
Adversarial Estimation of Riesz Representers

Victor Chernozhukov1, Whitney K. Newey1, Rahul Singh2, and Vasilis
Syrgkanis3

1Department of Economics, Massachussetts Institute of Technology,
Cambridge, MA, USA 02142

2Society of Fellows and Department of Economics, Harvard University,
Cambridge, MA, USA 02138

3Department of Management Science and Engineering, Stanford University,
Stanford, CA, USA 94305

Original draft: December 2020. This draft: April 2024.

Abstract

Many causal parameters are linear functionals of an underlying regression. The
Riesz representer is a key component in the asymptotic variance of a semiparametrically
estimated linear functional. We propose an adversarial framework to estimate the
Riesz representer using general function spaces. We prove a nonasymptotic mean
square rate in terms of an abstract quantity called the critical radius, then specialize it
for neural networks, random forests, and reproducing kernel Hilbert spaces as leading
cases. Our estimators are highly compatible with targeted and debiased machine
learning with sample splitting; our guarantees directly verify general conditions for
inference that allow mis-specification. We also use our guarantees to prove inference
without sample splitting, based on stability or complexity. Our estimators achieve
nominal coverage in highly nonlinear simulations where some previous methods break
down. They shed new light on the heterogeneous effects of matching grants.
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1 Introduction and related work

Many parameters traditionally studied in statistics and econometrics are functionals, i.e.

scalar summaries, of an underlying regression function [Hasminskii and Ibragimov, 1979,

Pfanzagl, 1982, Klaassen, 1987, Robinson, 1988, Powell et al., 1989, van der Vaart, 1991,

Bickel et al., 1993]. For example, g0(X) = E(Y |X) may be a regression function in a space

G, and the parameter of interest θ(g0) may be the average policy effect of transporting

the covariates according to t(X), so that the functional is θ : g 7→ E[g{t(X)} − g(X)]

[Stock, 1989]. Under regularity conditions, there exists a function a0 called the Riesz

representer that represents θ in the sense that θ(g) = E{a0(X)g(X)} for all g ∈ G.1 For

the average policy effect, it is the density ratio a0(X) = ft(X)/f(X) − 1, where ft(X)

is the density of t(X) and f(X) is the density of X. More generally, for any bounded

linear functional θ(g) = E{m(Z; g)}, where g : X → R and X ⊂ Z, there exists a Riesz

representer a0 such the functional θ(g) can be evaluated by simply taking the inner product

between a0 and g.

Estimating the Riesz representer of a linear functional is a critical building block in

a variety of tasks. First and foremost, a0 appears in the asymptotic variance of any

semiparametrically efficient estimator of the parameter θ(g0), so to construct an analytic

confidence interval, we require an estimator â [Newey, 1994]. Second, because a0 appears in

the asymptotic variance, â can be directly incorporated into estimation of the parameter

θ(g0) to ensure semiparametric efficiency [Robins et al., 1995, Robins and Rotnitzky, 1995,

van der Laan and Rubin, 2006, Zheng and van der Laan, 2011, Belloni et al., 2012, Luedtke and van der Laan, 2016,

Belloni et al., 2017, Chernozhukov et al., 2018, Chernozhukov et al., 2022a]. Third, a0 may

admit a structural interpretation in its own right. In asset pricing, a0 is the stochastic

discount factor, and â is used to price financial derivatives [Hansen and Jagannathan, 1997,

Aït-Sahalia and Lo, 1998, Bansal and Viswanathan, 1993, Chen et al., 2023].

The Riesz representer may be difficult to estimate. Even for the average policy effect, its

closed form involves a density ratio. A recent literature explores the possibility of directly

estimating the Riesz representer, without estimating its components or even knowing its func-

tional form, since the Riesz representer is directly identified from data [Robins et al., 2007,
1The representer a0 exists when θ is a bounded functional, which is necessary for regular estimation.
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Avagyan and Vansteelandt, 2021, Chernozhukov et al., 2022c, Hirshberg and Wager, 2021,

Chernozhukov et al., 2022b, Smucler et al., 2019], generalizing what is known about balanc-

ing weights [Hainmueller, 2012, Imai and Ratkovic, 2014, Zubizarreta, 2015, Chan et al., 2016,

Athey et al., 2018, Wong and Chan, 2018, Zhao, 2019, Kallus, 2020, Hirshberg et al., 2019].

This literature proposes estimators â in specific sparse linear or RKHS function spaces,

and analyzes them on a case-by-case basis. In prior work, the incorporation of directly

estimated â into the tasks above appears to require either (i) correct specification, which

may be implausible, or (ii) approximation by linear and RKHS function spaces only.

This paper asks: is there a general mean square rate for an estimator â constructed

over a general machine learning function space that is not Donsker, e.g. a neural network?

Moreover, can we use this mean square rate to incorporate â into the tasks listed above while

simultaneously allowing general function approximation and robustness to mis-specification?

Finally, do these theoretical innovations shed new light in a highly influential empirical

study where previous work is limited to parametric estimation?

Contributions. Our first contribution is a general Riesz estimator over nonlinear

function spaces with fast estimation rates. Specifically, we propose and analyze an adversarial,

direct estimator â for the Riesz representer of any mean square continuous linear functional,

using any function space A that can approximate a0 well. We prove a high probability, finite

sample bound on the mean square error ∥â−a0∥2 in terms of an abstract quantity called the

critical radius δn, which quantifies the complexity of A in a certain sense. Since the critical

radius is a well-known quantity in statistical learning theory, we can appeal to critical

radii of machine learning function spaces such as neural networks, random forests, and

reproducing kernel Hilbert spaces (RKHSs).2 Unlike previous work on Riesz representers,

we provide a unifying approach for general function spaces (and their unions), handling new

function spaces such as neural networks and random forests. These new function spaces

achieve nominal coverage in highly nonlinear simulations where other function spaces fail.

Our second contribution is to incorporate our direct â estimator into downstream tasks

such as semiparametric estimation and inference, while simultaneously allowing general

function approximation and robustness to mis-specification. We demonstrate that our
2Hereafter, a “general” function space is a possibly non-Donsker space that satisfies a critical radius

condition. An “arbitrary” function space may not satisfy a critical radius condition.
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mean square rate directly verifies the general conditions for inference in targeted and

debiased machine learning with sample splitting. We prove inference based on “stability-rate

robustness” without sample splitting, which may be of independent interest: a sufficient

condition for Gaussian approximation is when the product of the estimator stability and the

estimation rate vanishes quickly enough. Finally, our mean square rate also verifies conditions

for inference based on “complexity-rate robustness” without sample splitting. While showing

the connection, we clarify that a sufficient condition for Gaussian approximation is when

the product of the complexity and the estimation rate is op(n−1/2).

In practice, adversarial estimators with machine learning function spaces involve compu-

tational techniques that may introduce computational error. As our third contribution, we

analyze the computational error for some key function spaces used in adversarial estimation

of Riesz representers. For random forests, we analyze oracle training and prove convergence

of an iterative procedure. For the RKHS, we derive a closed form without computational

error and propose a Nyström approximation with computational error. In doing so, we

attempt to bridge theory with practice for empirical research.

Finally, we provide an empirical contribution by extending the influential analysis

of [Karlan and List, 2007] from parametric estimation to semiparametric estimation. To

our knowledge, semiparametric estimation has not been used in this setting before. The

substantive economic question is: how much more effective is a matching grant in Republican

states compared to Democratic states? The flexibility of machine learning may improve

model fit, yet it may come at the cost of statistical power. Our approach appears to improve

model fit relative to previous parametric and semiparametric approaches, and this benefit

appears to outweigh the cost; we obtain more precise estimates overall.

Key connections. The Riesz representation theorem implies a continuum of uncondi-

tional moment restrictions. Our central insight is to adapt adversarial techniques to the

problem of learning the Riesz representer: we adversarially enforce the unconditional mo-

ment restrictions over a set of test functions [Goodfellow et al., 2014, Arjovsky et al., 2017].

The fundamental advantage of the adversarial approach is its unified analysis over gen-

eral function classes in terms of the critical radius [Koltchinskii and Panchenko, 2000,

Bartlett et al., 2005, Negahban et al., 2012, Lecué and Mendelson, 2017, Lecué and Mendelson, 2018].

Since this paper was circulated on arXiv in 2020, this framework has been extended to
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Riesz representers of more functionals, e.g. proximal treatment effects [Kallus et al., 2021,

Ghassami et al., 2022].

A key predecessor is [Chernozhukov et al., 2022c] which only studies sparse linear func-

tion approximation of Riesz representers. We allow for general function spaces, which may

improve finite sample performance by reducing approximation error. Our work comple-

ments [Hirshberg and Wager, 2021], who use an adversarial approach to semiparametric

estimation, without sample splitting, that requires correct specification of g0. Our fast

L2 rate is compatible with not only their “complexity-rate” inference results but also tar-

geted and debiased machine learning with sample splitting, which allow mis-specification

[Zheng and van der Laan, 2011, Chernozhukov et al., 2018]. Finally, [Kaji et al., 2020] pro-

pose an adversarial estimator for parametric models, whereas we study semiparametric

models.

The Riesz representer’s unconditional moment restrictions differ from those of a non-

parametric instrumental variable regression [Newey and Powell, 2003, Ai and Chen, 2003].

We complement previous works that adapt modern, adversarial techniques to nonparametric

instrumental variable regression, e.g. [Dikkala et al., 2020]. A key difference is that we

prove a mean square rate, which is necessary for targeted and debiased machine learning.

Several subsequent works build on our work and propose other estimators for nonlinear

function spaces [Singh, 2021, Chernozhukov et al., 2021, Kallus et al., 2021, Ghassami et al., 2022],

but this paper was the first to give L2 estimation rates for the Riesz representer with non-

linear function approximation, allowing neural networks and random forests to be used for

direct Riesz estimation. In addition, [Chen et al., 2022] extend our results for “stability-rate

robustness.” See Sections 3 and 4 for detailed comparisons.

When initially circulated, this paper appeared to be the first to: (i) propose direct

Riesz representer estimators compatible with sample splitting over general non-Donsker

spaces; (ii) provide unified L2 rates in terms of critical radius theory; (iii) prove inference

via estimator stability. None of (i), (ii), or (iii) appear to be contained in previous works.

Section 2 defines our adversarial estimator of the Riesz representer over general function

spaces. Section 3 presents our main result: L2 rates for the Riesz estimator over general

function spaces. Section 4 shows semiparametric inference via sample splitting, estimator

stability, or complexity. Section 5 studies the computation error that arises in practice.
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Section 6 showcases settings where our flexible estimator achieves nominal coverage while

some previous methods do not, and where these gains provide new, rigorous empirical

evidence. Section 7 concludes.

2 Adversarial estimation over general function spaces

Class of functionals. We study linear and mean square continuous functionals of the

form θ : g 7→ E{m(Z; g)}, where g0(X) = E(Y |X) and X ⊂ Z. Denote the L2 norm and

associated inner product by ∥g∥2 :=
√

E[g(X)2] and ⟨g, g′⟩2 := EX [g(X) g′(X)].

