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IOAKEIM AMPATZOGLOU, CHARLES COLLOT, AND PIERRE GERMAIN

Abstract. We examine the validity of the kinetic description of wave turbulence for a model
quadratic equation. We focus on the space-inhomogeneous case, which had not been treated earlier;
the space-homogeneous case is a simple variant. We determine nonlinearities for which the kinetic
description holds, or might fail, up to an arbitrarily small polynomial loss of the kinetic time scale.
More precisely, we focus on the convergence of the Dyson series, which is an expansion of the
solution in terms of the random data.
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1. Introduction

Understanding the behavior of large physical systems is a fundamental problem of mathematical
physics. With the size of the system being extremely large, deterministic prediction of its behavior
is practically impossible, and one resorts to an average description. Kinetic theory provides a
mesoscopic framework to study the qualitative properties of large systems and obtain a statistically
accurate prediction of their evolution in time.

In systems of many nonlinear interacting waves, the effective equation is the kinetic wave equation
(KWE) which describes the energy dynamics of systems where many waves interact in a weakly
nonlinear way following a dispersive time reversible dynamics. All rigorous results so far have
focused on the case where the equation is set on the torus, with space-homogeneous data, resulting
in a homogeneous kinetic equation in the limit.

In this paper, we derive rigorously, up to an arbitrarily small polynomial loss of the kinetic time
scale, an inhomogeneous (transport) kinetic wave equation. This is achieved by considering data
whose spatial correlation exhibit a two-scale structure. The inhomogeneous kinetic wave equation
approximates the average Wigner transform of the solution as the number of interacting waves goes
to infinity and the strength of the nonlinearity goes to zero. We also provide examples of equations
for which the kinetic limit might not hold.

1.1. The equation, the data, and the singular limit. Recall the notation for the Fourier
multiplier p:

p̂(D)f = p(ξ)f̂(ξ).

We consider the following nonlinear Schrödinger equations for complex fields in Rd with quadratic
nonlinearities1:

i∂tu+ ω(D)u = λM(Mu+Mu)2, (1.1)
where

• ω(ξ) = ω0 +
|ξ|2

2
, with ω0 = 0 or ϵ−2, is the dispersion relation,

• M = m(ϵD), where m is a smooth, bounded, real valued even function,
• λ > 0 encodes the size of nonlinear effects.

(the scaling laws for the dispersion relation and the multiplier are natural in the limit we will be
considering).

This equation derives from the Hamiltonian

H(u) =

∫
1

2
|
√
ω(D)u|2 + 8λ

3
(ReMu)3.

1This also includes equations of the form i∂tu+ ω(D)u = λM(u+ u)2 by a change of variables.
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As we will see, the value of ω and m at zero will be key for the validity of the kinetic wave
equation.

It is a convenient model for our purposes: on the one hand, it retains all the difficulties related
to the derivation of a kinetic wave equation, from a quadratic equation, in the inhomogeneous
case; and on the other hand, it avoids further technicalities related to specific equations of physical
interest (quasilinearity of the equations, singularity of the dispersion relations, vectorial nature of
the unknown...).

The initial data will be chosen to be a random Gaussian field

u(t = 0, x) = u0(x) =

∫
a(x, ξ)ei

ξ
ϵ
·xdW (ξ) (1.2)

where â ∈ C∞
0 (R2d) and dW is a Wiener integral. Equivalently, u0 can be characterized by its

covariance
E
[
u0(x)u0(x

′)
]
=

∫
a(x, ξ)a(x′, ξ)e−i ξ

ϵ
·(x−x′) dξ.

We will come back to this definition later, suffice it to say for the time being that this Gaussian
field exhibits random behavior at scale ∼ ϵ, with an envelope at a scale ∼ 1. More precisely,

as ϵ → 0, E
[
u0(x)u0(x

′)
]
= F

(
x+ x′

2
,
x− x′

ϵ

)
+O(ϵ),

where F is a smooth, decaying function. It is convenient at this point to introduce the rescaled
Wigner transform

W ϵ[u](x, v) =
1

(2π)d/2
ϵ−dE

∫
u(x+

z

2
)u(x− z

2
)ei

v
ϵ
.z dz.

Roughly speaking, it provides a measure of the amount of energy of u (in L2) localized in phase
space at position x and frequency v/ϵ. In particular, it is such that

as ϵ → 0, W ϵ[u0](x, v) → |a(x, v)|2 = ρ0(x, v). (1.3)

Our aim is to show that
as ϵ → 0, W ϵ[u (t)](x, v) → ρ(t, x, v),

where ρ solves the kinetic wave equation ∂tρ+
1

ϵ
v · ∇xρ =

8π

Tkin
C[ρ(x)]

ρ(t = 0) = ρ0.
where Tkin =

1

λ2ϵ2
(KWE)

The collision operator C is given by

C[ρ](t, x, v) =m2

∫ [
δ(Σ−)δ(Ω−)m

2
1m

2
2ρρ1ρ2

(
1

ρ
− 1

ρ1
− 1

ρ2

)
+ 2δ(Σ+)δ(Ω+)m

2
1m

2
2ρρ1ρ2

(
1

ρ
+

1

ρ1
− 1

ρ2

)]
dv1 dv2,

(1.4)

{
Σ− = v − v1 − v2

Σ+ = v + v1 − v2

{
Ω− = ω(v)− ω(v1)− ω(v2)

Ω+ = ω(v) + ω(v1)− ω(v2),

{
ρ = ρ(v)

ρi = ρ(vi)

{
m = m(v)

mi = m(vi), i ∈ {1, 2},
This equation displays two (singular) time scales:

• ϵ, the transport time scale, since 1
ϵ is the group velocity for solutions of the linear Schrödinger

equation localized at frequency ∼ 1
ϵ . In other words, ϵ is the time over which such solutions

travel a distance ∼ 1, which implies that, for t ≫ ϵ, one expects the solution to spread and
nonlinear interactions to be damped.
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• Tkin, the characteristic time scale for the mixing in frequency space occuring through the
collision operator C. Notice the dependence in λ2 - as opposed to λ appearing in front
of the nonlinearity of (1.1) - which is characteristic of square-root cancellations caused by
randomness.

• Of particular relevance is of course the regime where both time scales agree, Tkin = ϵ, or in
other words λ = ϵ−3/2.

Other important time scales are
• ϵ2, the linear time-scale. Notice that resonances only become relevant if t ≫ ϵ2.
• λ−1, the nonlinear time-scale, after which nonlinear effects become relevant.

1.2. Background.

1.2.1. Derivation of the kinetic wave equation. The kinetic wave equation was first introduced by
Peierls [34] in his work on solid state physics, and independently by Hasselmann [26, 27] who worked
on water waves. Later, Zakharov and collaborators [41, 42] revisited the topic and provided a broad
framework applying to various Hamiltonian systems satisfying weak nonlinearity, high frequency,
phase randomness assumptions. Nowadays, the kinetic theory of waves, known as wave turbulence
theory, is fundamental to the study of nonlinear waves, having applications e.g. in plasma theory
[13], oceanography [28, 25] and crystal thermodynamics [38]. For an introduction to this broad
research field and its applications, see e.g. Nazarenko [32], Newell-Rumpf [33].

The first rigorous result regarding derivation of the homogeneous (KWE) was obtained in the
pioneering work of Lukkarinen and Spohn [31], who were able to reach the kinetic timescale for
the cubic nonlinear Schrödinger equation (NLS) at statistical equilibrium, leading to a linearized
version of the kinetic wave equation (see also [18]). The key idea in [31] is to employ Feynmann
diagrams to obtain control of the correlations; it has inspired most of the subsequent works.

For the cubic NLS, the derivation of the homogeneous kinetic wave equation for random data out
of statistical equilibrium was first addressed in [10] using Strichartz estimates to control the error
term. Later, in [11, 12], two of the authors of this paper, inspired by the ideas of [31] (construction
of an approximate solution, control of the higher order terms via Feynmann diagramms) estimated
the error in Bourgain spaces instead of Strichartz spaces and were able reach the kinetic timescale up
to arbitrarily small polynomial loss. At the same time, a similar result was obtained independently
by Deng and Hani [14]. Recently, Deng and Hani [15] reached the kinetic timescale for the cubic
NLS, which provides the first full derivation of the homogeneous (KWE) for (NLS).

In many situations of physical interest, the leading nonlinear term is quadratic: for instance,
this is the case for long-wave perturbations of the acoustic type (which can exist in most media),
or interaction of three-wave packets in media with a decay dispersion law. These models have
extremely wide applications, ranging from solid state physics to hydrodynamics, plasma physics
etc. Recently, under the assumption of multiplicative noise, Staffilani and Tran [39] reached the
kinetic timescale for the Zakharov-Kuznetsov (ZK) equation. In the absence of noise, the result of
[39] is conditional.

Regarding the inhomogeneous (KWE) and its connection to nonlinear waves, Spohn [38] discusses
the emergence of a kinetic wave equation, which he calls phonon Boltzmann equation. However, to
the best our knowledge, there are no rigorous results justifying a derivation of an inhomogeneous
kinetic wave equation from dispersive dynamics.

1.2.2. Derivation of related kinetic models. The kinetic wave equation is to phonons, or linear waves,
what the Boltzmann equation is to classical particles. The Boltzmann equation was rigorously
derived for hard spheres in the foundational work of Lanford [30], who used particle hierarchies in
the Boltzmann-Grad limit [23, 24]. Later, King [29] derived the equation for short range potentials.
This program was recently put in full rigor by Gallagher-Saint-Raymond-Texier [20]. Short range
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potentials were also discussed in [35]. A few articles deal with the derivation of kinetic models for
higher order interactions [2, 3], mixtures [4] and quantum particles [5, 6, 7]. The derivation of the
quantum Boltzmann equation is closely related to the derivation of the kinetic wave equation, but
possibly more challenging, since dispersive equations can be thought of as an intermediary step
between a quantum mechanical model with a large number of particles, and kinetic theory.

Another direction of research focuses on linear dispersive models with random potential, from
which one can derive the linear Boltzmann equation for short times [37], and the heat equation for
longer times [16, 17].

Finally, [19, 9] investigate the possibility of deriving Hamiltonian models for NLS with determin-
istic data in the infinite volume, or big box, limit.

1.3. Statement of the main result. We now state the main result of this paper, regarding the
well-posedness of equation (1.1) and its approximation by the corresponding kinetic wave equation.

Theorem 1.1. Let a ∈ C∞
0 (R2d) and ν > 0. Consider Equation (1.1) with initial data (1.2) and

• either ω0 = ϵ−2

• or ω0 = 0 and m(0) = 0.
Then there exist ϵ∗ > 0 and κ > 0 such that for any 0 < ϵ < ϵ∗ and for any 0 < T < min{ϵ, ϵνTkin},
there exists a set E of probability P(E) > 1− ϵκ, such that on E, there exists a unique solution u to
(1.1) in [0, T ].

Moreover, the solution u is approximated by the solution ρ of the corresponding kinetic wave
equation in the following sense:

For any t ∈ [0, T ] and ξ ∈ Rd, there holds:∫
Rd

|ρ̂(t, ξ, v)− Ŵ ϵ
E [u](t, ξ, v)| dv ≲ ϵν

(
T

Tkin

)
,

where
W ϵ

E [u](x, v) =
1

(2π)d
E
[
1E

∫
Rd

u
(
x+

ϵy

2

)
u
(
x− ϵy

2

)
eiv·y dy

]
,

E is the exceptional set of existence obtained above and ρ solves (KWE) with initial data (1.3).

Remark 1.2. Our result has a clear homogeneous counterpart for the Fourier modes of the solution
if the equation (1.1) is set on the torus instead of Rd.

Remark 1.3. What ranges of ϵ and λ are relevant in the previous theorem? First, the approxima-
tion is accurate in the limit ϵ → 0; second, in order to approach the kinetic time scale Tkin up to a
small power of ϵ, the above theorem requires ϵ < Tkin, or in other words λ > ϵ−3/2. Physically, this
means that the kinetic time scale should be smaller than the kinetic time scale; otherwise, dispersive
decay prevents nonlinear interaction from having a sizable effect.

1.4. Strategy of the proof. The proof is based on building a sufficiently good approximation of
the solution and representing it as a Dyson’s series. The iterative scheme we adopt to approximate
our solution is given by:

u0 = e−itω(D)u0,{
i∂tu

n + ω(D)un = λ
∑

j+k=n−1M(Muj +Muj)(Muk +Muk)

un(t = 0) = 0,
, n ≥ 1 (1.5)

Formally, the Dyson series representation of the solution is given by u =

∞∑
n=0

un, but the question of

convergence is delicate and will be studied carefully in the rest of the paper. To efficiently achieve
that, we will represent the Dyson series by binary Feynmann graphs as will be discussed in Section
5.
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The solution u is written as the sum of the approximate solution (truncated Dyson series) and
the error term:

u = uapp + uerr, where uapp = χ

(
t

T

) N∑
n=0

un,

where χ is a C∞
0 cut-off function such that χ = 1 for |t| < 1 and χ = 0 for |t| > 2. The error uerr

satisfies the equation for |t| ≤ 2T :

i∂tu
err + ω(D)uerr = λ [LN (uerr) +B(uerr) + EN ] , (1.6)

where the linearized operator LN around uapp is given by

LN (w) = 8MReMuappReMw,

the bilinear operator B is given by

B(w) = 4M(ReMw)2,

and the error term EN by
EN = 4

∑
j+k≥N

j,k=0,...,N

M [ReMujReMuk].

The terms on the right hand side of (1.6) are estimated in Proposition 9.1, Proposition 10.2 and
Proposition 10.1 respectively. Comparison to the kinetic wave equation is discussed in Section 4
and convergence to it will be proved combining the results obtained there with Proposition 8.1.

1.5. Failure of convergence on the kinetic time scale for m(0) = 1 and ω0 = 0. We believe
that the kinetic wave equation might fail to describe solutions to

i∂tu+∆u = (u+ u)2 (1.7)

on the time scale Tkin, due to a low frequency inflation. Note that the kinetic equation (1.4) is
not even well defined, as the mass of the unit ball for the measure δ(Σ+)δ(Ω+)dv1dv2 = δ(v + v1 −
v2)δ(2v.(v − v2)) diverges as v → 0. This issue was already raised by Spohn, see Section 6 in [38]
for a discussion, where an hypothesis for the non-vanishing of ω(0) that is analogue to the present
one in Theorem 1.1 is assumed. Hence, our convergence result of Subsection 1.3 would be sharp in
the sense that at the origin in Fourier, either a cancellation of nonlinear effects m(0) = 0, or a lack
of resonance due to a non-zero dispersion relation ω0 = ϵ−2, c0 > 0, would be needed to ensure the
validity of the kinetic description.

We recall (see Section 6) that the Dyson series (1.5) can be represented as a sum over Feynman
interaction diagrams, and that their L2 norm can be represented as a sum over paired graphs:

un =
∑
G∈Gn

uG, E ∥un(t)∥2L2(Rd) =
∑

G′∈Gp
n

Ft(G
′) for all t ∈ R. (1.8)

Our second result is that the second series above is not absolutely convergent on the kinetic time
scale. This itself does not imply the divergence of E∥un(t)∥2

L2(Rd)
as cancellations could occur, see

Remark 1.6 and Subsection 1.6 for a discussion.

Proposition 1.4. For all d ≥ 2, there exists a Schwartz function a ∈ S(R2d) such that, for any
κ > 0, the following holds true for initial data of the form (1.2) in the range:

ϵ2−κ ≤ t ≤ ϵ1+κ. (1.9)

There exists n∗(d, κ), such that for all n ≥ n∗, there exists a paired graph G∗ ∈ G
p
2n as defined in

Subsection 6.4 for equation (1.7), two constants C,C ′ > 0 and ϵ0 > 0 such that for all 0 < ϵ ≤ ϵ0:

C(λt)4nϵ2dt−d ≤ Ft(G
∗) ≤ C ′(λt)4nϵ2dt−d. (1.10)
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Remark 1.5. The kinetic equation can a priori only be reached provided that its time scale Tkin is
shorter than the transport time scale ϵ and that the regime is weakly nonlinear ϵ2 ≪ λ−1. The sum
of the absolute values of the terms in the second series in (1.8) diverges at a time before Tkin, since
the nonlinear time scale λ−1 at which the estimate (1.10) becomes singular is shorter than Tkin.

Remark 1.6. We believe that the first series in (1.8) does not either converge on the kinetic time
scale, that is, E∥uG(t)∥2L2(Rd)

diverges as (1.10) for some G ∈ Gn. In [12] the last two authors were
able to show such result, for a similar counter-example graph for a cubic nonlinearity for a different
time scale. The proof showed no cancellation occurred from other pairings for the same interaction
diagram G. We believe the same strategy could be applied here. This would not imply the actual
divergence of un, but would indicate that cancellations with another interaction diagram G′ are
required. Such cancellations were shown to exist by Deng-Hani [15] for the (NLS) on the torus, see
Subsection 1.6 for a further discussion on whether their strategy is applicable in our case.

1.6. Difficulties: the belt and the inhomogeneous setting. The main thrust of this paper is
to provide a derivation of the inhomogeneous kinetic wave equation up to the kinetic time scale,
with a loss of an arbitrarily small power, while previous rigorous works all address the homogeneous
problem.

A first difficulty is linked to the use of the Wigner transform, which leads to technical complica-
tions compared to Fourier series, which suffice for the homogeneous problem.

A second difficulty is linked to the range of available time-scales: with the scaling defined above,
only time scales less than ϵ are of interest for the inhomogeneous problem set on Rd: past this time
scale, waves will have dispersed, since the data is localized at frequency O(ϵ−1), corresponding to a
group velocity O(ϵ−1).

Over such small time scales, the belt family of diagrams, which first appeared in [14, 12] in the
context of cubic problems (nonlinear Schrödinger equation - NLS), becomes a possible obstruction
to the convergence of the Dyson series. For (NLS), it was shown in the aforementioned works that
the belt diagrams would lead to a failure of convergence if only self-correlations of diagrams are
considered. But a deeper analysis in [15] shows that surprising cancellations between diagrams
occur for (NLS), at least for time scales close to 1.

Considering quadratic problems leads to new perspectives on the belt diagrams. We chose the
most simple dispersion relation, namely ω(ξ) = ω0 + |ξ|2

2 , which can be obtained by Taylor ex-
panding any smooth dispersion relation at a point; note that a linear term in ξ can be removed by
using translation invariance in space. As for the nonlinearity, (Reu)2 has the advantage of being
Hamiltonian, and containing the three types of interactions: u · u → u, u · u → u, and u · u → u.

In case ω0 = 0, a direct analog of the cubic belt example exists for the interaction u ·u → u. The
underlying kinetic equation presents a singular kernel, which may be the sign that this belt diagram
represents a true physical instability, and is not canceled by other diagrams, as was the case for
(NLS). Still in contrast with (NLS), these belt diagrams can be dampened, and convergence of the
Dyson series restored, if the structure of the nonlinear term is appropriate, namely if it provides
a cancellation at output frequency 0. Under this condition, it is possible to rely on the machinery
developed in [31, 11].

In the case ω0 = ϵ−2, the belt example ceases to be an obstacle to the convergence of the Dyson
series. This made us hopeful that convergence could be proved - which was indeed the case, but a
completely new argument is needed. Namely, none of the tools used to understand the combinatorics
of Feynman graphs, and to derive bounds for them, seemed to apply. In contrast to [31, 11], we
introduce a more intrinsic point of view by not assuming a given ordering of intermediate times in
the graph. We should mention that the works [15, 14] do not assume ordering of the intermediate
times either.
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1.7. Application to some physical examples. This paper focuses on model equations to simplify
the exposition, and identifies stable and unstable regimes in the weakly turbulent regime (weak
nonlinearity, scale separation, and data with decorrelated phases) as stated in Theorem 1.1 and
Proposition 6.1.

Quadratic interactions occuring in our model problem are of three types: u ·u → u, u ·u → u, and
u ·u → u, with obvious notations. As for the dispersion relation, it is of the type ω(ξ) = ω0+

|ξ|2
2 (a

further requirement is that ω0 be either 0, or comparable to ϵ−2, but we will gloss over this precise
scaling in the following).

Our results can be summarized as follows:
• Interactions of the type u · u → u and u · u → u are stable on the kinetic time scale. This

means that the Dyson series converges on the kinetic time scale (up to an arbitrarily small
power), and that the average behavior is described by the kinetic wave equation.

• For interactions of the type u · u → u, stability on the kinetic time scale holds if either
ω0 ̸= 0, or the quadratic nonlinearity exhibits a cancellation at zero frequency.

• Finally, for interactions of the type u · u → u, if ω0 = 0 and the quadratic nonlinearity does
not contain a cancellation, the series fails to converge on the kinetic time scale.

It is natural to conjecture that these three bullet points remain true for quadratic nonlinear
dispersive equations with a scalar unknown function, and a dispersion relation ω(ξ) with ω(0) = ω0.
We review below some classical examples.

The Kadomtsev-Petiashvili equation is given by

∂tu+ ∂−1
x ∂2

yu+ ∂3
xu+ u∂xu = 0.

Since it only contains interactions u ·u → u, it should be stable in the weakly turbulent regime. For
the closely related Zakharov-Kuznetsov model, the kinetic time scale was indeed reached in [39] for
the homogeneous problem with random forcing.

The beta-plane equation

∂tω + u · ∇ω = ∂x∆
−1ω, u = ∇⊥∆−1ω

modeling planetary flows, falls into the same category: only u · u → u interactions occur.

The elastic beam equation
∂2
t u+ ω(D)2u+ u2 = 0

becomes, after setting v = ∂tu− i
√
ω(D)u,

∂tv + iω(D)v =

(
v − v

2ω(D)

)2

.

This is equation (1.1), except for the Fourier multipliers 1
ω(D) . If ω0 = 0, this Fourier multiplier

makes the zero frequency even more singular, and thus the kinetic description is unlikely to be
valid. If ω0 = ϵ−2, the Fourier multiplier is not singular at zero frequency, and our result applies to
validate the kinetic description.

The asymptotic behavior of the kinetic wave equation for this model set in the lattice was recently
considered in [36].

The (generalized) nonlinear Klein-Gordon equation

∂2
t u+ ω(D)u+ u2 = 0,

becomes, after setting v = ∂tu− i
√

ω(D)u,

∂tv + i
√
ω(D)v =

(
v − v

2
√

ω(D)

)2

.
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As discussed above, the stability condition is ω0 ̸= 0; but quadratic resonances should also exist,
which is not the case if ω(D) = ω0 − ∆. In connection with the kinetic limit, this equation was
considered by Spohn on the lattice [38], where quadratic resonances do exist.

Water waves equations have a more intricate structure. In a proper set of coordinates, the unknown
becomes a scalar function u, which satisfies the following equation

i∂tu+ |D|αu = Tm++(u, u) + Tm+−(u, u) + Tm−−(u, u).

Here, α = 1
2 for gravity waves, and 3

2 for capillar waves, Tm stands for the pseudo-product operator
with symbol m(ξ, η), and cubic and higher-order terms were omitted,. We refer to [21, 22] for exact
formulas and more precise definitions. In the light of our discussion above, the condition for stability
becomes the vanishing of m−− if the output frequency is zero - and one checks that it is sastisfied!

This brief discussion only addressed some equations with a scalar unknown, excluding most
examples from plasma physics and fluid mechanics, for which some of our ideas probably also apply.

Acknowledgements. While working on this project, IA was supported by the NSF grants DMS-
2418020, DMS-2206618, and the Simons collaborative grant on weak turbulence. CC was supported
by the ERC-2014-CoG 646650 SingWave. PG was supported by the NSF grant DMS-1501019, by
the Simons collaborative grant on weak turbulence, and by the Center for Stability, Instability and
Turbulence (NYUAD).

2. Notations

2.1. Probability space. The underlying probability space is denoted Ω, the probability measure
P, and the expectation E.

2.2. Fourier transform. For f a function on Rd, we denote

f̂(ξ) =
1

(2π)d/2

∫
Rd

f(x)e−ix·ξ dx

so that

f(x) =
1

(2π)d/2

∫
Rd

f̂(ξ)eix·ξ dξ.

With this convention, the Fourier transform is an isometry on L2, and furthermore f̂g = 1
(2π)d/2

f̂ ∗ ĝ.
If F is a function of two variables, F (x, v), we denote F̂ for the Fourier transform with respect

to the first one:

F̂ (ξ, v) =
1

(2π)d/2

∫
Rd

F (x, v)e−ix·ξ dx.

Given a function f(t, x) on R× Rd, we denote is space-time Fourier transform as:

f̃(τ, ξ) =
1

(2π)
d+1
2

∫
R

∫
Rd

f(t, x)e−i(tτ+x·ξ) dx dt.
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2.3. Bourgain spaces. We will use the scaled Sobolev spaces with norm

∥f∥Hs
ϵ
= ∥⟨ϵD⟩sf∥L2 ,

and their associated Bourgain spaces Xs,b
ϵ with norm

∥u∥
Xs,b

ϵ
= ∥e−itω(D)u(t)∥Hb

tH
s
ϵ,x

= ∥⟨ϵξ⟩s⟨τ + ω(ξ)⟩bũ(τ, ξ)∥L2(R×Rd).

More details regarding Bourgain spaces are given in Appendix A.
For ϵ > 0 and n ∈ Zd, we now define Cn

ϵ = {x ∈ Rd, |x − ϵ−1n| < ϵ−1/2} to be the cuboid
of side ϵ−1 and center ϵ−1n. For R > 0 and an integer l ≥ 1 we define the dyadic annulus
Al

R = {x ∈ Rd, 2l−1R < |x| ≤ 2lR}, as well as A0
R = {x ∈ Rd, |x| ≤ R}. Their characteristic

functions are denoted 1Cn
ϵ

and 1Al
R
, and enables us to define the projection operators

Qn
ϵ = 1Cn

ϵ
(D) and Al

R = 1Al
R
(D).

Finally, we let
Pϵ,N = 1C0

ϵ,2N
− 1C0

ϵ,N

These operators are bounded on Lp spaces, 1 < p < ∞ and provide decompositions of the identity:∑
n∈Zd

Qn
ϵ = Id .

2.4. Wigner transform and space correlation. To derive the kinetic wave equation we use the
framework of the averaged Wigner transforms. It is defined for random fields, either in Fourier or
in physical space, by

W [u](x, v) =
1

(2π)d
E
∫
Rd

u
(
x+

z

2

)
u
(
x− z

2

)
eiv·zdz =

1

(2π)d
E
∫
Rd

eiξ·xû

(
v − ξ

2

)
û

(
v +

ξ

2

)
dξ.

With this normalization, there holds∫
Rd

W [u](x, v) dv = E|u(x)|2,
∫
Rd

W [u](x, v) dx = E|û(v)|2.

The problem we consider enjoys a separation of scale between the fluctuations and the envelope,
whose typical space scales are respectively ϵ and 1. This leads us to defining the rescaled Wigner
transform

W ϵ[u](x, v) = ϵ−dW [u]
(
x,

v

ϵ

)
=

1

(2π)d
E
∫
Rd

u
(
x+

ϵy

2

)
u
(
x− ϵy

2

)
eiv·y dy

The advantage of this definition is that W ϵ[u](x, v) has L∞ norm ∼ 1, and concentrates most of
its mass in the region |x|+ |v| ≲ 1, for the ansatz (1.2).

Note that

Ŵ ϵ[u](ξ, v) =
1

(2π)d/2
ϵ−dE

(
û

(
v

ϵ
− ξ

2

)
û

(
v

ϵ
+

ξ

2

))
or equivalently

or E
[
û(ξ)û(ξ′)

]
= (2π)d/2ϵdŴ ϵ[u]

(
ξ′ − ξ,

ϵ

2
(ξ + ξ′)

)
.

The space correlation is encoded by the correlation function:

E(u(x)u(x′)) = Qϵ

(
x+ x′

2
,
x− x′

ϵ

)
, Qϵ(x, y) = E

(
u(x+

ϵy

2
)u(x− ϵy

2
)

)
,
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so that one has the relation (where Fy stands for the Fourier transformation with respect to y):

W ϵ[u](x, v) =
1

(2π)d/2
F∗

y Q
ϵ(x, y).

3. The initial data

3.1. The general ansatz. We consider initial data of the form (1.2) where a : R2d → C and W is
a complex Wiener process. We will assume throughout that

â(η, ξ) ∈ C∞
0 .

Making use of the Ito formula,

E
[∫

f(x) dW (x)

∫
g(x) dW (x)

]
=

∫
f(x)g(x) dx

E
[∫

f(x) dW (x)

∫
g(x) dW (x)

]
= 0,

we find that the pointwise correlation is given, in physical space, by

E
[
u0(x)u0(x

′)
]
=

∫
a(x, ξ)a(x′, ξ)e−i ξ

ϵ
·(x−x′) dξ

E
[
u0(x)u0(x

′)
]
= 0,

and in Fourier space by

E
[
û0(ξ)û0(ξ

′)
]
=

∫
â(ξ − η

ϵ
, η) â(ξ′ − η

ϵ
, η) dη

E
[
û0(ξ)û0(ξ

′)
]
= 0.

Since â ∈ C∞
0 , note that the above is zero unless |ξ − ξ′| ≲ 1 and |ξ|, |ξ′| ≲ 1

ϵ .

Correlation function The initial correlation function is Qϵ
0, defined by

E[u0(x)u0(x′)] = Qϵ
0

(
x+ x′

2
,
x− x′

ϵ

)
.

It can be expanded as

Qϵ
0 (x, y) =

∫
a(x+

ϵy

2
, ξ)a(x− ϵy

2
, ξ)e−iξ·y dξ

=

∫
|a(x, ξ)|2e−iξ·y dξ +O(ϵ)

=(2π)d/2F
(
|a|2(x, ·)

)
(y) +O(ϵ),

where the implicit constant in O is ≲ ∥a∥
L∞
x W 1,∞

ξ
+ supx,x′

∥a(x,·)−a(x′,·)∥
W1,1(Rd)

|x−x′| .

Wigner transform Turning to the rescaled Wigner transform,

W ϵ
0(x, v) = W ϵ[u0](x, v) =

1

(2π)d

∫∫
a(x+

ϵy

2
, ξ)a(x− ϵy

2
, ξ)ei(v−ξ).y dy dξ

=
1

(2π)d

∫∫
|a(x, ξ)|2ei(v−ξ).y dy dξ +O(ϵ)

= |a(x, v)|2 +O(ϵ)
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where the implicit constant in O is ≲

(
∥a∥L∞

x W s,∞
ξ

+ supx,x′
∥a(x,·)−a(x′,·)∥

Ws,1(Rd)
|x−x′|

)
for s > d.

Taking the Fourier transform in the first variable,

Ŵ ϵ
0(ξ, v) =

1

(2π)d/2

∫
â

(
η − ξ

2
, v − ϵη

)
â

(
η +

ξ

2
, v − ϵη

)
dη. (3.1)

We learn from this formula (and the fact that â ∈ C∞
0 ) that there exists a compact set K such that

Supp(Ŵ ϵ
0) ⊂ K for all ϵ, and that, uniformly in ϵ, for any α and β,

|∂α
ξ ∂

β
v Ŵ

ϵ
0(ξ, v)| ≲α,β 1. (3.2)

Finally, note that

E
[
û0(ξ)û0(ξ

′)
]
= (2π)d/2ϵdŴ ϵ

0

(
ξ′ − ξ,

ϵ

2
(ξ + ξ′)

)
. (3.3)

3.2. The envelope ansatz. Let

u0(x) = A(x)hϵ(x),

where A : Rd → C and hϵ is a stationary Gaussian field:

hϵ(x) =

∫
ξ∈Rd

H(ξ)ei
ξ
ϵ
.xdW (ξ).

This is obviously a particular case of the general ansatz, for which

a(x, ξ) = A(x)H(ξ)

The correlation for the translation invariant field h reads

E[hϵ(x)hϵ(x′)] =
∫

|H(ξ)|2e−i ξ
ϵ
.(x−x′) dξ = ()2π)d |̂H|2

(
x− x′

ϵ

)
,

so that for the initial condition there holds:

E[u0(x)u0(x′)]

= (2π)d
∣∣∣∣A(x+ x′

2

)∣∣∣∣2 |̂H|2
(
x− x′

ϵ

)
+ 2π

(
A(x)A(x′)−

∣∣∣∣A(x+ x′

2

)∣∣∣∣2
)
|̂H|2

(
x− x′

ϵ

)

= (2π)d
∣∣∣∣A(x+ x′

2

)∣∣∣∣2 |̂H|2
(
x− x′

ϵ

)
+O(ϵ)

where the implicit constant in O is ≲ ∥A∥W 1,∞∥F−1(|H|2)(y)
⟨y⟩ ∥L∞ . Thus,

Qϵ
0(x, y) = (2π)d |A(x)|2 |̂H|2(y) +O(ϵ).

Finally,

W ϵ
0(x, v) = |A(x)|2|H(v)|2 +O(ϵ)

where the implicit constant in O is ≲ ∥A∥W 1,∞∥yF−1(|H|2)∥L1 .
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4. Proof of Theorem 1.1

Using the results obtained in the rest of the paper, we are able to prove our main result namely
Theorem 1.1.

Proof of the first part of Theorem 1.1 Recall equation (1.6) for uerr. For the existence part,
we aim to apply Banach’s fixed point theorem in B

Xs,b
ϵ
(0, ρ), where s > d

2 − 1 and ρ > 0 to be fixed
to the mapping

Φ : u → χ (t)

∫ t

0
ei(t−s)ω(D)λLN (u) ds+ χ (t)

∫ t

0
χ (s) ei(t−s)ω(D)λB(u) ds

+ χ (t)

∫ t

0
ei(t−s)ω(D)

(
χ
( s

T

)
λEN

)
ds

(the precise choice of cutoff functions of the form χ(t) or χ
(
t
T

)
is merely technical, and has to do

with the exact definition of the Bourgain space over which the contraction argument applies).
By propositions 8.1 and 10.1, for any large L > 0, the error term can be made smaller than ϵL

in Xs,b
ϵ , after excluding a set of size < 1

2ϵ
κ, by choosing N sufficiently large. This leads to choosing

ρ = 2ϵL. Moreover, by Proposition 9.1 the linear operator L has an operator norm less than one, if
one excludes a set of size < 1

2ϵ
−κ and chooses b sufficiently close to 1/2. By Proposition 10.2, the

bilinear term B acts as a contraction on B
Xs,b

ϵ
(0, ρ). Therefore, the contraction mapping principle

gives a fixed point uerr of Φ, which satisfies the bound ∥uerr∥
Xs,b

ϵ
≲ ϵL.

