y, then 7oy, and then ¢, This
Utop

top
shows:

J

P 1 mer [ em 2l ram |<e= ' €IS K, (2,0 m &) €85 10
op —_—

Aoty o A (st ATom —2ATom dE

(vtop

7J<Utop

ic
. . (
|T2m + ZHTQm_Q + ZHOZp(v;gp) + HOé m+l) + 7 vtop H@k/H@k//|

7

.

& gty e <€ KY€/ |SKeL, (o nél ) €55 0

!
f
dap(v'trg;-l)dTdeé
Z‘C/J(v’tm’+1) . .
N op 1 1
’TQm + zHaﬁ(ng) + #HTQm — Qm + THTQm_’_Q — Tom — Oy Zn+1 — Qm+1 + T’
op
!
de'f drop,do
<64/ § 2m 72(”52:1)
S - -
\ m+1)|7|72m|§€7K/, €' f|<Ket [Tom — Qm + %H7—2m+2 —T2m T Qg T Q1 + %|
top

(e
72(vtop

< et 4loge?.
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When reaching vy, we integrate over the variable fnf the ]fﬁf |~! factor produced by ([9.20)), giving

//f 1 Hf < 1—d .. .
f\g”f|§Ke—1, (g 1 VES |77 g < e~ Combining the factors obtained at vk, vp and

v give a total factor for € of €!~%loge|e*~?[loge|?e! = = T70(€) (2~ 2|loge|)™(€). If v), ¢ 77 then

the proof is the same, suffice it to notice that we do not have to integrate over Q. (vy,) tO start with.

End of the algorithm. Combining, degree 0 and 1 vertices have each produced a T and a
e2~4loge|? factor respectively. There are in total N(j + 1) degree 0 vertices and N(j + 1) degree
1 vertices. Finally, when reaching the root vertex vg, we integrate over {on5 = & (which is always
a free interaction frequency), and get an extra ¢4 factor due to the indicatrix function 1 o9, (&o)-
This concludes that in the case | = 0:

T
“o}T(P7 G7N>B)| 5 E_Ad(i

- YN [1ogePNU+D), (9.21)
kin

9.1.2. The case l > 1. We use a different and much simpler algorithm to estimate the right-hand

side of .

Preliminary upper bounds. First, we localize the support of the integrand in and only
keep certain factors. Since W{ has compact support within the same ball for all 0 < e < 1, we

Ny 1)
bound [[; inep IWG (i, 5(00,i€0,i + 00,00,))| < 1Y G+ 1 pa(ge-—2 (fk)H(“ e Lgacky(miir) as
explained in step 1 of the proof of ( . We bound |1yn — Tan—2 — w2 + L ’ L<T<1and

Hm:O 1,4%(54771) < ]lA%(go) We replace |74y +i| ™' = |70 +i| 7! as 74y = 7o. This gives

N(j+1)
|Fr (P, G, N)| SANFN NG /// dzdgdﬂdﬂﬁ@aﬁ)]lm (%o) H Lpa(ce-2)(€L) IT 1seao(mi)
(3,¢")eP
I—= I :
e |2 at veZ\ {0}, 0h ) (@) = L @ = Lvept o) B+ 15

2N—-1 1 1

’7_2m—2 + 7" |7'2m — T2m—2 — O‘p(vggp) -y + %’

m=1

where now 7 = (19, ..., Tan—2).

Second, we integrate over da performing rough estimates. We order the set of maximal paths
upright which do not lead to one of the top vertices viy, for m = 1,..,2N from left to right:
/21, s 22n,,—2N, by ordering their corresponding initial vertices from left to right. For each 1 < n <

m — 2N, we pick randomly a vertex v, € z,. We bound

—2N X
-1 " icy |-
T Jown e Z N | D DR DR R
UG%\{UZ{P-WSN} 2w ’U€72+ n=1 72<Wn 6€p+(vn)

iCyp,

We notice that for n > n, the quantity o, _quvn 7 Zv&;ﬁ (vn) 25+~ does not depend on a, ,
because of the ordering we chose for these maximal paths upright. We then integrate successively
over do,, , ..., daﬂnmfw, and bound [ do,, |0, + <4 |_1’O‘72n_273<mn =D e+ (un) Qg—kw“’" 71 <
T <1 by (B.7) and T' < e. Then, we integrate over dap(vggp) for m = 1,...,2N using the bound