Assumption 1 (Mean square continuity). There exists some constant 0 ≤M <∞ such

that ∀f ∈ F , E {m(Z; f)2} ≤M ∥f∥22.3

In Appendix D, we verify that a variety of functionals are mean square continuous under

standard conditions, including the average policy effect, regression decomposition, average

treatment effect, average treatment on the treated, and local average treatment effect.

Mean square continuity implies boundedness of the functional θ, since |E{m(Z; g)}| ≤√
E{m(Z; g)2}. By the Riesz representation theorem, any bounded linear functional over

a Hilbert space has a Riesz representer a0 in that Hilbert space. Therefore Assumption 1

implies that the Riesz representer estimation problem is well defined.

Estimator definition. To state our estimator, we introduce the following notation.

Let En[·] denote the empirical average and ∥ · ∥2,n the empirical ℓ2 norm, i.e. ∥g∥2,n :=√
En[g(X)2]. For any function space G, let star(G) := {r g : g ∈ G, r ∈ [0, 1]} denote the

star hull and let ∂G := {g − g′ : g, g′ ∈ G} denote the space of differences.

We propose Riesz representer estimators that use a general function space A, equipped

with some norm ∥ · ∥A. In particular, A is for the minimization in our min-max approach.

Given the notation above, we define the class F for adversarial maximization: F :=

star(∂A) := {r(a− a′) : a, a′ ∈ A, r ∈ [0, 1]}, and we assume that the norm ∥ · ∥A extends

naturally to the larger space F . We propose the following estimator.

Estimator 1 (Adversarial Riesz representer). For regularization (λ, µ), define

â = argmin
a∈A

max
f∈F

En{m(Z; f)− a(X) · f(X)} − ∥f∥22,n − λ∥f∥2A + µ∥a∥2A.
3A sufficient condition is when the statement holds ∀f ∈ L2. We define F ⊂ L2 below.
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Corollary 1 (Population limit). Consider the population limit of our criterion where n→ ∞

and λ, µ→ 0: maxf∈F E [m(Z; f)− a(X) · f(X)]− ∥f∥22. This limit equals 1
4
∥a− a0∥22.

Thus our empirical criterion converges to the mean square error criterion in the population

limit, even though an analyst does not have access to unbiased samples from a0(X).

Our Riesz representer estimator â ∈ A is a function, which may be evaluated at new

locations besides the training data. Therefore it may interpolate, which is important for

stochastic discount factor analysis in finance; see Appendix B. Moreover, it may be evaluated

on a held out sample, which is important for semiparametric inference with sample splitting

that allows for mis-specification; see Section 4. By contrast, a balancing weight estimator

defined as a vector ã ∈ Rn does not allow for interpolation or sample splitting. This is our

main departure from previous work on adversarial balancing weights, described in Section 1.

Crucially, the space A does not have to be sparse linear or an RKHS. This is our main

departure from previous work on direct Riesz estimation, described in Section 1.4

The vanishing norm-based regularization terms in Estimator 1 may be avoided if an

analyst knows a bound on ∥a0∥A. In such case, one can impose a hard norm constraint on the

hypothesis space and optimize over norm-constrained subspaces. By contrast, regularization

allows the estimator to adjust to ∥a0∥A, without knowledge of it.

Our analysis allows for mis-specification, i.e. a0 /∈ A. In such case, the estimation error

incurs an extra bias of ϵn := ∥a∗ − a0∥2 where a∗ := argmina∈A ∥a− a0∥2 is the best-in-class

approximation. Section 4 interprets A as an L2 approximating sequence of function spaces.

3 Nonasymptotic mean square rate via critical radius

Our main result is a fast, finite sample L2 rate for the adversarial Riesz representer in

terms of the critical radius. The critical radius of a function class is a widely used quantity

in statistical learning theory, and it is known for many machine learning function classes.

Thus our main result allows us to appeal to critical radii for a family of adversarial Riesz

representer estimators over general function classes. We provide new results for function

classes previously unused in direct Riesz representer estimation, e.g. neural networks.
4By direct Riesz estimation, we mean estimation of a function â ∈ A that can interpolate.
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Critical radius background. A Rademacher random variable takes values in {−1, 1}.

Let εi be independent Rademacher random variables drawn equiprobably. Then the local

Rademacher complexity of the function space F over a neighborhood of radius δ is defined

as R(δ;F) := E
{
supf∈F :∥f∥2≤δ

1
n

∑n
i=1 εif(Xi)

}
. As an important stepping stone, we prove

bounds on ∥â− a0∥2 in terms of local Rademacher complexities.

These bounds can be optimized into fast rates by an appropriate choice of the radius δ,

called the critical radius. Formally, the critical radius of a function class F with range in

[−b, b] is defined as any solution δn to the inequality R(δ;F) ≤ δ2/b.5 There is a sense in

which δn balances bias and variance in the bounds.

The critical radius has been analyzed and derived for a variety of function spaces of

interest, such as neural networks, reproducing kernel Hilbert spaces, high-dimensional linear

functions, and VC-subgraph classes. The following characterization of the critical radius

opens the door to such derivations [Wainwright, 2019, Corollary 14.3 and Proposition 14.25]:

the critical radius of any function class F , uniformly bounded in [−b, b], is of the same order

as any solution to the inequality:∫ δ

δ2

2b

√
log [N{ε;Bn(δ;F); ℓ2}]dε ≤

√
nδ2

64b
. (1)

In this expression, Bn(δ;F) = {f ∈ F : ∥f∥2,n ≤ δ} is the ball of radius δ and N(ε;F ; ℓ2)

is the empirical ℓ2-covering number at approximation level ε, i.e. the size of the smallest

ε-cover of F , with respect to the empirical ℓ2 metric. Critical radius analysis will handle

more function spaces than Donsker analysis; see Appendix E.

Assumption 2 (Critical radius for estimation). Define the balls of functions FB := {f ∈

F : ∥f∥2A ≤ B} and m ◦ FB := {m(·; f) : f ∈ FB}. Assume that there exists some constant

B ≥ 0 such that the functions in FB and m ◦ FB have uniformly bounded ranges in [−b, b].

Further assume that, for this B, δn upper bounds the critical radii of FB and m ◦ FB.

Main result. Our nonasymptotic main result holds with probability 1− ζ. To lighten

notation, we summarize the critical radii, approximation error, and low probability event:

δ̄ := δn + ϵn + c0

√
log(c1/ζ)

n
, where c0 and c1 are universal constants.

5We focus on bounded functions for simplicity. Future work may adapt our analysis to unbounded

functions using moment conditions.
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Theorem 1 (Mean square rate). Suppose Assumptions 1 and 2 hold. Suppose that the

regularization in Estimator 1 satisfies µ ≥ 6λ ≥ 12δ̄2/B. Then with probability 1 − ζ,

∥â− a0∥2 = O
(
M2δ̄ + µ∥a∗∥2A/δ̄

)
. Furthermore, if µ ≤ Cδ̄2/B, for some constant C, the

bound simplifies to O
[
δ̄ max

{
M2,

∥a∗∥2A
B

}]
.

Corollary 2 (Weaker metric rate). Consider the weaker metric ∥ · ∥F defined as ∥a∥2F =

supf∈F ⟨a, f⟩2 − 1
4
∥f∥22 ≤ ∥a∥22. Then under the conditions of Theorem 1, ∥â − a0∥F =

O
[
δ̄′ max {M2, ∥a∗∥2A/B}

]
where the definition of δ̄′ replaces ϵn with ϵ′n = infa∈A ∥a− a0∥F .

Corollary 3 (Mean square rate without norm regularization). Suppose the conditions of

Theorem 1 hold, and that the function classes F and G are already norm constrained with

uniformly bounded ranges. Then taking λ = µ = 0 in Estimator 1, ∥â− a0∥2 = O
(
M2δ̄′′

)
where we define δ̄′′ by replacing δn with δ′′n, which bounds the critical radii of F and m ◦ F .

In Appendix C, we consider another version of Estimator 1 without the ∥f∥22,n term. We

prove a fast rate on ∥â− a0∥2 as long as F can be decomposed into the union of symmetric

function spaces, i.e. F = ∪d
i=1F i.

We bound the population norm ∥â− a0∥2 in terms of critical radii, for function spaces

beyond the sparse linear case and the RKHS. The population norm may be viewed as

a generalization error, and it is necessary for downstream analysis where the function â

interpolates or is evaluated on a held-out sample. We complement previous work on L2 rates

by providing a unified analysis across function spaces, including new ones. See Appendix C

for formal comparisons in the sparse linear special case, where strong results are known.

We study the Riesz representer, whereas [Dikkala et al., 2020] study the nonparametric

instrumental variable regression. Theorem 1 and [Dikkala et al., 2020, Theorem 1] use

adversarial techniques, yet there is a crucial difference in the nature of the result: we bound

the mean square error, whereas [Dikkala et al., 2020, Theorem 1] bounds a projected mean

square error. The mean square error rate is essential to verify the conditions of targeted and

debiased machine learning; a projected mean square error rate is weaker and insufficient.

Corollary 4 (Union of hypothesis spaces). Suppose that F = ∪d
i=1F i and that the critical

radius of each F i is δin in the sense of Assumption 2. Suppose that for some F i, δin ≳
√

log(d)
n

.

Then the critical radius of F is δn = O

{
maxi δ

i
n +

√
log(d)

n

}
, and the conclusions of the

above results continue to hold.
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By Corollary 4, our results allow an analyst to estimate the Riesz representer with

a union of flexible function spaces, which is an important practical advantage. This is

a specific strength of the critical radius approach and a contribution to the direct Riesz

estimation literature, which appears to have been studied one function space at a time.6

Special cases: Neural network, random forest, RKHS. As a leading example,

suppose that the function class A can be expressed as a rectified linear unit (ReLU)

activation neural network with depth L and width W , denoted as Annet(L,W ). Functions in

F can be expressed as neural networks with depth L+ 1 and width 2W .

Corollary 5 (Neural network Riesz representer rate). Take A = Annet(L,W ). Suppose

that m ◦ F is representable as a neural network with depth O(L) and width O(W ). Fi-

nally, suppose that the covariates are such that functions in F and m ◦ F are uniformly

bounded in [−b, b]. Then with probability 1− ζ, ∥â− a0∥2 = O
{
mina∈Annet(L,W )

∥a− a0∥2 +√
LW log(W ) log(b) log(n)

n
+
√

log(1/ζ)
n

}
.

The second term is the critical radius. By the L1 covering number for VC classes

[Haussler, 1995] as well as the bounds of [Anthony and Bartlett, 2009, Theorem 14.1] and

[Bartlett et al., 2019, Theorem 6], the critical radii of F andm◦F are δn = O

{√
LW log(W ) log(b) log(n)

n

}
.