Proof of the second part of Theorem 1.1 Let E the exceptional set obtained in the first part
of the proof. Forgetting for a moment about the set E, by Proposition 5.3 it suffices to control

(2π)−d/2ϵ−d

∫
Rd

(h.o.t.) dv

=

∫
Rd

 ∑
i+j≥4
i,j≤N

E
[
ûi(ξ−)ûj(ξ+)

]
+

N∑
i=0

E
[
ûi(ξ−)ûerr(ξ+) + ûerr(ξ−)ûi(ξ+)

]
+ E

[
ûerr(ξ−)ûerr(ξ+)

] dv,

uniformly in time, where we use the notation ξ− = v
ϵ − ξ

2 , ξ
+ = v

ϵ + ξ
2 . By the Cauchy-Schwarz

inequality, we obtain

h.o.t. ≲ E

1E

 ∑
i+j≥4
i,j≤N

∥ui(t)∥L2∥uj(t)∥L2 + ∥uerr(t)∥L2

N∑
i=0

∥ui(t)∥L2 + ∥uerr∥2L2




≲ ϵ−κ

(
t

Tkin

)2

,

after using estimate (8.2) from Proposition 8.1 and the bound for uerr in Xs,b
ϵ (hence in L∞

t L2
x). This

concludes the proof of the main theorem, except that we need to take into account the characteristic
function 1E in the main term. But one can check that the main term enjoys better integrability
properties: this is achieved by raising it to a high power, and taking the expectation. Therefore,
using Hölder’s inequality, the error resulting from 1E is at most O(ϵcκ).
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5. Comparison to the kinetic wave equation

The aim of this section is to provide a heuristic derivation of the kinetic wave equation, by
comparing the first terms in the expansion of the kinetic equation on the one hand, and in the
expansion of the correlation (Wigner transform) of the solution of the Hamiltonian problem on the
other. Without loss of generality, we present the derivation for the case m(0) = 0 and ω0 = 0.
This heuristic derivation will ultimately be justified by a control of the remainder in the expansions,
which is the main achievement of the present article.

In order to slightly simplify notations, we will work under the standing assumption that

ϵ2 < t < ϵ,

which is the relevant time scale for the phenomena we want to observe.

5.1. Expanding the kinetic equation. We consider the kinetic equation∂tρ+
1
ϵ v · ∇xρ =

8π

Tkin
C[ρ]

ρ(t = 0) = W ϵ
0

, Tkin =
1

λ2ϵ2
(5.1)

where

C[ρ](t, x, v) =m2

∫ [
δ(Σ−)δ(Ω−)m

2
1m

2
2ρρ1ρ2

(
1

ρ
− 1

ρ1
− 1

ρ2

)
+ 2δ(Σ+)δ(Ω+)m

2
1m

2
2ρρ1ρ2

(
1

ρ
+

1

ρ1
− 1

ρ2

)]
dv1 dv2,

and {
Σ− = v − v1 − v2

Σ+ = v + v1 − v2

{
Ω− = |v|2 − |v1|2 − |v2|2

Ω+ = |v|2 + |v1|2 − |v2|2

{
ρi = ρ(t, x, vi)

mi = m(vi)

Define r(t, x, v) = ρ(t, x+ t
ϵv, v). Then r satisfies

∂tr =
8π

Tkin
m2

∫
δ(Σ−)δ(Ω−)m

2
1m

2
2 (r1r2 − rr1 − rr2) dv1 dv2

+
16π

Tkin
m2

∫
δ(Σ+)δ(Ω+)m

2
1m

2
2 (r1r2 + rr1 − rr2) dv1 dv2

where ri = r(t, x+ t
ϵ(v − vi), vi), i ∈ {0, 1, 2}. Taking the spatial Fourier transform, we have

∂tr̂ =
8π

Tkin
m2(v)

∫
δ(ξ − η1 − η2)δ(Σ−)δ(Ω−)m

2(v1)m
2(v2)(

ei
t
ϵ
α0 r̂(t, η1, v1)r̂(t, η2, v2)− ei

t
ϵ
α1 r̂(t, η1, v)r̂(η2, v2)− ei

t
ϵ
α2 r̂(t, η1, v1)r̂(η2, v)

)
dv1,2 dη1,2

+
16π

Tkin
m2(v)

∫
δ(ξ − η1 − η2)δ(Σ+)δ(Ω+)m

2(v1)m
2(v2)(

ei
t
ϵ
α0 r̂(t, η1, v1)r̂(t, η2, v2) + ei

t
ϵ
α1 r̂(t, η1, v)r̂(η2, v2)− ei

t
ϵ
α2 r̂(t, η1, v1)r̂(t, η2, v)

)
dv1,2 dη1,2

where

α0 = v · ξ − v1 · η1 − v2 · η2
α1 = v · ξ − v · η1 − v2 · η2
α2 = v · ξ − v1 · η1 − v · η2
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Integrating the above, and using that r̂(t, ξ, v) = eitξ·
v
ϵ ρ̂(t, ξ, v), r(t = 0) = ρ(t = 0) = W ϵ

0 , we
obtain

ρ̂(t, ξ, v)− e−itξ· v
ϵ ρ̂(t, ξ, v)ρ̂0(ξ, v) =

4(2π)1−
d
2 e−itξ· v

ϵ

Tkin
m2(v)

∫
δ(ξ − η1 − η2)δ(Σ−)δ(Ω−)m

2(v1)m
2(v2)[(∫ t

0
ei

τ
ϵ
α0 dτ

)
Ŵ ϵ

0(η1, v1)Ŵ
ϵ
0(η2, v2)−

(∫ t

0
ei

τ
ϵ
α1 dτ

)
Ŵ ϵ

0(η1, v)Ŵ
ϵ
0(η2, v2)

−
(∫ t

0
ei

τ
ϵ
α2 dτ

)
Ŵ ϵ

0(η1, v1)Ŵ
ϵ
0(η2, v)

]
dv1,2 dη1,2

+
8(2π)1−

d
2 e−itξ· v

ϵ

Tkin
m2(v)

∫
δ(ξ − η1 − η2)δ(Σ+)δ(Ω+)m

2(v1)m
2(v2)[(∫ t

0
ei

τ
ϵ
α0 dτ

)
Ŵ ϵ

0(η1, v1)Ŵ
ϵ
0(η2, v2) +

(∫ t

0
ei

τ
ϵ
α1 dτ

)
Ŵ ϵ

0(η1, v)Ŵ
ϵ
0(η2, v2)

−
(∫ t

0
ei

τ
ϵ
α2 dτ

)
Ŵ ϵ

0(η1, v1)Ŵ
ϵ
0(η2, v)

]
dv1,2 dη1,2

+O

(
t

Tkin

)2

(5.2)

5.2. Expanding the solution u. We consider the quadratic dispersive equation (1.1){
i∂tu+ ∆

2 u = Mλ(Mu+Mu)2,

u(t = 0) = u0,

with initial data u0 is given by (1.2). We write the solution as

u = uapp + uerr =

N∑
n=0

un + uerr, (5.3)

where

u0 = e−it∆
2 u0,{

i∂tu
n + ∆

2 u
n = λ

∑
j+k=n−1M(Muj +Muj)(Muk +Muk)

un(t = 0) = 0.
, n ≥ 1

Throughout this section we will focus on the first three iterates. Taking the Fourier transform, and
using the identity v̂(ξ) = v̂(−ξ) we obtain expressions with respect to the initial data for the linear
term

û0(ξ) = e−it
|ξ|2
2 û0(ξ), (5.4)

the bilinear term

û1(ξ) =
−iλm(ϵξ)

(2π)d/2
e−it

|ξ|2
2

∫ t

0

∫
ξ=ξ1+ξ2

m(ϵξ1)m(ϵξ2)

(
eis1Ω0,−1,−2 û0(ξ1)û0(ξ2) + eis1Ω0,1,2 û0(−ξ1)û0(−ξ2)

+2eis1Ω0,1,−2 û0(−ξ1)û0(ξ2)

)
dξ1,2 ds1,

(5.5)
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and, finally, the trilinear term

û2(ξ) = −2λ2m(ϵξ)

(2π)d
e−it

|ξ|2
2

∫ t

0

∫ s1

0

∫
ξ=ξ1+ξ2
ξ2=ξ′1+ξ′2

m(ϵξ1)m
2(ϵξ2)m(ϵξ′1)m(ϵξ′2)e

is1Ω0,−1,−2 û0(ξ1)(
eis0Ω2,−1′,−2′ û0(ξ

′
1)û0(ξ

′
2) + eis0Ω2,1′,2′ û0(−ξ′1)û0(−ξ′2) + 2eis0Ω2,1′,−2′ û0(−ξ′1)û0(ξ

′
2)

)
dξ′1,2 dξ1 ds0,1

− 2λ2m(ϵξ)

(2π)d
e−it

|ξ|2
2

∫ t

0

∫ s1

0

∫
ξ=ξ1+ξ2
ξ2=ξ′1+ξ′2

m(ϵξ1)m
2(ϵξ2)m(ϵξ′1)m(ϵξ′2)e

is1Ω0,1,−2 û0(−ξ1)(
eis0Ω2,−1′,−2′ û0(ξ

′
1)û0(ξ

′
2) + eis0Ω2,1′,2′ û0(−ξ′1)û0(−ξ′2) + 2eis0Ω2,1′,−2′ û0(−ξ′1)û0(ξ

′
2)

)
) dξ′1,2 dξ1 ds0,1

+
2λ2m(ϵξ)

(2π)d
e−it

|ξ|2
2

∫ t

0

∫ s1

0

∫
ξ=ξ1+ξ2
ξ2=ξ′1+ξ′2

m(ϵξ1)m
2(ϵξ2)m(ϵξ′1)m(ϵξ′2)e

is1Ω0,1,2 û0(−ξ1)(
eis0Ω−2,−1′,−2′ û0(ξ

′
1)û0(ξ

′
2) + eis0Ω−2,1′,2′ û0(−ξ′1)û0(−ξ′2) + 2eis0Ω−2,1′,−2′ û0(−ξ′1)û0(ξ

′
2)

)
) dξ′1,2 dξ1 ds0,1

+
2λ2m(ϵξ)

(2π)d
e−it

|ξ|2
2

∫ t

0

∫ s1

0

∫
ξ=ξ1+ξ2
ξ2=ξ′1+ξ′2

m(ϵξ1)m
2(ϵξ2)m(ϵξ′1)m(ϵξ′2)e

is1Ω0,−1,2 û0(ξ1)(
eis0Ω−2,−1′,−2′ û0(ξ

′
1)û0(ξ

′
2) + eis0Ω−2,1′,2′ û0(−ξ′1)û0(−ξ′2) + 2eis0Ω−2,1′,−2′ û0(−ξ′1)û0(ξ

′
2)

)
) dξ′1,2 dξ1 ds0,1.

(5.6)

Above, we denote Ω0,−1,−2 =
1
2(|ξ|

2 − |ξ1|2 − |ξ2|2), Ω0,1,−2 =
1
2(|ξ|

2 + |ξ1|2 − |ξ2|2), etc...

5.3. Expanding the correlations. Recall that the rescaled Wigner transform is given by

Ŵ ϵ[u](ξ, v) = (2π)−d/2ϵ−dE
[
û (ξ−)û

(
ξ+
)]

, (5.7)

with {
ξ− = v

ϵ −
ξ
2

ξ+ = v
ϵ +

ξ
2

or

{
ξ = ξ+ − ξ−

v = ϵ
2(ξ

+ + ξ−).

We will also make use of the formula

E
[
û(ξ1)û(ξ2)

]
= (2π)d/2ϵdŴ ϵ

[
ξ2 − ξ1,

ϵ

2
(ξ1 + ξ2)

]
. (5.8)

Inserting the expansion (5.3) in the definition of Ŵ ϵ[u],

(2π)d/2ϵdŴ ϵ[u](ξ, v) = E
[
û0(ξ−)û0(ξ+)

]
(5.9)

+ E
[
û1(ξ−)û0(ξ+)

]
+ E

[
û0(ξ−)û1(ξ+)

]
(5.10)

+ E
[
û1(ξ−)û1(ξ+)

]
(5.11)

+ E
[
û2(ξ−)û0(ξ+)

]
+ E

[
û0(ξ−)û2(ξ+)

]
(5.12)

+ h.o.t. (5.13)
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where

h.o.t =
∑

i+j≥4

E
[
ûi(ξ−)ûj(ξ+)

]
+

N∑
i=0

E
[
ûi(ξ−)ûerr(ξ+) + ûerr(ξ−)ûi(ξ+)

]
+ E

[
ûerr(ξ−)ûerr(ξ+)

]
,

(5.14)

and to obtain (5.14) we used the fact that there is cancellation for i+ j = 3 due to Wick’s formula.
The linear-linear term (5.9). By (5.4), we have

E
[
û0(ξ−)û0(ξ+)

]
= e−i t

2
(|ξ+|2−|ξ−|2)E

[
û0(ξ−)û0(ξ

+)
]
= e−itξ· v

ϵ (2π)d/2ϵdŴ ϵ
0(ξ, v) (5.15)

The linear-bilinear term (5.10). It vanishes by Wick’s formula.

The bilinear-bilinear term (5.11). It will be convenient to write u1 under the form

û1(t, ξ+) = − iλm(ϵξ+)

(2π)d/2
e−it

|ξ+|2
2

∫ t

0

∫
ξ+=ξ′1+ξ′2

m(ϵξ′1)m(ϵξ′2)(
eis

′
1Ω+,−1′,−2′ û0(ξ

′
1)û0(ξ

′
2) + eis

′
1Ω+,1′,2′ û0(−ξ′1) û0(−ξ′2) + 2eis

′
1Ω+,1′,−2′ û0(−ξ′1)û0(ξ

′
2)

)
dξ′1,2 ds

′
1,

where Ω+,−1′,−2′ =
1
2(|ξ

+|2 − |ξ′1|2 − |ξ′2|2), etc... and

û1(t, ξ−) =
iλm(ϵξ−)

(2π)d/2
eit

|ξ−|2
2

∫ t

0

∫
ξ−=ξ1+ξ2

m(ϵξ1)m(ϵξ2)

(
e−is1Ω−,−1,−2 û0(ξ1)û0(ξ2) + e−is1Ω−,1,2 û0(−ξ1)û0(−ξ2)

+ 2e−is1Ω−,1,−2 û0(−ξ1)û0(ξ2)

)
dξ1,2 ds1.

Using these formulas, we obtain

(2π)dλ−2eitξ·
v
ϵE
[
û1(t, ξ−)û1(t, ξ+)

]
= m(ϵξ+)m(ϵξ−)

∫
ξ+=ξ′1+ξ′2
ξ−=ξ1+ξ2

m(ϵξ1)m(ϵξ2)m(ϵξ′1)m(ϵξ′2)

∫ t

0

∫ t

0
ei(s

′
1Ω+,−1′,−2′−s1Ω−,−1,−2) ds1 ds

′
1

E
[
û0(ξ1)û0(ξ2)û0(ξ

′
1)û0(ξ

′
2)
]
dξ1,2 dξ

′
1,2

+m(ϵξ+)m(ϵξ−)

∫
ξ+=ξ′1+ξ′2
ξ−=ξ1+ξ2

m(ϵξ1)m(ϵξ2)m(ϵξ′1)m(ϵξ′2)

∫ t

0

∫ t

0
ei(s

′
1Ω+,1′,2′−s1Ω−,1,2) ds1 ds

′
1

E
[
û0(−ξ1)û0(−ξ2)û0(−ξ′1)û0(−ξ′2)

]
dξ1,2 dξ

′
1,2

+ 4m(ϵξ+)m(ϵξ−)

∫
ξ+=ξ′1+ξ′2
ξ−=ξ1+ξ2

m(ϵξ1)m(ϵξ2)m(ϵξ′1)m(ϵξ′2)

∫ t

0

∫ t

0
ei(s

′
1Ω+,1′,−2′−s1Ω−,1,−2) ds1 ds

′
1

E
[
û0(−ξ1)û0(ξ2)û0(−ξ′1)û0(ξ

′
2)
]
dξ1,2 dξ

′
1,2.
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By Wick’s formula, this is

= 2(2π)dϵ2dm(ϵξ+)m(ϵξ−)

∫
ξ+=ξ′1+ξ′2
ξ−=ξ1+ξ2

m(ϵξ1)m(ϵξ2)m(ϵξ′1)m(ϵξ′2)

∫ t

0

∫ t

0
ei(s

′
1Ω+,−1′,−2′−s1Ω−,−1,−2) ds1 ds

′
1

Ŵ ϵ
0

(
ξ′1 − ξ1,

ϵ

2

(
ξ′1 + ξ1

))
Ŵ ϵ

0

(
ξ′2 − ξ2,

ϵ

2

(
ξ′2 + ξ2

))
dξ1,2 dξ

′
1,2 (5.16)

+ 2(2π)dϵ2dm(ϵξ+)m(ϵξ−)

∫
ξ+=ξ′1+ξ′2
ξ−=ξ1+ξ2

m(ϵξ1)m(ϵξ2)m(ϵξ′1)m(ϵξ′2)

∫ t

0

∫ t

0
ei(s

′
1Ω+,1′,2′−s1Ω−,1,2) ds1 ds

′
1

Ŵ ϵ
0

(
ξ′1 − ξ1,

ϵ

2

(
−ξ1 − ξ′1

))
Ŵ ϵ

0

(
ξ′2 − ξ2,

ϵ

2

(
−ξ2 − ξ′2

))
dξ1,2 dξ

′
1,2 (5.17)

+ 4(2π)dϵ2dm(ϵξ+)m(ϵξ−)

∫
ξ+=ξ′1+ξ′2
ξ−=ξ1+ξ2

m(ϵξ1)m(ϵξ2)m(ϵξ′1)m(ϵξ′2)

∫ t

0

∫ t

0
ei(s

′
1Ω+′,1′,−2′−s1Ω−,1,−2) ds1 ds

′
1

Ŵ ϵ
0

(
ξ′1 − ξ1,

ϵ

2

(
−ξ1 − ξ′1

))
Ŵ ϵ

0

(
ξ′2 − ξ2,

ϵ

2

(
ξ′2 + ξ2

))
dξ1,2 dξ

′
1,2 (5.18)

+ 4(2π)dϵ2dm(ϵξ+)m(ϵξ−)

∫
ξ+=ξ′1+ξ′2
ξ−=ξ1+ξ2

m(ϵξ1)m(ϵξ2)m(ϵξ′1)m(ϵξ′2)

∫ t

0

∫ t

0
ei(s

′
1Ω+′,1′,−2′−s1Ω−,1,−2) ds1 ds

′
1

Ŵ ϵ
0

(
−ξ1 − ξ2,

ϵ

2
(ξ2 − ξ1)

)
Ŵ ϵ

0

(
ξ′1 + ξ′2,

ϵ

2

(
ξ′2 − ξ′1

))
dξ1,2 dξ

′
1,2 (5.19)

Term (5.16) We perform the change of variables{
η1 = ξ′1 − ξ1

v1 =
ϵ
2(ξ

′
1 + ξ1)

{
η2 = ξ′2 − ξ2

v2 =
ϵ
2(ξ

′
2 + ξ2),

which is of Jacobian ϵd, when restricted to the domain on integration. By our choice of data,
|ηi|, |vi| = O(1) for i ∈ {1, 2}. Moreover,

ξ = ξ+ − ξ− = ξ′1 + ξ′2 − ξ1 − ξ2 = η1 + η2 = O(1)

and
v =

ϵ

2
(ξ+ + ξ−) =

ϵ

2
(ξ′1 + ξ′2 + ξ1 + ξ2) = v1 + v2 = O(1)

This change of variables leads to the expression

(5.16) = 2(2π)dϵdm
(
v +

ϵ

2
ξ
)
m
(
v − ϵ

2
ξ
)∫

ξ=η1+η2
v=v1+v2

∏
i∈{1,2}

m
(
vi ±

ϵ

2
ηi

)
∫ t

0

∫ t

0
ei(s

′
1Ω+,−1′,−2′−s1Ω−,−1,−2) ds1 ds

′
1Ŵ

ϵ
0 (η1, v1) Ŵ

ϵ
0 (η2, v2) dη1,2 dv1,2

= 2(2π)dϵdm2(v)

∫
ξ=η1+η2
v=v1+v2

m2(v1)m
2(v2)∫ t

0

∫ t

0
ei(s

′
1Ω+,−1′,−2′−s1Ω−,−1,−2) ds1 ds

′
1Ŵ

ϵ
0 (η1, v1) Ŵ

ϵ
0 (η2, v2) dη1,2 dv1,2 +O(t2ϵd+2),

where the resonance moduli expressed in the new variables are

Ω+,−1′,−2′ =
1

2ϵ2
(|v|2 − |v1|2 − |v2|2) +

1

2ϵ
(v · ξ − v1 · η1 − v2 · η2) +

1

8
(|ξ|2 − |η1|2 − |η2|2),
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and

Ω−,−1,−2 =
1

2ϵ2
(|v|2 − |v1|2 − |v2|2)−

1

2ϵ
(v · ξ − v1 · η1 − v2 · η2) +

1

8
(|ξ|2 − |η1|2 − |η2|2).

We have {
Ω+,−1′,−2′ +Ω−,−1,−2 =

Ω0,−1,−2

ϵ2
+ γ0

Ω+,−1′,−2′ − Ω−,−1,−2 =
α0
ϵ


Ω0,−1,−2 = |v|2 − |v1|2 − |v2|2

α0 = v · ξ − v1 · η1 − η2 · η2
γ0 = O(1)

Changing variables τ =
s1+s′1

2 , σ =
s1−s′1

2 , we have∫ t

0

∫ t

0
ei(s

′
1Ω+,−1′,−2′−s1Ω−,−1,−2) ds1 ds

′
1 = 2

∫ t

0
eiτ

α0
ϵ

∫ θ

−θ
eiσ(

Ω0,−1,−2

ϵ2
+γ0) dσ dτ, θ = min{τ, t− τ}

= 4

∫ t

0
eiτ

α0
ϵ

sin(θ
(
Ω0,−1,−2

ϵ2
+ γ0

)
)

Ω0,−1,−2

ϵ2
+ γ0

dτ

We will now rely on the

Lemma 5.1 (Dirichlet kernel). Let f ∈ C∞
0 be such that

∥∥∂k
xf
∥∥
∞ ≲ 1 for any k ∈ N. Then, for

any M ∈ N, ∫
sin(λx)

x
f(x) dx = πf(0) +O

(
λ−M

)
Proof. For a cutoff function χ, decompose∫

sin(λx)

x
f(x) dx =

∫
sin(λx)

x
f(x)

[
1− χ(

√
λx)
]
dx+

∫
sin(λx)

x
f(0)χ(

√
λx) dx

+

∫
sin(λx)

x

N∑
n=1

f(n)(0)

n!
xnχ(

√
λx) dx+

∫
sin(λx)

x

[
f(x)−

N∑
n=0

f(n)(0)

n!
xn

]
χ(

√
λx) dx

= I + II + III + IV.

Using integration by parts, one sees that I and III decay faster than any power of λ. A direct
estimate gives |IV | ≲ λ−N/2. Finally, the leading contribution is given by II, and the constant is
provided by the identity (Dirichlet integral)

∫
sinx
x dx = π. □

This lemma can be expressed as the formula

sin(λx)

x
= πδ +O((1 + λ)−N ) (5.20)

(which is understood by duality with a smooth, rapidly decaying function, whose derivatives are
pointwise O(1)). Coming back to the expression involving resonance moduli, and denoting Z =
Ω0,−1,−2 + ϵ2γ0, we obtain∫ t

0

∫ t

0
ei(s

′
1Ω+,−1′,−2′−s1Ω−,−1,−2) ds1 ds

′
1 = 4ϵ2

∫ t

0
eiτ

α0
ϵ
sin( θ

ϵ2
Z)

Z
dτ

= 4πϵ2δ(Z)

∫ t

0
eiτ

α0
ϵ dτ +O

(
ϵ2
∫ t

0
(1 +

θ

ϵ2
)−N dτ

)
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(notice that, since t < ϵ, the function eiτ
α0
ϵ has all its derivatives ≲ 1, which makes the application

of (5.20) legitimate - this is not true close to a critical point of Ω+,−1′,−2′ , but we shall gloss over
this technical point).

Since Z = Ω0,−1,−2 +O(ϵ), the above is

· · · = 4πϵ2δ(Ω0,−1,−2)

∫ t

0
eiτ

α0
ϵ dτ +O(ϵ4),

which finally leads to

(5.16) = 4(2π)d+1ϵd+2m2(v)

∫
δ(ξ − η1 − η2)δ(Σ0,−1,−2)δ(Ω0,−1,−2)m

2(v1)m
2(v2)(∫ t

0
eiτ

α0
ϵ dτ

)
Ŵ ϵ

0 (η1, v1) Ŵ
ϵ
0 (η2, v2) dη1,2 dv1,2 +O(t2ϵd+2 + ϵd+4), (5.21)

where α0 = v · ξ − v1 · η1 − v2 · η2, Σ0,−1,−2 = v − v1 − v2 and Ω0,−1,−2 = |v|2 − |v1|2 − |v2|2

Term (5.17) We perform the change of variables{
η1 = ξ′1 − ξ1

v1 =
ϵ
2(−ξ1 − ξ′1)

{
η2 = ξ′2 − ξ2

v2 =
ϵ
2(−ξ2 − ξ′2),

which gives the relations

ξ = ξ+ − ξ− = ξ′1 + ξ′2 − ξ1 − ξ2 = η1 + η2

v =
ϵ

2
(ξ+ + ξ−) =

ϵ

2
(ξ′1 + ξ′2 + ξ1 + ξ2) = −v1 − v2.

With these new integration variables,

(5.17) = 2(2π)dϵdm
(
v +

ϵ

2
ξ
)
m
(
v − ϵ

2
ξ
)∫

ξ=η1+η2
v=−v1−v2

∏
i∈{1,2}

m
(
−vi ±

ϵ

2
ηi

)
∫ t

0

∫ t

0
ei(s

′
1Ω+,1′,2′−s1Ω−,+1,+2) ds1 ds

′
1Ŵ

ϵ
0 (η1, v1) Ŵ

ϵ
0 (η2, v2) dη1,2 dv1,2

= 2(2π)dϵdm2(v)

∫
ξ=η1+η2
v=−v1−v2

m2(v1)m
2(v2)∫ t

0

∫ t

0
ei(s

′
1Ω+,1′,2′−s1Ω−,+1,+2) ds1 ds

′
1Ŵ

ϵ
0 (η1, v1) Ŵ

ϵ
0 (η2, v2) dη1,2 dv1,2 +O(t2ϵd+2)

The resonance moduli above are given by

Ω+,1′,2′ =
1

2ϵ2
(|v|2 + |v1|2 + |v2|2) +

1

2ϵ
(v · ξ + v1 · η1 + v2 · η2) +

1

8
(|ξ|2 + |η1|2 + |η2|2)

Ω−,1,2 =
1

2ϵ2
(|v|2 + |v1|2 + |v2|2)−

1

2ϵ
(v · ξ + v1 · η1 + v2 · η2) +

1

8
(|ξ|2 + |η1|2 + |η2|2)

By the same argument as for (5.16), this term will give no contribution besides O(t2ϵd+2 + ϵd+4),
since it contains a factor δ(Ω0,1,2), and Ω0,1,2 only vanishes at a point.

Term (5.18) We perform the change of variables{
η1 = ξ′1 − ξ1

v1 =
ϵ
2(−ξ1 − ξ′1)

{
η2 = ξ′2 − ξ2

v2 =
ϵ
2(ξ

′
2 + ξ2),
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which gives the relations

ξ = ξ+ − ξ− = ξ′1 + ξ′2 − ξ1 − ξ2 = η1 + η2

v =
ϵ

2
(ξ+ + ξ−) =

ϵ

2
(ξ′1 + ξ′2 + ξ1 + ξ2) = −v1 + v2.

Then we can write

(5.18) = 4(2π)dϵdm
(
v +

ϵ

2
ξ
)
m
(
v − ϵ

2
ξ
)∫

ξ=η1+η2
v=−v1+v2

∏
i∈{1,2}

m
(
(−1)i vi ±

ϵ

2
ηi

)
∫ t

0

∫ t

0
ei(s

′
1Ω+,1′,−2′−s1Ω−,1,−2) ds1 ds

′
1Ŵ

ϵ
0 (η1, v1) Ŵ

ϵ
0 (η2, v2) dη1,2 dv1,2

= 4(2π)dϵdm2(v)

∫
ξ=η1+η2
v=−v1+v2

m2(v1)m
2(v2)∫ t

0

∫ t

0
ei(s

′
1Ω+,1′,−2′−s1Ω−,1,−2) ds1 ds

′
1Ŵ

ϵ
0 (η1, v1) Ŵ

ϵ
0 (η2, v2) dη1,2 dv1,2 +O(t2ϵd+2).

Since {
ξ′1 = −v1

ϵ + η1
2

ξ′2 =
v2
ϵ + η2

2

{
ξ1 = −η1

2 − v1
ϵ

ξ2 =
v2
ϵ − η2

2 ,

the corresponding resonance moduli are

Ω+,1′,−2′ =
1

2ϵ2
(|v|2 + |v1|2 − |v2|2) +

1

2ϵ
(v · ξ − v1 · η1 − v2 · η2) +

1

8
(|ξ|2 + |η1|2 − |η2|2)

Ω−,1,−2 =
1

2ϵ2
(|v|2 + |v1|2 − |v2|2)−

1

2ϵ
(v · ξ − v1 · η1 − v2 · η2) +

1

8
(|ξ|2 + |η2|2 − |η1|2).

By a similar argument to that used for (5.16), we obtain

(5.18) = 8(2π)d+1ϵd+2m2(v)

∫
δ(ξ − η1 − η2)δ(Σ0,1,−2)δ(Ω0,1,−2)m

2(v1)m
2(v2)(∫ t

0
eiτ

α0
ϵ dτ

)
Ŵ ϵ

0 (η1, v1) Ŵ
ϵ
0 (η2, v2) dη1,2 dv1,2 +O(t2ϵd+2 + ϵd+4). (5.22)

where α0 = v · ξ − v1 · η1 − v2 · η2, Σ0,1,−2 = v + v1 − v2 and Ω0,1,−2 = |v|2 + |v1|2 − |v2|2.

Term (5.19) This term is degenerate and we cannot take advantage of any oscillations. However,
as we will see, it will become negligible in the limit. It can be equivalently written as

(5.19) = 4(2π)dϵ2dm(ϵξ+)m(ϵξ−)

∫ ∫
m(ϵξ1)m

(
ϵ
(
ξ− − ξ1

))
m(ϵξ′1)m

(
ϵ
(
ξ+ − ξ′1

))
∫ t

0

∫ t

0
ei(s

′
1Ω+,1′,−2′−s1Ω−,1,−2) ds1 ds

′
1Ŵ

ϵ
0

(
−ξ−,

ϵ

2

(
ξ− − 2ξ1

))
Ŵ ϵ

0

(
ξ+,

ϵ

2

(
ξ+ − 2ξ′1

))
dξ1 dξ

′
1

so performing the change of variables {
v1 =

ϵ
2 (ξ

− − 2ξ1)

v2 =
ϵ
2 (ξ

+ − 2ξ′1)

which is of Jacobian ϵ2d, we take

(5.19) = 4(2π)dm(ϵξ+)m(ϵξ−)

∫ ∫
m

(
ϵξ−

2
− v1

)
m

(
ϵξ−

2
+ v1

)
m

(
ϵξ+

2
− v2

)
m

(
ϵξ+

2
+ v2

)
∫ t

0

∫ t

0
ei(s

′
1Ω+,1′,−2′−s1Ω−,1,−2) ds1 ds

′
1Ŵ

ϵ
0

(
−ξ−, v1

)
Ŵ ϵ

0

(
ξ+, v2

)
dv1 dv2
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Notice that by (3.2), the above expression is non zero only when |ξ−|, |ξ+| = O(1) or equivalently
when |v| = O(ϵ). Therefore, when (5.19) is integrated against v it will produce a term of order
O
(
t2ϵd+2

)
.

The trilinear-linear term (5.12) By definition of û2,

(2π)dλ−2eitξ·
v
ϵE[û0(ξ−)û2(ξ+)]

=− 4m(ϵξ+)

∫ t

0

∫ s1

0

∫
ξ+=ξ1+ξ2
ξ2=ξ3+ξ4

m(ϵξ1)m
2(ϵξ2)m(ϵξ3)m(ϵξ4)e

i(s1Ω+,−1,−2+s0Ω2,3,−4)

E
[
û0(ξ−)û0(ξ1)û0(−ξ3)û0(ξ4)

]
dξ1,3,4 ds0 ds1

+ 4m(ϵξ+)

∫ t

0

∫ s1

0

∫
ξ+=ξ1+ξ2
ξ2=ξ3+ξ4

m(ϵξ1)m
2(ϵξ2)m(ϵξ3)m(ϵξ4)e

i(s1Ω+,−1,2+s0Ω−2,3,−4)

E
[
û0(ξ−)û0(ξ1)û0(−ξ3)û0(ξ4)

]
dξ1,3,4 ds0 ds1

− 2m(ϵξ+)

∫ t

0

∫ s1

0

∫
ξ+=ξ1+ξ2
ξ2=ξ3+ξ4

m(ϵξ1)m
2(ϵξ2)m(ϵξ3)m(ϵξ4)e

i(s1Ω+,1,−2+s0Ω2,−3,−4)

E
[
û0(ξ−)û0(−ξ1)û0(ξ3)û0(ξ4)

]
dξ1,3,4 ds0 ds1

+ 2m(ϵξ+)

∫ t

0

∫ s1

0

∫
ξ+=ξ1+ξ2
ξ2=ξ3+ξ4

m(ϵξ1)m
2(ϵξ2)m(ϵξ3)m(ϵξ4)e

is1(Ω+,1,2+s0Ω−2,−3,−4)

E
[
û0(ξ−)û0(−ξ1)û0(ξ3)û0(ξ4)

]
dξ1,3,4 ds0 ds1.
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By Wick’s formula and symmetry, this is

· · · =− 4(2π)dϵ2dm(ϵξ+)

∫ t

0

∫ s1

0

∫
ξ+=ξ1+ξ2
ξ2=ξ3+ξ4

m(ϵξ1)m
2(ϵξ2)m(ϵξ3)m(ϵξ4)e

i(s1Ω+,−1,−2+s0Ω2,3,−4)

Ŵ ϵ
0

(
ξ4 − ξ−,

ϵ

2

(
ξ4 + ξ−

))
Ŵ ϵ

0

(
ξ1 + ξ3,

ϵ

2
(ξ1 − ξ3)

)
dξ1,3,4 ds0 ds1 (5.23)

− 4(2π)dϵ2dm(ϵξ+)

∫ t

0

∫ s1

0

∫
ξ+=ξ1+ξ2
ξ2=ξ3+ξ4

m(ϵξ1)m
2(ϵξ2)m(ϵξ3)m(ϵξ4)e

i(s1Ω+,−1,−2+s0Ω2,3,−4)

Ŵ ϵ
0

(
ξ1 − ξ−,

ϵ

2

(
ξ1 + ξ−

))
Ŵ ϵ

0

(
ξ3 + ξ4,

ϵ

2
(ξ4 − ξ3)

)
dξ1,3,4 ds0 ds1 (5.24)

+ 4(2π)dϵ2dm(ϵξ+)

∫ t

0

∫ s1

0

∫
ξ+=ξ1+ξ2
ξ2=ξ3+ξ4

m(ϵξ1)m
2(ϵξ2)m(ϵξ3)m(ϵξ4)e

i(s1Ω+,−1,2+s0Ω−2,3,−4)

Ŵ ϵ
0

(
ξ4 − ξ−,

ϵ

2

(
ξ4 + ξ−

))
Ŵ ϵ

0

(
ξ1 + ξ3,

ϵ

2
(ξ1 − ξ3)

)
dξ1,3,4 ds0 ds1 (5.25)

+ 4(2π)dϵ2dm(ϵξ+)

∫ t

0

∫ s1

0

∫
ξ+=ξ1+ξ2
ξ2=ξ3+ξ4

m(ϵξ1)m
2(ϵξ2)m(ϵξ3)m(ϵξ4)e

i(s1Ω+,−1,2+s0Ω−2,3,−4)

Ŵ ϵ
0

(
ξ1 − ξ−,

ϵ

2

(
ξ1 + ξ−

))
Ŵ ϵ

0

(
ξ3 + ξ4,

ϵ

2
(ξ4 − ξ3)

)
dξ1,3,4 ds0 ds1 (5.26)

− 4(2π)dϵ2dm(ϵξ+)

∫ t

0

∫ s1

0

∫
ξ+=ξ1+ξ2
ξ2=ξ3+ξ4

m(ϵξ1)m
2(ϵξ2)m(ϵξ3)m(ϵξ4)e

i(s1Ω+,1,−2+s0Ω2,−3,−4)

Ŵ ϵ
0

(
ξ4 − ξ−,

ϵ

2

(
ξ4 + ξ−

))
Ŵ ϵ

0

(
ξ3 + ξ1,

ϵ

2
(ξ3 − ξ1)

)
dξ1,3,4 ds0 ds1 (5.27)

+ 4(2π)dϵ2dm(ϵξ+)

∫ t

0

∫ s1

0

∫
ξ+=ξ1+ξ2
ξ2=ξ3+ξ4

m(ϵξ1)m
2(ϵξ2)m(ϵξ3)m(ϵξ4)e

i(s1Ω+,1,2+s0Ω−2,−3,−4)

Ŵ ϵ
0

(
ξ4 − ξ−,

ϵ

2

(
ξ4 + ξ−

))
Ŵ ϵ

0

(
ξ3 + ξ1,

ϵ

2
(ξ3 − ξ1)

)
dξ1,3,4 ds0 ds1 (5.28)

Term (5.23) We perform the change of variables
η1 = ξ4 − ξ−

η2 = ξ1 + ξ3

v2 =
ϵ
2(ξ1 − ξ3)

(5.29)

which is of Jacobian ϵd. In these new variables,

ξ = ξ+ − ξ− = ξ1 + ξ2 − ξ− = ξ1 + ξ3 + ξ4 − ξ− = η1 + η2

ϵ

2
(ξ4 + ξ−) =

ϵ

2
(η1 + 2ξ−) =

ϵ

2
(η1 +

2v

ϵ
− ξ) = v − ϵ

2
η2.