( P P —
f |a P(visy) & U“OP ‘ 1|7'2m — T2m-2 — ﬂ(v&?p) — O + %| 1da72(vg’gp) N |7—2m — Tom—2 — Oy + %| 1
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from (B.7). This yields
N(j+1)

F2(P.G. )| N // aragline g &) [T tooen(e) T1 toioimo
(¢,3")eP

2N—-1 1 1

L o2 + 4] |72 — Tom—2 — Qo + 5|

(9.22)

The algorithm. We estimate by considering successively for m = 1,..., N the two vertices
08,41 and v5,, 5. We will perform estimates by integrating over dra,, and d7am+2 and certain free
frequencies. The quantities |27 _2 +|~! and |72 — Tom—2 — Qm + %]*1 for m > 2m + 3 will not
depend on T4y, Tam+2 and these free frequencies, so that we will be able to iterate our algorithm.

Case 1 if v5,, 11 € 71. Denote by flf its associated free interaction frequency We integrate over

dT4m using (B.7), then over dflf using (6 and (B-4) if v5,, 4 is linear or (6.21)) and (B-3) if v5,, 4
is quadratic, using |¢| = ’é(v§m+17v§’m+z)| A 2l ~A by (9.16):

/ / / L pa(gee—2)(&] ) dTamdram 2dE]
[ Tam + il Tam+2 + ill Tams2 — Tam — Qomr1 + 1 Tamea — Tami2 — Qomi2 + £

/ dTym+2 ]]'Bd(Ke*2)(£ )dgf

~J | amee + illTamea — Tamye — Qamyz + 71 |Tamg2 — Qo (€)) + &

5/ ' dTam+2 : 61—d+A2—llog(2l€—A) < PP
|Tam+2 + il|Tam+4 — Tam+2 — Q2ma2 + 7

where for the last inequality we used (B.7), 7' < 1 and took A large enough then e small enough.

Case 2 if 05, ., ¢ 7! and v5,, ., € 7' Denote by §lf the associated free interaction frequency to

vgm+2. We integrate over dry,, using and |Tgm+2 — Tam — Qom+1 + %|_1 < 1, then over drym+2

using (B.7)), and then over dgf using (6.20) and (B.4) if v5,,,, is linear or (6.21)) and (B3) if v5,,,,
is quadratic, with [¢| = |§(Ugm+2,v3m+3)| ~ 2le=4 by (9.16):

/// ﬂBd(Ke*Q)(gf)d7-4md7_4m+2d§f
[ Tam + || Tams2 + || Tams2 — — Qomi1 + =||[Tamta — Tams2 — Qomio + 5|

< // ILBd(Ke—Q)(fi )d74m+2d5i
~ |Tam+2 + 4| | Tam+a — Tam2 — 92m+2(§if) + 7l

1 Loy (eDde!
5 Bd(Ke 2)(51) gz < 61fdJrA2fllog(2l67A) < 27% %

Tamsa — Qom2(E]) + 4

Case 3 if v5,, . 1,v5,,0 ¢ 7. For m =1,..,2N, if v% ¢ 7’1, then using (6 we have §m by =
0p7

Z{z,g}eP Crnyi,Mi,j + ZN(JH Ci, kfk where ¢y, ; # 0 if and only if (vtop, ) belongs to the path
going from the initial vertex vg; to the root vertex. The first sum is non-zero, since ¢ ; # 0 for
all pairings with initial vertices below vfgp. We denote by o35 one if its non-zero element with
om € {—1,1}, and by E(m) the set of remaining pairings {4, j} € P for which ¢ ;; # 0, so that

N(j+1)

Ewp oty = O+ Y Caigligt Y Cakél (9.23)
{i.d}eB(m) past
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We claim that for mgy > my, then & (W72 b
top ,’Um2)

does not depend on 7y, . Indeed, ¢y, ;; # 0 if and only

if (vtop, i .) belongs to the path going from vy ; to the root vertex. Since the path from v 5, to the

root vertex is (vfhl,v%ﬁl, <.y, U5, UR), then (vtop, mQ) does not belong to the path going from V0,i
to the root vertex. Hence ¢y, ; = 0. This proves the claim.
We then change variables n2m+2 —> ném 19 = 02m4202m+1M2m+1 + Nomt2. We claim if m >