See [Foster and Syrgkanis, 2023, Proof of Example 3] for a detailed derivation.

If a0 is representable as a ReLU neural network, then the first term vanishes and

we achieve an almost parametric rate. If a0 is representable as a nonparametric Holder

function, then one may appeal to approximation results for ReLU activation neural networks

[Yarotsky, 2017, Yarotsky, 2018]. Such results typically require that the depth and the width

of the neural network grow as some function of the approximation error ϵn, leading to errors

of the form O

[
ϵn +

√
L(ϵn)W (ϵn) log{W (ϵn)} log(b) log(n)

n
+
√

log(1/ζ)
n

]
. Optimally balancing ϵn

leads to almost tight nonparametric rates.

Corollary 5 for the Riesz representer is the same order as [Farrell et al., 2021, Theorem

2] for nonparametric regression. In this sense, it appears relatively sharp.

Next, consider the oracle trained random forest estimator described in Section 5. Denote

by Abase(d) the base space, with VC dimension d, in which each tree of the forest is estimated.

Denote by Arf(d) = {
∑

j wj ãj : ãj ∈ Abase(d)} the linear span of the base space.

6Estimator 1 takes F as given, allowing for unions. Future work may study adaptive selection of F .
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Corollary 6 (Random forest Riesz representer rate). Take A = Arf(d). Suppose that

m ◦ F ∈ Arf(d). Finally, suppose that the covariates are such that functions in F and

m ◦ F are uniformly bounded in [−b, b]. Then under after T iterations of oracle training

and under the regularity conditions described in Proposition 1, with probability 1 − ζ,

∥â− a0∥2 = O
{
mina∈Arf(d) ∥a− a0∥2 + log(T )

T
+ b
√

Td log(n)
n

+
√

log(1/ζ)
n

}
.

The second term is the computational error from Proposition 1 below. The third term is

the critical radius, which follows from the complexity of oracle training and from analysis of

VC spaces [Shalev-Shwartz and Ben-David, 2014]. We defer further discussion to Section 5.

Suppose that the base estimator is a binary decision tree with small depth. This example

satisfies the requirement of Abase(d) [Mansour and McAllester, 2000], and we use it in prac-

tice. If T = O{(n/d)1/3}, the bound simplifies to ∥â− a0∥2 = O

{
b log(n)d

1/3

n1/3 +
√

log(1/ζ)
n

}
.

Denote by Arkhs(k) the RKHS with kernel k, so that ∥ · ∥Arkhs(k) is the RKHS norm.

Define the empirical kernel matrix K ∈ Rn×n where Kij = k(xi, xj)/n. Let (ηj)nj=1 be the

eigenvalues of K. For a possibly different kernel k̃, we define analogous objects with tildes.

We arrive at the following result using [Wainwright, 2019, Corollary 13.18].

Corollary 7 (RKHS Riesz representer rate). Take A = Arkhs(k). Suppose that m ◦

F ∈ Arkhs(k̃). Suppose that there exists some B ≥ 0 such that functions in FB and

m ◦ FB are uniformly bounded in [−b, b]. Let δn be any solution to the inequalities

B
√

2
n

√∑∞
j=1max{ηj, δ2} ≤ δ2 and B

√
2
n

√∑∞
j=1max{η̃j, δ2} ≤ δ2. Then with probability

1− ζ, ∥â− a0∥2 = O

[
mina∈Arkhs(k) ∥a− a0∥2 + ∥a0∥A

{
δn +

√
log(1/ζ)

n

}]
.

Our estimator does not need to know the RKHS norm ∥a0∥A. Instead it automatically

adjusts to the unknown RKHS norm. The bound δn is based on empirical eigenvalues.

These empirical quantities can be used as a data-adaptive diagnostic.

For particular kernels, a more explicit bound can be derived as a function of the eigen-

decay. For example, the Gaussian kernel has an exponential eigendecay. [Wainwright, 2019,

Example 13.21] derives δn = O

{
b
√

log(n)
n

}
, thus leading to almost parametric rates:

∥â− a0∥2 = O

[
mina∈Arkhs(k) ∥a− a0∥2 + ∥a0∥A

{
b
√

log(n)
n

+
√

log(1/ζ)
n

}]
.

See Appendix C for sparse linear function spaces and further comparisons.
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4 Semiparametric inference

So far, we have analyzed a machine learning estimator â for a0, the Riesz representer to

the mean square continuous functional θ : g 7→ E{m(Z; g)}. A well known use of â is to

construct a consistent, asymptotically normal, and semiparametrically efficient estimator

for a parameter θ0 := θ(g0) ∈ R. For example, when the parameter θ0 is the average policy

effect, we have g0(X) = E(Y |X), θ(g) = E[g{t(X)} − g(X)], and a0(X) = ft(X)/f(X)− 1.

In this section, we use our main result to prove inference for three estimators of θ0:

(i) targeted machine learning, (ii) debiased machine learning, and (iii) the doubly robust

estimator without sample splitting. We directly verify known conditions for (i) and (ii)

via sample splitting [Bickel, 1982, Schick, 1986, Klaassen, 1987]. For (iii), we prove new

inference results via estimator stability, and clarify inference results via estimator complexity.

Estimator definition. In what follows, let ma(Z; g) := m(Z; g) + a(X){Y − g(X)}.

Estimator 2 (Targeted machine learning [Zheng and van der Laan, 2011, Chernozhukov et al., 2022b]).

Partition n observations into K = Θ(1) folds P1, . . . , PK . For each fold, estimate âk, ĝk based

on the observations outside of fold Pk. Finally construct the estimate θ̃ = 1
n

∑K
k=1

∑
i∈Pk

m(Zi; g̃k)

where g̃k(x) = ĝk(x) +
∑

i∈Pk
âk(Xi){Yi−γ̂k(Xi)}∑
i∈Pk

α̂k(Xi)2
âk(x).

Estimator 3 (Debiased machine learning [Levit, 1976, Hasminskii and Ibragimov, 1979,

Chernozhukov et al., 2018]). Partition n observations into K = Θ(1) folds P1, . . . , PK . For

each fold, estimate âk, ĝk based on the observations outside of fold Pk. Finally construct

the estimate θ̌ = 1
n

∑K
k=1

∑
i∈Pk

mâk(Zi; ĝk).

Estimator 4 (Doubly robust estimator [Robins et al., 1995, Robins and Rotnitzky, 1995,

Chernozhukov et al., 2022a]). Estimate (ĝ, â) using all observations. Set θ̂ = En {mâ(Z; ĝ)}.

Normality via sample splitting. We use a weak and well known condition for nuisance

estimators ĝk and âk: the mixed bias E[{âk(X)− a0(X)} {ĝk(X)− g0(X)}] vanishes quickly.

Assumption 3 (Mixed bias condition). Suppose that ∀k ∈ [K]:
√
nE[{âk(X)−a0(X)} {ĝk(X)−

g0(X)}] →p 0.7

7Without sample splitting, K = 1 and this condition remains well defined.
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By Cauchy-Schwarz inequality, Assumption 3 is implied by
√
n∥âk−a0∥2∥ĝk−g0∥2 →p 0.

The latter is the celebrated double rate robustness condition, also called the product rate

condition, whereby either ĝk or âk may have a relatively slow estimation rate, as long as

the other has a sufficiently fast estimation rate.

The mixed bias condition is weaker than double rate robustness: âk only needs to

approximately satisfy Riesz representation for test functions of the form f = ĝk − g0. Hence

if ∥ĝk − g0∥2 ≤ rn, then it suffices for âk to be a local Riesz representer around ĝk rather

than a global Riesz representer for all of G. In Appendix E, we prove that Riesz estimation

may become much simpler if the only aim is to satisfy Assumption 3.

Assumption 3 leaves limited room for mis-specification. In Appendix E, we allow for

inconsistent nuisance estimation: the probability limit of ĝk may not be g0, or the probability

limit of âk may not be a0, as long as the other nuisance is correctly specified and converges

at the parametric rate [Benkeser et al., 2017]. Below, we focus on the thought experiment

where, for a fixed n, the best in class approximations are (g∗, a∗) which may not coincide

with (g0, a0). In the limit, the function spaces become rich enough to include (g0, a0).

Corollary 8 (Normality via sample splitting). Suppose Assumptions 1 and 3 hold. Further

assume (i) boundedness: Y , g(X), and a(X) are bounded almost surely, for all g ∈ G and

a ∈ A; (ii) individual rates: ∥âk − a∗∥2
L2

→ 0 and ∥ĝ − g∗∥2
L2

→ 0, where g∗ or a∗ may not

necessarily equal g0 or a0. Then and
√
nσ−1

∗

(
θ̃ − θ0

)
→d N (0, 1) and

√
nσ−1

∗
(
θ̌ − θ0

)
→d

N (0, 1), where σ2
∗ := Var{ma∗(Z; g∗)} may be a sequence indexed by the sample size..

Boundedness in Corollary 8 can be relaxed to bounded fourth moments of Y, g(X), a(X),

as long as we strengthen the individual rates to ∥âk − a∗∥4 →p 0 and ∥ĝk − g∗∥4 →p 0.

A special case takes g∗ = g0 and a∗ = a0. More generally, we consider the possibility

that ∥g∗ − g0∥2 ≤ ϵn and ∥a∗ − a0∥2 ≤ ϵn, where rn ≪ ϵn ≪ 1. For example, consider the

thought experiment where (G,A) are sequences of function spaces that approximate the

nuisances (g0, a0) increasingly well as the sample size increases. Then by Cauchy-Schwarz

and triangle inequalities, a sufficient condition for Assumption 3 is that
√
n(r2n + ϵ2n) → 0.

In other words, for a fixed sample size, (G,A) may not include (g0, a0); it suffices that they

do so in the limit, and that the product of their approximation errors ϵ2n vanishes quickly

enough. In this thought experiment, σ2
∗ is a sequence indexed by the sample size as well.
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Normality via estimator stability. Next, we turn to Estimator 4, which does not

split the sample. Sample splitting may come at a finite sample cost since it reduces the

effective sample size, as shown in simulations in Appendix G. Our theoretical contribution

in this section is to prove semiparametric inference of machine learning estimators without

sample splitting, the Donsker condition, or even the critical radius bound. Of independent

interest, we characterize “stability-rate robustness” as a sufficient condition for inference.

Assumption 4 (Estimator stability for inference). Let ĥ := (â, ĝ) and let ĥ−i be the

estimated function if sample i were removed from the training set. Assume ĥ is symmetric

across samples and satisfies EZ{∥ĥ(Z)− ĥ−i(Z)∥2max} ≤ βn.

[Kale et al., 2011] propose Assumption 4 in order to derive improved bounds on cross

validation. It is formally called βn mean square stability, which is weaker than the well

studied uniform stability [Bousquet and Elisseeff, 2002]. See [Elisseeff and Pontil, 2003,

Celisse and Guedj, 2016, Abou-Moustafa and Szepesvári, 2019] for further discussion.