Therefore,

(5.23) = −4(2π)dϵdm
(
v +

ϵ

2
ξ
)∫ t

0

∫ s1

0

∫
ξ=η1+η2

m
(
v2 +

ϵ

2
η2

)
m
(
−v2 +

ϵ

2
η2

)
m2
(
v − v2 +

ϵ

2
η1

)
m
(
v +

ϵ

2
(η1 − η2)

)
ei(s1Ω+,−1,−2+s0Ω2,3,−4)Ŵ ϵ

0

(
η1, v −

ϵ

2
η2

)
Ŵ ϵ

0 (η2, v2) dη1,2 dv2 ds0 ds1
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The resonance moduli expressed in the new variables are

Ω+,−1,−2 =
1

2ϵ2
(
|v|2 − |v2|2 − |v − v2|2

)
+

1

2ϵ
(v · ξ − v2 · η2 − (v − v2) · η1) +

1

8

(
|ξ|2 − |η2|2 − |η1|2

)
and

Ω2,3,−4 =
1

2ϵ2
(
|v − v2|2 + |v2|2 − |v|2

)
+

1

2ϵ
((v − v2) · η1 − v2 · η2 − v · (η1 − η2)) +

1

8

(
|η1|2 + |η2|2 − |η1 − η2|2

)
Their sum and difference are{

Ω+,−1,−2 +Ω2,3,−4 =
α1
ϵ + γ1

Ω+,−1,−2 − Ω2,3,−4 =
Ω1
ϵ2

+ 1
ϵ β̃1 + γ̃1


Ω1 = |v|2 − |v2|2 − |v − v2|2

α1 = v · ξ − v · η1 − v2 · η2
β̃1, γ1, γ̃1 = O(1).

Therefore, performing the change of variables τ = s0+s1
2 , σ = s1−s0

2 , we obtain∫ t

0

∫ s1

0
ei(s1Ω+,−1,−2+s0Ω2,3,−4) ds0 ds1 = 2

∫ t

0

∫ θ

0
eiτ(

α1
ϵ
+γ1)eiσ(

Ω1
ϵ2

+
β̃1
ϵ
+γ̃1) dσ dτ, θ = min{τ, t− τ}

At this point, we will resort here to the following lemma.

Lemma 5.2. For a compactly supported function f such that ∥∂k
xf∥ ≲k 1, for any λ > 0, and for

any N ∈ N, ∫ ∫ λ

0
eiσx dσ f(x) dx = 2π(P+f)(0) +O(λ−N ),

where P+ is the projector on positive frequencies, in other words the Fourier multiplier with symbol
1[0,∞).

Proof. Since the Fourier transform of
∫ λ
0 eiσx dσ is

√
2π1[0,λ], and by self-adjointness of P+,∫ ∫ λ

0
eiσx dσ f(x) dx =

∫
P+

[∫ λ

−λ
eiσx dσ

]
f(x) dx =

∫ ∫ λ

−λ
eiσx dσ P+f(x) dx.

The desired conclusion now follows by Lemma 5.1. □

The conclusion of this lemma can be written somewhat formally as∫ λ

0
eiσx dσ = 2πδ+(x) +O(λ−N ),

where δ+ is the distribution defined by ⟨δ+, f⟩ = (P+f)(0). For the expression that we are trying
to approximate, this implies that∫ t

0

∫ s1

0
ei(s1Ω+,−1,−2+s0Ω2,3,−4) ds0 ds1 = 2

∫ t

0
eiτ(

α1
ϵ
+γ1)ϵ2

[
2πδ+(Ω1 + ϵβ̃1 + ϵ2γ̃1) +O((1 +

θ

ϵ2
)−N )

]
dτ

= 4πϵ2
∫ t

0
eiτ

α1
ϵ δ+(Ω1) dσ +O(ϵ4).

Therefore,

(5.23) = −8(2π)d+1ϵd+2m2 (v)

∫
ξ=η1+η2

∫ t

0
m2(v2)m

2(v − v2)e
iτ

α1
ϵ dτ δ+(Ω1)Ŵ

ϵ
0 (η1, v) Ŵ

ϵ
0 (η2, v2) dη1,2 dv2

+O(t2ϵd+2 + ϵd+4)
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Setting v1 = v− v2, or equivalently adding δ(Σ0,−1,−2) = δ(v− v1− v2) to the above integrand, this
expression can be written as

(5.23) = −8(2π)d+1m2(v)ϵd+2

∫
δ(ξ + η1 + η2)δ(Σ0,−1,−2)δ+(Ω0,−1,−2)m

2(v1)m
2(v2)∫ t

0
eiτ

α1
ϵ dτ Ŵ ϵ

0 (η1, v) Ŵ
ϵ
0 (η2, v2) dη1,2 dv1,2 +O(t2ϵd+2 + ϵd+4)

The other term in (5.12) will give, by a similar calculation projection to positive frequencies.
So adding those two, we obtain the same term without any projection. This gives a combined
contribution of

− 8(2π)d+1ϵd+2m2(v)

∫
δ(ξ − η1 − η2)δ(Σ0,−1,−2)δ(Ω0,−1,−2)m

2(v1)m
2(v2)∫ t

0
eiτ

α1
ϵ dτ Ŵ ϵ

0 (η1, v) Ŵ
ϵ
0 (η2, v2) dη1,2 dv1,2 +O(t2ϵd+2 + ϵd+4).

Term (5.24) As we will see this terms is degenerate and will vanish in the limit. For the term
(5.24) we perform the change of variables

η1 = ξ1 − ξ−

η2 = ξ3 + ξ4

v2 =
ϵ
2(ξ4 − ξ3)

(5.30)

which is of Jacobian ϵd. In these new variables,

ξ = ξ+ − ξ− = ξ1 + ξ2 − ξ− = ξ1 + ξ3 + ξ4 − ξ− = η1 + η2

ϵ

2
(ξ1 + ξ−) =

ϵ

2
(η1 + 2ξ−) =

ϵ

2
(η1 +

2v

ϵ
− ξ) = v − ϵ

2
η2.

Therefore,

(5.24) = −4(2π)dϵdm
(
v +

ϵ

2
ξ
)∫ t

0

∫ s1

0

∫
ξ=η1+η2

m
(
v +

ϵ

2
(η1 − η2)

)
m2(ϵη2)m

(
v2 −

ϵ

2
η2

)
m
(
v2 +

ϵ

2
η2

)
ei(s1Ω+,−1,−2+s0Ω2,3,−4)Ŵ ϵ

0

(
η1, v −

ϵ

2
η2

)
Ŵ ϵ

0 (η2, v2) dη1,2 dv2 ds0,1

= O(t2ϵd+2),

since |η2| = O(1).

Term (5.25) We perform the change of variables (5.30) which yields

(5.25) = 4(2π)dϵdm
(
v +

ϵ

2
ξ
)∫ t

0

∫ s1

0

∫
ξ=η1+η2

m
(
v2 +

ϵ

2
η2

)
m
(
−v2 +

ϵ

2
η2

)
m2
(
v − v2 +

ϵ

2
η1

)
m
(
v +

ϵ

2
(η1 − η2)

)
ei(s1Ω+,−1,2+s0Ω−2,3,−4)Ŵ ϵ

0

(
η1, v −

ϵ

2
η2

)
Ŵ ϵ

0 (η2, v2) dη1,2 dv2 ds0,1,

where the resonance moduli are

Ω+,−1,2 =
1

2ϵ2
(
|v|2 − |v2|2 + |v − v2|2

)
+

1

2ϵ
(v · ξ − v2 · η2 + (v − v2) · η1) +

1

8

(
|ξ|2 − |η2|2 + |η1|2

)
Ω−2,3,−4 =

1

2ϵ2
(
−|v − v2|2 + |v2|2 − |v|2

)
+

1

2ϵ
(−(v − v2) · η1 − v2 · η2 − (η1 − η2) · v)

+
1

8

(
|η2|2 − |η1|2 − |η1 − η2|2

)
.
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Their sum and difference are{
Ω+,−1,2 +Ω−2,3,−4 =

α1
ϵ ,+γ2

Ω+,−1,2 − Ω−2,3,−4 =
Ω2
ϵ2

+ β̃2

ϵ + γ̃2


Ω2 = |v|2 − |v2|2 + |v2 − v|2

α1 = v · ξ − v · η1 − v2 · η2
γ2, β̃2, γ̃2 = O(1)

By a similar argument to the one used for (5.23), we obtain, after adding with the symmetric term
in (5.12), a contribution of

8(2π)d+1ϵd+2m2(v)

∫
δ(ξ − η1 − η2)δ(Σ0,1,−2)δ(Ω0,1,−2)m

2(v1)m
2(v2)∫ t

0

(
eiτ

α1
ϵ dτ

)
Ŵ ϵ

0 (η1, v) Ŵ
ϵ
0 (η2, v2) dη1,2 dv1,2 +O(t2ϵd+2 + ϵd+4)

where Σ0,1,−2 = v + v1 − v2 and Ω0,1,−2 = |v|2 + |v1|2 − |v2|2.

Term (5.26). This term is degenerate and gives a contribution O(t2ϵd+2) similarly to (5.24).

Term (5.27) We perform the change of variables
η1 = ξ3 + ξ1

η2 = ξ4 − ξ−

v1 =
ϵ
2(ξ3 − ξ1)

(5.31)

which is of Jacobian ϵd. In these new variables,

ξ = ξ+ − ξ− = ξ1 + ξ2 − ξ− = ξ1 + ξ3 + ξ4 − ξ− = η1 + η2

ϵ

2
(ξ4 + ξ−) =

ϵ

2
(η2 + 2ξ−) =

ϵ

2
(η2 +

2v

ϵ
− ξ) = v − ϵ

2
η1.

Therefore,

(5.27) = −4(2π)dϵdm
(
v +

ϵ

2
ξ
)∫ t

0

∫ s1

0

∫
ξ=η1+η2

m
(
v1 +

ϵ

2
η1

)
m
(
−v1 +

ϵ

2
η1

)
m2
(
v + v1 +

ϵ

2
η2

)
m
(
v +

ϵ

2
(η2 − η1)

)
ei(s1Ω+,1,−2+s0Ω2,−3,−4)Ŵ ϵ

0 (η1, v1) Ŵ
ϵ
0

(
η2, v −

ϵ

2
η1

)
dη1,2 dv1 ds0,1.

The resonance moduli are given by

Ω+,1,−2 =
1

2ϵ2
(
|v|2 + |v1|2 − |v + v1|2

)
+

1

2ϵ
(v · ξ − v2 · η1 − (v + v1) · η2) +

1

8

(
|ξ|2 + |η1|2 − |η2|2

)
Ω2,−3,−4 =

1

2ϵ2
(
|v + v1|2 − |v1|2 − |v|2

)
+

1

2ϵ
((v + v1) · η2 − v1 · η1 − v · (η2 − η1)) +

1

8

(
|η2|2 − |η1|2 − |η2 − η1|2

)
,

with sum and difference{
Ω+,1,−2 +Ω2,−3,−4 =

α2
ϵ + γ3

Ω+,1,−2 − Ω2,−3,−4 =
Ω3
ϵ2

+ 1
ϵ β̃3 + γ̃3


Ω3 = |v|2 + |v1|2 − |v + v1|2

α2 = v · ξ − v1 · η1 − v · η2
γ3, β̃3, γ̃3 = O(1).

By a similar argument to the above, we obtain a combined contribution with the symmetric term
in (5.12)

− 8(2π)d+1ϵd+2m2(v)

∫
δ(ξ − η1 − η2)δ(Σ0,1,−2)δ(Ω0,1,−2)m

2(v1)m
2(v2)∫ t

0

(
eiτ

α2
ϵ dτ

)
Ŵ ϵ

0 (η1, v1) Ŵ
ϵ
0 (η2, v) dη1,2 dv1,2 +O(t2ϵd+2 + ϵd+4).
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Term (5.28) We perform the change of variables (5.31), which yields

(5.28) = 4(2π)dϵdm
(
v +

ϵ

2
ξ
)∫ t

0

∫ s1

0

∫
ξ=η1+η2

m
(
v1 +

ϵ

2
η1

)
m
(
−v1 +

ϵ

2
η1

)
m2
(
v + v1 +

ϵ

2
η2

)
m
(
v +

ϵ

2
(η2 − η1)

)
ei(s1Ω+,1,2+is0Ω−2,−3,−4)Ŵ ϵ

0

(
η1, v −

ϵ

2
η2

)
Ŵ ϵ

0 (η2, v2) dη1,2 dv2 ds0 ds1,

with resonance moduli

Ω+,1,2 =
1

2ϵ2
(
|v|2 + |v2|2 + |v + v1|2

)
+

1

2ϵ
(v · ξ − v2 · η2 + (v + v2) · η1) +

1

8

(
|ξ|2 + |η2|2 + |η1|2

)
Ω−2,−3,−4 = − 1

2ϵ2
(
|v + v2|2 + |v2|2 + |v1|2

)
+

1

2ϵ
(−(v + v2) · η1 − v2 · η2 − v(η1 − η2))

− 1

8

(
|η1|2 + |η2|2 + |η1 − η2|2

)
.

We have{
Ω+,1,2 +Ω−2,−3,−4 =

α4
ϵ ,+γ4

Ω+,1,2 − Ω−2,−3,−4 =
Ω
ϵ2

+ β̃4

ϵ + γ̃4


Ω0,1,2 = |v|2 + |v2|2 + |v + v2|2

α4 = (v − v2) · η2 = v · ξ − 2v2 · η2 − v · (η1 − η2)

γ4, β̃4, γ̃4 = O(1)

By the same argument as above, this term will give no contribution besides O(ϵ3t+ϵ4t+ϵd+2min{t, ϵ2}),
since it will have a factor δ(Ω0,1,2).

Combining all the above, and using the fact that t << ϵ, Tkin = 1
λ2ϵ2

, we obtain

Ŵ ϵ[u](ξ, v) =Ŵ ϵ
0(ξ, v) +

4(2π)1−
d
2

Tkin
e−itξ· v

ϵm2(v)

∫
δ(ξ − η1 − η2)δ(Σ0,−1,−2)δ(Ω0,−1,−2)m

2(v1)m
2(v2)

×
[(∫ t

0
eiτ

α0
ϵ dτ

)
Ŵ ϵ

0 (η1, v1) Ŵ
ϵ
0 (η2, v2)−

(∫ t

0
eiτ

α1
ϵ dτ

)
Ŵ ϵ

0 (η1, v) Ŵ
ϵ
0 (η2, v2)

−
(∫ t

0
eiτ

α2
ϵ dτ

)
Ŵ ϵ

0 (η1, v1) Ŵ
ϵ
0 (η2, v)

]
dη1,2 dv1,2

+
8(2π)1−

d
2

Tkin
e−itξ· v

ϵm2(v)

∫
δ(ξ − η1 − η2)δ(Σ0,1,−2)δ(Ω0,1,−2)m

2(v1)m
2(v2)

×
[(∫ t

0
eiτ

α0
ϵ dτ

)
Ŵ ϵ

0 (η1, v1) Ŵ
ϵ
0 (η2, v2) +

(∫ t

0
eiτ

α1
ϵ dτ

)
Ŵ ϵ

0 (η1, v) Ŵ
ϵ
0 (η2, v2)

−
(∫ t

0
eiτ

α2
ϵ dτ

)
Ŵ ϵ

0 (η1, v1) Ŵ
ϵ
0 (η2, v)

]
dη1,2 dv1,2

+ λ2ϵ−d × (5.19) +O(λ2ϵ4) + (2π)−d/2ϵ−d × (h.o.t.) (5.32)

where 

Tkin = 1
λ2ϵ2

Σ0,−1,−2 = v − v1 − v2

Σ0,1,−2 = v + v1 − v2

Ω0,−1,−2 = |v|2 − |v1|2 − |v2|2

Ω0,1,−2 = |v|2 + |v1|2 − |v2|2

α0 = v · ξ − v1 · η1 − v2 · η2
α1 = v · ξ − v1 · η1 − v · η2
α2 = v · ξ − v · η1 − v2 · η2,
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and the higher order terms are given by (5.14).

5.4. Conclusion. Gathering the above computations gives the following proposition.

Proposition 5.3. In the regime ϵ2 ≪ t ≪ min(ϵ, Tkin) there holds∫
|ρ̂(t, ξ, v)− Ŵ ϵ[u](t, ξ, v)| dv = O

(
t

Tkin

)2

+O(λ2ϵ4) + (2π)−d/2ϵ−d

∫
Rd

(h.o.t.) dv, (5.33)

where the higher order terms are given by (5.14).

Proof. Again, we prove the result for m(0) = 0 and ω0 = 0. Combining (5.2) and (5.32), we obtain
that

ρ̂(t, ξ, v) = Ŵ ϵ[u](t, ξ, v) +O

(
t

Tkin

)2

+ λ2ϵ−d × (5.19) +O(λ2ϵ4) + h.o.t. (5.34)

Since integrating (5.19) gives a contribution O(t2ϵd+2) and t ≪ ϵ, we obtain∫
|ρ̂(t, ξ, v)− Ŵ ϵ[u](t, ξ, v)| dv = O

(
t

Tkin

)2

+O(λ2ϵ4) + (2π)−d/2ϵ−d

∫
Rd

(h.o.t.) dv.

□

The aim of the rest of the present paper is to estimate the higher order terms and show they are
smaller than the leading term.

6. Graph analysis for the diagrammatic expansion of the solution

Proceeding as in [11] (based on [31]), we perform a diagrammatic expansion and write un as a
sum over Feynman graphs. There are numerous differences between the framework developed in
that paper, and the one needed in the present manuscript. First, the equation here is quadratic,
instead of cubic, resulting in a binary instead of a ternary tree; second, waves of arbitrary parities
might interact; third, the problem being set on the whole space Rd, certain sums are replaced by
integrals and new "slow" variables η appear. Most importantly, we handle the time constraints in
a completely novel way, in order to deal with dispersion relations which are nonzero at the origin
ω(ξ) = ϵ−2 + |ξ|2

2 , resulting in the introduction of new and different tools for graph analysis.

6.1. Main result. The main result from this graphical expansion is the following: the expectation
in probability of Lebesgue, Sobolev and Bourgain norms for the approximating series

∑
un can

be computed as a sum of oscillatory integrals in large dimensions. In this sum, each oscillatory
integral is completely described by an associated graph. Moreover, the oscillatory phases in each
oscillatory integral can be divided between those of degree zero, those of degree one and linear, and
those of degree one and quadratic, according to their dependance on interaction free variables. This
distinction will be useful later on.

For the expectation of the L2 norm, the outcome of this analysis is the following. All objects
mentioned in the Proposition below are defined rigorously afterwards in the rest of this section.

Proposition 6.1. For each n ≥ 0, the following holds true. There exists a finite set Gp
n of paired

graphs of depth n and, for each t ≥ 0, a function Ft : G
p
n 7→ C such that:

E∥un(t)∥2L2 =
∑
G∈Gp

n

Ft(G). (6.1)
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For each G ∈ G
p
n, there holds the formula:

Ft(G) = (2π)
d
2λ2nϵd(n+1)

∫
η∈Rd(n+1)

0

∫
ξf∈Rd(n+1)

∫
s∈R2n

+

∆t(s)dξ
f dη ds (6.2)

MG(ξ)
∏

{i,j}∈P

Ŵ ϵ
0(ηi,j ,

ϵ

2
(σ0,iξ0,i + σ0,jξ0,j))

∏
v∈Vi

e
−isv

∑
ṽ∈p+(v) Ωṽ

where we wrote ηi,j instead of η{i,j} to simplify notations2 and where we used the notations:

• η = (ηi,j){i,j}∈P ∈ (Rd)n+1 are the slow free variables.
• Rd(n+1)

0 = {η ∈ Rd(n+1),
∑

ηi,j = 0}.
• Vi = {v1, ..., v2n} gathers the interaction vertices, ordered according to the integration order.
• s = (sv)v∈Vi ∈ R2n

+ gathers intermediate time slices.
• P = P (G) is a pairing, a partition of {1, 2n+2} into pairs {i, j} uniquely determined by G.
• ξf = (ξf1 , ...ξ

f
n+1) ∈ (Rd)n+1 are the interaction free variables.

• ∆t is the indicatrix function of a set: the set of intermediate time slices s satisfying the time
constraints of the graph.

• MG(ξ) encodes the effects of the Fourier multiplier m:

MG(ξ) =
2n+2∏
i=1

m(ϵξ0,i)
2n∏
k=1

m2(ϵξ̃k)

• p+(v) ⊂ Vi is the set containing v and the vertices up on the right of v in the graph. It is
such that for 1 ≤ k < k′ ≤ 2n, vk /∈ p+(vk′).

There exists two disjoint sets of degree zero vertices V0 and degree one vertices V1 such that
Vi = V0 ∪V1 and #V0 = #V1 = n. The set V1 can be labeled by indices 1 ≤ k1 < ... < kn ≤ 2n,
in other words V1 = {vk1 , ..., vkn}. This set can be further partitioned into linear and quadratic
vertices V1 = V1

l ∪V1
q with V1

l ∩V1
q = ∅. The frequency associated to the left edge below vki is an

interaction free frequency, denoted ξfi .

(i) For each 1 ≤ k ≤ 2n, ξ̃k is the frequency on top of vk, given by:

ξ̃k =
∑

1≤j≤n, kj≥k

c̃k,jξ
f
j +

∑
{i′,j′}∈P,i′<j′

c̃k,i′,j′ηi′,j′ with c̃k,j , c̃k,i′,j′ ∈ {−1, 0, 1}.

(ii) For every {i, j} ∈ P , there holds that σ0,i ∈ {±1} and:

ξ0,i =

n∑
j=0

ci,jξ
f
j +

∑
{i′,j′}∈P,i′<j′

ci,i′,j′ηi′,j′ with ci,j , ci,i′,j′ ∈ {−1, 0, 1}.

Moreover, the map ((ξfi )1≤i≤n+1, (ηi,j){i,j}∈P ) 7→ (σ0,iξ0,i + σ0,jξ0,j , ηi,j){i,j}∈P, i<j is a bi-
jection onto Rd(n+1) × Rd(n+1)

0 .
(iii) Assume 1 ≤ k ≤ 2n is such that k = ki for some 1 ≤ i ≤ n, so that vk ∈ V1. Then there

exist two signs σk, σ̃k ∈ {±1}2 such that, if v ∈ V1
l :

Ωvk = σkξ̃k · ξfi +

{
1
2(σ̃k + σk)|ξ̃k|2 if ω(ξ) = |ξ|2

2 ,

σ̃kϵ
−2 + 1

2(σ̃k + σk)|ξ̃k|2 if ω(ξ) = |ξ|2
2 + ϵ−2,

(6.3)

2This abuse of notation will be made throughout the paper
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and if v ∈ V1
q :

Ωvk = −σkξ
f
i · (ξfi + ξ̃k) +

{
1
2(σ̃k − σk)|ξ̃k|2 if ω(ξ) = |ξ|2

2 ,

(σ̃k − 2σk)ϵ
−2 + 1

2(σ̃k − σk)|ξ̃k|2 if ω(ξ) = |ξ|2
2 + ϵ−2.

(6.4)

(iv) Assume that 1 ≤ k ≤ 2n is such that ki−1 < k < ki for some 1 ≤ i ≤ n, so that vk ∈ V0.
Then Ωvk is a quadratic polynomial which depends only on the variables {ηi,j}{i,j}∈P, i<j,
and on the variables (ξfj )j≥i.

Remark 6.2. One crucial information in Proposition 6.1 is that for all 1 ≤ i ≤ n:

• For k = ki, the quantity e
−isvk

∑
ṽ∈p+(vk) Ωṽ does not depend on the previous free variables

ξfj for j < i. Moreover, only Ωvk actually depends on ξfi and its dependance is explicit,
given by (6.3) and (6.4).

• For k > ki either if vk is a degree zero or degree one vertex, the quantity e
−isvk

∑
ṽ∈p+(vk) Ωṽ

does not depend on the previous free variables ξfj for j ≤ i.

The rest of this section presents the diagrammatic expansion for the Dyson series, and in particular
defines rigorously all the objects mentioned in Proposition 6.1, leading eventually to its proof at
the end of Subsection 6.5. Some elementary facts from graph analysis are given without proofs, in
which case we refer to [11] for the details.

6.2. Graphical representation of the Dyson series. This subsection explains how un can be
represented as a sum of functions represented by graphs.

6.2.1. Definition of an interaction graph. An interaction graph of depth n is an oriented binary
planar tree G = {V, va, vl, vr, p, σ) where:

• V = VR∪Vi∪V0 is the collection of vertices. VR = {vR} contains the root vertex (represent-
ing ûG(ξR)). V0 ̸= ∅ contains the initial vertices (representing the initial datum û0(ξv0)).
Vi contains the n interaction vertices (each representing an iteration of the nonlinearity).

• va : V0 ∪Vi → Vi ∪VR, vl : Vi → V0 ∪Vi, and vr : Vi ∪VR → V0 ∪Vi represent the positions
of the vertices. va(v), vl(v), and vr(v) are respectively the vertices above, below on the left,
and below on the right of v. They satisfy the following:
(i) There exists a unique top vertex vtop ∈ V0∪Vi such that va(vtop) = vR. By convention,

it is at bottom right of the root vertex: vtop = vr(vR).
(i) For all v ∈ Vi, there holds vl(v) ̸= vr(v) and these are the only antecedents of v by va,

i.e. {ṽ ∈ V0 ∪Vi, va(ṽ) = v} = {vl(v), vr(v)}.
(ii) For all v0 ∈ V0, there exists a unique va(v0) ∈ VR ∪Vi such that (v0, va) ∈E.
We also denote ea(v) = (v, va(v)), el(v) = (v, vl(v)), and er(v) = (v, vr(v)).

• E ⊂ V2 is the set of oriented edges (representing a free evolution eis∆), and is equal to:

V = {(vtop, vR)} ∪v∈Vi {(vl(v), v), (vr(v), v)}.

Above, (vtop, vR) is called the root edge and for v ∈ Vi, (vl(v), v) and (vr(v), v) are called
interaction edges.

• σ : Vi ∪ V0 → {−1, 1} is the parity (encoding if complex conjugation was taken in the
iteration of the nonlinearity). For (i) above, it must satisfy that σv = +1. We extend it to
a parity function for the edges σ : E → {−1, 1} (slightly abusing notations) as follows: if
e = (v, v′) then σe = σv is the parity of the vertex below. The total parity of G is defined
as σG =

∏
v∈Vi∪V0

σv.
With this definition, the graph G is a connected tree with n+1 initial vertices. The set of interaction
graphs of depth n is denoted by G(n).
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6.2.2. Frequencies and Kirchhoff laws. To each edge e ∈E we associate a frequency variable ξe ∈ Rd.
The Kirchhoff laws of the graph specify that, at each interaction vertex, the two frequencies of the
edges below add up to the frequency of the edge above, end that the output frequency of the edge
on top of the graph is ξR. This is written as:

∆ξR(ξ) = δ(ξR − ξea(vtop))∆(ξ), with ∆(ξ) =
∏
v∈Vi

δ(ξea(v) − ξel(v) − ξer(v)).

The frequency multiplier M(ξ) is then expressed as:

M(ξ) = m(ϵξea(vtop))
∏

v0∈V0

m(ϵξea(v0))
∏

v∈Vi\{vtop}

m2(ϵξea(v)). (6.5)

6.2.3. Interaction time variables and time constraints. A forward path of length l is a finite collection
of edges p = (e1, ..., el) such that for each 1 ≤ i ≤ i+ 1 ≤ l, writing ei = (v, v′) and ei+1 = (ṽ, ṽ′),
there holds v′ = ṽ. We can thus write alternatively with a slight abuse of notations p = (v1, ..., vl+1)
where ei = (vi, vi+1). We then say that p leads to vl+1. We remark that for each initial vertex
v0 ∈ V0, there exists a unique forward path p = (v0, v1, ..., vR) ending at the root vertex.

Given any two initial vertices v0 ̸= v′0 ∈ V0, we say that v0 is at the left of v′0, if, denoting by
p = (v0, v1, ..., ṽ, v, ..., vR) and p = (v′0, v

′
1, ..., ṽ

′, v, ..., vR) their forward path ending at the root
vertex, they intersect at v ∈ Vi and there holds that ṽ and ṽ′ are at the left and right respectively
of v, namely ṽ = vl(v) and ṽ′ = vr(v). This defines a total order on the set of initial vertices, so
that we order it as V0 = (v0,1, ..., v0,n+1) from left to right. We adapt the notation for the frequency
variables and write ξea(v0,i) = ξ0,i for 1 ≤ i ≤ n+ 1.

Given any two vertices v ̸= v′ ∈ V, we say that v is above v′ (or v′ is below v) and write v > v′

(or v′ < v), if v belongs to the unique forward path starting at v′ and ending at the root vertex.
This defines a partial ordering for the vertices of the graph, called the time order.

To each vertex we associate a time variable. The time variable of any initial vertex v0 ∈ V0 is
tv0 = 0. To the root vertex we associate the total time tvR = t. To each interaction vertex v ∈ Vi

we associate an interaction time variable tv ∈ R+. We require that tv ≤ tv′ whenever v is below v′.
The time constraint function is thus:

∆t(t) = δ(tvR − t)
∏

v,v′∈Vi, v<v′

1(tv ≤ tv′).

6.2.4. General formula. We describe the expansion (1.5) which encodes iterations of Duhamel for-
mula (1.5) via diagrams. For all n ≥ 0:

un =
∑

G∈G(n)

uG, (6.6)

where the sum is performed over all graphs G in the set of all interaction graphs of depth n denoted
by Gn, and where for each G ∈ Gn,

uG = u+G + u−G,

where u+G and u−G stand for the decomposition between positive and negative times, i.e. u+G(t) =
1(t ≥ 0)uG(t), and are given by:

u+G(t, ξR) = e−itω(ξR)

(
−iλ

(2π)d/2

)n

(−1)σG

∫
Rd(2n+1)

∫
Rn+1
+

dξ dt∆ξR(ξ)∆t(t) (6.7)

M(ξ)

n+1∏
i=1

û0(ξ0,i, σ0,i)
∏
v∈Vi

e−iΩvtv ,
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and

u−G(t, ξR) = e−itω(ξR)

(
−iλ

(2π)d/2

)n

(−1)σG+n

∫
Rd(2n+1)

∫
Rn+1
+

dξ dt∆ξR(ξ)∆−t(t) (6.8)

M(ξ)
n+1∏
i=1

û0(ξ0,i, σ0,i)
∏
v∈Vi

eiΩvtv ,

where we used the following notations:
• To each graph G ∈ Gn is associated a parity function σ = σ(G). It determines the total

parity of the graph σG ∈ N which records how many complex conjugations are taken in the
interactions in the graph. To each vertex v, it associates a parity σv ∈ ±1. In particular,
it determines (σ0,i)1≤i≤n+1 ∈ {±1}n+1 which records, for each initial vertex, the parity
(whether u or u interacts).

• ξ = (ξe)e∈E ∈ Rd(2n+1) gathers all the frequency variables and determines (ξ0,i)1≤i≤n+1.
• t = (tv)v∈Vi∪VR

∈ Rn
+ gathers all the interaction time variables for each interaction vertex

v ∈ Vi, and the time variable of the root vertex.
• ∆ξR(ξ) encodes the Kirchhoff laws of the graph.
• ∆t(t) encodes the time constraints of the graph.
• M(ξ) is a product of multipliers corresponding to M , i.e. to which form of the nonlinearity

was taken.
• û0(ξ,+1) = û0(ξ) and û0(ξ,−1) = û0(ξ) = û0(−ξ).
• The resonance modulus corresponding to the interaction vertex v is:

Ωv = σva(v)ω(ξva(v))− σvl(v)ω(ξvl(v))− σvr(v)ω(ξvr(v)). (6.9)

The formulas (6.7) and (6.8) are very similar. This is due to the following symmetry: if u(t) solves
(1.1), then u(−t) is also a solution. We will thus from now on focus on positive times and consider
(6.7), as adaptations for negative times are straightforward.