2m + 2 then Q, is independent of 75, , 19 Indeed, by Kirchhoff’s law f §( b

= b
+2’v2m+3) V3 V3t 1)

€(U2m+1 Wie) § 2m+2 yp )2 SO that f(v b)) is independent of 772m+2 by - By Kirchhoff’s

top Utop 2m+2'Y2m+3
law again and the clalm of the previous paragraph, § ) is independent of ném +2 for all

m > 2m + 2. Since also o vit b)) does not depend on 772m+2, then Qg given by (6.20) or is

indeed independent of 7}, +;p
We then first integrate over dry,, using and |Tym+2 — Tam — Qomy1 + %|_1 < 1, then over

dTym+2 using , and finally over 75,, ,, using and with € = 1 if 0§, 19 is linear or

(6.21) and with e = 1 if 0§, ,, is quadratic, with €| = ’£(U5m+27vl2;m+3)’ ~ 2le=4 by (9.16):

/// Lpaek) (Mmt2)dTam dTam+2dN, 4o
1 Tam + || Tams2 + il|Tamy2 — Tam — Qomt1 + 7l[Tamsa — Tamt2 — Qomy2 + 7|

< / / 1gagarc) (Mam2)ATam-+2dMp, 1o
|Tam+2 + @] |Tam+a — Tamt2 — Qamr2(omy0) + 7l

]le(zK) (n§m+2)d7)§m+2

NS

<

~

< A9 log(2le™4) < 273¢

|Tam+a — Q2m+2(f¢f) + %|

End of the algorithm. In all of the three previous cases, we have obtained a 9=3¢% factor. Per-

. . . . _LN=1) A(N— .
forming this estimate for vll’, e vgN_Q gives a total 2 s (N=D ez (¥ 1? factor. When reaching USN_I
we integrate ’T4N,4 + i’_l‘T4N,2 + i‘_1|T4N,2 — TuN—4 — UN_9 + %‘_1 over dryN_4dTyn—o which

yields a factor 1. We integrate over all remaining free frequencies among f{ - and 7 ;» for

f
' S EN G
{i,7'} € P, which yields a factor of at most ¢ @NG+D  We finally integrate IlAlR (&0) which yields a
factor 2'e=4. Combining, this gives
\Fr(P,G,N)| < AN (Nd(j+1) =5 (N=1) 5 (N=1) ~dN(j+1) gl ~A < (i)N(jH)g—%ENTA (9.24)
kin

where we used that T > €2, took A and N large enough and then e small enough.

9.1.3. Conclusion. Injecting (9.21)) in (9.17)) and then in (9.5 for [ = 0, and injecting ((9.24)) in (9.5))

for I > 1 shows that for K’ large enough then for € small enough, for all { = 0,1, ...,

E [Tr th] S €_Ad( T )N(j+1 |lOg€|2N ]+1) —Te 3 6l>1
kin
We conclude by Bienaymé Tchebychev inequality, that for each s and [, there exists a set E; with
measure P(E;) > 1 — 27"€¢" such that
Tkin

N(j+1
" (T) (4 )6_%2 NI NA

On this set, we have

€6kl

1 T 2 _Adyox 1 A T 2 LA
0.1 o1 < (Tr ZIRN) 2N € AN 92 ses0z1 < € RO 8801
X72-X" ~
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for N large enough. The proof of Lemma [0.2]is complete and Proposition follows.

10. Control of the error

10.1. Bound on the error term Ey.

Proposition 10.1. For any N € N, there exists € > 0 such that for all 0 < € < €*, for all T > €?

2 d 2 2
. 2 . 2
S’bN E X u X u

t
- s
EHX/ =98y (Z) EN ds
0 (T) k>N
(10.1)

Proof. First, notice that as X? b1 g continuously embedded in X¢ b2 for by < by, it suffices to
establish for by = 1. Notice that the Fourier support of the approximate solution is in a
ball centred at the origin with radius < e~!, making the regularity index s irrelevant in our scaled
Sobolev and Bourgain spaces. We write x7(t) = x(¢/T) in what follows.