Theorem 2 (Normality via estimator stability). Suppose Assumptions 1, 3, and 4 hold.

Further assume (i) boundedness: Y , g(X), and a(X) are bounded almost surely, for all

g ∈ G and a ∈ A; (ii) individual rates: E(∥â − a∗∥22) = op(r
2
n) and E(∥ĝ − g∗∥22) = op(r

2
n),

where g∗ or a∗ may not necessarily equal g0 or a0; (iii) joint rates: r2n−1 + nβn−1rn−2 → 0.

Then
√
nσ−1

∗

(
θ̂ − θ0

)
→d N (0, 1) where σ2

∗ := Var{ma∗(Z; g∗)}.

Sub-bagging means using as an estimator the average of several base estimators, where

each base estimator is calculated from a subsample of size s < n. The sub-bagged es-

timator is stable with βn = s
n

[Elisseeff and Pontil, 2003]. If the base estimator’s bias

decays as some function bias(s), then sub-bagged estimators typically achieve rn =√
s
n
+ bias(s) [Athey et al., 2019, Khosravi et al., 2019, Syrgkanis and Zampetakis, 2020].

For our results, it suffices that the product of stability and the rate vanishes quickly, i.e.

nβnrn =
√

s3

n
+ sbias(s) → 0. If s = o(n1/3) and bias(s) = o(1/s), our joint rate condition

holds.

Consider a high dimensional setting with p ≫ n. Suppose that only r ≪ n vari-

ables are µ strictly relevant, i.e. each decreases explained variance by least µ > 0.

[Syrgkanis and Zampetakis, 2020] show that the bias of a deep Breiman tree trained on s

observations decays as exp(−s) in this setting. A deep Breiman forest, where each tree
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is trained on s = O
(

2r log(p)
µ

)
= o(n1/3) samples drawn without replacement, achieves

rn = O
(√

s2r

n

)
. Thus sub-bagged deep Breiman random forests satisfy the conditions of

Theorem 2 in a sparse, high-dimensional setting. In subsequent work, [Chen et al., 2022]

accommodate more types of random forests by refining our “stability-rate robustness”.

Normality via critical radius. Finally, we study Estimator 4 and clarify a “complexity-

rate robustness” sufficient condition for inference. Consider the following critical radius

assumption for inference, slightly abusing notation by recycling the symbols δn and δ̄.

Assumption 5 (Critical radius for inference). Assume that, with high probability, ĝ ∈ Ĝ ⊆

G and â ∈ Â ⊆ A. Moreover, assume that there exists some constant B ≥ 0 such that the

functions in (Ĝ − g∗)B, {m ◦ (Ĝ − g∗)}B, and (Â − a∗)B have uniformly bounded ranges in

[−b, b], and such that with high probability ∥ĝ − g∗∥Ĝ ≤ B and ∥â − a∗∥Â ≤ B. Further

assume that, for this B, δn upper bounds the critical radii of (Ĝ −g∗)B, {m◦ (Ĝ −g∗)}B, and

(Â − a∗)B. Assume δn is lower bounded by
√

log log(n)
n

, and that |a∗(X)| and |Y − g∗(X)|

are bounded almost surely.8

In the special case that Ĝ = G and Â = A, Assumption 5 simplifies to a bound on the

critical radii of GB, m ◦ GB, and AB. More generally, we allow the possibility that only

the critical radii of subsets of function spaces, where the estimators are known to belong,

are well behaved. This nuance is helpful for sparse linear settings, where Ĝ is a restricted

cone that is much simpler than G. As before, to lighten notation, we define the following

summary of the critical radii: δ̄ = δn + c0

√
log(c1 n)

n
, where c0 and c1 are universal constants.

Theorem 3 (Normality via critical radius). Suppose Assumptions 1, 3, and 5 hold. Further

assume (i) boundedness: Y , g(X), and a(X) are bounded almost surely, for all g ∈ G

and a ∈ A; (ii) individual rates: ∥â − a∗∥2 = op(rn) and ∥ĝ − g∗∥2 = op(rn), where g∗

or a∗ may not necessarily equal g0 or a0; (iii) joint rates:
√
n
(
δ̄ rn + δ̄2

)
→ 0. Then

√
nσ−1

∗

(
θ̂ − θ0

)
→d N (0, 1) where σ2

∗ := Var{ma∗(Z; g∗)}.

Without sample splitting, inferential theory often requires the Donsker condition or

slowly increasing entropy. Theorem 3 replaces such conditions with
√
n
(
δ̄ rn + δ̄2

)
→ 0, a

8The lower bound is a weak regularity condition for concentration in nonlinear settings via Bernstein

style arguments [Wainwright, 2019, Foster and Syrgkanis, 2023].
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permissive complexity bound in terms of the critical radius that allows for machine learning.

It provides a rather sharp characterization of an important trade-off. In particular, we

interpret
√
n
(
δ̄ rn + δ̄2

)
→ 0 as “complexity-rate robustness”. For general function spaces,

δ̄ may vanish slowly, as long as rn vanishes quickly enough to compensate. This condition

excludes certain function spaces, e.g. those for which the integral in (1) diverges as δ ↓ 0.

Theorem 3 refines and extends [Hirshberg and Wager, 2021, eq. 19]. “Complexity-rate

robustness” is a simple heuristic, which appears not to have been explicitly stated before. It

is compatible with any â estimator satisfying its conditions, rather than a specific choice of

balancing weights defined as a vector in Rn. Moreover, it tolerates some mis-specification.

Appendix C compares complexity-rate robustness with double rate robustness in the

sparse setting. Complexity-rate robustness says that if both nuisances are moderately sparse,

then sample splitting can be eliminated, improving the effective sample size. Double rate

robustness says that one nuisance may be quite dense while the other is quite sparse, if

we use sample splitting. Appendix C also shows how complexity-rate robustness recovers

known sufficient conditions in the lasso literature; in this sense, it appears relatively sharp.

5 Analysis of computational error

After studying â in Section 3 and (θ̃, θ̌, θ̂) in Section 4, we attempt to bridge theory

with practice by analyzing the computational error for some key function spaces used in

adversarial estimation. For random forests, we prove convergence of an iterative procedure.

For the RKHS, we derive a closed form without computational error. For neural networks,

we describe existing results in Appendix F. Appendix F also discusses how to choose the

regularization hyperparameter values (λ, µ) in accordance with Theorem 1. This section

and Appendix F aim to provide practical guidance for empirical researchers.

Oracle training for random forest. Consider Corollary 6, which uses random forest

function spaces. We analyze an optimization procedure called oracle training to handle

this case. It may be viewed as a particular criterion for fitting the random forest. More

generally, it is an iterative optimization procedure based on zero sum game theory for when

A is a non-differentiable function space, hence gradient based methods do not apply.

In this exposition, we study a variation of Estimator 1 with λ = µ = 0, i.e. without
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norm-based regularization. Define ℓ(a, f) := En [m(Z; f)− a(X) · f(X)− f(X)2]. We view

ℓ(a, f) as the payoff of a zero sum game where the players are a and f . The game is linear

in a and concave in f , so it can be solved when f plays a no-regret algorithm at each period

t ∈ {1, ..., T} and a plays the best response to each choice of f .

Proposition 1 (Oracle training converges). Suppose that g 7→ En[m(Z; g)] has operator

norm 1 ≤Mn <∞, and that F is convex. Suppose that at each period t ∈ {1, . . . , T}, the

players follow ft = argmaxf∈F ℓ(āt−1, f) and at = argmina∈A ℓ(a, ft), where āt := 1
t

∑t
τ=1 aτ .

Then for T = Θ
(

Mn log(1/ϵ)
ϵ

)
, āT is an ϵ-approximate solution to Estimator 1 with λ = µ = 0.

Since F is convex, a no-regret strategy for f is follow-the-leader. At each period,

the player maximizes the empirical past payoff ℓ(āt−1, f). This loss may be viewed as a

modification of the Riesz loss. In particular, construct a new functional that is the original

functional minus hf then estimate its Riesz representer.

For any fixed ft, the best response for a is to minimize ℓ(a, ft). Since ℓ(a, f) is linear

in a, this is the same as maximizing En[a(X) · ft(X)]. In other words, a wants to match

the sign of f . In summary, the best response for a is equivalent to a weighted classification

oracle, where the label is sign{f(Xi)} and the weight is |f(Xi)|.

Since ℓ(a, f) is linear in a, each at is supported on only t elements ã1, ..., ãt in the base

space. In Corollary 6, we assume that each element of the base space has VC dimension at

most d. Hence each at has VC dimension at most dt and therefore āT has VC dimension

at most dT [Shalev-Shwartz and Ben-David, 2014]. Thus the entropy integral (1) is of

order
√

Td log(n)
n

. Finally, since the f player problem reduces to a modification of the Riesz

problem, this bound applies to both of the induced function spaces in oracle training.

Closed form for RKHS. Consider the setting of Corollary 7, which uses RKHSs.

We prove that Estimator 1 has a closed form solution without any computational er-

ror, and derive its formula. Our results extend the classic representation arguments of

[Kimeldorf and Wahba, 1971, Schölkopf et al., 2001]. We use backward induction, first an-

alyzing the best response of an adversarial maximizer, which we denote by f̂a, as a function

of a. Then we derive the minimizer â that anticipates this best response.

Formally, let F = H and A = H, where H is the RKHS with kernel k. In what

follows, we denote the usual empirical kernel matrix by K(1) ∈ Rn×n, with entries given
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by K(1)
ij = k(Xi, Xj), and the usual evaluation vector by K(1)

xX ∈ R1×n, with entries given

by [K
(1)
xX ]j = k(x,Xj). To express our estimator, we introduce additional kernel matrices

K(2), K(3), K(4) ∈ Rn×n and additional evaluation vectors K(2)
xX , K

(3)
xX , K

(4)
xX ∈ R1×n. For

readability, we reserve details on how to compute these additional matrices and vectors for

Appendix F. At a high level, these additional objects apply the functional θ : g 7→ E[m(g;Z)]

to the kernel k and data (Xi)
n
i=1 in various ways. For any symmetric matrix A, let A−

denote its pseudo-inverse. If A is invertible then A− = A−1.

Proposition 2 (Closed form of maximizer). For a potential minimizer a, the adversarial

maximizer f̂a has a closed form solution with a coefficient vector γ̂a ∈ R2n. More formally,

f̂a(x) =
[
K

(1)
xX K

(2)
xX

]
γ̂a and m(x, f̂a) =

[
K

(3)
xX K

(4)
xX

]
γ̂a. The coefficent vector is explicitly

given by γ̂a = 1
2
∆− [V − Ua] where

U :=

K(1)

K(3)

 ∈ R2n×n, ∆ := UU⊤ + nλ

K(1) K(2)

K(3) K(4)

 ∈ R2n×2n, V :=

K(2)

K(4)

1n ∈ R2n;

a ∈ Rn is defined such that ai = a(xi), and 1n ∈ Rn is the vector of ones.