An example, treated in the next subsubsection 6.2.5, will probably be most helpful. The precise
definitions of all the objects above in (6.7) are given in subsubsections 6.2.1, 6.2.2 and 6.2.3.

6.2.5. Basic examples. We give as an illustration the most basic graph that represents the Fourier
transform of the function −iλ

(2π)d/2

∫ t
0 dt

′e−it′ω(D)M(Meit
′ω(D)u0)

2 evaluated at (t, ξR) (where t′ is
renamed as tv1):

t

tv1

v0,1 v0,2

vR

v1

σ0,1 = +1 σ0,2 = +1

σv1 = +1

ξ0,1 ξ0,2

ξv1
Ωv1 = ω(ξv1)− ω(ξ0,1)− ω(ξ0,2)

Root vertex

Interaction vertices

Initial vertices

It is one of the four elements in the sum
∑

G∈G1
in the formula (6.7) for û1. The three remaining

elements, corresponding to the development (Mu0 +Mu0)2 = (Mu0)2 +Mu0Mu0 +Mu0Mu0 +

(Mu0)2, are represented by the graphs below:
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+ −

+

− +

+

− −

+

6.3. Solving time constraints. We present here a change of variables t 7→ s from time variables
to time slices, which is more suitable for understanding the interplay between the time constraint
∆t and the oscillatory phases e−itvΩv in (6.7).

6.3.1. Maximal upright paths. We study here specific paths that are used in the next subsubsection
to solve the time constraints.

A path is said to be up and to the right, or upright, if is a forward path p = (v1, ..., vℓ+1) whose
vertices are all (except possibly the last one) at the bottom left of the vertex above them, namely
vi = vl(vi+1) for i = 1, ..., ℓ. An upright path p = (v1, ..., vℓ+1) is said to be maximal if it starts at
an initial vertex v1 ∈ V0, and if it finishes at a vertex that is at the bottom right of the vertex above
it: vℓ+1 = vr(va(vℓ+1)). The set of all maximal upright paths is denoted by Pm(G). The number
of such paths is denoted by:

nm(G) = #Pm(G).

For any v ∈ Vi, there exists a unique maximal upright path p ∈ Pm containing v. We denote
it by p(v). By convention, we write p(vR) = {vR} (slightly abusing notations since {vR} is not a
path). We denote the bottom and top parts of this maximal path at v by:

p+(v) = {v′ ∈ p(v), v′ ≥ v} and p−(v) = {v′ ∈ p(v), v′ ≤ v}.
For any maximal path p = (v1, ..., vℓ+1) ∈ Pm, we say that the vertex above the last vertex of

the path, v = va(vℓ+1) ∈ Vi ∪VR, is the junction vertex of p and denote it by v = vj(p). The set
of all vertices that are junction vertices is denoted by Vj . Note that vR ∈ Vj for n ≥ 1. Given a
junction vertex v ∈ Vj , we denote by pj(v) the maximal upright path such that v = vj(pj(v)).

We say that a vertex v ∈ Vi∪VR is constraining p ∈ Pm if it belongs to the upright path leading
to vj(p) which is equivalent to v ∈ p−(vj(p)) . We then write p ◁ v. By convention, vR ▷p(vtop).

Below is an example of a interaction graph detailing its maximal upright paths, the vertices just
above them, and which vertices constrain which maximal paths.

p4

p3

p2

p1

Maximal paths up and to the right

v1

v2v3

v4 = vj(p2)

v5 = vj(p3)

v6 = vj(p1)

vR = vj(p4) Vertices constraining

maximal paths:

v3 ⊲p2

v4 ⊲p2

v5 ⊲p1, v5 ⊲p3

v6 ⊲p1.

6.3.2. Solving the time constraints. The time constraint function ∆t is then completely determined
by the maximal upright paths.

To any edge e = (v, v′) that is to the left in the sense that v = vl(v
′), we associate a time slice

se. Time slices sv are equivalently associated to all vertices v ∈ V the following way:
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• If v ∈ Vi then there exists a unique edge e at its bottom left, which is e = (vl(v), v). We
then associate to v a time slice sv which is the same as that of e, i.e. sv = se.

• If v ∈ V0 then we set sv = 0.
• If v = vR then we set svR = t.

The set of all time slices of interaction vertices and of the root vertex is denoted by s = (sv)v∈Vi∪VR
.

We impose that the time variables and the time slices of the interaction vertices satisfy the
following compatibility condition. Given a vertex v, its time variable tv is equal to the sum of the
time slices along the unique upright path leading to v:

tv =
∑

ṽ∈p−(v)

sṽ, for all v ∈ V.

The time constraint function ∆t(t) imposes that tv′ ≤ tv whenever v′ is below v. This is equivalent
to the following condition for the time slices. Given any maximal upright path p ∈ Pm, and given
its junction vertex vj(p), then the sum of the time slices of p is less than or equal to the sum of
the time slices of the upright path leading to vj(p). This is written as:

∆t(t) = 1 ⇔
∑
v∈p

sv ≤
∑
ṽ▷p

sṽ for all p ∈ Pm and svR = t.

Note that, for the last maximal path p(vtop) whose initial vertex is v0,1, the inequality above on the
right means: ∑

v∈p(vtop)

sv ≤ t.

We can eventually define the time constraint function for time slices, that we still denote by ∆t[G](s)
with some slight abuse of notations, by:

∆t(s) = δ(sVR
− t)

∏
p∈Pm

1

∑
v∈p

s(v) ≤
∑
ṽ▷p

s(ṽ)

 . (6.10)

The oscillatory phases in the formula (6.7) are rewritten in terms of time slices as:

e−itvΩv = e
−iΩv

∑
ṽ∈p−(v) sṽ ,

so that the product of all oscillatory phases in the formula (6.7) is rewritten as:∏
v∈Vi

e−itvΩv =
∏
v∈Vi

e
−isv

∑
ṽ∈p+(v) Ωṽ . (6.11)

We have now fully solved the time constraints of the graph, and can rewrite (6.7) as:

û+G(t, ξR) = e−itω(ξR)

(
−iλ

(2π)d/2

)n

(−1)σG

∫
Rd(2n+1)

∫
Rn+1
+

dξ dsdsvR ∆ξR(ξ)∆t(s) (6.12)

M(ξ)
n+1∏
i=1

û0(ξ0,i, σ0,i)
∏
v∈Vi

e
−isv

∑
ṽ∈p+(v) Ωṽ .

Expressing the time constraint function ∆t(s) as a product of oscillatory integrals will be helpful
later on. The following Lemma is a variant of Lemma 4.2 in [11].

Lemma 6.3. There exists positive constants cG > 0, cv > 0 for v ∈ Vi and cp > 0 for p ∈ Pm

such that for all t ∈ R, η > 0 and (sv)v∈Vi ∈ Rn:∫
R+

dsvR∆t(s) =
ctηG

(2π)nm

∫
Rnm

dαe
−iαp(vtop)t

∏
p∈Pm

i

αp + icpη

∏
v∈Vi

esv(i(αp(v)−
∑

p̃◁v αp̃)−cvη)



DERIVATION OF THE KINETIC WAVE EQUATION IN THE INHOMOGENEOUS SETTING 35

where we wrote α = (αp)p∈Pm .

Proof. We order Pm(G) = (p1, ...,pnm) from right to left with respect to the initial vertices of the
paths. Namely, there exists 1 = inm < ... < i1 ≤ n such that pj starts at v0,ij ∈ V0 (then v0,ij is
at the left of v0,ik whenever j > k). Note then that the last maximal path pnm leads to the vertex
vtop that is just below the root vertex, so that vj(pnm) = vR and that by convention vR is the only
vertex constraining pnm , i.e. {v ∈ V, v ▷pnm} = {vR}.

Recalling the Fourier transformation 1(x ≤ 0)ecx = 1
2π

∫
α∈R

ieiαx

α+icdα for c > 0, we write for each
p ∈ Pm, for some cp > 0 to be chosen later on:

1

∑
v∈p

sv ≤
∑
v′▷p

sv′

 = ecpη(
∑

v′▷p sv′−
∑

v∈p sv) 1

2π

∫
αp∈R

ieiαp(
∑

v∈p sv−
∑

v′▷p sv′)

αp + icpη
dαp.

As for the last maximal path,
∑

v′▷p s(v′) = svR = t, this leads to the formula:∫
R+

dsvR∆t(s) =
ecpnm

ηt

(2π)nm

∫
Rnm

dαe
−iαp(vtop)t

∏
p∈Pm

i

αp + icpη

∏
v∈Vi

esv(i(αp(v)−
∑

p′◁v αp′ )−η(cp(v)−
∑

p′◁v cp′)).

Above, for the set of maximal paths Pm = (p1, ...,pnm), it is always possible to choose the constants
cp1 , cp2 , ... , cpnm

one after another to ensure cp(v) −
∑

p′◁v cp′ > 0 for all v ∈ V. This proves the
Lemma upon taking cv = cp(v) −

∑
p′◁v cp′ for all v ∈ V and cG = ecpnm . □

Applying Lemma 6.3 to (6.12) with η = t−1, and then integrating along the s variables yields the
alternative formula:

û+G(t, ξR) = e−itω(ξR)

(
−iλ

(2π)d/2

)n (−1)σGcG
(2π)nm

∫
Rd(2n+1)

∫
Rnm

dξ dα∆ξR(ξ)e
−iαp(vtop)t (6.13)

M(ξ)
∏

p∈Pm

i

αp +
icp
t

n+1∏
i=1

û0(ξ0,i, σ0,i)
∏
v∈Vi

i

αp(v) −
∑

p̃◁v αp̃ −
∑

ṽ∈p+(v)Ωṽ +
icv
t

.

6.4. Paired graphs.

6.4.1. General formula. We will now take the expectation of the L2 scalar product of two functions
in the sum (6.7), corresponding to two graphs Gl ∈ Gn and Gr ∈ Gn. The left graph Gl is described
with variables with a l superscript, and the right graph Gr with a r superscript. It will often be
convenient to concatenate both kinds of variables, which we will denote without superscript for ease
of notation. For instance, the set of interaction vertices is Vi = Vl

i ∪Vr
i and

(σ0,i)1≤i≤2n+2 = (σl
0,1, . . . , σ

l
0,n, σ

r
0,1, . . . , σ

r
0,n),

(ξ0,i)1≤i≤2n+2 = (ξl0,1, . . . , ξ
l
0,n, ξ

r
0,1, . . . , ξ

r
0,n),

and so on. Wick’s formula and the Wigner transform identity (3.3) imply that:

E

(
2n+2∏
i=0

û0(ξ0,i, σ0,i)

)
=
∑
P

∏
{i,j}∈P

(2π)
d
2 ϵdŴ ϵ

0(ηi,j ,
ϵ

2
(σ0,iξ0,i + σ0,jξ0,j))

where ηi,j = ξ0,i + ξ0,j , and P is a pairing of {1, ..., 2(n+ 1)} that is consistent with σ, that is, it is
a partition of {1, . . . , 2n + 1} into pairs {i, j}, such that σ0,i = −σ0,j for all {i, j} ∈ P . The sum
above is performed over all possible pairings, and, by convention is equal to zero if no such pairing
exists.
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The formula corresponding to (6.6) for the expectation of the L2 norm of un is for t ≥ 0

E∥un(t)∥2L2 =
∑
G̃,P

Ft(G̃, P ) (6.14)

where the sum is performed over all possible combinations of:

• G̃ = (Gl, Gr) is the tree G̃ which we now describe. It is composed of one left and one right
sub-trees which have depth n, Gl ∈ Gn and Gr ∈ Gn. The root vertices of the two sub-trees
vlR and vrR are merged in a unique root vertex vR = vlR = vrR. We use the convention that
pj(v

l
top) = pj(v

r
top) = vR, and that el(vR) and er(vR) do not belong to any upright path.

Furthermore, the signs of the left sub-trees are flipped, and
• P is a pairing of {1, ..., 2(n+1)} that is consistent with σ. By convention, if no such pairing

exists, the value of the corresponding empty sum is equal to zero.

Given a tree G̃ = (Gl, Gr) and a pairing P , we represent it as a paired graph G = (Gl, Gr, P ). The
set of all possible paired graphs G is denoted by G

p
n. Thus, the formula (6.14) corresponds to (6.1).

To do so, we add all the following to the tree G̃:

• a lower pairing vertex v−2,{i,j} and an upper pairing vertex v−1,{i,j} for each {i, j} ∈ P .
They have no associated parities and time variables.

• lower pairing edges (v−1,{i,j}, v−2,{i,j}) joining the two pairing vertices, and upper pairing
edges (v−1,{i,j}, v0,i) and (v−1,j , v0,i) joining the upper pairing vertex to the initial vertices
v0,i and v0,j , for all {i, j} ∈ P . To the edge e = (v−2,{i,j}, v−1,{i,j}) we associate the frequency
variable ξe = ηi,j ∈ Rd. To the edges e′ = (v−1,{i,j}, v0,i) and e′′ = (v−1,j , v0,i) we associate
frequency variables ξe′ and ξe′′ which will be forced by the Kirchhoff laws to be equal to ξ0,i
and ξ0,j respectively. The pairing edges have no associated parities and time variables.

• We require the output frequency is 0. After integrating all Kirchhoff laws from bottom to
top in the graph, we find that this output frequency is ξ(vltop,vR) + ξ(vrtop,vR) =

∑
{i,j}∈P ηi,j .

We thus require that η ∈ Rd(n+1)
0 .

The Kirchhoff laws for frequencies are naturally extended to the paired graph:

∆G(ξ, η) = ∆G(ξ
l, ξr, η) = δ(

∑
{i,j}∈P

ηi,j)∆(ξl)∆(ξr)
∏

{i,j}∈P

δ(ξ0,i + ξ0,j − ηi,j).

Explicitly:

Ft(G) = (2π)
d
2λ2nϵd(n+1)

∫∫∫∫
∆G(ξ, η)∆t(t

l)∆t(t
r)dξ dη dtl dtr

M(ξ)
∏

{i,j}∈P

Ŵ ϵ
0(ηi,j ,

ϵ

2
(σ0,iξ0,i + σ0,jξ0,j))

∏
v∈Gl

e−iΩvtv
∏
v∈Gr

e−iΩvtv (6.15)

where ξ = (ξl, ξr), M(ξ) = M(ξl)M(ξr), with ξl and tl (resp. ξr and tr) being the frequency and
time variables of the left subtree (resp. of the right subtree) which have been defined in the previous
Subsection 6.2. The new variable η = (ηi,j){i,j}∈P, i<j comes from the Wigner transform identity
(3.3).

The set of all maximal upright paths is denoted by Pm = Pl
m ∪ Pr

m and the set of junction
vertices by Vj = Vj,l ∪Vj,r. Given v ∈ G and p ∈ Pm, we say that v is constraining p if either
(v,p) ∈ Gl × Pl

m and v is constraining p in the left subtree Gl, or if (v,p) ∈ Gr × Pr
m and v

is constraining p in the left subtree Gr (recall that vR by convention belongs to both subtrees).
We extend the notation and still write v ▷ p. We concatenate the time slices of both graphs:
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s = (sv)v∈Vi∪VR
= (sl, sr). Injecting (6.11) in (6.15) yields:

Ft(G) = (2π)
d
2λ2nϵd(n+1)

∫∫∫
∆G(ξ, η)∆t(s)dξ dη ds

M(ξ)
∏

{i,j}∈P

Ŵ ϵ
0(ηi,j ,

ϵ

2
(σ0,iξ0,i + σ0,jξ0,j))

∏
v∈Vi

e
−isv

∑
ṽ∈p+(v) Ωṽ . (6.16)

where we ∆t(s) is still given by (6.10) but defined with the maximal paths of the paired graph G.
We apply the resolvent formula of Lemma 6.3, to both the left and right subtree, and concatenate
the variables by writing: α = (αl, αr) and the identity (6.15) becomes

Ft(G) =
(−1)σGl+σGr cGlcGr

(2π)n
l
m+nr

m− d
2

λ2nϵd(n+1)

∫∫∫
dξ dη dα∆G(ξ, η) (6.17)

e
−i(α

p(vltop)
+αp(vrtop))t

M(ξ)
∏

{i,j}∈P

Ŵ ϵ
0(ηi,j ,

ϵ

2
(σ0,iξ0,i + σ0,jξ0,j))

∏
p∈Pm

i

αp +
icp
t

∏
v∈Vi

i

αp(v) −
∑

p̃◁v αp̃ −
∑

ṽ∈p+(v)Ωṽ +
icv
t

6.4.2. Example. Below is an example of a paired graph. The pairing is P = {{1, 2}, {3, 5}, {4, 6}}.

− +

−

+ − + +

−

v−1,{1,2} v−1,{3,5} v−1,{4,6}

η1,2 η3,5 η4,6

v−2,{1,2} v−2,{1,2}v−2,{1,2}

Pairing vertices

Initial vertices

Interaction vertices

Root vertex
vR

Time order

6.4.3. Time and integration orders. Given a paired graph G = (Gl, Gr, P ) ∈ G
p
n, given two v, v′ ∈ V,

we say that v is below v′ if there exists a forward path in G going from v to v′. This defines an
order for V, still called the time order. It extends the time orders of Gl and Gr.

When we will estimate integrals of the type (6.15), we will consider the contribution of each
oscillatory phases in the right hand side of (6.11) one after another, according to an integration
order that we now describe.

An integration order for a paired graph G is an enumeration of the set of interaction vertices
and of the root vertex Vi ∪VR = {v1, v2, ..., v2n+1} such that for all 1 ≤ i < j ≤ 2n+ 1 the vertex
vi cannot be above vj . This property is equivalent to the fact that for all 1 ≤ i ≤ 2n + 1, the set
{v1, ..., vi−1} contains all the vertices that are below vi. Moreover, v2n+1 = vR is always the root
vertex, and v2n ∈ {vltop, v

r
top} is the top vertex of either the left or the right subtree. There always

exists at least one integration order. For all paired graphs G ∈ G
p
n, we fix once for all a unique

integration order that will be used throughout the article. The picture in the proof of Proposition
6.4 shows an example of an integration order.



38 IOAKEIM AMPATZOGLOU, CHARLES COLLOT, AND PIERRE GERMAIN

We extend this integration order to the set of edges and frequencies. Given two edges e, e′ ∈ E,
we say that e is after e′ for the integration order if one of the following holds true:

• e is any edge and e′ is a pairing edge.
• neither e nor e′ is a pairing edge, and, writing e = (v, va(v)) and e′ = (v′, va(v

′)), either
they are below the same vertex va(v) = va(v

′), or the top vertex va(v) of e is after the top
vertex va(v

′) of e′ for the integration order of G. In the case va(v) ̸= va(v
′) we say that v is

strictly after v′.
We extend this terminology for frequencies and say that ξe is after ξe′ for the integration order
whenever e is after e′ for the integration order.

6.5. Solving the frequency constraints. We aim at understanding how to integrate over the
variables (ξ, η) on the support of the Kirchhoff laws function ∆G (which encodes Kirchoff’s law), in
a way which is takes advantage of the oscillations of the functions eitvΩv . Proposition 6.4 provides
a suitable subset of the frequencies ξ, the interaction free frequencies (ξfi )1≤i≤n+1, from which all
frequencies ξ can be recovered. Moreover, the phases eitvΩv have an expression that is suitable with
the ordering ξf1 , ..., ξ

f
n+1, see Lemmas 6.5.

Proposition 6.4. For any paired graph G ∈ G
p
n with integration order {v1, ..., v2n+1}, there exists an

associated complete integration of the frequency constraints ∆G in the following sense. There exists
a set of free edges Ef = {(v−2,{i,j}, v−1,{i,j})}{i,j}∈P ∪ {ef1 , ..., e

f
n, e

f
n+1} consisting of all pairing

edges, of a sequence of interaction free edges {ef1 , ..., e
f
n, } ⊂ E and of the root edge of the left

subtree efn+1 = (vltop, vR), with corresponding slow free frequencies η and interaction free frequencies
ξf = (ξfi )1≤i≤n+1 where ξfi = ξ

efi
for 1 ≤ i ≤ n+ 1, such that the following properties hold true.

• Order compatibility with integration order. For all 1 ≤ i < j ≤ n+1, efj is strictly after efi
for the integration order (in other words, va(e

f
j ) is different from va(e

f
i ), and posterior for

the integration order).
• Basis property: The family (ξf , η) is a basis for the Kirchhoff laws in the following sense:

the map (ξ, η) → (ξf , η), with domain the support of ∆G, is a linear bijection onto Rd(n+1)×
Rd(n+1)
0 .

• Basis compatibility with integration order: Any edge which is not a free edge, i.e. e /∈ Ef ,
is called an integrated edge and, on the support of ∆G,

ξe =
∑

1≤k≤n+1

ce,kξ
f
k +

∑
{i′,j′}∈P

ce,i′,j′ηi′,j′ with ce,k, ce,i′,j′ ∈ {−1, 0, 1},

with ce,k = 0 if ξe appears strictly after ξfk for the integration order.

Proof. This proof is very similar to that of Theorem 4.3. in [11] (inspired by [31]). Thus we only
sketch the proof, and refer to [11] for the details. We construct iteratively the spanning tree Gs,
whose set of edges is the set of all integrated edges3E\Ef . Its edges are (for the moment) unoriented,
so we write them under the form {v, v′}. The construction algorithm is as follows: first, at Step 0,
add all upper pairing edges {{v−1,{i,j}, v0,i}}1≤i≤2+2n to the spanning tree under construction Gs,0.
Then, at Steps 1 to 2n consider the interaction vertices one by one, according to the integration
order: first v1, then v2, etc. until v2n.

3With a slight abuse of notation since the edges of Gs are unoriented
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The order {v1, ..., v4, vR} is an integration order

v1

v2

v3

v4

vR

Step 0

All upper pairing

edges are addedAll lower pairing edges

are free edges

Step 1

The vertex at the

bottom right of

v1 is added

Step 1

The vertex at the bottom

left is added as it

would create no loop

Edges of the spanning tree

Free edges

At the beginning of Step k, we have constructed Gs,k−1 and we reach vk. We first add the edge
on the right below vk, which is er(vk). Next, we consider the edge on the left below vk which is
el(vk): if adding it creates a loop in the spanning tree under construction, then we do not add this
edge and declare it to be a free interaction edge; if adding it does not create a loop, then we add
it to the spanning tree. With these additions the spanning tree under construction is renamed Gs,k

and we move on to the next vertex vk+1 and start Step k + 1.
At the last Step 2n + 1, we add the edge on the right below the root vertex {vrtop, vR} to the

spanning tree, and we do not add the edge on its left {vltop, vR} that we declare to be a free edge.
The graph obtained at this last Step is the spanning tree Gs.

v1

v2

v3

vR

Step 2

The vertex at the

bottom right of

v2 is added

Step 2

The vertex at the bottom

left is not added as

this would create a loop

The spanning tree is indeed a tree, since it has no loop by construction. A path in Gs is a sequence
(v1, ..., vk) of vertices such that vi ̸= vj for i ̸= j, and that for each 1 ≤ i ≤ k − 1, {vi, vi+1} is an
edge of Gs. Each vertex is then connected to the root vertex by a unique path.

We define an orientation for Gs as follows: an integrated edge e = {v, v′} goes from v to v′ if
v′ belongs to the path from v to the root vertex. This also defines a partial order: we say that
u ⪯ w if w belongs to the path from u to the root vertex; in particular, u ⪯ u. We denote by
P(u) = {w, w ⪯ u} the set of vertices w such that u belongs to the path from w to the origin.
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v3

ξ
f
1

ξ
f
2

ξ
f
3

η1,2 η3,5 η4,6

Leaves

P(v3) = (v4, v0,1, v0,2, v−1,{1,2})

v4

v0,2

v−1,{1,2}

v0,1

Orientation in the
spanning tree

Frequencies of integrated edges are expressed in function of free frequencies. Given an (oriented)
edge e = (v, v′), and v we define the parity of the edge with respect to the vertex v as

σv(e) =

{
+1 if v′ is above v for the time ordering,
−1 if v′ is below v for the time ordering.

Given a vertex v, F(v) denotes the set of free edges f that have one extremity at v. Given e = {v, v′}
an integrated edge going from v to v′, on the support of ∆G, the formula for its associated frequency
is then

ξe = −σv(e)
∑

w∈P(v), f∈F(w)

σw(f)ξf . (6.18)

To finish the proof of Proposition 6.4, we need to show that if e is an integrated edge, then it
is only a linear combination of the slow free frequencies η and of the interaction free frequencies
ξfi appearing after e for the integration order of G. Assume f = {v′, v} is a free edge, with v′

below v for the time ordering. This means that during the construction of the spanning tree, at the
step where the vertex v is considered, f is not added as this would create a loop in the spanning
tree in construction. At that step, all edges in the spanning tree are before f for the integration
ordering. Hence there exists a path p̃ in the spanning tree, going from v to v′, and all its edges
are before f for the time ordering. Also, there exist unique paths p and p′ in the spanning tree,
going from v to the root and from v′ to the root respectively. These paths intersect at a vertex v0.
By their uniqueness, v0 has to belong to p̃. Consider now the formula above: kf can only appear
in the integrated frequencies on the paths from v and v′ to the root. Moreover, after the vertex
v0, the two contributions from v and v′ in this formula cancel. Hence kf can only appear in the
integrated frequencies on the path from v to v0, and in the integrated frequencies on the path from
v′ to v0. These belong to p̃ hence are indeed before kf for the time ordering. This also shows that
ci,e ∈ {−1, 0, 1}. □

If an interaction vertex v ∈ Vi is such that (vl(v), v) is a free edge, then we say that v is a degree
one vertex. If not, we say that v is a degree zero vertex. The sets of degree zero and degree one
vertices are denoted by V1 and V0 respectively.

Let then n0 and n1 denote the number of degree 0 and 1 vertices respectively. On the one hand,
the total number of interaction vertices is 2n, so that

n0 + n1 = 2n;
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and on the other hand, the total number of interaction free variables apart from ξfn+1 is n, so that
n1 = n. Therefore,

n0 = n1 = n. (6.19)
Let v be a degree one vertex. We say that it is linear if the two vertices below it have opposite parity:
σ(vl(v))σ(vr(v)) = −1, and that it is quadratic if they have the same parity σ(vl(v))σ(vr(v)) = +1.
The sets of degree one linear vertices and degree one quadratic vertices are denoted by V1

l and V0
q

respectively.

Lemma 6.5 (Degree one linear and quadratic vertices). Assume v is a degree one vertex, with
associated free frequency ξf , and denote by ξ̃ = ξea(v) the frequency of the edge above it.

• If v is linear, then:

Ωv = −σ(ξf )ξ̃ · ξf +

{
1
2(σ(ξ̃) + σ(ξf ))|ξ̃|2 if ω(ξ) = |ξ|2

2 ,

σ(ξ̃)ϵ−2 + 1
2(σ(ξ̃) + σ(ξf ))|ξ̃|2 if ω(ξ) = |ξ|2

2 + ϵ−2
(6.20)

• If v is quadratic, then:

Ωv = −σ(ξf )ξf · (ξf − ξ̃) +

{
1
2(σ(ξ̃)− σ(ξf ))|ξ̃|2 if ω(ξ) = |ξ|2

2 ,

(σ(ξ̃)− 2σ(ξf ))ϵ−2 + 1
2(σ(ξ̃)− σ(ξf ))|ξ̃|2 if ω(ξ) = |ξ|2

2 + ϵ−2

(6.21)
• Moreover, in the two formulas above, ξ̃ only depends on the slow free variables η and on the

interaction free variables ξfi appearing strictly after ξf for the integration order.

Proof. For a degree one vertex, one has that ξer(v) = ξ̃ − ξf from the Kirchhoff law at v.
If v is linear, then σ(vl(v)) = σ(ξf ) = −σ(vr(v)) by definition and the formula (6.9) gives:

Ωv = σ(ξf )(ω(ξ̃ − ξf )− ω(ξf )) + σ(ξ̃)ω(ξ̃).

Plugging ω(ξ) = |ξ|2
2 or ω(ξ) = ϵ−2 + |ξ|2

2 in the above formula yields (6.20). If v is quadratic, then
σ(vl(v)) = σ(ξf ) = σ(vr(v)) by definition and the formula (6.9) gives:

Ωv = −σ(ξf )(ω(ξf ) + ω(ξ̃ − ξf )) + σ(ξ̃)ω(ξ̃).

Plugging ω(ξ) = |ξ|2
2 or ω(ξ) = ϵ−2 + |ξ|2

2 in the above formula yields (6.21).
□

Proof of Proposition 6.1 . For all G ∈ G
p
n, we choose fix an arbitrary integration order Vi ∪VR =

{v1, ..., v2n+1} and we define σk = σ((vl(vk), vk)), σ̃k = σ((vk, va(vk))) and ξ̃k = ξea(vk) for 1 ≤ k ≤
2n+1. Then Proposition 6.1 is a direct consequence of the formulas (6.14) and (6.16) which yields
(6.2) upon applying Proposition 6.4 and Lemma 6.5.

□

Finally, let us mention that if one applies the resolvent identity of Lemma 6.3 to (6.2), and we
define σG = σGl + σGr , nm = ml

m + nr
m and cG = cGlcGr and simply write ck = cvk > 0 we obtain:

Ft(G) =
(−1)σGcG

(2π)nm− d
2

λ2nϵd(n+1)

∫
η∈Rd(n+1)

0

∫
ξf∈Rd(n+1)

∫
α∈Rnm

dξf dη dα (6.22)

e
−i(α

p(vltop)
+αp(vrtop))t

M(ξ)
∏

{i,j}∈P

Ŵ ϵ
0(ηi,j ,

ϵ

2
(σ0,iξ0,i + σ0,jξ0,j))

∏
p∈Pm

i

αp +
icp
t

2n∏
k=1

i

αp(vk) −
∑

p̃◁vk
αp̃ −

∑
ṽ∈p+(vk)

Ωṽ +
ick
t
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7. The belt counter example

We prove here Proposition 1.4. Throughout this section we study equation 1.1 with the Laplace
dispersion relation and m(ξ) = 1:

{
i∂tu− 1

2∆u = λ(u+ u)2,
u(t = 0) = u0.

(7.1)

Before proceeding the proof, we describe the paired graph G∗, and give a formula for Ft(G
∗). The

graph G∗ is made of a left subtree with unprimed variables, and of a right subtree with primed
variables.

• The interaction vertices are v1, ..., v2n, v′1, ..., v′2n, and v0,0, ..., v0,2n, v
′
0,0, ..., v

′
0,2n are the initial

vertices. There is the root vertex vR.
• The interaction and initial vertices are linked by the following edges. For k = 1, ..., n there

is an edge (v2k−2, v2k−1) with parity −1 (with the convention that v0 stands for v0,0) and an
edge (v0,2k−1, v2k−1) with parity +1, and (v′2k−2, v

′
2k−1) with parity +1 and (v′0,2k−1, v

′
2k−1)

with parity −1. There is (v2k−1, v2k) with parity +1, (v0,2k, v2k) with parity −1, (v′2k−1, v
′
2k)

with parity −1 and (v′0,2k, v
′
2k) with parity +1.

There are two edges (v0,2n, vR) with parity −1, and (v′0,2n, vR) with parity +1.
• The pairing P is defined as follows: v0,0 is paired with v′0,0 with slow free variable η̃, and

for k = 1, ..., n, v0,2k−1 is paired with v0,2k with variable ηk, and v′0,2k−1 is paired with v′0,2k
with variable η′k.

• The resonance modulus at vk is Ωk (resp. at v′k is Ω′
k). The time slice at vk is sk−1 (resp.

at v′k is s′k−1).

The integration order we choose is (v′1, ..., v′2n, v1, ..., v2n, vR). We apply Proposition 6.4 to deter-
mine the free variables. This corresponds to the following paired diagram:

ξ̃

ξn

ξ1

η1 ηn η′n η′
1

ξ′
1

ξ′n

η̃

− +
+ −

−

−

+

+

−

−

+−
+

−

+

+

−

+

−

Edges’ orientations in spanning tree

± Edges’ parities

ξ̃, ξ1, ..., ξn, ξ
′

1
, ..., ξ′

n
,

η̃, η1, ..., ηn, η
′

1
, ..., η′

n

}

Free frequencies

The belt counterexample G∗

+

v′
1

v′
2

v′
0,2

v′
0,2n−1

v′
0,2n

v′
2n−1

v′
2n

vR

v0,2nv0,2n−1
v0,2

v1

v2n−1

Note that the left subtree is equivalent to the right subtree with reversed parity signs (up to
changing the display of the edges and vertices). Hence G∗ is indeed a paired graph as defined in
Subsection 6.4. We have chosen this representation for convenience.

Above, the free variables are indicated by dashed lines for the corresponding edges. However, in
order to find a suitable formula for Ft(G

∗), we change certain variables (ξ̃, ξ′1, ..., ξ
′
n, η

′
1, ..., η

′
n) 7→
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(ξ, ξ̂1, ..., ξ̂n, η̂1, ..., η̂n) where:

η̂k = −η′k, ξ = −ξ̃ + η1 + ...+ ηn +
η̃

2
,

ξ̂k = ξ′k + ξ̃ − η1 − ...− ηn − η′1 − ...− η′k − η̃.

After a direct computation of Kirchhoff’s laws, one finds the following values for the resonance
moduli with respect to these new variables, for k = 1, ..., n:

Ω2k−1 = −
(
ξ − η̃

2
− η1 − ...− ηk+1

)
.ξk, Ω2k =

(
ξ − η̃

2
− η1 − ...− ηk

)
.ξk

Ω′
2k−1 =

(
ξ +

η̃

2
− η̂1 − ...− η̂k−1

)
.ξ̂k, Ω2k = −

(
ξ +

η̃

2
− η̂1 − ...− η̂k

)
.ξ̂k,

with the convention that η−1 = η̂−1 = 0. The sum of cumulated resonance moduli is thus for
k = 1, ..., n:

2n∑
i=2k−1

Ωi = −
n∑

i=k

ξj .ηj ,
2n∑

i=2k

Ωi =

(
ξ − η̃

2
− η1 − ...− ηk

)
.ξk −

n∑
i=k+1

ξj .ηj ,

2n∑
i=2k−1

Ω′
i =

n∑
i=k

ξ̂j .η̂j ,

2n∑
i=2k

Ω′
i = −

(
ξ +

η̃

2
− η̂1 − ...− η̂k

)
.ξ̂k − 2

n∑
i=k+1

ξ̂j .η̂j .

We introduce the following notation to ease the computations:

Sn,t =

{
(s0, ..., s2n−1, s

′
0, ..., s

′
2n−1) ∈ Rn

+ × Rn
+,

2n−1∑
i=0

si ≤ t and
2n−1∑
i=0

s′i ≤ t

}
.