We apply successively , and the above remark on the Fourier localisation, obtaining:

t
‘XT(t)/ e =38\ () EN ds
0

Above, applying Holder inequality, then Bernstein inequality (using the Fourier localisation of the
approximate solution), Holder inequality again and finally (A.1)):

ShaEY o5 Y rutet|
X k>N
4,k=0,...,N

L312

!

. : k
HXTUJU 1272 S HXTUJHL?oLgo ||XTU ||LfL%
t -z

STe? X7 |lgg g 2y X7 o 2) S T |[xrw! || oo I oo

The Cauchy-Schwarz inequality followed by Proposition [8.1] gives then

1 1
< Te % (E HXT'LLjHi:,b) : (E|]XTuk|]§(Sb> 2,

zrz ™

E HXTUj uF ’
Combining the three inequalities above yields ((10.1]). O

10.2. The bilinear X:° estimate.

Proposition 10.2. If s > g —1 and b > %,

to .
‘X(t)/ =92\ (s)u? ds
0

S el

The same estimate holds true if u? is replaced by u* or |u|?.

The proof of this proposition will rely on the following lemma, proved in [I1].

Lemma 10.3 (Lemma 7.3, [I1]). If Ny < Ny € 2%, for any k > 0 there exists by < 3 such that

g1+
HX(S)PG,Nlupe,NQUHLQL2 S N12

K _diq_
€ 2+ KHPﬁNluHXS’bOHPQNQ'UHXS’bO
The same holds if u or v are replaced by their complex conjugates.

Equipped with this lemma, we can now turn to the proof of the proposition.



DERIVATION OF THE KINETIC WAVE EQUATION IN THE INHOMOGENEOUS SETTING 75

Proof. By (A.2), it suffices to prove that

2 2
(0o Sl
We will prove this bound by duality: choosing v € X;s’lfb, it reduces to estimating [ x(8)u*v dx ds.
Applying a Littlewood-Paley decomposition in u and v, this becomes

Z // X(8)Pe N, uPe Ny uPe N, U dz ds.
N1,N2,N3e2No

Without loss of generality, we can assume that Ny 2 N3. Applying the Cauchy-Schwarz inequality
followed by Lemma [10.3

] / / Py uPe eyt Py 5 e ds| < 1x(5) Py Pyl 21| Peiy vl 212

Sl+k _dyq_
<N e 2t! HHPE,NluHX?’bOHP€7N2’U‘||Xg*bO||P57N3U||X2’0
G—l4r—s _diq
<N RS —g+1 "N, SN:?HPE’NluHXéS,bO||P€’N2u||XéS,b0”P€7N3’U”X:S,O-

By almost orthogonality, it is now easy to see that

Z ‘//Pe,NluP57N2uP€7N3vdxds < Hu”i(&bH'UHX;s,lfb;
N2z N3 ‘

Indeed, the sum over Nj is just a geometric series, while the sum over No, N3 can be treated by
Cauchy-Schwarz. O

Appendix A. X’ spaces

We define X¢ b spaces, and review their properties, for functions defined on R?. This frame-
work can be immediately translated to the case of the torus, the only difference being additional
subpolynomial losses in € in some Strichartz estimates.

The X*? spaces were introduced in [8]. We quickly review their properties, refering the reader
to [40], Section 2.6, for details.

Definition Let
[ fllms = I{eD)” fl| 2

and
[ull xs0 = le™ ™ Phu(t) || 2 s = 1(€€)* (T + w(E)) U, k)| L2 (Rxra)

Time continuity For b > %,

[ullms < llull yae- (A.1)

Hyperbolic regularity Assume that u solves

{ i0u+w(D)u = F

u(t=0)=0
Then, denoting x for a smooth cutoff function, supported on B(0,2), and equal to 1 on B(0,1),
IX@)ull gso-1 S| gso- (A.2)
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From group to X*? estimates Assume that, uniformly in 79 € R,

||6it7'oe—itw(D)f||Y < CO(E)”<€D>Sf”L2
Then, if b > 1,
lully <b Co(e)Jull s

Strichartz estimates We want to apply the previous statement to Strichartz estimates: if d > 2, for
any k > 0,

d
1

e D) £l papa < €3 _NH<€D>%_%+HJCHL2

As a consequence, if kK > 0, b > %,

1_d_
fulzas S 5l gy (A3)