Proposition 3 (Closed form of minimizer). The minimizer â has a closed form solution

with a coefficient vector β̂ ∈ Rn. More formally, â(x) = K
(1)
xX β̂. The coefficient vector is

explicity given by β̂ =
{
A⊤∆−A+ 4nµ ·K(1)

}−
A⊤∆−V where A := UK(1).

Combining Propositions 2 and 3, it is possible to compute â, and hence f̂â(x) and

m(x, f̂â). Therefore it is possible to compute the optimized loss in Estimator 1. While

Theorem 1 provides theoretical guidance on how to choose (λ, µ), the optimized loss provides

a practical way to choose (λ, µ).

Kernel balancing weights may be viewed as Riesz representer estimators for the average

treatment effect functional θ : g 7→ E[g(1,W )− g(0,W )] evaluated on training data, where

X = (D,W ), D is the treatment, and W is the covariate. Various estimators have been pro-

posed, e.g. [Wong and Chan, 2018, Zhao, 2019, Kallus, 2020, Hirshberg et al., 2019], which

are vectors in Rn. Our results situate kernel balancing weights within a unified framework

for semiparametric inference across general function spaces. The loss of Estimator 1, the

closed form of Proposition 3, and the norm of our guarantee in Theorem 1 depart from and

complement these works.
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The closed form expressions above involve inverting kernel matrices that scale with n.

To reduce the computational burden, we derive a Nyström approximation in Appendix F.

6 Simulated and real data analysis

Adversarial estimation with general function spaces may improve coverage. We

demonstrate how our proposal, Estimator 1, compares favorably with alternative estimators

in an average treatment effect (ATE) coverage simulation. Let X = (D,W ), where D is

the treatment and W are the covariates. In highly nonlinear simulations with n = 1000

and dim(W ) = 10, our estimators may achieve nominal coverage where some previous

methods break down. In high dimensional simulations with n = 100 and dim(W ) = 100,

our estimators may have lower bias and shorter confidence intervals. These gains seem

to accrue from, simultaneously, using flexible function spaces for Riesz estimation and

directly estimating the Riesz representer. These simulation designs are challenging, and

only particular variations of our estimator work well. Appendix G gives details.

We implement five variations of Estimator 1, denoted by â in Section 2. The five

variations of â are (i) sparse linear, (ii) RKHS, (iii) RKHS with Nyström approximation,

(iv) random forest, or (v) neural network. Note that (i) echoes lasso Riesz representers, and

(ii-iii) extend kernel balancing weights to allow for sample splitting. However, (iv) and (v)

are altogether new function spaces. For comparison, we implement two propensity score

estimators for the Riesz representer: (vi) logistic and (vii) random forest.

We use these Riesz estimators â together with a boosted regression estimator ĝ within

the ATE Estimators 3 and 4, denoted by θ̌ and θ̂ in Section 4. The former uses sample

splitting while the latter does not. We report the coverage, bias, and interval length. We

leave table entries blank when previous work does not provide theoretical justification.

Est. Prop. score Adversarial

Space logistic R.F. sparse RKHS Nyström R.F. N.N.

coverage 83 76 74 95 83 91 69

bias -12 -1 -7 -4 -3 0 -8

length 54 29 33 53 32 39 35

(a) Sample splitting

Est. Prop. score Adversarial

Space logistic R.F. sparse RKHS Nyström R.F. N.N.

coverage 79 - 73 88 79 90 72

bias -11 - -7 -4 -4 -2 -8

length 47 - 30 36 30 37 33

(b) No sample splitting

Table 1: Nonlinear design {n = 1000, dim(W ) = 10}. Values are multiplied by 102.
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Est. Prop. score Adversarial

Space logistic R.F. sparse RKHS Nyström R.F. N.N.

coverage 92 91 93 89 88 84 3

bias 44 16 8 6 6 -7 -35

length 214 93 88 72 73 126 6

(a) Sample splitting

Est. Prop. score Adversarial

Space logistic R.F. sparse RKHS Nyström R.F. N.N.

coverage 79 - 88 88 87 91 3

bias 2 - 1 8 9 26 -33

length 64 - 75 76 78 184 3

(b) No sample splitting

Table 2: High dimensional design {n = 100, dim(W ) = 100}. Values are multiplied by 102.

Tables 1a and 1b present results from 100 simulations of the highly nonlinear design,

with and without sample splitting, respectively. We find that our adversarial estimators (ii)

and (iv) achieve near nominal coverage with sample splitting (95% and 91%) and slightly

undercover without sample splitting (88% and 90%). For readability, we underline these

estimators. None of the propensity score methods (vi-vii) achieve nominal coverage, with or

without sample splitting, and they undercover more severely (at best 83% and 76%).

Tables 2a and 2b present analogous results from the high dimensional design. We

find that our adversarial estimator (i) achieves close to nominal coverage with sample

splitting (93%) and slightly undercovers without sample splitting (88%). For readability,

we underline this estimator. The propensity score estimators (vi-vii) also achieve close to

nominal coverage (92%, 91%). Comparing the instances of near nominal coverage, we see

that our estimator (i) has half of the bias (0.08 versus 0.44 and 0.16) and shorter confidence

intervals (0.88 versus 2.14 and 0.93) compared to the propensity score estimators (vi-vii).

Appendix G presents additional simulation results for a more basic design with n ∈

{100, 200, 500, 1000, 2000} and dim(W ) = 10. We find that every variation of our esti-

mator achieves nominal coverage, with or without sample splitting. Moreover, in a basic

setting, eliminating sample splitting may improve precision—a simple point with practical

consequences for applied statistics, which underscores the importance of Theorems 2 and 3.

In summary, in simple designs, every variation of our estimator works well, and variations

without sample splitting have better precision; in the highly nonlinear design, some variations

with sample splitting achieve nominal coverage where some previous methods break down;

in the high dimensional design, a variation with sample splitting achieves nominal coverage

with smaller bias and length than some previous methods.

The different simulation designs illustrate two virtues of our framework. First, our main

result in Section 3 applies to variations (i-v) of Estimator 1 in a unified manner. Second,
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Estimator 1 is compatible with Estimators 2, 3, and 4, which have different finite sample

performance in different settings; sample splitting may help or hinder performance.

Heterogeneous effects by political environment. Finally, we extend the highly

influential analysis of [Karlan and List, 2007] from parametric estimation to semiparametric

estimation. To our knowledge, semiparametric estimation has not been used in this setting

before; we provide an empirical contribution. We implement our estimators (i-v) and

propensity score estimators (vi-vii) on real data. Compared to the parametric results of

[Karlan and List, 2007], which do not allow general nonlinearities, our flexible approach

relaxes functional form restrictions and improves precision. Compared to semiparametric

results obtained with some previous methods, our approach may improve precision by

allowing for several machine learning function classes and reducing approximation error.

(a) Sample splitting (b) No sample splitting

Figure 1: Heterogeneous effects on dollars donated {n = 25859, dim(W ) = 15}.

We study the heterogeneous effects, by political environment, of a matching grant on

charitable giving in a large scale natural field experiment. We follow the variable definitions

of [Karlan and List, 2007, Table 6]. In Figure 1, the outcome Y ∈ R is dollars donated,

while in Figure 2, Y ∈ {0, 1} indicates whether the household donated. The treatment

D ∈ {0, 1} indicates whether the household received a 1:1 matching grant as part of a direct

mail solicitation. The covariates include political environment, previous contributions, and

demographics. Altogether, dim(W ) = 15 and n = 25859 in our sample; see Appendix G.

A central finding of [Karlan and List, 2007] is that “the matching grant treatment was

ineffective in [Democratic] states, yet quite effective in [Republican] states. The nonlinearity
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(a) Sample splitting (b) No sample splitting

Figure 2: Heterogeneous effects on whether donated {n = 25859, dim(W ) = 15}.

is striking...”, which motivates us to formalize a semiparametric estimand. The authors arrive

at this conclusion with nonlinear but parametric estimation, focusing on the coefficient of

the interaction between the binary treatment and a binary covariate W1 indicating whether

the household is in a state that voted for George W. Bush in the 2004 presidential election.

We generalize the interaction coefficient. Denote the regression g0{D,W1,W2:dim(W )} =

E{Y |D,W1,W2:dim(W )}. We consider the parameter θ(g0) where θ(g) = E([g{1, 1,W2:dim(W )}−

g{0, 1,W2:dim(W )}] − [g{1, 0,W2:dim(W )} − g{0, 0,W2:dim(W )}]). Intuitively, this parameter

asks: how much more effective was the matching grant in Republican states compared to

Democratic states? Its Riesz representer a0{D,W1,W2:dim(W )} involves products and differ-

ences of the inverse propensity scores [P{D = 1|W1,W2:dim(W )}]−1 and [P{W1|W2:dim(W )}]−1,

motivating our direct adversarial estimation approach. See Appendix G for derivations.

Figures 1 and 2 visualize point estimates and 95% confidence intervals for this semi-

parametric estimand. The former considers effects on dollars donated while the latter

considers effects on whether households donated at all. Each figure presents results with and

without sample splitting, using propensity score estimators (vi-vii) in green and our proposed

adversarial estimators (i-v) in blue. As before, we leave entries blank when previous work

does not provide theoretical justification. For comparison, we also present the parametric

point estimate and confidence interval of [Karlan and List, 2007, Table 6, Column 9] in
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red.9

Our estimates are stable across different estimation procedures and show that hetero-

geneity in the effect is positive, confirming earlier findings. The results are qualitatively

consistent with [Karlan and List, 2007], who use a simpler parametric specification moti-

vated by economic reasoning. Compared to the original parametric findings in red, which are

not statistically significant, our findings in blue relax parametric assumptions and improve

precision: our preferred confidence interval is more than 50% shorter in Figures 1 and 2.

Compared to the semiparametric methods in green, our preferred confidence interval is more

than 20% shorter in Figures 1 and 2. Our approach appears to improve model fit relative to

some previous parametric and semiparametric approaches, and has a unified justification.

7 Discussion

This paper uses critical radius theory over general function spaces to provide unified L2 rates

for nonparametric estimation of Riesz representers. The results in this paper depart from

previous work by allowing for approximation of the Riesz representer by neural networks

and random forests. Our results are compatible with targeted and debiased machine

learning inference results with sample splitting that allow for mis-specification, as well as

“stability-rate” and “complexity-rate” inference results without sample splitting. Simulations

demonstrate that our flexible method may achieve nominal coverage when less flexible

methods break down. Our method provides rigorous empirical evidence on heterogeneous

effects of matching grants by political environment.
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A Proof of main results

A.1 Adversarial estimation and fast rate

For convenience, throughout this appendix we use the notation

Ψ(a, f) = E[m(Z; f)− a(X) · f(X)], Ψn(a, f) =
1

n

n∑
i=1

(m(Zi; f)− a(Xi) · f(Xi))

Ψλ
n(a, f) = Ψn(a, f)− ∥f∥22,n − λ∥f∥2A, Ψλ(a, f) = Ψ(a, f)− 1

4
∥f∥22 −

λ

2
∥f∥2A.