One thus ends up with the formula:

Ft(G
∗) = 2πλ4nϵd(2n+1)

∫
Sn,t

∫
Rd(4n+2)

dξ dη̃ dξ dξ̂ dη dη̂ ds ds′δ

(
η̃ +

n∑
1

ηi − η̂i

)

Ŵ ε
0

(
η̃, ϵξ

) n∏
k=1

Ŵ ε
0

(
ηk, ε(ξ −

η̃

2
+ ξk − η1 − ...− ηk−1 −

ηk
2
)

)
n∏

k=1

Ŵ ε
0

(
η̂k, ε(ξ +

η̃

2
+ ξ̂k − η̂1 − ...− η̂k−1 −

η̂k
2
)

)
n∏

k=1

eis2k−2
∑n

i=k ξi.ηie−is2k−1((ξ− η̃
2
−η1−...−ηk).ξk−

∑n
i=k+1 ξi.ηi)

n∏
k=1

e−is′2k−2

∑n
i=k ξ̂i.η̂ie−is′2k−1((ξ+

η̃
2
−η̂1−...−η̂k).ξk+

∑n
i=k+1 ξ̂i.η̂i)

We change variables again:

ξk =
vk
ε
, ξ̂k =

v̂k
ε
,
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and define:

wk = ξ − η̃

2
− η1 − ...− ηk−1 −

ηk
2
, ωk =

(
ηk

2k−2∑
i=0

si − (ξ − η̃

2
− η1 − ...− ηk)s2k−1

)
, (7.2)

ŵk = ξ +
η̃

2
− η̂1 − ...− η̂k−1 −

η̂k
2
, ω̂k =

(
η̂k

2k−2∑
i=0

s′i − (ξ +
η̃

2
− η̂1 − ...− η̂k)s2k−1

)
. (7.3)

This gives the following formula:

Ft(G
∗) = 2πλ4nϵd

∫
Sn,t

∫
Rd(4n+2)

dξ dη̃ dv dv̂ dη dη̂ ds ds′δ

(
η̃ +

n∑
1

ηi − η̂i

)

Ŵ ε
0

(
η̃, ϵξ

) n∏
k=1

Ŵ ε
0 (ηk, vk + εwk) e

ivk.
ωk
ε

n∏
k=1

Ŵ ε
0 (ηk, v̂k + εŵk) e

−iv̂k.
ω̂k
ε .

We introduce the inverse Fourier transform:

φ(η, ζ) =

∫
Rd

Ŵ ε
0 (η, v)e

iv.ζdv,

which, after integration over the variables v1, ..., vn, v̂1, ..., v̂n, transforms the expression into:

Ft(G
∗) = 2πλ4nϵd

∫
Sn,t

∫
Rd(2n+2)

dξ dη̃ dv dv̂ dη dη̂ ds ds′δ

(
η̃ +

n∑
1

ηi − η̂i

)

Ŵ ε
0

(
η̃, ϵξ

) n∏
k=1

φ
(
ηk,

ωk

ε

)
e−iωk.wkφ

(
η̂k,

ω̂k

ε

)
eiω̂k.ŵk . (7.4)

With the formula (7.4) at hand we can prove Proposition 1.4.

Proof of Proposition 1.4. We now choose n∗ as:

n∗ = 10⌈d
κ
⌉. (7.5)

and decompose the domain in the integral (7.4) above in different subsets:

D =

{
(s, s′, ξ, η̃, η, η′) ∈ Sn,t × Rd(2n+2), |η̃|+ sup

k=1,...,2n
|ηk|+ |η′k| ≤ ϵ−

κ
10

}
,

D1 =
{
(s, s′, ξ, η̃, η, η′) ∈ D, |ξ| ≤ ϵ

κ
10 t−

1
2

}
,

D2 =

{
(s, s′, ξ, η̃, η, η′) ∈ D, |ξ| > ϵ

κ
10 t−

1
2 and sup

k=1,...,n
s2k−1 + sup

k=1,...,n
s′2k−1 ≤ ϵ1−

κ
10 |ξ|−1

}
,

D3 =

{
(s, s′, ξ, η̃, η, η′) ∈ D, |ξ| > ϵ

κ
10 t−

1
2 and sup

k=1,...,n
s2k−1 + sup

k=1,...,n
s′2k−1 > ϵ1−

κ
10 |ξ|−1

}
,

D′ =
{
(s, s′, ξ, η̃, η, η′) ∈

(
Sn,t × Rd(2n+2)

)
\D
}
,

so that:

Ft(G
∗) = 2πλ4nϵd

(∫
D′

...+

∫
D1

...+

∫
D2

...+

∫
D3

...

)
(7.6)

Step 1 Subleading terms. In this step we estimate the D′, D2 and D3 contributions with the sole
assumption on a that it is any Schwartz function. Note that with this hypothesis and (3.1), Ŵ ϵ

0
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and φ are Schwartz functions and that any seminorm of the Schwartz space of these functions is
uniformly bounded in the range 0 < ϵ ≤ 1. In particular we bound the integrand in (7.4) by:∣∣∣∣∣Ŵ ε

0

(
η̃, ϵξ

) n∏
k=1

φ
(
ηk,

ωk

ε

)
e−iωk.wkφ

(
η̂k,

ω̂k

ε

)
eiω̂k.ŵk

∣∣∣∣∣
≤ ⟨η̃⟩−K⟨ϵξ⟩−K

n∏
1

⟨ηk⟩−K⟨ωk

ϵ
⟩−K⟨η̂k⟩−K⟨ ω̂k

ϵ
⟩−K (7.7)

for any choice of a large constant K > 0.
For the contribution of D′, we further decompose D′ = D̃′ ∪D′

1 ∪ ... ∪D′
n ∪D′′

1 ∪ ... ∪D′′
n where

D̃′ = D′ ∩ {|η̃| > 1

4
ϵ−

κ
10 }, D′

k = D′ ∩ {|ηk| >
1

4
ϵ−

κ
10 }, D′′

k = D′ ∩ {|η′k| >
1

4
ϵ−

κ
10 }

On D̃′, there holds that:∫
|η̃|≥ϵ−

κ
10 /4

δ

(
η̃ +

n∑
1

ηi − η̂i

)
⟨η̃⟩−Kdη̃ ≤ C(κ,K)ϵ

Kκ
10 .

Therefore from (7.4) and (7.7), after integration first over η̃, then over ξ, η1, ..., ηn, η̃1, ..., η̃n which
produces a ϵC(d,n) factor, and finally over s0, ..., s2n−1, s

′
0, ..., s

′
2n−1 which produces a t4n factor:∣∣∣∣∫

D̃′
...

∣∣∣∣ ≲ λ4nϵd+
Kκ
10

∫
Sn,t

∫
Rd(2n+1)

dξ dη dη̂ ds ds′⟨ϵξ⟩−K
n∏
1

⟨ηk⟩−K⟨η̂k⟩−K ≲ λ4nt4nϵK
′

for any K ′ > 0, up to choosing K large enough. The integrals over D′
k and D′′

k for k = 1, ..., 2n are
estimated similarly, resulting in: ∣∣∣∣∫

D′
...

∣∣∣∣ ≲ (λt)4nϵK . (7.8)

To estimate the contribution from D2 we define for R > 0 the set:

Sn,t,R :=

{
(s, s′) ∈ Sn,t, sup

k=1,...,n
s2k−1 + sup

k=1,...,n
s′2k−1 ≤ ϵ1−

κ
10R−1

}
.

We then perform the following estimate, integrating first over the η̃, η, η′ variables using (7.7) and
the definition of D2, and then the constraints |s2k−1|, |s2k−1| ≲ ϵ1−

κ
10 |ξ|−1 and |s2k|, |s2k| ≲ t for

k = 0, ..., n:∣∣∣∣∫
D2

...

∣∣∣∣ ≲ λ4nϵd
∫
D2

dξ dη̃ dη dη̂ ds ds′δ

(
η̃ +

n∑
1

ηi − η̂i

)
⟨η̃⟩−K

n∏
1

⟨ηk⟩−K⟨η̂k⟩−K

≲ λ4nϵd
∫
|ξ|>ϵ

κ
10 t−

1
2

dξ

∫
(s,s′)∈Sn,t,|ξ|

ds ds′ ≲ λ4nϵdε(1−
κ
10

)2nt2n
∫
|ξ|>ϵ

κ
10 t−

1
2

dξ

|ξ|2n

≲ λ4nt4n
(
ϵd+2n− κ

10
(4n−d)t−n− d

2

)
≲ λ4nt4nϵ3d (7.9)

where we used (1.9) and (7.5) for the last line.
We now turn to D3, that we decompose as D3 = D3,1 ∪ ... ∪ D3,n ∪ D′

3,1 ∪ ... ∪ D′
3,n where

D3,k = D3 ∩ {2s2k−1 > ϵ1−
κ
10 |ξ|−1} and D′

3,k = D3 ∩ {2s′2k−1 > ϵ1−
κ
10 |ξ|−1}. On D3,1 there holds

using (7.2), and the inequalities 2s′2k−1 > ϵ1−
κ
10 |ξ|−1, |ηi| ≤ ϵ−κ/10, 2t > s2i and (1.9):∣∣∣ω1

ϵ

∣∣∣ ≥ ϵ−1

(
|ξs2k−1| − |ηk

2k−2∑
i=0

si + (
η̃

2
+ η1 + ...ηk)s2k|

)
≥ ϵ−

κ
10

2
− Cϵ

9
10

κ ≥ ϵ−
κ
10

4
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for ϵ small enough. This implies that ⟨ω1
ϵ ⟩

−K ≲ ε
κK
10 . We inject this bound in (7.7) and estimate

the D3,1 contribution as:∣∣∣∣∣
∫
D3,1

...

∣∣∣∣∣ ≲ λ4nϵ
κK
10

+d

∫
D3,1

dξ dη̃ dη dη̂ ds ds′δ

(
η̃ +

n∑
1

ηi − η̂i

)
≲ λ4nt4nϵK

′

for any K ′ > 0, for K large enough. The other contributions of D3,2, ..., D3,n, D
′
3,1, ..., D

′
3,n can be

estimated similarly, resulting in: ∣∣∣∣∫
D3

...

∣∣∣∣ ≲ λ4nt4nϵd+K′
. (7.10)

Step 2 Leading term. We now choose a of the following factorised form:

a(x, v) = χ(x)χ′(v)

for two non zero Schwartz functions χ and χ′ such that:

χ(z) ≥ 0, χ̂(z) ≥ 0, χ′(z) ≥ 0, and F(χ
′2)(z) ≥ 0 for all z ∈ Rd.

The formula (3.1) and the above nonnegativity properties imply that for all ϵ > 0:

Ŵ ϵ
0(η, v) ≥ 0 and φ(η, ω) ≥ 0 for all η, v, w ∈ Rd. (7.11)

We then perform a first order Taylor expansion estimate on D1:

eiωk.wk = 1 +O(|ωk.wk|) = 1 +O(ϵ
κ
5 ), eiω̂k.ŵk = 1 +O(ϵ

κ
5 ) (7.12)

where we used that si ≤ t, |ξ| ≤ ϵκ/10t−1/2 and |ηi| ≤ ϵ−κ/10 for the first inequality above, and
where the second inequality is obtained similarly. The following identity then follows from (7.11)
and (7.12):

2πλ4nϵd
∫
D1

... = 2π
(
1 +O(ϵ

κ
5 )
)
λ4nϵd

∫
D1

dξ dη̃ dη dη̂ ds ds′δ

(
η̃ +

n∑
1

ηi − η̂i

)

Ŵ ε
0

(
η̃, ϵξ

) n∏
k=1

φ
(
ηk,

ωk

ε

)
φ

(
η̂k,

ω̂k

ε

)
.

(7.13)

We define the following sets:

D̃1 = D1 ∩
{
|ξ| ≤ ϵ

t

}
, D1 = D1 ∩

{
|ξ| ≥ ϵ

t
and sup

1≤k≤n
s2k−1 + s′2k−1 ≤

ϵ

|ξ|

}
.

On D̃1 there holds from (1.9) and |ηi|, |η̃i| ≲ ϵ−κ/10 (where |Sn,t| is the Lebesgue measure of |Sn,t|):

|ϵξ| ≤ ϵκ,
∣∣∣ωk

ϵ

∣∣∣ , ∣∣∣∣ ω̂k

ϵ

∣∣∣∣ ≲ 1, |Sn,t| ≈ t4n,

so that using the nonnegativity (7.11) and the fact that W = a2 +O(ϵ) in the Schwartz space:

c
(ϵ
t

)d
t4n ≤

∫
D̃1

dξ dη̃ dη dη̂ ds ds′δ

(
η̃ +

n∑
1

ηi − η̂i

)
Ŵ ε

0

(
η̃, ϵξ

) n∏
k=1

φ
(
ηk,

ωk

ε

)
φ

(
η̂k,

ω̂k

ε

)
≤ 1

c

(ϵ
t

)d
t4n (7.14)

for some c > 0. On D1 we change variables (s0, ..., s2n−1, s
′
0, ..., s

′
2n−1) 7→ (s̃0, ..., s̃2n−1, s̃

′
0, ..., s̃

′
2n−1)

where:
s2k−1 =

ϵ

|ξ|
s̃2k, s2k = ts̃2k, s′2k−1 =

ϵ

|ξ|
s̃′2k, and s′2k = ts̃′2k.
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The set Sn,t is changed into:

S̃n,t =

{
(s̃0, ..., s̃n−1, s̃

′
0, ..., s̃

′
n−1) ∈ Rn

+ × Rn
+,

n∑
0

s̃2i +
ϵ

|ξ|t
s̃2i−1 ≤ 1 and

n∑
0

s̃′2i +
ϵ

|ξ|t
s̃′2i−1 ≤ t

}
.

On D1 there holds |ηi|, |η̂i| ≤ ϵ−κ/10, hence since t ≤ ϵ1+κ in these new variables from (7.2):

ωk

ϵ
= − ξ

|ξ|
s̃2k−1 +O(ϵ

1
2 ),

ω̂k

ϵ
= − ξ

|ξ|
s̃′2k−1 +O(ϵ

1
2 ).

Hence, applying (7.7) and the above change of variables one finds:

0 ≤
∫
D1

... ≤ t2n
∫
|ξ|≥ ϵ

t

∫
Rd(2n+1)

∫
S̃t,n

dξ dη̃ dη dη̂ ds̃ ds̃′δ

(
η̃ +

n∑
1

ηi − η̂i

)
(

ϵ

|ξ|

)2n

⟨η̃⟩−K⟨ϵξ⟩−K
n∏
1

⟨ηk⟩−K⟨s̃2k−1⟩−K⟨η̂k⟩−K⟨s̃′2k−1⟩−K

≲ t2nϵ2n
∫
|ξ|≥ ϵ

t

|ξ|−2ndξ ≲ (
ϵ

t
)dt4n, (7.15)

where the lower bound is a consequence of the nonnegativity (7.11). Therefore, injecting (7.14) and
(7.15) in (7.13), the contribution of the D1 part in Ft(G

∗) is, for some constant c > 0:

cλ4nt4nϵ2dt−d ≤ 2πλ4nϵd
∫
D1

... ≤ 1

c
λ4nt4nϵ2dt−d. (7.16)

Step 3 Conclusion. We inject the bounds (7.16), (7.8), (7.9) and (7.10) in the decomposition (7.6),
this establishes the desired formula (1.10) upon choosing K ′ large enough.

□

8. Estimates on the expansion

The aim of this section is to prove the following proposition.

Proposition 8.1. The iterates un, defined through (1.5), satisfy the bounds

• For equation (1.1) with ω0 = ϵ−2 or ω0 = 0 and m(0) = 0, for any ν > 0, there exists b > 1
2

such that

E ∥un(t)∥2L2 ≲

{
(λt)2n if |t| ≤ ϵ2,(

t
Tkin

)n
|logϵ|2(n+1) if |t| ≥ ϵ2,

(8.1)

E
∥∥∥∥χ( t

T

)
un(t)

∥∥∥∥2
Xs,b

ϵ

≲ ϵ−ν

(
T

Tkin

)n

for T ≥ ϵ2. (8.2)

• For equation (1.1) with ω0 = 0 and m(0) ̸= 0,

E∥un(t)∥2L2 ≲ (λt)n

E
∥∥∥∥χ( t

T

)
un(t)

∥∥∥∥2
Xs,b

ϵ

≲ (λT )n .
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8.1. The L2 estimate. We denote Bm(r) the Euclidean ball of radius r in dimension m, and
Bm

0 (r) = Bm(r) ∩ Rm
0 . Given v ∈ V1

l we define four sets which will distinguish whether v is
degenerate or not, and, if not, which type of degeneracy happens at v. In the case where v ∈ Vj is
a junction vertex we set:

S1
v = {(α, η, ξf ) ∈ Bnm(Kϵ−K′

)×B
d(n+1)
0 (K)×Bd(n+1)(Kϵ−1),

∣∣∣αp(v) −
∑
v▷p′

αp′ −
∑

ṽ∈p+(v)

Ωṽ

∣∣∣ > δϵ−2}

S2
v = {(α, η, ξf ) ∈ Bnm(ϵ−K′

)×B
d(n+1)
0 (K)×Bd(n+1)(Kϵ−1), |ξ(v,va(v))| > δϵ−1}

S3
v = {(α, η, ξf ) ∈ Bnm(ϵ−K′

)×B
d(n+1)
0 (K)×Bd(n+1)(Kϵ−1), |αpj(v)| > δϵ−2},

S4
v = Bnm(ϵ−K′

)×B
d(n+1)
0 (K)×Bd(n+1)(Kϵ−1) \ (∪i=1,2,3S

i
v)

(the constants K,K ′, δ > 0 will be fixed later). In the case where v /∈ Vj is not a junction
vertex, then we define S1

v and S2
v as above, we set S3

v = ∅, and S4
v = Bnm(ϵ−K′

) × B
d(n+1)
0 (K) ×

Bd(n+1)(Kϵ−1) \ (∪i=1,2S
i
v).

Definition 8.2. Let δ > 0. Given a set S ⊂ Bnm(ϵ−K′
) × B

d(n+1)
0 (K) × Bd(n+1)(Kϵ−1), we say

that a degree one linear vertex v ∈ V1 is degenerate on S if for all (α, η, ξf ) ∈ S the following three
conditions are met simultaneously:

|αp(v) −
∑
v▷p′

αp′ −
∑

ṽ∈p+(v)

Ωṽ| ≤ δϵ−2,

|ξ(v,va(v))| ≤ δϵ−1,

if v ∈ Vj is a junction vertex then |αpj(v)| ≤ δϵ−2.

Equivalently, v is degenerate on S if S ⊂ S4
v .

We say that a vertex v ∈ Vi∪VR is nondegenerate on S if either v ∈ VR, or v is a degree zero or
a degree one quadratic vertex, or if v is a degree one linear vertex such that for each (α, η, ξf ) ∈ S
at least one of the three conditions above fail.

We will partition the domain of integration in (6.2) according to the non-degeneracy/degeneracy
of each vertex. For this aim, given a function β : V1

l 7→ {1, 2, 3, 4}, we define:

Sβ = ∩v∈V1
l
Sβ(v)
v . (8.3)

Note that any vertex v ∈ V1
l is either degenerate (if β(v) = 4) or nondegenerate (if β(v) = 1, 2, 3)

on such a set Sβ . Note also that Bnm(ϵ−K′
) × B

d(n+1)
0 (K) × Bd(n+1)(Kϵ−2) = ∪βSβ . Degenerate

degree one linear vertices have implications for the vertices above them, as stated below.

Lemma 8.3. Assume that ω(ξ) = ϵ−2 + |ξ|2
2 and K,K ′ > 0, then for δ(K) > 0 small enough the

following holds true. Given any set S ⊂ Bnm(ϵ−K′
) × B

d(n+1)
0 (K) × Bd(n+1)(Kϵ−1) and v ∈ V1

l a
degenerate degree one linear vertex on S, then:

(i) If v is at the left of the vertex above it (v = vl(va(v))) then at va(v), for all (α, η, ξf ) ∈ S:∣∣∣∣∣∣αp(va(v)) −
∑

va(v)▷p′

αp′ −
∑

ṽ∈p+(va(v))

Ωṽ

∣∣∣∣∣∣ ≥ ϵ−2

2
(8.4)

(ii) If v is at the right of the interaction vertex above it (v = vr(va(v)) and va(v) ∈ Vi) then
by definition va(v) ∈ Vj is a junction vertex with pj(va(v)) = p(v), and one has for all
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(α, η, ξf ) ∈ S:

|αpj(va(v))| ≥
ϵ−2

2
. (8.5)

(iii) If v ∈ {vltop, vrtop} is one of the top vertices then one has for all (α, η, ξf ) ∈ S:

|αp(v)| ≥
ϵ−2

2
. (8.6)

Remark 8.4. The above lemma implies in particular that if v is a degree one linear vertex that
is degenerate on S, then the vertex above it, namely va(v), is nondegenerate on S. In particular,
given any partition function β : V1

l 7→ {1, 2, 3, 4}, if for some v ∈ V1
l one has va(v) ∈ V1

l then if β
requires degeneracy at both vertices, i.e. β(v) = β(va(v)) = 4, then Sβ = ∅.

Proof. Since v is degenerate, (6.20) implies that:

|Ωv| = |ϵ−2 − σ(ξ̃)σ(ξf )ξ̃.ξf +
1

2
(1 + σ(ξ̃)σ(ξf ))|ξ̃|2| ≥ ϵ−2 −Kδϵ−2 − δ2ϵ−2 ≥ 3ϵ−2

4
(8.7)

for δ small enough. We now let v′ = va(v) and define four cases A, B, C and D. In case A one has
v = vl(v

′) and v ∈ Vj is a junction vertex. In case B one has v = vl(v
′) and v /∈ Vj . Cases A and

B cover (i) in the Lemma. In case C one has either v = vr(v
′) or v ∈ {vltop, v

r
top}, and v ∈ Vj . In

case D one has either v = vr(v
′) or v ∈ {vltop, v

r
top}, and v /∈ Vj . Cases C and D cover (ii) and (iii)

in the Lemma.
By definition, we have in case A that p(v) = p(v′) and {p′, v ▷p′} = {p′, v′ ▷p′} ∪pj(v), in

case B that p(v) = p(v′) and {p′, v ▷p′} = {p′, v′ ▷p′}, in case C that {p′, v ▷p′} = {pj(v)},
and in case D that {p′, v ▷p′} = ∅.

For (i) we have therefore

αp(v′) −
∑
v′▷p′

αp′ −
∑

ṽ∈p+(v′)

Ωṽ = αp(v) −
∑
v▷p′

αp′ −
∑

ṽ∈p+(v)

Ωṽ +

{
Ωv − αpj(v) for case A,

Ωv for case B.

which, using (8.7) and the degeneracy of v, yields for δ > 0 small enough

|αp(v′) −
∑
v′▷p′

αp′ −
∑

ṽ∈p+(v′)

Ωṽ| ≥
3ϵ−2

4
− 2δϵ−2 ≥ ϵ−2

2

and proves the lemma in this case. For (ii), we have

αp(v) −
∑
v▷p′

αp′ −
∑

ṽ∈p+(v)

Ωṽ = αp(v) −
{

Ωv + αpj(v) for case C,

Ωv for case D.

which, using (8.7) and the degeneracy of v, yields for δ > 0 small enough

|αp(v)| ≥
3ϵ−2

4
− 2δϵ−2 ≥ ϵ−2

2

and proves the lemma in this case as well as p(v) = pj(va(v)). □

We will study carefully degenerate degree one linear vertices by including them in larger clusters.

Definition 8.5. Given a set S ⊂ Bnm(ϵ−K′
)×B

d(n+1)
0 (K)×Bd(n+1)(Kϵ−1), we say that C ⊂ Vi∪VR

is a degenerate cluster on S if either of the three following possibilities occur:
• Type I: C = {v, v′} with v being at the bottom left of v′, i.e. v = vl(v

′), and is such that
v ∈ V1

l is degenerate on S, and v′ is nondegenerate on S.
• Type II: C = {v, v′} with v being at the bottom right of v′, i.e. v = vr(v

′), and is such that
v ∈ V1

l is degenerate on S, and v′ is nondegenerate on S.
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• Type III: C = {v, v′, v′′} with v and v′ being at the bottom left and right of v′′, i.e. v = vr(v
′′)

and v′ = vr(v
′′), and is such that v, v′ ∈ V1

l are degenerate on S, and v′′ is nondegenerate
on S.

The lemma below states that, given any set Sβ in the partition of the domain of integration, one
can always decompose the graph as a disjoint union of degenerate clusters and of a set of vertices
that are all nondegenerate.

Lemma 8.6 (Decomposition into nondegenerate vertices and degenerate clusters). For any set of
the form Sβ, there exists C1, ...,Cnd(G,β) disjoints degenerate clusters on Sβ such that:

Vi ∪VR = Ṽ ⊔C1 ⊔ ... ⊔Cnd(G,β)

where Ṽ only contains non-degenerate vertices on Sβ.

Proof. Let v ∈ V1
l be degenerate on Sβ , and let ṽ be the other vertex that is below va(v). If ṽ is

nondegenerate, we define the degenerate cluster Cv as Cv = {v, va(v)}. If ṽ is degenerate, we define
the degenerate cluster Cv = Cṽ as Cv = {v, ṽ, va(v)}.

From Remark 8.4, Cv is indeed a degenerate cluster on Sβ as va(v) is non-degenerate on Sβ .
Since, in each degenerate cluster, the vertex above is nondegenerate, then the degenerate clusters
that we have defined are disjoint. We order them as C1, ...,Cnd(G,S), and by definition the remaining
vertices in (Vi ∪VR)\(∪nd(G,β)

j=1 )Cj are all nondegenerate.
□

We now turn to the proof of Proposition 8.1.

Proof of (8.1) in Proposition 8.1.
Step 1 Preliminary reduction. We only prove the result for t > 0, as the computation for t < 0 is
the same from (6.8). From Proposition 6.1, it is enough to prove that given any G ∈ G

p
n and t ≥ 0

there holds:

|Ft(G)| ≤ C

{
(λt)2n if 0 ≤ t ≤ ϵ2,

( t
Tkin

)n|logϵ|2(n+1) if ϵ2 ≤ t
(8.8)

where C = C(n) > 0. We now fix G and t. We first prove the result for 0 ≤ t ≤ ϵ2. Bounding all
oscillatory phases and M in (6.16) by 1, and then applying Lemma 6.4 we obtain:

|Ft(G)| ≲ λ2nϵd(n+1)

∫∫∫
Rd(n+1)×Rd(n+1)

0 ×R2n
+

dξf dη ds∆t(s)
∏

{i,j}∈P

|Ŵ ϵ
0(ηi,j ,

ϵ

2
(σ0,iξ0,i + σ0,jξ0,j))|.

(8.9)
Note that, from (3.1), K0 = diam(Ŵ ϵ

0) is bounded uniformly for 0 < ϵ ≤ 1. Hence, in (6.2) the
product

∏
{i,j}∈P Ŵ ϵ

0(ηi,j ,
ϵ
2(σ0,iξ0,i+σ0,jξ0,j)) is 0 unless |ηi,j | ≤ K0 and |σ0,iξ0,i+σ0,jξ0,j | ≤ 2ϵ−1K0

for all {i, j} ∈ P . Recalling that ηi,j = ξ0,i + ξ0,j and that σ0,iσ0,j = −1, this implies that
|ξ0,i| ≤ 2K0ϵ

−1 for all i = 1, ..., 2n + 2. Let now ξf be a free variable, associated to an edge
(v, v′) where v is below v′. Then, integrating the Kirchhoff laws in G from initial vertices up to
v, we see that ξf =

∑
v0,i∈V0, v0,i≤v ξ0,i. Hence |ξf | ≤ 2(n + 1)K0ϵ

−1 = Kϵ−1 as there are at most
n + 1 vertices below v. Therefore, the integrand in (6.2) and in (8.9) is zero for (η, ξf ) outside of
B

d(n+1)
0 (K)×Bd(n+1)(Kϵ−1).
In (8.9), integrating with respect to ξf produces a ϵ−d(n+1) factor, over η a 1 factor, and over s

a t2n factor, so we eventually arrive at:

|Ft(G)| ≲ (λt)2n.
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We next prove the result for t ≥ ϵ2. We first reduce the integral to Bnm(K ′ϵ−2) × B
d(n+1)
0 (K) ×

Bd(n+1)(Kϵ−1) for some K(n, a) and K ′(n, a) independent of ϵ. We claim in this step that for any
K ′ > 2 large enough, (8.13) can be upper bounded by

|Ft(G)| ≲ ϵ
K′
4 +

∑
β

Ft,G,β, (8.10)

where

Ft,G,β = λ2nϵd(n+1)

∫∫∫
(α,η,ξf )∈Sβ

dα dη dξfM(ξ)
∏

p∈Pm

1

|αp +
icp
t |

2n∏
k=1

1

|Θk|
, (8.11)

and where we introduced for convenience the notation

Θk = Θk(t, α, η, ξ
f ) = αp(vk) −

∑
p̃◁vk

αp̃ −
∑

ṽ∈p+(vk)

Ωṽ +
ick
t
. (8.12)

We now prove (8.10). Using (6.22), the above discussion on the restriction for ξf and η to
B

d(n+1)
0 (K)×Bd(n+1)(Kϵ−1) and putting absolute values we obtain:

|Ft(G)| ≲ λ2nϵd(n+1)

∫∫∫
(α,η,ξf )∈Rnm×B

d(n+1)
0 (K)×Bd(n+1)(Kϵ−1)

dα dη dξf |...|. (8.13)

Next, let for some K ′ > 0 to be fixed later and p ∈ Pm:

S = {(α, η, ξf ) ∈ Rnm ×B
d(n+1)
0 (K)×Bd(n+1)(Kϵ−1), |α| ≥ ϵ−K′},

Sp = {(α, η, ξf ) ∈ Rnm ×B
d(n+1)
0 (K)×Bd(n+1)(Kϵ−1), |αp| ≥ ϵ−K′

and |αp| = sup
p′

|αp′ |}.

Then S ⊂ ∪pSp. Fix now p ∈ Pm. There exists at least one v ∈ Vi such that v ∈ p. We
decompose Pm = {p} ∪P1

m ∪P2
m where P1

m = {p′ ∈ Pm, v ▷p′} and P2
m = Pm\P1

m\{p}, and
n(v) = #P1

m. Then, for (η, ξf ) ∈ B
d(n+1)
0 (K) × Bd(n+1)(Kϵ−1), there holds |Ωv| ≲ C(K)ϵ−2, and

applying several times the inequality (B.7) yields for any C > 0:∣∣∣∣∣∣
∫
|αp|≥ϵ−K′

logC |αp|dαp

|αp +
cpi
t |

∫
(αp′ )p′∈P1

m
∈Rn(v)

d(αp′)p′∈P1
m

|αp −
∑

v▷p′ αp′ −
∑

v′∈p+(v)Ωv +
icv
t |

∏
v∈p′∈P1

m

1

|αp′ +
icp′
t |

∣∣∣∣∣∣
≲
∫
|αp|≥ϵ−K′

logC |αp|
|αp +

cpi
t |

1

|αp −
∑

v′∈p+(v)Ωv +
cvi
t |

dαp ≲ ϵ
K′
2 .

We then estimate the integral (8.13) restricted to the set Sp as follows: first we integrate over the
(αp′)p′∈P2

m
variables the 1

|αp′+ i
t
| terms which produces a lognm−1−n(v)|αp| factor, then we integrate

over the (αp′)p′∈P1
m∪{p} variables and apply the inequality above producing a ϵ

K′
2 factor, and finally

we integrate over the η and ξf variables which produces a ϵ−C(K) factor, yielding:∫∫∫
Sp

... ≲ ϵ
K′
2
−C(K) ≲ ϵ

K′
4

for K ′ large enough depending on K. Hence, since S ⊂ ∪pSp we get
∫∫∫

S ... ≲ ϵ
K′
4 for any arbitrary

constant K ′ > 0. We thus get the inequality (8.13) by noticing that S
c
=
∏

β Sβ .

We now first treat the hardest case of (1.1) with ω0 = ϵ−2, and relegate the easier proof of (1.1)
with m(0) = 0 to Step 4.
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The basic idea will be the following: consider all interaction vertices following the integration
order; when reaching the vertex vk, if it is of degree 1, integrate over the free variable below it;
and if it is a junction vertex, integrate over αpj(vk). While this plan can be followed literally in the
absence of clusters, complications arise if they are present.

Step 2 Upper bound for (8.13) in absence of clusters. We assume first that all interaction vertices
are non-degenerate on Sβ , in the sense of Definition 8.2. We prove (8.8) by integrating over the
variables ξf and α iteratively, according to an algorithm that considers the interaction vertices and
the root vertex v1, ..., v2n+1 ∈ Vi∪VR one after an other, where v1, ..., v2n+1 is the integration order
on G.

We define for 1 ≤ k ≤ 2n+1 the set Pm,k = {p ∈ Pm, vj(p) is after vk for the integration order}
and the variables αk = (αp)p∈Pm,k

and ξfk = (ξfi )ki≥k. Importantly, note that Θk only depends

on αk, η and ξfk from Proposition 6.4 and the definition of the integration order. Let nm,k =

#Pm,k, n0,k = #{v ∈ V0, v is strictly before vk for the integration order} and n1,k = #{v ∈
V1, v is strictly before vk for the integration order}. Note that Pm,1 = Pm, that Pm,2n+1 =

{p(vltop),p(vrtop)}, that n0,0 = n1,0 = 0 and n0,2n+1 = n0 = n1,2n+1 = n1 = n from (6.19).
We define Sβ,k as the image of Sβ by the projection map (α, η, ξf ) 7→ (αk, η, ξ

f
k ). We claim that for

all 1 ≤ k ≤ 2n+ 1:

Ft,G,β ≲ λ2nϵd(n+1)ϵ(2−d)n1,ktn0,k |logϵ|2n1,k

∫∫∫
(αk,η,ξ

f
k
)∈Sβ,k

dαk dηk dξfk

∏
p∈Pm,k

1

|αp +
icp
t |

2n∏
ℓ=k

1

|Θℓ|
,

(8.14)

which we now prove by induction. It is trivially true for k = 1. We assume now it is true for some
1 ≤ k ≤ 2n. We prove it for k + 1 by considering four cases depending on the vertex vk.

Case 1: vk ∈ V0 and vk /∈ Vj . In this case Pm,k = Pm,k+1, n0,k = n0,k+1 − 1 and n1,k = n1,k+1.
There is no variable to integrate over: αk = αk+1 and ξfk = ξfk+1. We first plug these equalities in

the integral in the right hand side of (8.14) at step k. Then for all (αk, η, ξ
f
k
) ∈ Sβ,k = Sβ,k+1, we

simply upper bound the term |Θk|−1 ≲ t in the integral. The right hand side of (8.14) at step k is
then bounded by that of (8.14) at step k + 1.

Case 2: vk ∈ V0 and vk ∈ Vj . In this case Pm,k = Pm,k+1 ∪ {pj(vk)}, n0,k = n0,k+1 − 1 and
n1,k = n1,k+1. We will integrate over the variable αpj(vk), noting that αk = (αpj(vk), αk+1) and
ξfk = ξfk+1.