Duality The dual of X2° is X *7°. Therefore, the previous inequalities imply that, if ' < 0, & > 0,
V< -1
2 9

1_d_ .
IX@®ull —grynw Sv 2™ lullpaspes id23. (A.4)

€

Similarly, the dual of the inequality (A.1]) is, for any &’ < %,

lll o St Nl (A5)

Interpolation If 0 <0 <1, s = 0s¢g+ (1 — 6)sy and b = 0by + (1 — )by,

0 —6
laall o < Ml egung el gar -

Appendix B. Elementary bounds

Lemma B.1 (Estimates for degree one vertices). For any 0 < e < %, any € € R and 0 < t < 1 the
following estimates hold true. First,

det _ 1t -

— < min <~, > log(&) + |loge| for all v € R, (B.1)
/IéfSE—l v+ €67+ ¢ €l € ( )

and for 0 < § <1,

/ 1(g] > ¢! or |y + £&7] > be?)del _
€f1Se? a

ol
C(6)e! =% min (e[loge[, og~<§>) for all v € R,

[y + €85+ 4] €]
(B.2)
and for m € C1([0,00)) nonnegative and bounded with m(0) = 0:
P ef -
/ M < C(m)e' =% min (e|loge], 10g~<§>) for all v € R. (B.3)
efset |y + €67 + ¢ €]
Second,
P -
/ = de P e =% min (e|loge|, 10g~<£>) for all v € R. (B.4)
gt Iy + (€ +80).&0 + 4 €]
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Proof. Proof of (B.1)). By rotational invariance, we can assume that & = (|¢],0,...,0). Integrating

first over the variables 55 , ...,{5 and then performing the change of variables f{ = (\é [t)~1¢1 one
finds:

/ SE / S d¢i

et Iy HEL T st [y +HEle +al 1) Jiaizigen by Gl

The last integral above satisfies fICl\SA ty + G +i|71dG S Aif A<1and [..<1+log(A) if
A > 1 which proves .

Proof of (B.2). If €| > de !, we use and obtain

/ 1(|{] > de~! or hﬁé-{f\ > de2)d¢! </ c}ﬁf | Sc(é)el—dlog<§>
€S |y + &7+ 4 eflget |y +E65 + 4

- iy
which shows (B.2). If |£] < de~!, we bound using |y + £.£7 + ] < C(8)e 2 in the integrand below:
/ 1(§] > 0e" or |y +£.£7] > de?)de / Ly +&8/| 2 0e2)de! _ 500

e/ 15e ! v+ &&5+ ] gflser &+
which also shows (B.2)). Hence .
Proof of (B.3). To prove (B.3) we treat the two cases €] < ¢! and |€] > ! separately. If
I€] < e we have m(el€]) < €|€| because m € C'[0,00) is nonnegative bounded with m(0) = 0.

Using this, (B.1), m(ef) min(|€]~!, e ) < € and log(€) < |loge|, we obtain (B.3). If |€] > e we
have m(el¢|) < 1 as m is nonnegative and bounded. Using this, (B.1)), min(|¢|7%, %) < ¢! and

lloge| < log(€), we also obtain (B.3). Hence (B.3) for all £ € R?.

Proof of (B.4)). We first assume |£| < e~ 1. If either ¢ < €2 or |y] > €2, then |y + (£ +&f).¢7 + >
€2, and (B.4) is true by simply bounding the integrand by €2 and the volume of the support of the

integral by e~¢. We thus now assume ¢ > €2 and |y| < e2. We change variables = ¢/ + 5/2 and
notice the identity ¢/.(¢/ + &) = |n|? — [£]?/4 so that:

=

¢ i| ~ £ £|2 i
ef et Y+ (E+EN)&0 + 4 7 Sm-Siset |y — EE 4 g2 4 4
We now claim that for all real numbers |A| < e~2 there holds:

6chl

1
HneRd, |A+|n|2|§t}‘§ ; (B.5)
Assuming the claim holds true we then partition and bound with the help of (B.5):
d ¢ - ) 1
/ €12 . D52 ) {”GRdv |7—§+Inl2+‘1|§t} < € lloge|
|n|§6*1 |/y - 5 + ‘77|2 + Z| jez, |j|§t6—2 i

and ([B.4)) is obtained. It now remains to prove (B.5)). If |A| < ¢~! then we have

a 62—d
2

1 2
{nert avmpi< i} < [{nert m< 2 st s

1/2

where we used that ¢t > ¢2. If |A| > ¢! we change variables n = |A|'/27) and estimate:

d
1 d A _ 1 |Aj27t
{nert iasimei< 3} =1a {a et 15 v iapi < bl s M= £ 5
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where we used 1/(|A|t) < 1 and |A| < ¢ 2. The two estimates above imply (B.5). This in turn
shows ([B.4]).

We now assume |€] > e~!. By rotational invariance, we can assume that & = (|€],0,...,0). We
introduce ff_ = (fg, o 55), and then change variables CV{ = (|¢] + {{)5{ which gives

de/ f def
_ _ = d¢ 2 .
/mfsel v+ (€ +€).60 + 1 /|££5e1 l/wﬁsa v+ el 12+ (6 + ehel + 4

1 dod
S f df{ / f1<|E f 2041 fai (B-6)
€] Jjel |get lof <€t |y + €112 +ag + §

where we used that dal/d§{ ~ |€| for |§]H < e since [€] > €. For any A € R, we bound
o _dof o _dof Fle—1) < %
f\a{|§\5le*1 gy < fl@{lélﬁ\é’l |a{+§|| < log(|€le) < log(€) where we used that 0 < ¢ < 1 and
|¢| > e~1. Injecting this inequality in (B-6]), bounding by €'~ the integration over the remaining
{{ variable, this proves (B.4]).
Hence (B.4) for any ¢ € R%. This ends the proof of the Lemma.
(I

Lemma B.2 (Weighted integrals). For 0 < e < 1 there holds for any £ €¢ RY, vy € R and 0 <t < 1:

d
/ — 2 < llogl,
a€R, |a|<e2 |7 +ta+ E‘

and for d > 2:

/ dé. < elfd'
eerd, gj<e—1 €+ €1

For any 8,8 € R, for all t > 0 there holds:

1
|t S (B.7)
ack |+ flla+ B+ T8+ {]

d 1 1
/ g ai / 1 5 7 / i’ (B'8)
ack o+ flla+ B+ illa+ B+ 7B+ [8 +{

and if 0 <t < 1:

/a dov _ (1) /a do _ gy 1 B9)

ez latillat B+ T8+ Jaer latilla+ B+ lla+ B 5 T8+ 18+ 1]
Proof. Proof of (B.7). By rescaling the integration variable, it suffices to prove the inequality for
t=1. For t =1 and || < 1 the integral is < [(a) 2da < 1 which proves the result. For t = 1
and |B| > 1 we estimate first in the zone |a| < 10|3| that |a +i|~Ha + B +14|7! < |B|72 so that this

zone contributes at most to |3|~!. In the zone |a| > 10|3| we change variables a = |3|& and bound
the contribution of this zone by || f|d|>10 ||8|a+i| 7| Bla+pB+i| 7t < |87, and (B.7) is established.

Proof of (B.8). By rescaling, it suffices to consider t = 1. We assume 83’ <0, and >0, 8/ <0
without loss of generality. In the zone |a| < 0, we upper bound in the integral |a + 8" +i|7! <
|8"+i| 71, apply (B.7) to estimate [, _,|+i|"!|a+ B+i| *da, and obtain the desired upper bound

(B.8). In the zone |a| > 0, we upper bound | + 8 +i|™! < |8+ i|~!, apply (B.7) to estimate
[ <ol +i| Ha+ 8"+~ 'de, and (B.§) is established. The proof if 33’ > 0 can be done similarly.
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Proof of (B.9). For the first inequality, we bound for || < ¢7! that |a+ 8+ | ~ |3+ | and for
la| > ¢! that [a +i| & |a + £, and use (B27) to estimate:

/ do < 1 do +/ do (Int)
e ot illat B+ 11 1B+ 1] Jgrr Tt il s Tt Hlat 5+ 11~ 1B+

The proof of the second inequality is similar and we omit it.
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