Thus â := argmina∈A supf∈F Ψλ
n(a, f) + µ∥a∥2A. We also lighten notation, setting δ = δ̄.

Proof of Theorem 1. We proceed in steps.

1. Relating empirical and population regularization. By [Wainwright, 2019, Theorem

14.1], with probability 1− ζ, ∀f ∈ FB :
∣∣∥f∥2n,2 − ∥f∥22

∣∣ ≤ 1
2
∥f∥22 + δ2 for our choice

of δ := δn + c0

√
log(c1/ζ)

n
, where δn upper bounds the critical radius of FB and c0, c1

are universal constants. Moreover, for any f , with ∥f∥2A ≥ B, we can consider the

function f
√
B/∥f∥A, which also belongs to FB, since F is star-convex. Thus we can

apply the above lemma to this re-scaled function and multiply both sides by ∥f∥2A/B:

∀f ∈ F such that ∥f∥2A ≥ B :
∣∣∥f∥2n,2 − ∥f∥22

∣∣ ≤ 1

2
∥f∥22 + δ2

∥f∥2A
B

.

Thus overall, we have

∀f ∈ F :
∣∣∥f∥2n,2 − ∥f∥22

∣∣ ≤ 1

2
∥f∥22 + δ2max

{
1,

∥f∥2A
B

}
. (2)

Hence with probability 1− ζ,

∀f ∈ F : λ∥f∥2A + ∥f∥22,n ≥ λ∥f∥2A +
1

2
∥f∥22 − δ2max

{
1,

∥f∥2A
B

}
≥
(
λ− δ2

B

)
∥f∥2A +

1

2
∥f∥22 − δ2.
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Assuming that λ ≥ 2δ2

B
, the latter is at least

∀f ∈ F : λ∥f∥2A + ∥f∥22,n ≥ λ

2
∥f∥2A +

1

2
∥f∥22 − δ2.

2. Upper bounding centered empirical sup-loss. We now argue that

sup
f∈F

(Ψn(â, f)−Ψn(a∗, f)) = sup
f∈F

En[(a∗(X)− â(X)) f(X)]

is small. By the definition of â,

sup
f∈F

Ψλ
n(â, f) ≤ sup

f∈F
Ψλ

n(a∗, f) + µ
(
∥a∗∥2A − ∥â∥2A

)
. (3)

By [Foster and Syrgkanis, 2023, Lemma 14], the fact that m(Z; f) − a∗(X)f(X) is

(1+ b)-Lipschitz with respect to the vector (m(Z; f), f(z)) (since a∗(X) ∈ [−b, b]) and

by our choice of δ := δn + c0

√
log(c1/ζ)

n
, where δn is an upper bound on the critical

radii of FB and m ◦ FB, with probability 1− ζ

∀f ∈ FB : |Ψn(a∗, f)−Ψ(a∗, f)| = O
(
δ
(
∥f∥2 +

√
E[m(Z; f)2]

)
+ δ2

)
= O

(
δM ∥f∥2 + δ2

)
.

We have invoked Assumption 1. Thus, if ∥f∥A ≥
√
B, we can apply the latter

inequality for the function f
√
B/∥f∥A, which falls in FB, and then multiply both

sides by ∥f∥A/
√
B (invoking the linearity of the operator Ψn(a, f) with respect to f):

∀f ∈ F : |Ψn(a∗, f)−Ψ(a∗, f)| = O

(
δM ∥f∥2 + δ2max

{
1,

∥f∥A√
B

})
. (4)

By (3) and (4), we have that with probability 1− 2ζ, for some universal constant C,

sup
f∈F

Ψλ
n(a∗, f) = sup

f∈F

(
Ψn(a∗, f)− ∥f∥22,n − λ∥f∥2A

)
≤ sup

f∈F

(
Ψ(a∗, f) + Cδ2 +

Cδ2√
B
∥f∥A + CMδ∥f∥2 − ∥f∥22,n − λ∥f∥2A

)
≤ sup

f∈F

(
Ψ(a∗, f) + Cδ2 +

Cδ2√
B
∥f∥A + CMδ∥f∥2 −

1

2
∥f∥22 −

λ

2
∥f∥2A + δ2

)
≤ sup

f∈F
Ψλ/2(a∗, f) +O

(
δ2
)
+ sup

f∈F

(
Cδ2√
B
∥f∥A − λ

4
∥f∥2A

)
+ sup

f∈F

(
CMδ∥f∥2 −

1

4
∥f∥22

)
.

Moreover, observe that for any norm ∥·∥ and any constants a, b > 0, supf∈F (a∥f∥ − b∥f∥2) ≤
a2

4b
. Thus if we assume that λ ≥ 2δ2/B, we have

sup
f∈F

(
Cδ2√
B
∥f∥A − λ

4
∥f∥2A

)
≤ C2δ4

Bλ
≤ C2

2
δ2, sup

f∈F

(
CMδ∥f∥2 −

1

4
∥f∥22

)
≤ C2M2δ2.
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Hence we have supf∈F Ψλ
n(a∗, f) ≤ supf∈F Ψλ/2(a∗, f) +O (M2 δ2) . Moreover

sup
f∈F

Ψλ
n(â, f) = sup

f∈F

(
Ψn(â, f)−Ψn(a∗, f) + Ψn(a∗, f)− ∥f∥22,n − λ∥f∥2A

)
≥ sup

f∈F

(
Ψn(â, f)−Ψn(a∗, f)− 2∥f∥22,n − 2λ∥f∥2A

)
+ inf

f∈F

(
Ψn(a∗, f) + ∥f∥22,n + λ∥f∥2A

)
.

Since Ψn(a, f) is a linear operator of f and F is a symmetric class, we have

inf
f∈F

(
Ψn(a∗, f) + ∥f∥22,n + λ∥f∥2A

)
= inf

f∈F

(
Ψn(a∗,−f) + ∥f∥22,n + λ∥f∥2A

)
= inf

f∈F

(
−Ψn(a∗, f) + ∥f∥22,n + λ∥f∥2A

)
= − sup

f∈F

(
Ψn(a∗, f)− ∥f∥22,n − λ∥f∥2A

)
= − sup

f∈F
Ψλ

n(a∗, f).

Combining this expression with (3) yields

sup
f∈F

(
Ψn(â, f)−Ψn(a∗, f)− ∥f∥22,n − λ∥f∥2A

)
≤ 2 sup

f∈F
Ψλ

n(a∗, f) + µ
(
∥a∗∥2A − ∥â∥2A

)
≤ 2 sup

f∈F
Ψλ/2(a∗, f) + µ

(
∥a∗∥2A − ∥â∥2A

)
+O

(
M2 δ2

)
.

3. Lower bounding centered empirical sup-loss. First observe that Ψn(a, f)−Ψn(a∗, f) =

En[(a∗(X)−a(X))f(X)]. Let ∆ = a∗− â. Suppose that ∥∆∥2 ≥ δ and let r = δ
2∥∆∥2 ∈

[0, 1/2]. Since ∆ ∈ F and F is star-convex, we also have that r∆ ∈ F . Thus

sup
f∈F

(
Ψn(â, f)−Ψn(a∗, f)− ∥f∥22,n − λ∥f∥2A

)
≥ Ψn(â, r∆)−Ψn(a∗, r∆)− r2∥∆∥22,n − λr2∥∆∥2A

= rEn

[
(a∗(X)− â(X))2

]
− r2∥∆∥22,n − λr2∥∆∥2A

= r∥∆∥22,n − r2∥∆∥22,n − λr2∥∆∥2A ≥ r∥∆∥22,n − r2∥∆∥22,n − λ∥∆∥2A.

Moreover, since δn upper bounds the critical radius of FB and by (2)

r2∥∆∥22,n ≤ r2
(
2∥∆∥22 + δ2 + δ2

∥∆∥2A
B

)
≤ 2δ2 + δ2

∥∆∥2A
B

≤ 2δ2 + λ∥∆∥2A.

Thus

sup
f∈F

(
Ψn(â, f)−Ψn(a∗, f)− ∥f∥22,n − λ∥f∥2A

)
≥ r∥∆∥22,n − 2δ2 − 2λ∥∆∥2A.
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Furthermore, since δn upper bounds the critical radius of FB and by (2),

∥∆∥22,n ≥ 1

2
∥∆∥22 −

δ2

2B
∥∆∥2A − δ2 ≥ 1

2
∥∆∥22 − λ∥∆∥2A − δ2.

Thus we have

sup
f∈F

(
Ψn(â, f)−Ψn(a∗, f)− ∥f∥22,n − λ∥f∥2A

)
≥ r

2
∥∆∥22 − 3δ2 − 3λ∥∆∥2A

≥ δ

4
∥∆∥2 − 3δ2 − 3λ∥∆∥2A.

4. Combining upper and lower bound. Combining the upper and lower bound on the

centered population sup-loss we get that with probability 1− 3ζ, either ∥∆∥2 ≤ δ or

δ

4
∥∆∥2 ≤ O

(
M2 δ2

)
+ 2 sup

f∈F
Ψλ/2(a∗, f) + 3λ∥∆∥2A + µ

(
∥a∗∥2A − ∥â∥2A

)
.

We now control the last part. Since µ ≥ 6λ,

3λ∥∆∥2A + µ
(
∥a∗∥2A − ∥â∥2A

)
≤ 6λ

(
∥a∗∥2A + ∥â∥2A

)
+ µ

(
∥a∗∥2A − ∥â∥2A

)
≤ 2µ∥a∗∥2A.

We then conclude that

δ

4
∥∆∥2 = O

(
M2 δ2

)
+ 2 sup

f∈F
Ψλ/2(a∗, f) + 2µ∥a∗∥2A.

Dividing by δ/4 gives

∥∆∥2 = O
(
M2 δ

)
+

8

δ
sup
f∈F

Ψλ/2(a∗, f) + 8
µ

δ
∥a∗∥2A.

Thus either ∥∆∥2 ≤ δ or the latter inequality holds. In both cases, the latter holds.

5. Upper bounding population sup-loss at minimum. By Riesz representation,

sup
f∈F

Ψλ/2(a∗, f) = sup
f∈F

E[(a0(X)− a∗(X)) f(z)]− 1

4
∥f∥22 −

λ

4
∥f∥2A

≤ sup
f∈F

E[(a0(X)− a∗(X)) f(z)]− 1

4
∥f∥22 = ∥a0 − a∗∥22.

6. Concluding. In summary,

∥â− a∗∥2 = O
(
M2 δ

)
+

8

δ
∥a∗ − a0∥22 + 8

µ

δ
∥a∗∥2A.

By the triangle inequality,

∥â− a0∥2 = O
(
M2 δ

)
+

8

δ
∥a∗ − a0∥22 + ∥a∗ − a0∥2 + 8

µ

δ
∥a∗∥2A.