By definition of the integration order and of junction vertices, all the vertices in pj(vk) have
already been considered by the algorithm, i.e. pj(vk) ⊂ {v1, ..., vk−1}, and for all ℓ ≥ k + 1, the
vertex vℓ is not constraining pj(vk) so that {v ∈ {vℓ}ℓ≥k, v▷vpj(vk)} = {vk}. Thus, in the integrand

in (8.14) at step k, the terms |αpj(vk) +
icpj(vk)

t |−1 and

Θk = −αpj(vk) + γ +
ick
t

(8.15)

are the only ones depending on the variable αpj(vk), where γ ∈ R has an explicit expression but
is independent of αpj(vk). In the integral (8.14) at step k, for a fixed (αk+1, η, ξ

f
k+1) ∈ Sβ,k+1 we
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integrate over the variable αpj(vk) using (8.15) and (B.7), producing:

∫
|αpj(vk)|≤ϵ−K′ , (αk,η,ξ

f
k )∈Sβ,k

dαpj(vk)

|αpj(vk) +
icpj(vk)

t |

1

|Θk|

≲
∫
|αpj(vk)|≤ϵ−K′

dαpj(vk)

|αpj(vk) +
icpj(vk)

t |

1

| − αpj(vk) + γ + ick
t |

≲ t,

and get the inequality (8.14) at step k + 1.

Case 3: vk ∈ V1 and vk /∈ Vj . In this case, Pm,k = Pm,k+1, n0,k = n0,k+1 and n1,k = n1,k+1 − 1.
There is a free variable ξfi attached to vk (which is ξfki for i such that ki = k) to integrate over. We
have ξfk = (ξfi , ξ

f
k+1) and αk = αk+1. We note that by definition of the integration order, and from

the construction of the free variables ξf (as stated Lemma 6.5), for all ℓ ≥ k+1, for all v ∈ p+(vℓ),
the quantity Ωv is independent of ξfi . Thus, in the integrand of (8.11) at Step k,

Θk = γ − Ωvk +
ick
t

(8.16)

is the only quantity which depends on ξfi . Moreover, γ is independent of ξfi , and Ωvk is given by
Lemma 6.5. For any fixed (αk, η, ξ

f
k+1) ∈ Sβ,k+1, using (8.16), and then either (6.21) and (B.4) if

vk is quadratic, or (6.20) and (B.2) if vk is linear (because from the assumption of this Step 2, vk
is then nondegenerate on Sβ), we get

∫
|ξfi |≤Kϵ−1, (αk,η,ξ

f
k )∈Sβ,k

1

|Θk|
dξfi ≲

∫
|ξfi |≤Kϵ−1, (αk,η,ξ

f
k )∈Sβ,k

1

|γ − Ωvk(ξ
f ) + ick

t |
dξfi ≲ ϵ2−d|logϵ|.

In the inequality (8.14) at Step k, we integrate over ξfi using the above inequality, and obtain (8.14)
at Step k + 1.

Case 4: vk ∈ V1 and vk ∈ Vj . In this case Pm,k = Pm,k+1 ∪ {pj(vk)}, n0,k = n0,k+1 and n1,k =

n1,k+1 − 1. There are two variables to integrate over: a free variable ξfi attached to vk and αpj(vk),
and we have ξfk = (ξfi , ξ

f
k+1) and αk = (αpj(vk), αk). By definition of the integration order, and from

Proposition 6.4, for all ℓ ≥ k + 1, the quantity Θℓ depends neither on αpj(vk), nor on ξfi . Thus, in

the integrand of (8.14) at Step k, the terms |αpj(vk) +
cpj(vk)i

t | and

Θk = γ − αpj(vk) − Ωvk +
ick
t

(8.17)

are the only ones which depends on ξfi and αpj(vk). Above, γ is independent of ξfi and αpj(vk), and
Ωvk(ξ

f ) is given by Lemma 6.5. For any fixed (αk, η, ξ
f
k+1) ∈ Sβ,k+1, using (8.17) and then either

(6.21) and (B.4) if vk is quadratic, or (6.20) and (B.2) if vk is linear (because from the assumption
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of this Step 2, vk is then nondegenerate on Sβ and in the integral below |αpj(vk)| ≤ δϵ−2), we get∫
|αpj(vk)|≤δϵ−2

∫
|ξfi |≤Kϵ−1, (αk,η,ξ

f
k )∈Sβ,k

1

|αpj(vk) +
cpj(vk)i

t |

1

|Θk|
dξfi dαpj(vk)

≲
∫
|αpj(vk)|≤δϵ−2

dαpj(vk)

|αpj(vk) +
cpj(vk)i

t |

∫
|ξfi |≤Kϵ−1, (αk,η,ξ

f
k )∈Sβ,k

dξfi
|γ − αpj(vk) − Ωvk(ξ

f ) + ick
t |

≲
∫
|αpj(vk)|≤δϵ−2

dαpj(vk)

|αpj(vk) +
cpj(vk)i

t |
ϵ2−d|logϵ| ≲ ϵ2−d|logϵ|2.

For the part of the integral for which |αpj(vk)| > δϵ−2 we inverse the order of integration by Fubini,

simply bound |αpj(vk) +
cpj(vk)i

t |−1 ≲ ϵ2 and find:∫
|αpj(vk)|≥δϵ−2

∫
|ξfi |≤Kϵ−1, (αk,η,ξ

f
k )∈Sβ,k

1

|αpj(vk) +
cpj(vk)i

t |

1

|Θk|
dξfi dαpj(vk)

≲
∫
|ξfi |≤Kϵ−1

dξfi

∫
|αpj(vk)|≥δϵ−2, (αk,η,ξ

f
k )∈Sβ,k

1

|αpj(vk) +
cpj(vk)i

t |

1

|γ − αpj(vk) − Ωvk(ξ
f ) + ick

t |
dαpj(vk)

≲
∫
|ξfi |≤Kϵ−1

dξfi ϵ
2 ≲ ϵ2−d.

Combining the two inequalities above yields (8.14) at Step k + 1.

By induction, we obtain that (8.14) holds for all 1 ≤ k ≤ 2n + 1. To prove the final estimate
(8.8), we take k = 2n+1 in (8.14), and then integrate over the αp(vltop)

, αp(vrtop)
variables producing

a |logϵ|2 factor, over ξf2n+1 producing a ϵ−d factor, and over the η variables producing a 1 factor:

Ft,G,β ≲ λ2nϵd(n+1)|logϵ|2nϵ(2−d)ntn
∫∫∫

(α
p(vltop)

,αp(vrtop),η,ξ
f
n+1)∈×B2(0,ϵ−K′ )×Bd(n+1)(K)×B1(Kϵ−1)

dαp(vltop)
dαp(vrtop)

dηdξfn+1

1

|αp(vltop)
+

icα
p(vltop)

t |

1

|αp(vrtop)
+

icαp(vrtop)

t |

≲ λ2nϵd(n+1)|logϵ|2nϵ(2−d)ntnϵ−d|logϵ|2 = (
t

λ−2ϵ−2
)n|logϵ|2(n+1),

where we used
∫
|α|≤ϵ−K′ dα|α+ i/t|−1 ≲ |logϵ|. The inequality (8.8) is proved, concluding Step 2.

Step 3 Upper bound for (8.13) in presence of clusters. We now treat the general case for which
there exist degenerate vertices in the sense of Definition 8.2. We apply Lemma 8.6 and gather them
into clusters C1, ...,Cnd

, and recall the decomposition Vi ∪VR = Ṽ ⊔C1 ⊔ ...⊔Cnd(G,β). As in Step
2, we prove (8.8) by integrating over the variables ξf and α in (8.14) iteratively, according to an
algorithm that considers again the interaction vertices and the root vertex v1, ..., v2n+1 ∈ Vi ∪VR

one after the other according to the integration order.
The outcome of the strategy in Step 2 can be summarised as follows: each degree 0 vertex produces

a factor t, and each non-degenerate degree 1 vertex produces a factor ϵ2−d|logϵ|2. Given a cluster
C containing n0(C) ∈ {0, 1} degree zero vertex and n1(C) ∈ {1, 2, 3} degree one vertices, when
reaching one of its vertices during the integration algorithm, we will perform different estimates.
We will prove, overall, the same estimate for this group of vertices, that is, that C produces a
tn0(C)(ϵ2−d|logϵ|)n1(C) factor.
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We now consider each vertex v1, ..., v2n+1 ∈ Vi∪VR one after the other according to the integration
order and assume we reach vk. Suppose vk ∈ Ṽi does not belong to a cluster. Then we proceed as
in Step 2. As a result if vk is of degree zero this produces a t factor, and if vk is of degree one this
produces a factor ϵ2−d|logϵ|2. Suppose now we reach vk ∈ C the first (according to the integration
order) vertex of a cluster C. Suppose in addition that the vertex above vk is not the root vertex,
which will be treated after. By definition vk is degenerate in the sense of Definition 8.2.

Case 1: C = (vk, vk′) is a type I cluster (in the sense of Definition 8.5) and vk′ ∈ V0. Then n0(C) =

n1(C) = 1. Assume first vk, vk′ /∈ Vj . Denote by ξf the free variable at vk. At vk we simply bound
|Θk|−1 ≲ t and integrate over ξf :∫

|ξf |≤Kϵ−1, (αk,η,ξ
f
k )∈Sβ,k

1

|Θk|
dξf ≲

∫
|ξf |≤Kϵ−1

tdξf ≲ tϵ−d. (8.18)

We then pursue the algorithm and consider the next vertices vk+1, vk+2, ... . When the algorithm
reaches vk′ , we bound |Θk′ |−1 ≲ ϵ2 by applying (8.4) since C is a type I cluster. Combining the
factors we got at vk and vk′ , we find that C produced a tϵ−dϵ2 ≤ tn0(C)(ϵ2−d|logϵ|)n1(C) factor.

If vk ∈ Vj , then at vk we start by integrating over αpj(vk) using (B.7) and get∫
|αpj(vk)|≤ϵ−K′ , (αk,η,ξ

f
k )∈Sβ,k

1

|αpj(vk) +
icpj(vk)

t |

dαp(vk)

|αp(vk) −
∑

p̃◁vk
αp̃ −

∑
ṽ∈p+(vk)

Ωṽ +
ick
t |

≲
1

|αp(vk) + αpj(vk) −
∑

p̃◁vk
αp̃ −

∑
ṽ∈p+(vk)

Ωṽ +
ick
t |

,

and we are back to the previous reasoning for the case vk /∈ Vj . If vk′ ∈ Vj then the analogue
estimate at vk′ , integrating first over αpj(vk′ )

, sends back similarly to the previous reasoning for the
case vk′ /∈ Vj . Hence the same bound for C holds in the cases where vk ∈ Vj or vk′ ∈ Vj .

Case 2: C = (vk, vk′) is a type I cluster and vk′ ∈ V1. Then n0(C) = 0 and n1(C) = 2. Denote by
ξf the free variable at vk, by ξ

′f that at vk′ , and assume vk, vk′ /∈ Vj . Since (vk, vk′) is the edge
above vk, and is at the bottom left of vk′ , we have that in the formula at vk, there holds ξ̃ = ξ

′f in
(6.20), so that this formula gives Θk = −σ(ξf )2ξ

′f .ξf +γ+ ick
t where γ is independent of ξf . When

the algorithm reaches vk we integrate over ξf using (B.1) and obtain:∫
|ξf |≤Kϵ−1, (αk,η,ξ

f
k )∈Sβ,k

1

|Θk|
dξf ≲

∫
|ξf |≤Kϵ−1

1

| − σ(ξf )2ξ′f .ξf + γ + ick
t |

dξf ≲
ϵ1−d|logϵ|

|ξ′f |
. (8.19)

When later the algorithm reaches vk′ we bound |Θk′ |−1 ≲ ϵ2 by (8.4), and integrate the |ξ′f |−1

factor produced by (8.19):∫
|ξ′f |≤Kϵ−1, (αk′ ,η,ξ

f

k′ )∈Sβ,k′

1

|ξ′f |
1

|Θk′ |
dξ

′f ≲
∫
|ξ′f |≤Kϵ−1

ϵ2
1

|ξ′f |
dξ

′f ≲ ϵ3−d.

Combining the factors at vk and vk′ , C produced a ϵ1−d|logϵ|ϵ3−d ≤ tn0(C)(ϵ2−d|logϵ|)n1(C) factor.
If vk ∈ Vj (resp. vk′ ∈ Vj), integrating first over αpj(vk) (resp. αpj(vk′ )

) using (B.7) sends back
to the previous case vk /∈ Vj (resp. vk′ /∈ Vj). Details for this procedure are given in the last
paragraph of Case 1 and we shall omit them here and later. Hence our method for vk, vk′ /∈ Vj also
covers the cases vk, vk′ ∈ Vj .
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Case 3: C = (vk, vk′) is a type II cluster and vk′ ∈ V0. Assume vk /∈ Vj . When reaching vk we
simply bound |Θk|−1 ≲ t and integrate over ξf :∫

|ξf |≤Kϵ−1, (αk,η,ξ
f
k )∈Sβ,k

1

|Θk|
dξf ≲ t

∫
|ξf |≤Kϵ−1

dξf ≲ tϵ−d. (8.20)

Next, when reaching vk′ , we apply (8.5) and get vk′ ∈ Vj with |αpj(vk′ )
| ≥ δϵ−2. Writing Θk =

γ − αpj(vk′ )
+ ick

t where γ is independent of αpj(vk′ )
, integrating over αpj(vk′ )

using the previous
bound we get:∫
|αpj(vk′ )

|≤ϵ−K′ , (αk′ ,η,ξ
f

k′ )∈Sβ,k′

dαpj(vk′ )

|αpj(vk) +
icpj(vk)

t |

1

|Θk|
≲
∫
δϵ−2≤|αpj(vk′ )

|≤ϵ−K′

ϵ2dαpj(vk′ )

|γ − αpj(vk′ )
+ ick

t |
≲ ϵ2|logϵ|.

The factors we got at vk and vk′ thus give that C produced a tϵ−dϵ2|logϵ| ≤ tn0(C)(ϵ2−d|logϵ|)n1(C)

factor. As in Case 1 and 2, the case vk ∈ Vj can be dealt with the exact same way by integrating
first over αpj(vk), we refer to the last paragraph of Case 1 for details.

Case 4: C = (vk, vk′) is a type II cluster and vk′ ∈ V1. Assume vk /∈ Vj . Let ξf and ξ
′f be the free

variables at vk and vk′ respectively. Let ξ̃ (resp. ξ̃′) denote the variable associated to the edge on
top of vk (resp. vk′). As C is a type II cluster, we have by Kirchhoff law at vk′ that ξ̃ = ξ̃′ − ξ

′f

and that ξ̃′ depends neither on ξf nor on ξ
′f . Hence (6.20) gives Θk = σ(ξf )(ξ

′f − ξ̃′) · ξf + γ + ick
t

where γ is independent of ξf . At vk we integrate over ξf using this identity and (B.1), giving:∫
|ξf |≤Kϵ−1, (αk,η,ξ

f
k )∈Sβ,k

1

|Θk|
dξf ≲

∫
|ξf |≤Kϵ−1

1

|σ(ξf )(ξf ′ − ξ̃′) · ξf + γ + ick
t |

dξf ≲
ϵ1−d|logϵ|
|ξ′f − ξ̃′|

.

(8.21)
Next, at vk′ , we apply (8.5) so that vk′ ∈ Vj with |αpj(vk′ )

| ≥ δϵ−2 on Sβ,k′ . Moreover, Θk′ =

−αpj(vk′ )
+ γ′ +

ick′
t with γ′ independent of αpj(vk′ )

. We first integrate over αpj(vk′ )
using these

bound and equality, producing a factor ϵ2|logϵ|, and then integrate the |ξ′f − ξ̃′|−1 gained from
(8.21) over ξf

′ , producing an ϵ1−d factor, resulting in:∫
|αpj(vk′ )

|≤ϵ−K′ , |ξ′f |≤Kϵ−2 (αk′ ,η,ξ
f

k′ )∈Sβ,k′

dαpj(vk′ )
dξ

′f 1

|ξ′f − ξ̃′|
1

|αpj(vk′ )
+

icpj(vk′ )

t |

1

|Θk′ |
≲ ϵ3−d|logϵ|.

The factors obtained at vk and vk′ give a total factor for C of ϵ1−d|logϵ|ϵ3−d|logϵ| ≤ tn0(C)(ϵ2−d|logϵ|)n1(C).
Again, as in all previous cases, the subcase vk ∈ Vj can be dealt with the exact same way by inte-
grating first over αpj(vk), see Case 1 for details.

Case 5: C = (vk, vk′ , vk′′) is a type III cluster and vk′′ ∈ V0, so n0(C) = 1 and n1(C) = 2. Assume
vk, vk′ /∈ Vj . Assume firstly vk = vl(vk′′) is before vk′ = vr(vk′′) in the integration order. Let ξf

and ξ
′f be the free variables at vk and vk′ respectively.

At vk we bound |Θk|−1 ≲ t and integrate over ξf :∫
|ξf |≤Kϵ−1, (αk,η,ξ

f
k )∈Sβ,k

1

|Θk|
dξf ≲

∫
|ξf |≤Kϵ−1

tdξf ≲ tϵ−d. (8.22)

At vk′ we first upper bound the factor associated to vk′′ as |Θk′′ |−1 ≲ ϵ2 by applying (8.4), bound
|αp(vk′ )

+
icp(vk)

t |−1 ≲ ϵ2 by applying (8.5) and write Θk′ = αp(vk′ )
+γ+

ck′ i
t where γ is independent

of αp(vk′ )
. Note that these three terms are the only ones depending on αp(vk′ )

in the right hand side
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of (8.14) at Step k′. After plugging these bounds, we integrate with respect to αp(vk′ )
producing a

|logϵ| factor, and then over ξ
′f producing a ϵ−d factor, and obtain:∫

|αp(vk′ )
|≤ϵ−K′ , |ξ′f |≤Kϵ−2 (αk′ ,η,ξ

f

k′ )∈Sβ,k′

1

|αp(vk′ )
+

icpj(vk′ )

t |

1

|Θk′ |
1

|Θk′′ |
dαp(vk′ )

dξ
′f ≲ ϵ4−d|logϵ|.

(8.23)

When reaching vk′′ , we do not do anything, resulting in a 1 factor. Combining the factors obtained
at vk, vk′ and vk′′ give a total factor for C of tϵ−dϵ4−d|logϵ| ≤ tn0(C)(ϵ2−d|logϵ|)n1(C).

Assume secondly vk′ = vr(vk′′) is before vk = vl(vk′′) in the integration order. The same reasoning
applies. Indeed, when reaching vk′ we perform the estimate (8.22) (replacing the k notation by k′

in this inequality). Next when when reaching vk we perform the estimate (8.23), integrating over
ξf and αp(vk′ )

(which is permitted as Θk = γ′ − αp(vk′ )
+ ick

t with γ′ independent of αp(vk′ )
since

vk ▷p(vk′)). This produces the same tϵ4−2d|logϵ| factor for C.
Again, the subcase vk, vk′ ∈ Vj can be dealt with in the same way by integrating first over αpj(vk)

and αpj(vk′ )
, see Case 1 for details.

Case 6: C = (vk, vk′ , vk′′) is a type III cluster and vk′′ ∈ V1. Assume vk, vk′ /∈ Vj . Assume firstly
vk = vl(vk′′) is before vk′ = vr(vk′′) in the integration order. Let ξf , ξ

′f , ξ
′′f be the free variables at

vk, vk′ , vk′′ .
At vk, we note that ξ

′′f is the variable associated to the edge above vk, so that (6.20) gives
Θk = −σ(ξf )2ξ

′′f .ξf + γ + cki
t with γ independent of ξf . We integrate over ξf using (B.1) and get:∫

|ξf |≤Kϵ−1, (αk,η,ξ
f
k )∈Sβ,k

1

|Θk|
dξf ≲

∫
|ξf |≤Kϵ−1

1

| − σ(ξf )2ξ′′f .ξf + γ + cki
t |

dξf ≲
ϵ1−d|logϵ|

|ξ′′f |
. (8.24)

At vk′ we first upper bound the factor associated to vk′′ as |Θk′′ |−1 ≲ ϵ2 by applying (8.4), bound
|αp(vk′ )

+
icp(vk)

t |−1 ≲ ϵ2 by applying (8.4) and write Θk′ = αp(vk′ )
+γ′+

ick′
t where γ′ is independent

of αp(vk′ )
. We integrate with respect to αp(vk′ )

producing a |logϵ| factor, and then over ξ′f producing
a ϵ−d factor, and obtain:∫

|αp(vk′ )
|≤ϵ−K′ , |ξ′f |≤Kϵ−2 (αk′ ,η,ξ

f

k′ )∈Sβ,k′

1

|αp(vk′ )
+

icpj(vk′ )

t |

1

|Θk′ |
1

|Θk′′ |
dαp(vk′ )

dξ
′f ≲ ϵ4−d|logϵ|.

(8.25)

When reaching vk′′ , integrate over the variable ξ
′′f the |ξ′′f |−1 factor produced by (8.24), giving∫

|ξ′′f |≤Kϵ−1, (αk′′ ,η,ξ
f

k′ )∈Sβ,k′′
|ξ′′f |−1dξ

′′f ≲ ϵ1−d. Combining the factors obtained at vk, vk′ and vk′′

give a total factor for C of ϵ1−d|logϵ|ϵ4−d|logϵ|ϵ1−d ≤ tn0(C)(ϵ2−d|logϵ|)n1(C).
Assume secondly vk′ = vr(vk′′) is before vk = vl(vk′′) in the integration order. We reason the

same way. When reaching vk′ the variable associated to the edge on top of vk′ is by Kirchhoff
law ξ̃

′′ − ξ
′′f where ξ̃

′′ is independent of ξf , ξ′f , ξ
′′f . We perform the estimate (8.24), producing a

ϵ1−d|ξ̃′′ − ξ
′′f ||logϵ| factor. Next when when reaching vk we perform the estimate (8.25), integrating

over ξf and αp(vk′ )
(which is permitted as Θk = γ′′ − αp(vk′ )

+ cki
t with γ′′ independent of αp(vk′ )

since vk ▷ p(vk′)), producing a ϵ4−d|logϵ| factor. At vk′′ , we integrate over the variable ξ
′′f the

|ξ̃′′ − ξ
′′f |−1 factor produced at vk′ , giving a ϵ1−d factor. The total factor for C is again ϵ6−3d|logϵ|2.

Again, the subcase vk, vk′ ∈ Vj can be dealt with in the same way by integrating first over αpj(vk)

and αpj(vk′ )
, see Case 1 for details.

End of the proof. After all interaction vertices have been considered, the last step of the algorithm
considers the root vertex.
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In the first case, vR ∈ Ṽ does not belong to a cluster. We perform the same estimate as in the
end of Step 2, resulting in the same ϵ−d|logϵ|2 factor. As each degree zero vertex (resp. degree
one vertex) considered in the non-degenerate set Ṽ or in a cluster C, produced a t factor (resp. a
ϵ2−d|logϵ|2 factor), the final estimate is, using (6.19):

Ft,G,β ≲ λ2nϵd(n+1)tn0(ϵ2−d|logϵ|2)n1ϵ−d|logϵ|2 ≲ (
t

λ−2ϵ−2
)n|logϵ|2(n+1), (8.26)

which proves (8.8).
In the second case, vR ∈ C belongs to a cluster. Then C = {vR} ∪ C′ with C′ being either

{vltop}, {vrtop} or {vltop, v
r
top}. Let vk ∈ C′ and assume the algorithm reaches vk with free variable

ξf . Assume vk /∈ Vi. Then (8.6) implies that |αp(vk)+
icp(vk)

t | ≲ ϵ2. Moreover, Θk = αp(vk)+γ+ ick
t

with γ independent of αp(vk). We use these bound and equality and integrate with respect to αp(vk):∫
|αp(vk)|≤ϵ−K′ , (αk,η,ξ

f
k )∈Sβ,k

dαp(vk′ )

|αp(vk) +
icpj(vk)

t |

1

|Θk|
≲
∫
δϵ2≤|αp(vk)|≤ϵ−K′

ϵ2dαp(vk)

|αp(vk) + γ + i
t |

≲ ϵ2|logϵ|.

We then integrate with respect to ξf producing an additional ϵ−d factor. If vk ∈ Vi, as in all
previous cases, we first integrate over αpj(vk) and then we are back to estimating as in the case
vk /∈ Vi, see the end of Case 1 for details. Hence at vk we obtained a ϵ2−d|logϵ| factor, which is the
same as in Step 2 for a nondegenerate degree one vertex.

We perform this estimate for all the vertices in C′, so that C′ produced a total factor of
(ϵ2−d|logϵ|)n1(C) as in the previous cases of Step 3. Finally, when reaching vR, we integrate the
remaining |αp(v)+

icp(v)

t |dαp(v) terms for v ∈ {vltop, v
r
top}\C′ (if any), giving in a |logϵ|2−#C′ factor,

and we integrate dξfn+1 over the ball |ξfn+1| ≤ Kϵ−1, producing a ϵ−d factor. Hence in this second
case we got the same estimate as in the first case, and (8.26) is obtained as well, ending the proof
of (8.8).

Step 4 The case of equation (1.1) with ω0 = 0 and m(0) = 0. This case is simpler since it
corresponds to Step 2 and avoids the use of clusters to deal with degenerate vertices. More precisely,
in this case it suffices from (6.5) to prove the bound (8.8) for expressions of the form:

Ft,G,β = λ2nϵd(n+1)

∫∫∫
(α,η,ξf )∈Sβ

dα dη dξf
∏

p∈Pm

1

|αp +
icp
t |

2n∏
k=1

m(ϵξ̃k)

|Θk|
, (8.27)

We estimate again according to an algorithm that considers the vertices v1, ..., v2n+1 one after
another according to the integration order. When the algorithm reaches a vertex vk, if vk is non-
degenerate on Sβ , we apply the same study as in Step 2. As a result, a degree 0 vertex (resp.
degree 1) produces a t factor (resp. a ϵ2−d|logϵ|2 factor). Assume now vk is a degree one linear
vertex with free variable ξf that is degenerate on Sβ . Then the variable ξ̃k that is associated to
the edge above vk satisfies |ξ̃k| ≤ δϵ−1 from Definition 8.2, so that m(ϵξ̃k) = O(|ϵξ̃k|) for δ small
since m(0) = 0. Using this and (6.20), we integrate m(ξ̃k)|Θk|−1 with respect to the variable ξf

applying Corollary B.3, and get a factor ϵ2−d|logϵ|. Hence at this vertex we get the usual estimate
for nondegenerate vertices. The rest of the proof of (6.5) is exactly the same as in Step 2.

□

8.2. The Xs,b estimate. The proof follows the same strategy as that of the L2 norm, we will
simply highlight what are the necessary modifications. Recall the identities un =

∑
G∈Gn

uG and
uG = u+G+u−G. Apply the resolvent identity of Lemma 6.3 with η = 1

T to (6.12), and then integrating
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along the s variables one obtains

û+G(t, ξR) = e−itω(ξR)

(
−iλ

(2π)d/2

)n ∑
G∈Gn

(−1)σGc
t
T
G

(2π)nm

∫
Rd(2n+1)

∫
Rnm

dξ dα∆ξR(ξ)e
−iαp(vtop)t

M(ξ)
∏

p∈Pm

i

αp + i
cp
T

n+1∏
i=1

û0(ξ0,i, σ0,i)
∏
v∈Vi

i

αp(v) −
∑

p̃◁v αp̃ −
∑

ṽ∈p+(v)Ωṽ + i cvT

(a similar formula holds for u−G using (6.8)). This yields the following expression for the spacetime

Fourier transform of 1(t ≥ 0)un (notice that the c
t
T
G factor has been absorbed in the cut-off χ(t/T )

to simplify notations):

F

(
χ

(
t

T

)
1(t ≥ 0)un

)
(τ, ξR) =

(
−iλ

(2π)d/2

)n ∑
G∈Gn

(−1)σG

(2π)nm+ 1
2

∫
Rd(2n+1)

∫
Rnm

dξ dα∆ξR(ξ)

T χ̂(T (τ + ω(ξR) + αp(vtop)))M(ξ)∏
p∈Pm

i

αp + i
cp
T

n+1∏
i=1

û0(ξ0,i, σ0,i)
∏
v∈Vi

i

αp(v) −
∑

p̃◁v αp̃ −
∑

ṽ∈p+(v)Ωṽ + i cvT
.

(again, a similar formula holds for 1(t < 0)un from (6.8)). We keep all notations from Subsection
6.4. The identity corresponding to (6.1) is now

E
∥∥∥∥χ( t

T

)
1(t ≥ 0)un

∥∥∥∥2
Xs,b

ϵ

=
∑
G∈Gp

n

FT (G)

with, given a paired graph G ∈ G
p
n (recalling that for such a graph ξvltop

+ ξvrtop = 0, and changing
variables τ 7→ τ + ω(ξvltop

)):

FT (G) =
(−1)σG

(2π)nm− d
2

λ2nϵd(n+1)

∫∫∫
dξ dα dτ∆G(ξ)⟨ϵξvltop⟩

2s⟨τ⟩2bM(ξ) (8.28)∏
{i,j}∈P

Ŵ ϵ
0(ηi,j ,

ϵ

2
(σ0,iξ0,i + σ0,jξ0,j))T χ̂(T (τ + αp(vltop)

))T χ̂(T (τ + αp(vrtop)
))

∏
p∈Pm

i

αp +
icp
T

∏
v∈Vi

i

αp(v) −
∑

p̃◁v αp̃ −
∑

ṽ∈p+(v)Ωṽ +
icv
T

.

Proof of (8.2) in Proposition 8.1. We prove the desired bound for n ≥ 1 and 1(t ≥ 0)un. Indeed,
the bound for u0, the free evolution of the initial datum, is a direct computation, and the proof of
the bound for 1(t ≤ 0)un for n ≥ 1 is the same as that for 1(t ≥ 0)un using (6.8). The proof is so
similar to that of (8.1) that we only highlight the differences.

It suffices to estimate (8.28). We solve Kirchhoff’s laws with Proposition 6.4 and reduce the
integration over the free variables ξf and η. We put absolute values in the integrand. Next, we
upper bound T χ̂(Tz) ≲ |z + i

T |
−1 since χ is in the Schwartz class. Arguing exactly as in the

beginning of the proof of (8.1), the product
∏

{i,j}∈P Ŵ ϵ
0(ηi,j ,

ϵ
2(σ0,iξ0,i + σ0,jξ0,j)) is zero unless

|ξ| ≤ Kϵ−1 for some K(a, n) > 0. In particular, |ξvltop | ≲ ϵ−1 on the support of the integrand, where
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we simply bound ⟨ϵξvltop⟩
2s ≲ 1. This gives:

|FT (G)| ≲ λ2nϵd(n+1)

∫∫∫∫
|ξf |≤Kϵ−1,|η|≤K

dξf dη dα dτ⟨τ⟩2b 1

|τ + αp(vltop)
+ i

T |
1

|τ + αp(vrtop)
+ i

T |

M(ξ)
∏

p∈Pm

1

|αp +
icp
T |

∏
v∈Vi

1

|αp(v) −
∑

p̃◁v αp̃ −
∑

ṽ∈p+(v)Ωṽ +
icv
T |

= λ2nϵd(n+1)

∫∫∫
|ξf |≤Kϵ−1, |η|≤K, |(α,τ)|≤ϵ−K′︸ ︷︷ ︸

=F1,T (G)

... + λ2nϵd(n+1)

∫∫∫
|ξf |≤Kϵ−1, |η|≤K, |(α,τ)|>ϵ−K′

...︸ ︷︷ ︸
=F2,T (G)

(8.29)

Arguing as in the first step of the proof of (8.1), for any b ∈ (12 ,
3
4 ] the second term is of higher

order and enjoys the estimate:

|F2,T (G)| ≲ ϵ
K′
2

We are left with estimating F1,T (G) that we decompose as in the proof of Proposition 8.1 as
|F1,T (G)| ≲

∑
β FT,G,β where:

FT,G,β = λ2nϵd(n+1)

∫∫∫
(α,η,ξf )∈Sβ , |τ |≤ϵ−K′

...

In the integrand in (8.29), the only novelty when comparing with the identity (6.22) for the com-
putation of the L2 norm, is the addition of the τ variable and of the ⟨τ⟩2b|τ + αp(vltop)

+ i
T |

−1|τ +

αp(vrtop)
+ i

T |
−1 factor. Note that this factor only involves τ , αp(vltop)

and αp(vrtop)
. We will estimate

the integral FT,G,β by considering vertices one by one according to the integration order. For each
vertex v /∈ {vR, vltop, v

r
top} that is neither one of the top vertices nor the root vertex, we perform

the exact same estimates as for the proof of (8.1). We will thus only perform different estimates at
vR, v

l
top, v

r
top which we now describe.

Step 1 If m(0) = 0, or ω0 > ϵ−2 and vR is not in a cluster. In this case, when reaching vltop and
vrtop we perform the same estimates as in the proof of (8.1) (thus, the same estimates as in the
proof of (8.1) have been performed at all interaction vertices). When reaching the root vertex, this
produces the intermediate estimate:

FT,G,β ≲ λ2nϵ(d(n+1))tnϵ(2−d)n|logϵ|2ntn
∫∫∫∫

|τ |≤ϵK′ , |ξfn+1|≤Kϵ−1, |(α
p(vltop)

,αp(vrtop))|≤ϵ−K′
dτ dξfn+1

dαp(vltop)
dαp(vrtop)

⟨τ⟩2b 1

|τ + αp(vltop)
+ i

T |
1

|τ + αp(vrtop)
+ i

T |
1

|αp(vltop)
+

c
p(vltop)

i

T |

1

|αp(vrtop)
+

cp(vrtop)i

T |
.

We integrate over αp(vltop)
and αp(vrtop)

using (B.7), then over τ and finally over ξfn+1 and get:

FT,G,β ≲ λ2nϵ2n+dtn|logϵ|2n
∫∫

|τ |≤ϵK′ , |ξfn+1|≤Kϵ−1

dτ dξfn+1⟨τ⟩
2b 1

|τ + i
T |

1

|τ + i
T |

≲ λ2nϵ2ntn|logϵ|2n+dϵ−K′(2b−1) ≲ ϵ−κ(
t

Tkin
)n

for any κ > 0 if b > 1
2 has been chosen close enough to 1

2 .
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Step 2 If ω0 > ϵ−2 and vR is in a cluster C. Let C̃ = C\{vR}. Then either C̃ = {vltop}, C̃ = {vrtop},
or C̃ = {vltop, v

r
top} and we treat all cases simultaneously.

Let v ∈ C̃ be the first vertex in C̃ for the integration order, and denote by ξf the free variable
attached to v. When reaching v, we perform the following actions.