Choosing a∗ = argmina∈A ∥a− a0∥2 and using the fact that δ ≥ ϵn gives

∥â− a0∥2 = O
(
M2δ + ∥a∗ − a0∥2 +

µ

δ
∥a∗∥2A

)
= O

(
M2δ +

µ

δ
∥a∗∥2A

)
.
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A.2 Semiparametric inference

Proof of Theorem 3. We proceed in steps.

1. Decomposition. Observe that θ0 = E[ma(Z; g0)] for all a. Moreover,

θ̂ − θ0 = En[mâ(Z; ĝ)]− E[mâ(Z; ĝ)] + E[mâ(Z; ĝ)]− E[mâ(Z; g0)]

= En[mâ(Z; ĝ)]− E[mâ(Z; ĝ)] + E[(a0(X)− â(X)) (ĝ(X)− g0(X))].

By Assumption 3 we have that

√
n
(
θ̂ − θ0

)
=

√
nEn[mâ(Z; ĝ)]− E[mâ(Z; ĝ)]︸ ︷︷ ︸

A

+op(1).

If ∥â− a∗∥2 →p 0 and ∥ĝ − g∗∥2 →p 0 then we can further decompose A as

A = En[ma∗(Z; g∗)]− E[ma∗(Z; g∗)] + {En [mâ(Z; ĝ)−ma∗(Z; g∗)]− E[mâ(Z; ĝ)−ma∗(Z; g∗)]}.

The latter two terms in A form an empirical process.

2. Critical radius theory. We derive a concentration inequality similar to (4) for the

empirical process. Let δn,ζ = δn + c0

√
log(c1/ζ)

n
. Recall [Foster and Syrgkanis, 2023,

Lemma 14], which holds for any loss ℓ that is Lipschitz in f(x), and when ∥f∥∞ ≤ 1:

fix f ′ ∈ F , then with probability 1− ζ, ∀f ∈ F

|(En − E)[{ℓ{f(x), z} − ℓ{f ′(x), z}]| = O(δn,ζ∥f − f ′∥2 + δ2n,ζ).

In order to place critical radius assumptions on the centered function spaces, we take

f ′(x) = (0, 0, 0) and we take f(x) = {m(z; g − g∗), g(x)− g∗(x), a(x)− a∗(x)}. Notice

that the loss is Lipschitz since

ma(Z; g)−ma∗(Z; g∗) = m(Z; g) + a(X){Y − g(X)} − [m(Z; g∗) + a∗(X){Y − g∗(X)}]

= m(Z; g − g∗) + a(X){Y − g∗(X) + g∗(X)− g(X)} − a∗(X){Y − g∗(X)}

= m(Z; g − g∗) + {a(X)− a∗(X)}){Y − g∗(X)}+ a(X){g∗(X)− g(X)}

= m(Z; g − g∗) + {a(X)− a∗(X)}){Y − g∗(X)}+ {a(X)− a∗(X)}{g∗(X)− g(X)}

+ a∗(X){g∗(X)− g(X)}
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so its derivative is, in absolute value, (1, |a(X)−a∗(X)|+|a∗(X)|, |Y −g∗(X)|+|g(X)−

g∗(X)|).10 Here, |a∗(X)|, |Y − g∗(X)| are bounded by hypothesis, while (Ĝ − g∗)B,

(Â − a∗)B have uniformly bounded ranges in [−b, b]. Hence for all g − g∗ ∈ (Ĝ − g∗)B

and for all (a− a∗) ∈ (Â − a∗)B, with probability 1− ζ, invoking Assumption 1,

|En [ma(Z; g)−ma∗(Z; g∗)]− E[ma(Z; a)−ma∗(Z; g∗)]|

= O
[
δn,ζ {∥m ◦ (g − g∗)∥2 + ∥g − g∗∥2 + ∥a− a∗∥2}+ δ2n,ζ

]
= O

[
δn,ζ {M∥g − g∗∥2 + ∥a− a∗∥2}+ δ2n,ζ

]
.

Next consider ∥g − g∗∥Ĝ ≥
√
B and ∥a− a∗∥Â ≥

√
B. We apply the previous result

for (g − g∗)
√
B/∥g − g∗∥Ĝ and (a − a∗)

√
B/∥a − a∗∥Â, then multiply both sides by

∥g − g∗∥Ĝ/
√
B and ∥a − a∗∥Â/

√
B. Hence for all g − g∗ and for all a − a∗, with

probability 1− ζ,

|En [ma(Z; g)−ma∗(Z; g∗)]− E[ma(Z; a)−ma∗(Z; g∗)]|

= O
[
δn,ζ

{
M∥g − g∗∥2∥a− a∗∥Â + ∥a− a∗∥2∥g − g∗∥Ĝ

}
+ δ2n,ζ∥g − g∗∥Ĝ∥a− a∗∥Â

]
.

3. Bounding the empirical process. Applying this concentration inequality, with proba-

bility 1− ζ

|En [mâ(Z; ĝ)−ma∗(Z; g∗)]− E[mâ(Z; ĝ)−ma∗(Z; g∗)]|

≤ O
(
δn,ζM

(
∥â− a∗∥2 ∥ĝ − g∗∥Ĝ + ∥ĝ − g∗∥2 ∥â− a∗∥Â

)
+ δ2n,ζ ∥ĝ − g∗∥Ĝ ∥â− a∗∥Â

)
.

Let δ̄ = δn + c0
√

c1n
n

. Then

|En [mâ(Z; ĝ)−ma∗(Z; g∗)]− E[mâ(Z; ĝ)−ma∗(Z; g∗)]|

= Op

(
δ̄M

(
∥â− a∗∥2 ∥ĝ − g∗∥Ĝ + ∥ĝ − g∗∥2 ∥â− a∗∥Â

)
+ δ̄2 ∥ĝ − g∗∥Ĝ ∥â− a∗∥Â

)
.

If ∥â− a∗∥2, ∥ĝ − g∗∥2 = Op(rn) and ∥â− a∗∥Â, ∥ĝ − g∗∥Ĝ = Op(1), then

|En [mâ(Z; ĝ)−ma∗(Z; g∗)]− E[mâ(Z; ĝ)−ma∗(Z; g∗)]| = Op

(
M δ̄rn + δ̄2

)
.

Thus as long as
√
n
(
δ̄rn + δ̄2

)
→ 0, we have that

√
n |En [mâ(Z; ĝ)−ma∗(Z; g∗)]− E[mâ(Z; ĝ)−ma∗(Z; g∗)]| = op(1).

10It is also nonlinear in f , so we place the regularity condition of a lower bound on δn in Assumption 5.
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4. Collecting results. We conclude that
√
n
(
θ̂ − θ0

)
=

√
n (En[ma∗(Z; g∗)]− E[ma∗(Z; g∗)])+

op(1). By the central limit theorem, the final expression is asymptotically normal with

asymptotic variance σ2
∗ = Var(ma∗(Z; g∗)).

Proof of Theorem 2. Define the notation h := (g, a) and V (Z;h) := ma(Z; g)−ma∗(Z; g∗)−

E[ma(Z; g)−ma∗(Z; g∗)]. We argue that
√
nEn

[
V (Z; ĥ)

]
= op(1). Then remainder of the

proof is identical to the proof of Theorem 3. For the desired property to hold, it suffices to

show that nE
[
En

{
V (Z; ĥ)

}2
]
→ 0. First we rewrite the differences

V (Z;h)− V (Z;h′) = m(Z; g − g′) + (a(X)− a′(X))Y − a(X)g(X) + a′(X)g′(X)

− (⟨a0, g − g′⟩2 − ⟨a, g⟩2 + ⟨a′, g′⟩2 + ⟨a− a′, g0⟩2) .

By Assumption 1 and boundedness, E
[
(V (Z;h)− V (Z;h′))2

]
≤ c0E [∥h(X)− h′(X)∥2∞]

for some constant c0. Moreover, since, for every x, y: x2 ≤ y2 + |x| |x− y|+ |y| |x− y|,

E
[
En[V (Z; ĥ)]2

]
=

1

n2

∑
i,j

E
[
V (Zi; ĥ)V (Zj; ĥ)

]
≤ 1

n2

∑
i,j

(
E
[
V (Zi; ĥ

−i,j)V (Zj; ĥ
−i,j)

]
+ 2E

[∣∣∣V (Zi; ĥ
−i,j)

∣∣∣ ∣∣∣V (Zj; ĥ
−i,j)− V (Zj; ĥ)

∣∣∣])

≤ 1

n2

∑
i,j

(
E
[
V (Zi; ĥ

−i,j)V (Zj; ĥ
−i,j)

]
+ 2

√
E
[
V (Zi; ĥ−i,j)2

]√
E
[(
V (Zj; ĥ−i,j)− V (Zj; ĥ)

)2])

≤ 1

n2

∑
i,j

(
E
[
V (Zi; ĥ

−i,j)V (Zj; ĥ
−i,j)

]
+ 2 c0

√
E
[
V (Zi; ĥ−i,j)2

]√
E
[
∥ĥ−i,j(Xj)− ĥ(Xj)∥2∞

])

≤ 1

n2

∑
i,j

(
E
[
V (Zi; ĥ

−i,j)V (Zj; ĥ
−i,j)

]
+ 8 c0 βn−1

√
E
[
V (Zi; ĥ−i,j)2

])
.

For every i ̸= j we have

E[V (Zi; ĥ
−i,j)V (Zj; ĥ

−i,j)] = E
[
E
[
V (Zi; ĥ

−i)V (Zj; ĥ
−j) | ĥ−i,j

]]
= E

[
E
[
V (Zi; ĥ

−i,j) | ĥ−i,j
]
E
[
V (Zj; ĥ

−i,j) | ĥ−i,j
]]

= 0;√
E[V (Z; ĥ−i,j)2] ≤ O

(√
E [∥â−i,j − a∗∥22 + ∥ĝ−i,j − g∗∥22]

)
= O(rn−2)

E[V (Z; ĥ−i)2] ≤ O
(
E
[
∥â−i − a∗∥22 + ∥ĝ−i − g∗∥22

])
= O(r2n−1).

Thus we get that nE
[
En[V (Z; ĥ)]2

]
= 1

n

∑n
i=1 E[V (Zi; ĥ

−i)2]+O (βn−1rn−2) = O
(
r2n−1 + nβn−1rn−2

)
.

In summary, it suffices to assume that r2n−1 + nβn−1rn−2 → 0.
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B Application: Asset pricing

B.1 Fundamental asset pricing equation

A variety of financial models deliver the same fundamental asset pricing equation. We

briefly summarize how this equation involves a Riesz representer called the stochastic

discount factor (SDF), which plays a central role in the theory of asset pricing. To do so, we

introduce some additional notation. Define Et,i(·) = E(·|It, It,i) where It are macroeconomic

conditioning variables that are not asset specific, e.g. inflation rates and market return, and

It,i are asset-specific characteristics, e.g. the size or book-to-market ratio of firm i at time t.