First, if v ∈ Vj is a junction vertex, then we integrate over αpj(v) using (B.7) and obtain:∫
|αpj(v)

|≤ϵ−K′

1

|αpj (v) +
i
T |

1

|αp(v) − αpj(v) − Ωv +
i
T |

dαpj(v) ≲
1

|αp(v) − Ωv +
i
T |

So this produces a |αp(v) − Ωv +
i
T |

−1 factor. If v /∈ Vj , then we do nothing for this first action,
and note that a |αp(v) − Ωv +

i
T |

−1 factor is already present in the integrand in this case.
Second, we bound |αp(v)| ≲ ϵ2 from (8.6), then we integrate over αp(v) using (B.7), and over ξf

using the support estimate |ξf | ≤ Kϵ−1, and obtain:∫∫
|αp(v)|≤ϵ−K′ , |ξf |≤Kϵ−1

1

|αp(v) +
i
T |

1

|τ + αp(v) +
i
T |

1

|αp(v) − Ωv +
i
T |

dαp(v)dξ
f

≲
∫
|ξf |≤Kϵ−1

ϵ2

|τ +Ωv +
i
T |

dξf ≲
ϵ2−d

inf |τ̃ |≤Cϵ−2 |τ − τ̃ + i
T |

,

where C is a fixed constant depending only on K. The total factor produced at v after these two
actions is ϵ2−d(inf |τ̃ |≤Cϵ−2 |τ − τ̃ + i

T |)
−1.

If C̃ contains two vertices, then when reaching the second vertex, we perform the exact same
computation as we did for v, producing another ϵ2−d(inf |τ̃ |≤Cϵ−2 |τ − τ̃ + i

T |)
−1 factor.

We now assume that the algorithm reaches the root vertex vR. In the first case, if C̃ contains
two vertices, then the above estimates produced a ϵ4−2d(inf |τ̃ |≤Cϵ−2 |τ − τ̃ + i

T |)
−2 factor. In the

second case, if C̃ contains one vertex, let v′ be the other top vertex that does not belong to C. We
then estimate using (B.7) that:∫

|αp(v′)|≤ϵ−K′
dαp(v′)

1

|αp(v′) +
i
T |

1

|τ + αp(v′) +
i
T |

≲
1

|τ + i
T |

≲
1

inf |τ̃ |≤Cϵ−2 |τ − τ̃ + i
T |

which produces an additional (inf |τ̃ |≤Cϵ−2 |τ − τ̃ + i
T |)

−1 factor. Hence in both cases, this produces
a (|τ − τ̃ + i

T |)
−2 factor. The quantity FT,G,β has been estimated at this step of the algorithm by:

FT,G,β ≲ λ2nϵ2n+dtn|logϵ|2n
∫∫

|τ |≤ϵ−K′ , |ξfn+1|≤Kϵ−1

dτ dξfn+1⟨τ⟩
2b 1

inf |τ̃ |≤Cϵ−2 |τ − τ̃ + i
T |2

.

≲ λ2nϵ2ntn|logϵ|2nϵ−K′(2b−1) ≲ ϵ−κ(
t

Tkin
)n

□

9. Control of the linearized operator

The aim of this section is to provide an estimate on the linearization around the approximate
solution uapp = χ(t/T )

∑N
n=0 u

n. Without loss of generality we present the proof for the case of
equation (1.1) with ω0 = ϵ−2, since the case ω0 = 0, m(0) = 0 is simpler. The linearization operator
is given by

LNw = 4ReuappRew = 2Reuapp(w + w).
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Notice that from the diagrammatic expansion (6.6) the operator LN can be decomposed as

LNw =
N∑
j=0

∑
G∈Gj

∑
ι∈{±1}2

LG,ιw, (9.1)

where for each G ∈ Gj and ι = (σ1, σ2) ∈ {±1}2:

LG,ιw = χ

(
t

T

)
uG,σ1wσ2

where uG,σ1 = uG if σ1 = +1 and uG,σ1 = uG if σ1 = −1 and similarly for wσ2 . Moreover, each LG,ι

can be localized in frequency annuli of radii ∼ 2lϵ−A by studying LG,ιA
l
R, where l ∈ {0, 1, 2, ...} and

R = ϵ−A for A to be fixed large later on. We state the main result of this section:

Proposition 9.1. If N ∈ N, µ > 0, s > 0, there exists b > 1/2 and a set EN,µ,s of probability
P(EN,µ,s) > 1− ϵµ on which the operator norm of LN can be bounded as follows:∥∥∥∥χ(t)∫ t

0
ei(t−s)∆ω

2 LN ds

∥∥∥∥
Xs,b

ϵ →Xs,b
ϵ

≲N,µ ϵ−µ

√
T

Tkin
.

The following lemma is the main step in the proof of Proposition 9.1. Notice that the estimate
for l ≥ 1 is much better than for l = 0. This means that interactions between high frequencies
∼ 2lϵ−A for the remainder and low frequencies ∼ ϵ−2 of the approximate solution are much weaker
than low-low interactions. This is intimately related to the fact that we consider the equation on
the whole space, as such interactions would be more delicate to estimate on the torus.

Lemma 9.2. For κ > 0 and ϵ > 0 small enough, there exists for all l = 0, 1, ... a set Eκ,l of measure
greater than 1 − 2−lϵκ such that in this set, for any j ∈ {0, ..., N}, G ∈ Gj and ι ∈ {±1}2, the
following operator norm estimate holds

∥LG,ιA
l
R∥X0, 12→X0,− 1

2
≲


(

T
Tkin

) j+1
2

ϵ−κ if l = 0,

2−
l
8 ϵ

A
8

(
T

Tkin

) j+1
2

ϵ−κ if l ≥ 1.

With Lemma 9.2 in hand, we are able to prove Proposition 9.1.

Proof of Proposition 9.1 using Lemma 9.2
Using the estimate (A.2) and the identity (9.1) yields:

∥χ
∫ t

0
ei(t−s)∆ω

2 LNds∥
Xs,b

ϵ →Xs,b
ϵ

≲ ∥LN∥
Xs,b

ϵ →Xs,b−1
ϵ

≲
∑
j,G,ι

∥LG,ι∥Xs,b
ϵ →Xs,b−1

ϵ

so that it suffices to prove the following estimate:

∥LG,ι∥Xs,b
ϵ →Xs,b−1

ϵ
≲ ϵ−µ

√
T

Tkin
(9.2)

Almost locality: We decompose the input in frequency cubes as:

LG,ιw =
∑

n,n′∈Zd

Qn′
ϵ LG,ιQ

n
ϵw

Since LG,ι corresponds to convolution in frequency with kernel localized in a ball of size Cϵ−1, if
|n− n′| > R for some R > 0, we have that Qn′

ϵ LG,ιQ
n
ϵw = 0. This in turn implies that

∥LG,ι∥
X

s, 12
ϵ →X

s,− 1
2

ϵ

∼ ∥LG,ι∥
X0, 12→X0,− 1

2
. (9.3)
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Indeed, this follows since the main part of LG,ι is a convolution in space frequency and the weights
of X0, 1

2 and X0,− 1
2 cancel for |n− n′| ≤ R as by duality

∥LG,ι∥
X

s, 12
ϵ →X

s,− 1
2

ϵ

= ∥⟨ϵξ⟩sLG,ι⟨ϵξ⟩−s∥
X

0, 12
ϵ →X

0,− 1
2

ϵ

= sup
∥u∥

X
0, 12

=∥v∥
X

0,− 1
2
=1

∑
|n−n′|≤R

⟨LG,ιQ
n
ϵ ⟨ϵξ⟩−su,Qn′

ϵ ⟨ϵξ⟩sv⟩

= sup
∥u∥

X
0, 12

=∥v∥
X

0,− 1
2
=1

∑
|n−n′|≤R

⟨n′⟩s

⟨n⟩s
⟨LG,ιQ

n
ϵ ⟨n⟩s⟨ϵξ⟩−su,Qn′

ϵ ⟨n′⟩−s⟨ϵξ⟩sv⟩

≲ ∥LG,ι∥
X

0, 12
ϵ →X

0,− 1
2

ϵ

using the Cauchy-Schwarz inequality and that ⟨n⟩s⟨ϵξ⟩−s is bounded on the dyadic cube Cn
ϵ on

which Qn
ϵ projects for the last inequality.

Bound from X0, 1
2 to X0,− 1

2 : Let E = ∩lEκ,l where Eκ,l is given by Lemma 9.2. Then E has measure
greater than 1 − ϵκ (up to taking a smaller κ in the lemma). On E, by almost orthogonality we
have

∥LG,ιw∥
X0,− 1

2
≲

∑
l≥0

∥LG,ιA
l
Rw∥2

X0,− 1
2

1/2

≤

∑
l≥0

∥LG,ιA
l
R∥2

X
0, 12
ϵ →X

0,− 1
2

ϵ

∥Al
Rw∥2

X0,− 1
2

1/2

≤

∑
l≥0

2−
l
4

(
T

Tkin

)i+1

ϵ−2κ∥Al
Rw∥2

X0,− 1
2

1/2

≲

(
T

Tkin

) i+1
2

ϵ−κ∥w∥
X0, 12

. (9.4)

Bound from X0,0 to X0,0 and interpolation. Since X0,0 is merely L2
tL

2
x and uG is localized in a ball

of radius Cϵ−1, the norm of the operator LG,ι from X0,0 to X0,0 is bounded by ∥uι2G1(ι3t ≥ 0)∥L∞ ≲
ϵ−d/2∥uG∥Xs,b

ϵ
. By (8.2) (which was actually showed for uG for all G ∈ Gj) and Bienaymmé-

Tchebychev inequality, for k small enough, we can find a set E′ with P(E′) ≥ 1 − ϵk on which
∥uG∥Xs,b

ϵ
≲ 1. Hence, the operator norm from Xs,0 to Xs,0 can be bounded by ϵ−d/2.

Interpolating between this bound and the Xs, 1
2 to Xs,− 1

2 bound (9.4), we obtain a bound from
Xs, 1

2
−δ to Xs, 1

2
+δ with a loss ϵ−k, where k can be made arbitrarily small choosing δ sufficiently

small. Finally, we choose b > 1
2 such that b− 1 < −1

2 − δ to obtain (9.2) as desired.

9.1. Estimate on the trace. It remains to prove Lemma 9.2. Pick a graph G ∈ Gj an integer l.
We prove it for simplicity in the case M = 1 and ω0 = ϵ−2. We only need to prove the bound for
L = LG,(+1,+1)1(t ≥ 0)Al

R for j ≥ 1 as the proof for the other operators is similar. Using space-time
Fourier transformation, and including the Xs,b

ϵ weights in the operator, it suffices to estimate the
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continuity norm on L2
τ,ξ of the convolution operator

R : L2(R× Rd) → L2(R× Rd)

w(τ0, ξ0) →
∫ ∫

K(τ2, τ0, ξ2, ξ0)w(τ0, ξ0) dτ0 dξ0,

with kernel

K(τ2, τ0, ξ2, ξ0) = λ⟨τ0+ω(ξ0)⟩−
1
2 ⟨τ2+ω(ξ2)⟩−

1
2

∫
ξ1∈Rd

1Al
R(ξ0)

˜
χ(

t

T
)u+G(τ2−τ0, ξ1)δ(ξ2−ξ0−ξ1) dξ1

Changing variables (ξ0, ξ1, ξ2) → (ξ2,−ξ1, ξ0) and (τ0, τ1, τ2) → (τ2,−τ1, τ0), we compute the adjoint
kernel

K∗(τ2, τ0, ξ2, ξ0) = λ⟨τ0+ω(ξ0)⟩−
1
2 ⟨τ2+ω(ξ2)⟩−

1
2

∫
ξ1∈Rd

1Al
R
(ξ2)

˜
χ(

t

T
)u+G(τ2−τ0, ξ1)δ(ξ2−ξ0−ξ1) dξ1

Iterating, we obtain that the the operator MN = (R∗R)N has kernel

MN (τ4N , τ0, ξ4N , ξ0) = λ2N ⟨τ4N + ω(ξ4N )⟩−1/2⟨τ0 + ω(ξ0)⟩−1/2

∫∫
dτ2... dτ4N−2 dξ1... dξ4N−1

2N−1∏
m=0

δ(ξ2m+2 − ξ2m+1 − ξ2m)

N∏
m=0

1Al
R
(ξ4m)

2N−1∏
m=1

⟨τ2m + ω(ξ2m)⟩−1

N∏
m=1

˜
χ(

t

T
)u+G(τ4m−2 − τ4m−4, ξ4m−3)

˜
χ(

t

T
)u+G(τ4m − τ4m−2, ξ4m−1).

The trace of the operator MN is therefore:

Tr MN = λ2N

∫∫
dτ0... dτ4N dξ1... dξ4N−1δ(τ0 − τ4N )∆(ξ)

N−1∏
m=0

1Al
R
(ξ4m)

2N∏
m=1

⟨τ2m + ω(ξ2m)⟩−1

N∏
m=1

˜
χ(

t

T
)u+G(τ4m−2 − τ4m−4, ξ4m−3)

˜
χ(

t

T
)u+G(τ4m − τ4m−2, ξ4m−1).

where ∆(ξ) = δ(ξ4N − ξ0)δ(τ4N − τ0)
∏2N−1

m=0 δ(ξ2m+2 − ξ2m+1 − ξ2m). Above, ˜χ( ·
T )u

+
G(t, ξ4m−3)

(resp. ˜
χ( ·

T )u
+
G(t, ξ4m−1)) is given by the identity (6.13) with graph G (resp. (6.13) with graph G

where all parity signs are reversed, and where the factor e−itω(ξ4m−3) is replaced by (−1)jeitω(ξ4m−1)).
Applying time Fourier transformation, changing variables by renaming τ2m+ω(ξ2m) as τ2m, taking
the expectancy following the framework of Section 6, we arrive at the diagrammatic formula:

E
[
Tr MN

]
=
∑
P

FT (G,N,P ) (9.5)
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where (integrating the 2π and c
t/T
G factors in the cut-off χ(t/T ) to reduce notations)

FT (P,G,N) =λ2jN ϵNd(j+1)

∫∫∫∫
dξdηdτdαδ(τ0 − τ4N )∆(ξ, η) (9.6)∏

p∈Pm

i

αp +
icp
T

∏
(i,j)∈P

Ŵ ϵ
0(ηi,j ,

ϵ

2
(σ0,iξ0,i + σ0,jξ0,j))

∏
v∈Vi\{vb1,...,vb2N}

i

αp(v) −
∑

p̃◁v αp̃ −
∑

ṽ∈p+(v)Ωṽ +
icv
T

N−1∏
m=0

1Al
R
(ξ4m)

2N∏
m=1

⟨τ2m⟩−1T χ̂(T (τ2m − τ2m−2 − αp(vmtop)
− Ωm))

where for m = 1, ..., N ,

Ω2m−1 = ω(ξ4m−2)− ω(ξ4m−4)− ω(ξ4m−3), Ω2m = ω(ξ4m)− ω(ξ4m−2) + ω(ξ4m−1). (9.7)

The above formula is associated to a graph that we now describe.
It is made by a branch of vertices vb0, ..., vb2N that are linked by edges (vbm, vbm+1) for m = 0, ..., 2N−

1. For m = 1, ..., N , below the vertex vb2m−1 (resp. below vb2m) is placed a copy of the tree G with
top vertex v2m−1

top (resp. G with reversed parity signs and top vertex v2mtop), linked to vb2m−1 by an
edge (v2m−1

top , vb2m−1) (resp. to vb2m by an edge (v2mtop, v
b
2m)). We denote by Vb = {vb1, ..., vbN} the

collection of vertices above the trees. The collection of all vertices of the trees and of the vertices
{vb1, ..., vbN} is the set of all interaction vertices Vi of the graph.

There is a root vertex vR, and two edges (vb0, vR) and (vb4N , vR).
To the edge (vbm, vbm+1) we associate the frequency ξ2m, and to the edge (vb4N , vR) the frequency

ξ4N . To the edge (vmtop, v
b
m) we associate the frequency ξ2m−1. We impose Kirchhoff laws at each

vertex of the graph, except at vb0 where we impose ξb0 + ξ(vb0,vR) = 0, so that the law at vR then
reads ξ4N = ξ0. The edges (vbm, vbm+1) for m = 0, ..., 2N − 1, and (vb2N , vR), have all parity +1. In
particular, (9.7) agrees with (6.9).

The collection of all maximal upright paths of each of the trees G, or G with reversed parities,
is the set of maximal paths denoted as Pm. The collection of all their initial vertices, is the set of
initial vertices denoted as V0. P is a pairing for the set of initial vertices, and pairing vertices are
defined as in Subsection 6.4. The resulting graph is as follows.

vb0

v
b
1

G

G with
reversed
parities

+

+

+

v1top

v
b
2

+

−

v
2
top

+
vb2N

v
2N
top

−

+ vR

G with

reversed

parities
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To estimate (9.6), we use the following estimate, obtained by bounding T |χ̂(Tz)| ≲ |z+iT−1|−1 as
χ is in the Schwartz class and integrating over dτ0dτ2...dτ4N iteratively using the second inequality
in (B.9):

∫
dτδ(τ0 − τ4N )

2N∏
m=1

⟨τ2m⟩−1T χ̂(T (τ2m − τ2m−2 − αp(vmtop)
− Ωm))

≲
∫

dτδ(τ0 − τ4N )
2N∏
m=1

1

|τ2m + i|
1

|τ2m − τ2m−2 − αp(vmtop)
− Ωm + i

T |

so that we estimate (9.6) by:

|FT (P,G,N)| ≲λ2jN ϵNd(j+1)

∫∫∫∫
dτdξdηdαδ(τ0 − τ4N )∆(ξ, η)

N−1∏
m=0

1Al
R
(ξ4m) (9.8)

∏
p∈Pm

1

|αp +
icp
T |

∏
(i,i′)∈P

|Ŵ ϵ
0(ηi,i′ ,

ϵ

2
(σ0,iξ0,i + σ0,i′ξ0,i′))|

∏
v∈Vi\{vb1,...,vb2N}

1

|αp(v) −
∑

p̃◁v αp̃ −
∑

ṽ∈p+(v)Ωṽ +
icv
T |

2N∏
m=1

1

|τ2m + i|
1

|τ2m − τ2m−2 − αp(vmtop)
− Ωm + i

T |

We define the set of junction vertices Vj to be the union of the collection of junction vertices
in the graphs G, and G with reversed signs, and of {vb1, ..., vb2N} ; we say that for m = 1, ..., 2N ,
vbm ▷p(vmtop) constraints the maximal upright path leading to vmtop.

An integration order is chosen for the interaction vertices of the graph, defined similarly as
in Subsection 6.4. We choose the integration order so that vertices in the trees G or G with
reversed parities are considered first, after what the vertices vb1, v

b
2, ..., v

b
2N are considered. Given

this integration order, we can apply the same proof as that of Proposition 6.4 in order to find the
free interaction frequencys. There are N(j + 1) + 1 interaction free frequencies in total.

Notice that ξ0 = ξ2N is a free interaction frequency, and that ξ0 ∈ Al
R is in the support of the

integrand of 9.8. Notice that there are N(j+1) remaining interaction free frequencies, which thanks
to Kirchhoff’s law are all linear combination of the frequencies of the initial vertices in the trees
G or G with reversed parities. Hence, on the support of the integrand of 9.8 they are bounded by
Kϵ−1 where K depends only on j and on the support of Ŵ0. Hence ξf ∈ Al

R ×BdNj(Kϵ−1).
We say that for m = 1, ..., 2N , the vertex vbm is linear if the edge (vmtop, v

b
m) is a free edge, and if

Ωm is given by (6.20). Note that this coincides with the definition of linear degree one vertices of
Subsection 6.5 for the vertices in each of the subtrees G, or G with reversed parities.

We adapt the definition of degenerate degree one linear vertices, given in Definition 8.2, to vertices
in Vb as follows. Given a degree one linear vertex v = vbm ∈ Vb for some m = 1, ..., 2N we define five
sets which will distinguish whether v is degenerate or not, analogously to the sets Si

v for i = 1, 2, 3, 4

defined at the beginning of Subsection 8.1. We let S̃ = B2N+1+nm(ϵ−K′
) × B

d(n+1)
0 (K) × Al

R ×
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BdNj(Kϵ−1) and set:

Sb,1
v = {(τ , α, η, ξf ) ∈ S̃, |τ2m − τ2m−2 − αp(vmtop)

− Ωm| > δϵ−2}

Sb,2
v = {(τ , α, η, ξf ) ∈ S̃, |ξ(vbm,vbm+1)

| > δϵ−1}

Sb,3
v = {(τ , α, η, ξf ) ∈ S̃, |τ2m−2| > δϵ−2},

Sb,4
v = {(τ , α, η, ξf ) ∈ S̃, |αp(vmtop)

| > δϵ−2},

Sb,5
v = S̃ \ (∪i=1,2,3,4S

i
v)

Definition 9.3. Let δ,K,K ′ > 0. Given a set S ⊂ B2N+1+nm(ϵ−K′
) × B

d(n+1)
0 (K) × Al

R ×
BdNj(Kϵ−1), we say that for m = 1, ..., 2N a degree one linear vertex vbm ∈ Vb is degenerate
on S if for all (τ , α, η, ξf ) ∈ S the following three conditions are met simultaneously:

|τ2m − τ2m−2 − αp(vmtop)
− Ωm| ≤ δϵ−2, (9.9)

|ξ(vbm,vbm+1)
| ≤ δϵ−1, (9.10)

|τ2m−2| ≤ δϵ−2, (9.11)

|αp(vmtop)
| ≤ δϵ−2. (9.12)

Equivalently, vbm is degenerate on S if S ⊂ Sb,5
v .

We say that for m = 1, ..., 2N a vertex vbm ∈ Vb is nondegenerate on S if either v is a degree
zero or a degree one quadratic vertex, or if v is a degree one linear vertex such that for each
(τ , α, η, ξf ) ∈ S at least one of the four conditions above fail.

We partition the domain of integration in (9.8) according to the non-degeneracy/degeneracy of
each vertex. For this aim, given a function β defined on V1

l with β(v) ∈ {1, ..., 4} for v ∈ Vi\Vb

and β(v) ∈ {1, ..., 5} for v ∈ Vb, we define:

Sβ = ∩v∈V1
l
Sβ(v)
v . (9.13)

The result of Lemma 8.3 naturally adapts for degenerate vertices in Vb.

Lemma 9.4. For all K > 0, for δ(K) > 0 small enough the following holds true for any set
S ⊂ R2N+1 × Rnm × Rd(n+1)

0 (K)× Al
R ×BdNj(Kϵ−1). For l = 0, for any m = 1, ..., 2N − 1, if vbm

is degenerate, then vbm+1 is non-degenerate and there holds:

|τ2m| ≥ ϵ−2

2
. (9.14)

For any m = 1, ..., 2N , if vmtop is degenerate, then vbm is non-degenerate and there holds:

|αp(vmtop)
| ≥ ϵ−2

2
. (9.15)

For l ≥ 1, if A > 2 then for all ϵ small enough, for all m = 1, ..., 2N we have that vmtop is always
non-degenerate and

|ξ(vbm,vbm+1)
| ≈ 2lϵ−A. (9.16)

Proof. Assume first that vbm is degenerate for some m = 1, ..., 2N−1. Thanks to (9.10) the inequality
(8.7) is valid, so that Ωm ≥ 3

4ϵ
−2. Using this, (9.9), (9.11) and (9.12) shows

|τ2m| ≥ |Ωm| − |τ2m − τ2m−2 − αp(vmtop)
− Ωm| − |τ2m−2| − |αp(vmtop)

| ≥ 3

4
ϵ−2 − 3δϵ−2

which shows (9.15) for δ small enough.
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Second, assume that vmtop is degenerate for some m = 1, ..., 2N . Then Ωvmtop
≥ 3

4ϵ
−2 by (8.7). In

the case where vmtop is not a junction vertex, then by Definition 8.2 we have

|αp(vmtop)
| ≥ |Ωvmtop

| − |αp(vmtop)
− Ωvtop | ≥

3

4
ϵ−2 − δϵ−2.

In the case where vmtop is a junction vertex, then by Definition 8.2 we have

|αp(vmtop)
| ≥ |Ωvmtop

| − |αp(vmtop)
− αpj(v) − Ωvtop| − |αpj(v)| ≥

3

4
ϵ−2 − 2δϵ−2.

In both cases, we obtain (9.15) for δ small enough.
Next, consider the case l ≥ 1. Notice that from the Kirchhoff laws in the graph all frequencies

in the trees G or G with reversed parities are bounded by ϵ−2. Hence |ξ(vmtop,vbm)| ≲ ϵ−2 for all

m = 1, ..., 2N . by the Kirchhoff law, ξ(vbm,vbm+1)
= ξf0 +

∑m
m̃=1 ξ(vbm̃,vbm̃+1)

. Since |ξ0| ≈ 2lϵ−A as
ξ0 ∈ Al

R, we deduce (9.16).
□

We adapt accordingly the definition of degenerate clusters from Definition 8.5.

Definition 9.5. Given a set S ⊂ R2N+1 × Rnm × Rd(n+1)
0 (K) × R × BdNj(Kϵ−1), we say that

C ⊂ Vi is a degenerate b-cluster on S if either of the three following possibilities occur:
• Type b-I: C = {vmtop, vbm} for m = 1, ..., 2N , and is such that vmtop is degenerate on S, and
vbm is nondegenerate on S.

• Type b-II: C = {vbm−1, v
b
m} for some m = 2, ..., 2N , with vbm−1 degenerate on S, and vbm is

nondegenerate on S.
• Type b-III: C = {vmtop, vbm−1, v

b
m} for some m = 2, ..., N , with vmtop and vbm−1 degenerate on

S and vbm non-degenerate on S.

We adapt naturally the definition (8.3) of the partition sets Sβ to take into account the inequalities
for degenerate vertices in Vb in Definition 9.3. The result of Lemma 8.6 then naturally extends to
include degenerate b-clusters.

Lemma 9.6 (Decomposition into nondegenerate vertices and degenerate clusters). For any set of
the form Sβ given by (9.13), there exists C1, ...,Cnd(G,β) disjoints degenerate clusters or b-clusters
in the sense of Definitions 8.5 and 9.5 on Sβ such that Vi = Ṽ ⊔C1 ⊔ ... ⊔Cnd(G,β) where Ṽ only
contains non-degenerate vertices on Sβ.

Proof. Using the result of Lemmas 8.3 and 9.4, the proof is exactly as that of Lemma 9.6. □

We now estimate in two slightly different ways (9.8) in the cases l = 0 and l ≥ 1, and obtain in
the latter case a much better estimate.

9.1.1. The case l = 0. In this case, 1Al
R
(ξ4m) = 1(|ξ4m| ≤ ϵ−A) = 1(|ξ0| ≤ ϵ−A) in the integrand

of (9.8). Notice that (9.8) is very similar to (6.22) that was estimated very precisely in the proof
of (8.1), except only for the last factor

∏2N
m=1 |τ2m + i|−1|τ2m − τ2m−2 − αp(vmtop)

−Ωm + i
T |

−1. The
exact same strategy used in the proof of (8.1) can be applied here, and the contribution of these
additional factors can be estimated the exact same way. We therefore only sketch the adaptation.

We first partition the domain of integration using the sets Sβ defined by (9.13). The same proof
as that leading to (9.17) shows that

|FT (P,G,N)| ≲ ϵ
K′
4 +

∑
β

FT (P,G,N, β), (9.17)
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where

FT (P,G,N, β) =λ2jN ϵNd(j+1)

∫∫∫∫
(τ ,α,η,ξf )∈Sβ

dτdξdηdαδ(τ0 − τ4N )∆(ξ, η)
N−1∏
m=0

1Al
R
(ξ4m) (9.18)

∏
p∈Pm

1

|αp +
icp
T |

∏
v∈Vi\{vb1,...,vb2N}

1

|αp(v) −
∑

p̃◁v αp̃ −
∑

ṽ∈p+(v)Ωṽ +
icv
T |

2N∏
m=1

1

|τ2m + i|
1

|τ2m − τ2m−2 − αp(vmtop)
− Ωm + i

T |
.

We then pick a set Sβ and apply Lemma 9.6 which partition the graph into non-degenerate
vertices, degenerate clusters, and degenerate b-clusters. One estimates the contribution of each
interaction vertex one after another v1, ..., v2N(j+1), according to the integration order. We integrate
over the variables ξf , α and τ iteratively accordingly. The variables τk, αk, η, ξ

f
k and the set Sβ,k

at the k-th step are defined analogously as in the proof of Proposition 8.1. We adapt the notation
(8.12) for the factors in (9.18):

Θk =

{
αp(vk) −

∑
p̃◁vk

αp̃ −
∑

ṽ∈p+(vk)
Ωṽ +

ick
t if vk ∈ Vi\Vb

τ2m − τ2m−2 − αp(vmtop)
− Ωm + i

T if vk ∈ vbm for some m = 1, ..., 2N.

At step k of the algorithm, the algorithm reaches the vertex vk. If vk ∈ Vi\Vb and is not in
degenerate b-clusters, we perform the exact same estimates as in the proof of (8.1). We recall that
the outcome of the estimates of steps 2 and 3 in the proof of (8.1) is that each degree 0 vertex
produces a factor T , and each degree 1 vertex produces a factor ϵ2−d|logϵ|2.

Estimates for a non-degenerate b-vertex. Assume the algorithm reaches vk = vbm ∈ Vb for
some m = 1, ..., 2N which is non-degenerate. Consider first the case that vbm is a degree one linear
vertex and that (9.11) fails. Let ξfi denote the free interaction frequency at vk. Then we bound
using Θk = τ2m − τ2m−2 − αp(vmtop)

− Ωm + i
T and (B.7), and then |τ2m−2| ≳ ϵ−2 by the failure of

(9.11):∫
|αp(vmtop)|,|τ2m−2|≤ϵ−K′ , |ξfi |≤Kϵ−1, (τk,αk,η,ξ

f
k )∈Sβ,k

dαp(vmtop)
dτ2m−2dξ

f
i

|τ2m−2 + i||αp(vmtop)
+

icp(vmtop)

T ||Θk|
(9.19)

≲
∫
|τ2m−2|≤ϵ−K′ , |ξfi |≤Kϵ−1

dτ2m−2dξ
f
i

|τ2m−2 + i||τ2m − τ2m−2 − Ωm + i
T |

≲ ϵ2
∫
|ξfi |≤Kϵ−1

dξfi

∫
|τ2m−2|≤ϵ−K′

dτ2m−2

|τ2m − τ2m−2 − Ωm + i
T |

≲ ϵ2−d|logϵ|.

In all other cases, i.e. that vk is of degree one linear and that (9.9), or (9.10) or (9.12) fails, or that
vk is of degree 0 or of degree 1 and quadratic, we start by integrating over the dτ2m−2 variable using
Θk = τ2m − τ2m−2 − αp(vmtop)

− Ωm + i
T and (B.7):∫

|τ2m−2|≤ϵ−K′ , (τk,αk,η,ξ
f
k )∈Sβ,k

dτ2m−2

|τ2m−2 + i||αp(vmtop)
+

icp(vmtop)

T ||Θk|

≲
1

|αp(vmtop)
+

icp(vmtop)

T ||τ2m − αp(vmtop)
− Ωm + i

T |
.
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Thanks to the above inequality, we are back to performing exactly the same estimates as in step 2
of the proof of (8.1), and obtain a factor T or a factor ϵ2−d|logϵ|2 for a degree 0 vertex or a degree
1 vertex. Combining with (9.19), we obtain in all cases a factor T for a degree 0 vertex and a factor
ϵ2−d|logϵ|2 for a degree 1 vertex.

Estimates for a degenerate b-clusters. Let C denote a degenerate b-cluster in the sense of
Definition 9.5, which contains n0(C) degree 0 vertices and n1(C) degree 1 vertices. The estimate
we will show below will produce a Tn0(C)(ϵ2−d|logϵ|2)n1(C) factor.

In comparison with the estimates for clusters in the proof of (8.1), the sole difference is the
appearance of the extra τ0, ..., τ2N variables. The same strategy as that used to estimate clusters in
the proof of (8.1) applies, up to integrating over these extra variables. We will only give the details
in the most complicated case of a type III b-cluster C = (vk, vk′ , vk′′) with vk′′ ∈ V1, as all other
cases are simpler.

In this case we have C = (vm+1
top , vbm, vbm+1) for some m = 1, ..., 2N − 1. Assume first vk ∈ Vj .

Let ξf , ξ
′f , ξ

′′f be the free interaction frequencys at vk, vk′ , vk′′ . The algorithm reaches first vk. We
have using (6.20) and ξ

′′f = ξ(vm+1
top ,vbm+1)

that Θk = −σ(ξf )2ξ
′′f .ξf − αpj(vk) + γ +

cvk i

T where γ

depends only on (ξk
f , αk, η) but not on ξf and αpj(vk). We integrate over αpj(vk) using (B.7) and

then over ξf using (B.1) and get:∫
|αpj(vk)|≤ϵ−K′ , |ξf |≤Kϵ−1, (τkαk,η,ξ

f
k )∈Sβ,k

dαpj(vk)dξ
f

|αpj(vk) +
icpj(vk)

T ||Θk|

≲
∫
|ξf |≤Kϵ−1

1

| − σ(ξf )2ξ′′f .ξf + γ +
cvk i

T |
dξf ≲

ϵ1−d|logϵ|
|ξ′′f |

. (9.20)

Then, the algorithm reaches vk′ . We first integrate successively over αpj(vk′ )
and dτ2m−2 using

(B.7) and Θk′ = |τ2m − τ2m−2 − αp(vmtop)
−Ωm + i

T |. We then bound |τ2m + i|−1 ≲ ϵ2 by (9.15) and

|αp
vm+1
top

+
ic

vm+1
top
T | ≲ ϵ2 by (9.15). We finally integrate over α

p(vm+1
top ), then τ2m and then ξf

′ . This

shows:∫
|αp(vmtop)|,|αp(vm+1

top )
|,|τ2m−2|,|τ2m|≤ϵ−K′ , |ξ′f |≤Kϵ−1, (τk′ ,αk′ ,η,ξ

f

k′ )∈Sβ,k′

dαp(vmtop)
dα

p(vm+1
top )dτ2m−2dτ2mdξ

′f

|τ2m + i||τ2m−2 + i||αp(vmtop)
+

icp(vmtop)

T ||α
p(vm+1

top ) +
ic

p(vm+1
top )

T ||Θk′ ||Θk′′ |

≲
∫
|α

p(vm+1
top )

|,|τ2m|≤ϵ−K′ , |ξ′f |≤Kϵ−1, (τk′ ,αk′ ,η,ξ
f

k′ )∈Sβ,k′

dα
p(vm+1

top )dτ2mdξ
′f

|τ2m + i||α
p(vm+1

top ) +
ic

p(vm+1
top )

T ||τ2m − Ωm + i
T ||τ2m+2 − τ2m − αp

vm+1
top

− Ωm+1 +
i
T |

≲ϵ4
∫
|α

p(vm+1
top )

|,|τ2m|≤ϵ−K′ , |ξ′f |≤Kϵ−1

dξ
′fdτ2mdα

p(vm+1
top )

|τ2m − Ωm + i
T ||τ2m+2 − τ2m − αp

vm+1
top

− Ωm+1 +
i
T |

≲ ϵ4−d|logϵ|2.
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When reaching vk′′ , we integrate over the variable ξ
′′f the |ξ′′f |−1 factor produced by (9.20), giving∫

|ξ′′f |≤Kϵ−1, (τk′′ ,αk′′ ,η,ξ
f

k′′ )∈Sβ,k′′
|ξ′′f |−1dξ

′′f ≲ ϵ1−d. Combining the factors obtained at vk, vk′ and

vk′′ give a total factor for C of ϵ1−d|logϵ|ϵ4−d|logϵ|2ϵ1−d = Tn0(C)(ϵ2−d|logϵ|)n1(C). If vk /∈ Vj then
the proof is the same, suffice it to notice that we do not have to integrate over αpj(vk) to start with.

End of the algorithm. Combining, degree 0 and 1 vertices have each produced a T and a
ϵ2−d|logϵ|2 factor respectively. There are in total N(j + 1) degree 0 vertices and N(j + 1) degree
1 vertices. Finally, when reaching the root vertex vR, we integrate over ξ2N = ξ0 (which is always
a free interaction frequency), and get an extra ϵ−Ad factor due to the indicatrix function 1A0

R
(ξ0).

This concludes that in the case l = 0:

|FT (P,G,N, β)| ≲ ϵ−Ad(
T

Tkin
)N(j+1)|logϵ|2N(j+1). (9.21)

9.1.2. The case l ≥ 1. We use a different and much simpler algorithm to estimate the right-hand
side of (9.8).

Preliminary upper bounds. First, we localize the support of the integrand in (9.8) and only
keep certain factors. Since Ŵ ϵ

0 has compact support within the same ball for all 0 < ϵ ≤ 1, we
bound

∏
(i,i′)∈P |Ŵ ϵ

0(ηi,i′ ,
ϵ
2(σ0,iξ0,i + σ0,i′ξ0,i′))| ≲

∏N(j+1)
k=1 1Bd(Kϵ−2)(ξ

f
k )
∏

(i,i′)∈P 1Bd(K)(ηi,i′) as
explained in step 1 of the proof of (8.1). We bound |τ4N − τ4N−2 − αp(v2Ntop)

+ i
T |

−1 ≤ T ≤ 1 and∏N−1
m=0 1Al

R
(ξ4m) ≤ 1Al

R
(ξ0). We replace |τ4N + i|−1 = |τ0 + i|−1 as τ4N = τ0. This gives

|FT (P,G,N)| ≲λ2jN ϵNd(j+1)

∫∫∫∫
dτdξfdηdα∆(ξ, η)1Al

R
(ξ0)

N(j+1)∏
k=1

1Bd(Kϵ−2)(ξ
f
k )

∏
(i,i′)∈P

1Bd(K)(ηi,i′)

∏
p∈Pm

1

|αp +
icp
T |

∏
v∈Vi\{vb1,...,vb2N}

1

|αp(v) −
∑

p̃◁v αp̃ −
∑

ṽ∈p+(v)Ωṽ +
icv
T |

2N−1∏
m=1

1

|τ2m−2 + i|
1

|τ2m − τ2m−2 − αp(vmtop)
− Ωm + i

T |

where now τ = (τ0, ..., τ4N−2).
Second, we integrate over dα performing rough estimates. We order the set of maximal paths

upright which do not lead to one of the top vertices vmtop for m = 1, ..., 2N from left to right:
p1, ...,pnm−2N , by ordering their corresponding initial vertices from left to right. For each 1 ≤ n ≤
nm − 2N , we pick randomly a vertex vn ∈ pn. We bound

∏
v∈Vi\{vb1,...,vb2N}

∣∣∣αp(v)−
∑
p̃◁v

αp̃−
∑

ṽ∈p+(v)

Ωṽ+
icv
T

∣∣∣−1
≤

nm−2N∏
n=1

∣∣∣αpn −
∑
p̃◁vn

αp̃−
∑

ṽ∈p+(vn)

Ωṽ+
icvn
T

∣∣∣−1
.

We notice that for n > ñ, the quantity αpn−
∑

p̃◁vn
αp̃−

∑
ṽ∈p+(vn)

Ωṽ+
icvn
T does not depend on αpñ ,

because of the ordering we chose for these maximal paths upright. We then integrate successively
over dαp1 , ..., dαpnm−2N , and bound

∫
dαpn |αpn+

icpn
T |−1|αpn−

∑
p̃◁vn

αp̃−
∑

ṽ∈p+(vn)
Ωṽ+

icvn
T |−1 ≲

T ≤ 1 by (B.7) and T ≤ ϵ. Then, we integrate over dαp(vmtop)
for m = 1, ..., 2N using the bound∫

|αp(vmtop)
+

icp(vmtop)

T |−1|τ2m − τ2m−2 − αp(vmtop)
− Ωm + i

T |
−1dαp(vmtop)

≲ |τ2m − τ2m−2 − Ωm + i
T |

−1
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from (B.7). This yields

|FT (P,G,N)| ≲λ2jN ϵNd(j+1)

∫∫∫
dτdξfdη∆(ξ, η)1Al

R
(ξ0)

N(j+1)∏
k=1

1Bd(Kϵ−2)(ξ
f
k )

∏
(i,i′)∈P

1Bd(K)(ηi,i′)

2N−1∏
m=1

1

|τ2m−2 + i|
1

|τ2m − τ2m−2 − Ωm + i
T |

. (9.22)

The algorithm. We estimate (9.22) by considering successively for m = 1, ..., N the two vertices
vb2m+1 and vb2m+2. We will perform estimates by integrating over dτ4m and dτ4m+2 and certain free
frequencies. The quantities |τ2m̃−2 + i|−1 and |τ2m̃ − τ2m̃−2 − Ωm̃ + i

T |
−1 for m̃ ≥ 2m + 3 will not

depend on τ4m, τ4m+2 and these free frequencies, so that we will be able to iterate our algorithm.

Case 1 if vb2m+1 ∈ V1. Denote by ξfi its associated free interaction frequency. We integrate over

dτ4m using (B.7), then over dξfi using (6.20) and (B.4) if vb2m+1 is linear or (6.21) and (B.3) if vb2m+1

is quadratic, using |ξ̃| = |ξ(vb2m+1,v
b
2m+2)

| ≈ 2lϵ−A by (9.16):∫∫∫
1Bd(Kϵ−2)(ξ

f
i )dτ4mdτ4m+2dξ

f
i

|τ4m + i||τ4m+2 + i||τ4m+2 − τ4m − Ω2m+1 +
i
T ||τ4m+4 − τ4m+2 − Ω2m+2 +

i
T |

≲
∫

dτ4m+2

|τ4m+2 + i||τ4m+4 − τ4m+2 − Ω2m+2 +
i
T |

∫
1Bd(Kϵ−2)(ξ

f
i )dξ

f
i

|τ4m+2 − Ω2m+1(ξ
f
i ) +

i
T |

≲
∫

dτ4m+2

|τ4m+2 + i||τ4m+4 − τ4m+2 − Ω2m+2 +
i
T |

ϵ1−d+A2−llog(2lϵ−A) ≤ 2−
l
2 ϵ

A
2

where for the last inequality we used (B.7), T ≤ 1 and took A large enough then ϵ small enough.

Case 2 if vb2m+1 /∈ V1 and vb2m+2 ∈ V1. Denote by ξfi the associated free interaction frequency to
vb2m+2. We integrate over dτ4m using (B.7) and |τ4m+2− τ4m−Ω2m+1+

i
T |

−1 ≤ 1, then over dτ4m+2

using (B.7), and then over dξfi using (6.20) and (B.4) if vb2m+2 is linear or (6.21) and (B.3) if vb2m+2

is quadratic, with |ξ̃| = |ξ(vb2m+2,v
b
2m+3)

| ≈ 2lϵ−A by (9.16):∫∫∫
1Bd(Kϵ−2)(ξ

f
i )dτ4mdτ4m+2dξ

f
i

|τ4m + i||τ4m+2 + i||τ4m+2 − τ4m − Ω2m+1 +
i
T ||τ4m+4 − τ4m+2 − Ω2m+2 +

i
T |

≲
∫∫

1Bd(Kϵ−2)(ξ
f
i )dτ4m+2dξ

f
i

|τ4m+2 + i||τ4m+4 − τ4m+2 − Ω2m+2(ξ
f
i ) +

i
T |

≲
∫

1Bd(Kϵ−2)(ξ
f
i )dξ

f
i

|τ4m+4 − Ω2m+2(ξ
f
i ) +

i
T |

≤ ϵ1−d+A2−llog(2lϵ−A) ≤ 2−
l
2 ϵ

A
2 .

Case 3 if vb2m+1, v
b
2m+2 /∈ V1. For m̃ = 1, ..., 2N , if vbm̃ /∈ V1, then using (6.18) we have ξ(vm̃top,vbm̃) =∑

{i,j}∈P cm̃,i,jηi,j +
∑N(j+1)

k=1 cm̃,kξ
f
k where cm̃,i,j ̸= 0 if and only if (vm̃top, v

b
m̃) belongs to the path

going from the initial vertex v0,i to the root vertex. The first sum is non-zero, since cm̃,i,j ̸= 0 for
all pairings with initial vertices below vm̃top. We denote by σm̃ηm̃ one if its non-zero element with
σm̃ ∈ {−1, 1}, and by E(m̃) the set of remaining pairings {i, j} ∈ P for which cm̃,i,j ̸= 0, so that

ξ(vm̃top,vbm̃) = σm̃ηm̃ +
∑

{i,j}∈E(m̃)

cm̃,i,jηi,j +

N(j+1)∑
k=1

cm̃,kξ
f
k . (9.23)
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We claim that for m̃2 > m̃1, then ξ
(v

m̃2
top ,v

b
m̃2

)
does not depend on ηm̃1 . Indeed, cm̃1,i,j ̸= 0 if and only

if (vm̃1
top, v

b
m̃1

) belongs to the path going from v0,i to the root vertex. Since the path from vbm̃1
to the

root vertex is (vbm̃1
, vbm̃1+1, ..., v

b
2N , vR), then (v

m̃′
2

top, v
b
m̃2

) does not belong to the path going from v0,i
to the root vertex. Hence cm̃2,i,j = 0. This proves the claim.

We then change variables η2m+2 7→ η′2m+2 = σ2m+2σ2m+1η2m+1 + η2m+2. We claim if m̃ >
2m+2 then Ωm̃ is independent of η′2m+2. Indeed, by Kirchhoff’s law ξ(vb2m+2,v

b
2m+3)

= ξ(vb2m,vb2m+1)
+

ξ(v2m+1
top ,vb2m+1)

+ξ(v2m+2
top ,vb2m+2)

, so that ξ(vb2m+2,v
b
2m+3)

is independent of η′2m+2 by (9.23). By Kirchhoff’s
law again and the claim of the previous paragraph, ξ(vbm̃,vbm̃+1)

is independent of η′2m+2 for all
m̃ > 2m + 2. Since also ξ(vm̃top,vbm̃) does not depend on η′2m+2, then Ωm̃ given by (6.20) or (6.21) is
indeed independent of η′2m+2.

We then first integrate over dτ4m using (B.7) and |τ4m+2 − τ4m − Ω2m+1 +
i
T |

−1 ≤ 1, then over
dτ4m+2 using (B.7), and finally over η′2m+2 using (6.20) and (B.4) with ϵ = 1 if vb2m+2 is linear or
(6.21) and (B.3) with ϵ = 1 if vb2m+2 is quadratic, with |ξ̃| = |ξ(vb2m+2,v

b
2m+3)

| ≈ 2lϵ−A by (9.16):∫∫∫
1Bd(2K)(η

′
2m+2)dτ4mdτ4m+2dη

′
2m+2

|τ4m + i||τ4m+2 + i||τ4m+2 − τ4m − Ω2m+1 +
i
T ||τ4m+4 − τ4m+2 − Ω2m+2 +

i
T |

≲
∫∫

1Bd(2K)(η
′
2m+2)dτ4m+2dη

′
2m+2

|τ4m+2 + i||τ4m+4 − τ4m+2 − Ω2m+2(η′2m+2) +
i
T |

≲
∫

1Bd(2K)(η
′
2m+2)dη

′
2m+2

|τ4m+4 − Ω2m+2(ξ
f
i ) +

i
T |

≤ ϵA2−llog(2lϵ−A) ≤ 2−
l
2 ϵ

A
2 .

End of the algorithm. In all of the three previous cases, we have obtained a 2−
l
2 ϵ

A
2 factor. Per-

forming this estimate for vb1, ..., v
b
2N−2 gives a total 2−

l
2
(N−1)ϵ

A
2
(N−1) factor. When reaching vb2N−1

we integrate |τ4N−4 + i|−1|τ4N−2 + i|−1|τ4N−2 − τ4N−4 − Ω4N−2 +
i
T |

−1 over dτ4N−4dτ4N−2 which
yields a factor 1. We integrate over all remaining free frequencies among ξf1 , ..., ξ

f
N(j+1) and ηi,i′ for

{i, i′} ∈ P , which yields a factor of at most ϵ−dN(j+1). We finally integrate 1Al
R
(ξ0) which yields a

factor 2lϵ−A. Combining, this gives

|FT (P,G,N)| ≲ λ2jN ϵNd(j+1)2−
l
2
(N−1)ϵ

A
2
(N−1)ϵ−dN(j+1)2lϵ−A ≤ (

T

Tkin
)N(j+1)2−

Nl
3 ϵ

NA
3 (9.24)

where we used that T ≥ ϵ−2, took A and N large enough and then ϵ small enough.

9.1.3. Conclusion. Injecting (9.21) in (9.17) and then in (9.5) for l = 0, and injecting (9.24) in (9.5)
for l ≥ 1 shows that for K ′ large enough then for ϵ small enough, for all l = 0, 1, ...,

E
[
Tr MN

]
≲ ϵ−Ad(

T

Tkin
)N(j+1)|logϵ|2N(j+1)2−

Nl
3 ϵ

NA
3

δl≥1 .

We conclude by Bienaymé-Tchebychev inequality, that for each κ and l, there exists a set El with
measure P(El) > 1− 2−lϵκ such that

Tr MN ≤ ϵ−Ad

(
T

Tkin

)N(j+1)

ϵ−2κ2−
Nl
4 ϵ

NA
3

δl≥1 .

On this set, we have

∥LG,ιA
l
R∥X0, 12→X0,− 1

2
≤ (Tr MN )

1
2N ≲

(
T

Tkin

) j+1
2

ϵ
−Ad+2κ

2N 2−
l
8 ϵ

A
6
δl≥1 ≲

(
T

Tkin

) j+1
2

ϵ−κ2−
l
8 ϵ

A
8
δl≥1
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for N large enough. The proof of Lemma 9.2 is complete and Proposition 9.1 follows.

10. Control of the error

10.1. Bound on the error term EN .

Proposition 10.1. For any N ∈ N, there exists ϵ∗ > 0 such that for all 0 < ϵ ≤ ϵ∗, for all T ≥ ϵ2

and b ∈ [12 , 1]:

E
∥∥∥∥χ∫ t

0
ei(t−s)∆χ

( s

T

)
EN ds

∥∥∥∥
Xs,b

ϵ

≲ T 1/2ϵ−1− d
2

∑
j+k≥N

(
E
∥∥∥χ( ·

T

)
uj
∥∥∥2
Xs,b

ϵ

) 1
2
(
E
∥∥∥χ( ·

T

)
uk
∥∥∥2
Xs,b

ϵ

) 1
2

.

(10.1)

Proof. First, notice that as Xs,b1
ϵ is continuously embedded in Xs,b2

ϵ for b2 ≤ b1, it suffices to
establish (10.1) for b1 = 1. Notice that the Fourier support of the approximate solution is in a
ball centred at the origin with radius ≲ ϵ−1, making the regularity index s irrelevant in our scaled
Sobolev and Bourgain spaces. We write χT (t) = χ(t/T ) in what follows.

We apply successively (A.2), and the above remark on the Fourier localisation, obtaining:∥∥∥∥χT (t)

∫ t

0
ei(t−s)∆χT (s)E

N ds

∥∥∥∥
Xs,1

ϵ

≲
∥∥χTE

N
∥∥
Xs,0

ϵ
≲

∑
j+k≥N

j,k=0,...,N

∥∥∥χTu
juk
∥∥∥
L2
tL

2
x

.

Above, applying Hölder inequality, then Bernstein inequality (using the Fourier localisation of the
approximate solution), Hölder inequality again and finally (A.1):∥∥∥χTu

juk
∥∥∥
L2
tL

2
x

≲
∥∥χTu

j
∥∥
L∞
t L∞

x
∥χTu

k∥L2
tL

2
x

≲ Tϵ−
d
2

∥∥χTu
j
∥∥
C(R,L2

x)
∥χTu

k∥C(R,L2
x)

≲ Tϵ−
d
2

∥∥χTu
j
∥∥
Xs,b

ϵ
∥χTu

k∥
Xs,b

ϵ
.

The Cauchy-Schwarz inequality followed by Proposition 8.1 gives then

E
∥∥∥χTu

juk
∥∥∥
L2
tL

2
x

≲ Tϵ−
d
2

(
E
∥∥χTu

j
∥∥2
Xs,b

ϵ

) 1
2
(
E∥χTu

k∥2
Xs,b

ϵ

) 1
2
.

Combining the three inequalities above yields (10.1). □

10.2. The bilinear Xs,b
ϵ estimate.

Proposition 10.2. If s > d
2 − 1 and b > 1

2 ,∥∥∥∥χ(t)∫ t

0
ei(t−s)∆

2 χ(s)u2 ds

∥∥∥∥
Xs,b

ϵ

≲ ϵ∥u∥2
Xs,b

ϵ
.

The same estimate holds true if u2 is replaced by u2 or |u|2.

The proof of this proposition will rely on the following lemma, proved in [11].

Lemma 10.3 (Lemma 7.3, [11]). If N1 ≤ N2 ∈ 2N0, for any κ > 0 there exists b0 <
1
2 such that

∥χ(s)Pϵ,N1uPϵ,N2v∥L2L2 ≲ N
d
2
−1+κ

1 ϵ−
d
2
+1−κ∥Pϵ,N1u∥X0,b0

ϵ
∥Pϵ,N2v∥X0,b0

ϵ

The same holds if u or v are replaced by their complex conjugates.

Equipped with this lemma, we can now turn to the proof of the proposition.
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Proof. By (A.2), it suffices to prove that

∥χ(s)u2∥
Xs,b−1

ϵ
≲ ∥u∥2

Xs,b
ϵ
.

We will prove this bound by duality: choosing v ∈ X−s,1−b
ϵ , it reduces to estimating

∫∫
χ(s)u2v dx ds.

Applying a Littlewood-Paley decomposition in u and v, this becomes∑
N1,N2,N3∈2N0

∫∫
χ(s)Pϵ,N1uPϵ,N2uPϵ,N3v dx ds.

Without loss of generality, we can assume that N2 ≳ N3. Applying the Cauchy-Schwarz inequality
followed by Lemma 10.3,∣∣∣∣∫∫ Pϵ,N1uPϵ,N2uPϵ,N3v dx ds

∣∣∣∣ ≲ ∥χ(s)Pϵ,N1uPϵ,N2u∥L2L2∥Pϵ,N3v∥L2L2

≲N
d
2
−1+κ

1 ϵ−
d
2
+1−κ∥Pϵ,N1u∥X0,b0

ϵ
∥Pϵ,N2u∥X0,b0

ϵ
∥Pϵ,N3v∥X0,0

ϵ

≲N
d
2
−1+κ−s

1 ϵ−
d
2
+1−κN−s

2 N s
3∥Pϵ,N1u∥Xs,b0

ϵ
∥Pϵ,N2u∥Xs,b0

ϵ
∥Pϵ,N3v∥X−s,0

ϵ
.

By almost orthogonality, it is now easy to see that∑
N2≳N3

∣∣∣∣∫∫ Pϵ,N1uPϵ,N2uPϵ,N3v dx ds

∣∣∣∣ ≲ ∥u∥2
Xs,b

ϵ
∥v∥

X−s,1−b
ϵ

;

Indeed, the sum over N1 is just a geometric series, while the sum over N2, N3 can be treated by
Cauchy-Schwarz. □

Appendix A. Xs,b
ϵ spaces

We define Xs,b
ϵ spaces, and review their properties, for functions defined on Rd. This frame-

work can be immediately translated to the case of the torus, the only difference being additional
subpolynomial losses in ϵ in some Strichartz estimates.

The Xs,b spaces were introduced in [8]. We quickly review their properties, refering the reader
to [40], Section 2.6, for details.

Definition Let
∥f∥Hs

ϵ
= ∥⟨ϵD⟩sf∥L2

and
∥u∥

Xs,b
ϵ

= ∥e−itω(D)u(t)∥L2Hs
ϵ
= ∥⟨ϵξ⟩s⟨τ + ω(ξ)⟩bũ(τ, k)∥L2(R×Rd)

Time continuity For b > 1
2 ,

∥u∥CHs
ϵ
≲ ∥u∥

Xs,b
ϵ
. (A.1)

Hyperbolic regularity Assume that u solves{
i∂tu+ ω(D)u = F
u(t = 0) = 0

Then, denoting χ for a smooth cutoff function, supported on B(0, 2), and equal to 1 on B(0, 1),

∥χ(t)u∥
Xs,b−1

ϵ
≲ ∥F∥

Xs,b
ϵ
. (A.2)
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From group to Xs,b estimates Assume that, uniformly in τ0 ∈ R,

∥eitτ0e−itω(D)f∥Y ≤ C0(ϵ)∥⟨ϵD⟩sf∥L2

Then, if b > 1
2 ,

∥u∥Y ≲b C0(ϵ)∥u∥Xs,b
ϵ

Strichartz estimates We want to apply the previous statement to Strichartz estimates: if d ≥ 2, for
any κ > 0,

∥e−itω(D)f∥L4L4 ≲κ ϵ
1
2
− d

4
−κ∥⟨ϵD⟩

d
4
− 1

2
+κf∥L2

As a consequence, if κ > 0, b > 1
2 ,

∥u∥L4L4 ≲b,κ ϵ
1
2
− d

4
−κ∥u∥

X
d
4− 1

2+κ,b
ϵ

. (A.3)

Duality The dual of Xs,b
ϵ is X−s,−b

ϵ . Therefore, the previous inequalities imply that, if s′ < 0, κ > 0,
b′ < −1

2 ,

∥χ(t)u∥
X

− d
4+1

2−κ,b′
ϵ

≲b′ ϵ
1
2
− d

4
−κ∥u∥L4/3L4/3 if d ≥ 3. (A.4)

Similarly, the dual of the inequality (A.1) is, for any b′ < 1
2 ,

∥u∥
Xs,b′

ϵ
≲b′ ∥u∥L1Hs

ϵ
. (A.5)

Interpolation If 0 ≤ θ ≤ 1, s = θs0 + (1− θ)s1 and b = θb0 + (1− θ)b1,

∥u∥Xs,b ≤ ∥u∥θ
Xs0,b0

∥u∥1−θ
Xs1,b1

.

Appendix B. Elementary bounds

Lemma B.1 (Estimates for degree one vertices). For any 0 < ϵ ≤ 1
2 , any ξ̃ ∈ Rd and 0 < t ≤ 1 the

following estimates hold true. First,∫
|ξf |≲ϵ−1

dξf

|γ + ξ̃.ξf + i
t |

≲ ϵ1−dmin

(
1

|ξ̃|
,
t

ϵ

)(
log⟨ξ̃⟩+ |logϵ|

)
for all γ ∈ R, (B.1)

and for 0 < δ ≤ 1,∫
|ξf |≲ϵ−1

1(|ξ̃| ≥ δϵ−1 or |γ + ξ̃.ξf | ≥ δϵ−2)dξf

|γ + ξ̃.ξf + i
t |

≤ C(δ)ϵ1−dmin
(
ϵ|logϵ|, log⟨ξ̃⟩

|ξ̃|

)
for all γ ∈ R,

(B.2)
and for m ∈ C1([0,∞)) nonnegative and bounded with m(0) = 0:∫

|ξf |≲ϵ−1

m(ϵξ̃)dξf

|γ + ξ̃.ξf + i
t |

≤ C(m)ϵ1−dmin
(
ϵ|logϵ|, log⟨ξ̃⟩

|ξ̃|

)
for all γ ∈ R. (B.3)

Second, ∫
|ξf |≲ϵ−1

dξf

|γ + (ξ̃ + ξf ).ξf + i
t |

≲ ϵ1−dmin
(
ϵ|logϵ|, log⟨ξ̃⟩

|ξ̃|

)
for all γ ∈ R. (B.4)
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Proof. Proof of (B.1). By rotational invariance, we can assume that ξ̃ = (|ξ̃|, 0, ..., 0). Integrating
first over the variables ξf2 , ..., ξ

f
d and then performing the change of variables ξf1 = (|ξ̃|t)−1ζ1 one

finds: ∫
|ξf |≲ϵ−1

dξf

|γ + ξ̃.ξf + i
t |

≲ ϵ1−d

∫
|ξf1 |≲ϵ−1

tdξf1

|tγ + t|ξ̃|ξf1 + i|
=

ϵd−1

|ξ̃|

∫
|ζ1|≲|ξ̃|ϵ−1t

dζ1
|tγ + ζ1 + i|

.

The last integral above satisfies
∫
|ζ1|≲A |tγ + ζ1 + i|−1dζ1 ≲ A if A ≤ 1 and

∫
... ≲ 1 + log(A) if

A ≥ 1 which proves (B.1).

Proof of (B.2). If |ξ̃| ≥ δϵ−1, we use (B.1) and obtain∫
|ξf |≲ϵ−1

1(|ξ̃| ≥ δϵ−1 or |γ + ξ̃.ξf | ≥ δϵ−2)dξf

|γ + ξ̃.ξf + i
t |

≤
∫
|ξf |≲ϵ−1

dξf

|γ + ξ̃.ξf + i
t |

≤ C(δ)ϵ1−d log⟨ξ̃⟩
|ξ̃|

which shows (B.2). If |ξ̃| < δϵ−1, we bound using |γ + ξ̃.ξf + i
t | ≤ C(δ)ϵ−2 in the integrand below:∫

|ξf |≲ϵ−1

1(|ξ̃| ≥ δϵ−1 or |γ + ξ̃.ξf | ≥ δϵ−2)dξf

|γ + ξ̃.ξf + i
t |

=

∫
|ξf |≲ϵ−1

1(|γ + ξ̃.ξf | ≥ δϵ−2)dξf

|γ + ξ̃.ξf + i
t |

≤ C(δ)ϵ2−d.

which also shows (B.2). Hence (B.2).

Proof of (B.3). To prove (B.3) we treat the two cases |ξ̃| < ϵ−1 and |ξ̃| ≥ ϵ−1 separately. If
|ξ̃| < ϵ−1 we have m(ϵ|ξ̃|) ≲ ϵ|ξ̃| because m ∈ C1[0,∞) is nonnegative bounded with m(0) = 0.
Using this, (B.1), m(ϵξ̃)min(|ξ̃|−1, ϵ−1t) ≲ ϵ and log⟨ξ̃⟩ ≲ |logϵ|, we obtain (B.3). If |ξ̃| > ϵ−1 we
have m(ϵ|ξ̃|) ≲ 1 as m is nonnegative and bounded. Using this, (B.1), min(|ξ̃|−1, tϵ) ≲ |ξ̃|−1 and
|logϵ| ≲ log⟨ξ̃⟩, we also obtain (B.3). Hence (B.3) for all ξ̃ ∈ Rd.

Proof of (B.4). We first assume |ξ̃| ≲ ϵ−1. If either t ≤ ϵ2 or |γ| ≫ ϵ−2, then |γ+ (ξ̃+ ξf ).ξf + i
t | ≳

ϵ−2, and (B.4) is true by simply bounding the integrand by ϵ2 and the volume of the support of the
integral by ϵ−d. We thus now assume t ≥ ϵ2 and |γ| ≲ ϵ−2. We change variables η = ξf + ξ̃/2 and
notice the identity ξf .(ξf + ξ̃) = |η|2 − |ξ̃|2/4 so that:∫

|ξf |≲ϵ−1

dξf

|γ + (ξ̃ + ξf ).ξf + i
t |

≲
∫
|η− ξ̃

2
|≲ϵ−1

dη

|γ − |ξ̃|2
4 + |η|2 + i

t |
.

We now claim that for all real numbers |A| ≲ ϵ−2 there holds:∣∣∣∣{η ∈ Rd, |A+ |η|2| ≤ 1

t

}∣∣∣∣ ≲ ϵ2−d

t
. (B.5)

Assuming the claim holds true we then partition and bound with the help of (B.5):∫
|η|≲ϵ−1

dη

|γ − |ξ̃|2
4 + |η|2 + i

t |
≲

∑
j∈Z, |j|≲tϵ−2

t

⟨j⟩

∣∣∣∣∣
{
η ∈ Rd, |γ − |ξ̃|

4
+ |η|2 + j

t
| ≤ 1

t

}∣∣∣∣∣ ≲ ϵ2−d|logϵ|

and (B.4) is obtained. It now remains to prove (B.5). If |A| ≤ t−1 then we have∣∣∣∣{η ∈ Rd, |A+ |η|2| ≤ 1

t

}∣∣∣∣ ≤ ∣∣∣∣{η ∈ Rd, |η|2| ≤ 2

t

}∣∣∣∣ ≲ t
d
2 ≲

ϵ2−d

t

where we used that t ≥ ϵ2. If |A| ≥ t−1 we change variables η = |A|1/2η̃ and estimate:∣∣∣∣{η ∈ Rd, |A+ |η|2| ≤ 1

t

}∣∣∣∣ = |A|
d
2

∣∣∣∣{η̃ ∈ Rd, | A
|A|

+ |η̃|2| ≤ 1

|A|t

}∣∣∣∣ ≲ |A|
d
2
−1

t
≲

ϵ2−d

t
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where we used 1/(|A|t) ≤ 1 and |A| ≲ ϵ−2. The two estimates above imply (B.5). This in turn
shows (B.4).

We now assume |ξ̃| ≫ ϵ−1. By rotational invariance, we can assume that ξ̃ = (|ξ̃|, 0, ..., 0). We
introduce ξf⊥ = (ξf2 , ..., ξ

f
d ), and then change variables αf

1 = (|ξ̃|+ ξf1 )ξ
f
1 which gives∫

|ξf |≲ϵ−1

dξf

|γ + (ξ̃ + ξf ).ξf + i
t |

=

∫
|ξf⊥|≲ϵ−1

dξf⊥

∫
|ξf1 |≲ϵ−1

dξf1

|γ + |ξf⊥|2 + (|ξ̃|+ ξf1 )ξ
f
1 + i

t |

≲
1

|ξ̃|

∫
|ξf⊥|≲ϵ−1

dξf⊥

∫
|αf

1 |≲|ξ̃|ϵ−1

dαf
1

|γ + |ξf⊥|2 + αf
1 + i

t |
(B.6)

where we used that dα1/dξ
f
1 ≈ |ξ̃| for |ξ1f | ≲ ϵ−1 since |ξ̃| ≫ ϵ−1. For any A ∈ R, we bound∫

|αf
1 |≲|ξ̃|ϵ−1

dαf
1

|A+αf
1+

i
t
|
≤
∫
|αf

1 |≲|ξ̃|ϵ−1

dαf
1

|αf
1+

i
t
|
| ≲ log(|ξ̃|ϵ−1) ≲ log⟨ξ̃⟩ where we used that 0 < t ≤ 1 and

|ξ̃| ≫ ϵ−1. Injecting this inequality in (B.6), bounding by ϵ1−d the integration over the remaining
ξf⊥ variable, this proves (B.4).

Hence (B.4) for any ξ̃ ∈ Rd. This ends the proof of the Lemma.
□

Lemma B.2 (Weighted integrals). For 0 < ϵ ≤ 1 there holds for any ξ′ ∈ Rd, γ ∈ R and 0 ≤ t ≤ 1:∫
α∈R, |α|≲ϵ−2

dα

|γ + α+ i
t |

≲ |logϵ|,

and for d ≥ 2: ∫
ξ∈Rd, |ξ|≲ϵ−1

dξ

|ξ′ + ξ|
≲ ϵ1−d.

For any β, β′ ∈ R, for all t > 0 there holds:∫
α∈R

dα

|α+ i
t ||α+ β + i

t |
≲

1

|β + i
t |
, (B.7)

∫
α∈R

dα

|α+ i
t ||α+ β + i

t ||α+ β′ + i
t |

≲
1

|β + i
t |

1

|β′ + i
t |
, (B.8)

and if 0 < t ≤ 1:∫
α∈R

dα

|α+ i||α+ β + i
t |

≲
⟨ln t⟩
|β + i

t |
,

∫
α∈R

dα

|α+ i||α+ β + i
t ||α+ β′ + i

t |
≲

⟨ln t⟩
|β + i

t |
1

|β′ + i
t |
. (B.9)

Proof. Proof of (B.7). By rescaling the integration variable, it suffices to prove the inequality for
t = 1. For t = 1 and |β| ≤ 1 the integral is ≲

∫
⟨α⟩−2dα ≲ 1 which proves the result. For t = 1

and |β| ≥ 1 we estimate first in the zone |α| ≤ 10|β| that |α+ i|−1|α+ β + i|−1 ≲ |β|−2 so that this
zone contributes at most to |β|−1. In the zone |α| ≥ 10|β| we change variables α = |β|α̃ and bound
the contribution of this zone by |β|

∫
|α̃|≥10 ||β|α̃+i|−1||β|α̃+β+i|−1 ≲ |β|−1, and (B.7) is established.

Proof of (B.8). By rescaling, it suffices to consider t = 1. We assume ββ′ ≤ 0, and β ≥ 0, β′ ≤ 0

without loss of generality. In the zone |α| ≤ 0, we upper bound in the integral |α + β′ + i|−1 ≤
|β′+ i|−1, apply (B.7) to estimate

∫
α≤0 |α+ i|−1|α+β+ i|−1dα, and obtain the desired upper bound

(B.8). In the zone |α| ≥ 0, we upper bound |α + β + i|−1 ≤ |β + i|−1, apply (B.7) to estimate∫
α≤0 |α+ i|−1|α+ β′ + i|−1dα, and (B.8) is established. The proof if ββ′ ≥ 0 can be done similarly.
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Proof of (B.9). For the first inequality, we bound for |α| ≤ t−1 that |α+ β + i
t | ≈ |β + i

t | and for
|α| ≥ t−1 that |α+ i| ≈ |α+ i

t |, and use (B.7) to estimate:∫
α∈R

dα

|α+ i||α+ β + i
t |

≲
1

|β + i
t |

∫
|α|≤t−1

dα

|α+ i|
+

∫
|α|≥t−1

dα

|α+ i
t ||α+ β + i

t |
≲

⟨ln t⟩
|β + i

t |
.

The proof of the second inequality is similar and we omit it.
□
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