Let N be the number of firms.

The no-arbitrage condition is equivalent to the existence of strictly positive SDF Mt+1

such that for any asset, Et,i(Mt+1Qt+1,i) = Pt,i, where Pt,i is the price of asset i at time

t, Qt+1,i is payoff of asset i at time t + 1, and Mt+1 is the market-wide SDF at time

t+ 1. This equation can also be parametrized in terms of returns. If an investor pays one

dollar for an asset i today, the gross rate of return Rt+1,i is how many dollars the investor

receives tomorrow; formally, the price is Pt,i = 1 and the payoff is Qt+1,i = Rt+1,i. If an

investor borrows a dollar today at the interest rate Rf
t+1 and buys an asset i that gives

the gross rate of return Rt+1,i tomorrow, then, from the perspective of the investor who

paid nothing out-of-pocket, the price is Pt,i = 0 while the payoff is the excess rate of return

Re
t+1,i := Rt+1,i −Rf

t+1, leading to equation Et,i(Mt+1R
e
t+1,i) = 0 for any excess return Re

t+1,i.

Another helpful expression involves the tangency portfolio and its portfolio weights. If

the fundamental asset pricing equation holds, then Mt+1 = 1−
∑N

j=1w0(It, It,j)R
e
t+1,j . Here,

w0(It, It,j) are called the portfolio weights in the tangency portfolio
∑N

j=1w0(It, It,j)R
e
t+1,j,

and we have assumed that they are summarized by the mapping w0. By substitution and

the law of iterated expectations, we conclude that, for any function gt,i,

E{gt,i(It, It,i)Re
t+1,i} = E

{
gt,i(It, It,i)R

e
t+1,i

N∑
j=1

w0(It, It,j)R
e
t+1,j

}
. (5)
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B.2 Matching symbols

We clarify the sense in which the SDF estimation problem generalizes the problem we

study in the main text. Observe that the right hand side of (5) pools information across

j ∈ {1, ..., N}. Fix t ∈ {1, ..., T − 1}. Stacking (5) across i ∈ {1, ..., N} gives a system

of N equations. We view the left hand side as a RN -valued functional of the RN -valued

function gt = (gt,1, ..., gt,N). In particular, the i-th component of θ(gt) = E{m(Zt; gt)} is

E{mi(Zt; gt)} = E{gt,i(It, It,i)Re
t+1,i}, where Zt = (It, It,1, ..., It,N , R

e
t+1,j). We view the right

hand side as an elementwise product between gt and a0. In particular, a0 is an RN -valued

function as well whose i-th component is Re
t+1,i

∑N
j=1w0(It, It,j)R

e
t+1,j . In summary, the SDF

problem is a generalization to vector-valued functions and their vector-valued functionals.

Next we define the key function spaces. We view the portfolio weights w0 as a natural

way to parametrize a0, and in fact as a way to define A = Asdf in our estimation procedure.

Since each gt,i only takes as arguments (It, It,i), one may consider G = Gsdf as the space of

RN -valued functions whose i-th components only depend on (It, It,i). As before, we may

define F from G accordingly. Since a0 is pinned down by w0 and the latter has a structural

interpretation, we may report ŵ ∈ Wsdf instead of â ∈ Asdf.

For an estimator to be well-defined as the optimizer of a criterion, that criterion must

be a scalar-valued function. As we see above, the key objects in the SDF problem are

vector-valued. Therefore to derive an estimator, we must posit a way to aggregate the

vector objective in RN into a scalar objective in R. A natural choice is the empirical average
1
N

∑n
i=1(·). Implementing this choice, we arrive at our SDF estimator.

Estimator 5 (Adversarial SDF). For regularization (λ, µ), define

â = argmin
a∈Asdf

max
f∈F

EtEi{mi(Zt; ft)− ai(Zt) · fi(Zt)− fi(Zt)
2} − λ∥f∥2A + µ∥a∥2A

where Et(·) = 1
T−1

∑T−1
t=1 (·) and Ei(·) = 1

N

∑N
i=1(·).

B.3 Detailed comparisons

Our contribution most directly relates to previous works that propose adversarial [Hansen and Jagannathan, 1997],

neural network [Bansal and Viswanathan, 1993, Chen and Ludvigson, 2009], and adversar-

ial neural network [Chen et al., 2023] approaches to estimate the SDF. Previous work either
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provides formal guarantees or allows for flexible, non-Donsker function spaces. We comple-

ment these prior works by proposing an adversarial estimator that simultaneously achieves

both. More generally, our formal guarantees provide theoretical justification for the impres-

sive empirical performance of machine learning in asset pricing. See e.g. [Chen et al., 2023]

for a recent review of machine learning in asset pricing and [Christensen, 2017] for a recent

review of SDF estimation under Donsker assumptions.

Our objective for the SDF is

min
a∈Asdf

max
f∈F

EtEi{mi(Zt; ft)− ai(Zt) · fi(Zt)− fi(Zt)
2} − λ∥f∥2A + µ∥a∥2A.

For comparison, [Chen et al., 2023] essentially propose the following objective for the SDF:

min
a∈Asdf

max
f∈F

Ei[Et{mi(Zt; ft)− ai(Zt) · fi(Zt)}]2.

The main difference is that we provide theoretical guarantees. In the main text, we discuss

how our results apply to variants of our estimator without regularization, using additional

assumptions.

C Sparse linear case

C.1 Complexity-rate robustness versus double rate robustness

How does “complexity-rate robustness” compare to “double rate robustness” in a concrete

example? Consider estimating ĝ and â with ℓ1 constrained linear functions in p dimensions.

Suppose that (g∗, a∗) are sparse linear functions with at most s≪ n nonzero coefficients.

Under a restricted eigenvalue condition on the covariates, a lasso estimator ĝ and a sparse

linear adversarial estimator â satisfy δ̄ = O

{√
s log(p)

n
log(n)

}
and rn = O

{√
s log(p)

n

}
.

Thus s = o [
√
n/{log(p) log(n)}] suffices for Theorem 3. See formal statements below.

For comparison, for the sample splitting estimator, a sufficient condition is double rate

robustness, which amounts to double sparsity robustness: √
sg sa = o {

√
n/ log(p)}, where

(sg, sa) are the numbers of nonzero coefficients of (g∗, a∗).11

11More generally, for the sample splitting estimator, the well known sufficient condition is
√
n(ranr

g
n +

ϵanϵ
g
n) → 0, where ∥â− a∗∥2 = op(r

a
n), ∥a∗ − a0∥2 ≤ ϵan, ∥ĝ − g∗∥2 = op(r

g
n), and ∥g∗ − g0∥2 ≤ ϵgn.
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Theorem 3’s requirement is slightly stronger. It disallows a setting in which one nuisance

is quite dense while the other is quite sparse. Still, if both nuisances are moderately sparse,

then sample splitting can be eliminated, improving the effective sample size.

Theorem 3’s sufficient condition for the sparse linear setting, s = o [
√
n/{log(p) log(n)}],

recovers the sufficient conditions of [Belloni et al., 2014b, eq. 5.5] and [Belloni et al., 2014a,

Condition 3(iv)] up to logarithmic factors. In this sense it appears relatively sharp. We clarify

a general complexity-rate robustness condition, implicit in [Hirshberg and Wager, 2021, eq.

19], that applies to a broad range of settings beyond the sparse linear case.

On the one hand, eliminating sample splitting may increase the effective sample size.

On the other, it may increase “own observation” bias [Newey and Robins, 2018]. Section 6

and Appendix G show that the former phenomenon may outweigh the latter in some cases.

Future research may formalize this trade-off in finite samples.

C.2 Fast rate

We now demonstrate how our general results specialize to sparse linear function spaces.

We consider exactly sparse functions, then approximately sparse functions. For the former,

define the class of s-sparse linear function classes in p dimensions with bounded coefficients,

i.e., Asplin := {x→ ⟨θ, x⟩ : ∥θ∥0 ≤ s, ∥θ∥∞ ≤ b}. Observe that F is also the class of s-sparse

linear functions, with bounded coefficients in [−2b, 2b].

Corollary 9 (Exactly sparse linear Riesz representer rate). Take A = Asplin. Suppose

that the covariate has a bounded ℓ1-norm almost surely. Then the estimator presented in

Corollary 3 satisfies, with probability 1− ζ,

∥â− a0∥2 ≤ O

{
min

a∈Asplin
∥a− a0∥2 +

√
s log(p b) log(n)

n
+

√
log(1/ζ)

n

}
.

Towards an additional result, we introduce the following notation:

spanκ(F) :=

{
p∑

i=1

wifi : fi ∈ F , ∥w∥1 ≤ κ, p ≤ ∞

}
.

Proposition 4 (Mean square rate without ℓ2 regularization via symmetry). Consider a

set of test functions F = ∪d
i=1F i, that decomposes as a union of d symmetric test function
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spaces F i. Suppose that A is star-convex. Consider the adversarial estimator

ǎ = argmin
a∈A

sup
f∈F

En{m(Z; f)− a(X) · f(X)}+ λ∥a∥A.

Let m ◦ F i = {m(·; f) : f ∈ F i} and

δn,ζ := 2max
i

{
R(F i) +R(m ◦ F i)

}
+ c0

√
log(c1 d/ζ)

n
,

for some universal constants c0, c1 and Bn,λ,ζ := (∥a0∥A + δn,ζ/λ)
2. Then with probability

1− ζ, we have ∥ǎ∥A ≤ ∥a0∥A + δn,ζ/λ. Moreover, suppose λ ≥ δn,ζ and

∀a ∈ ABn,λ,ζ
with ∥a− a0∥2 ≥ δn,ζ :

a−a0
∥a−a0∥2 ∈ spanκ(F).

Then with probability 1− ζ,

∥ǎ− a0∥2 ≤ κ [2 (∥a0∥A + 1}R(A1) + δn,ζ + λ {∥a0∥A − ∥â∥A}] .

Proposition 4, allows us to prove a similar guarantee that relaxes the hard sparsity

constraint in A. Instead, we consider ℓ1-bounded high dimensional linear function classes

and we impose a restricted eigenvalue condition which is typical for such relaxations.

Corollary 10 (Approximately sparse linear Riesz representer rate). Suppose that a0(x) =

⟨θ0, x⟩ with ∥θ0∥0 ≤ s, ∥θ0∥1 ≤ B, ∥θ0∥∞ ≤ 1 and ∥x∥∞ ≤ 1. Let δn,ζ = c0

√
log(c1p/ζ)

n
for

appropriate universal constants c0, c1. Suppose that the covariance matrix V = E[XX ′]

satisfies the restricted eigenvalue condition:

∀ν ∈ Rp such that ∥νSc∥1 ≤ ∥νS∥1 + δn,ζ/λ : ν⊤V ν ≥ γ∥ν∥22.

Let A = {x → ⟨θ, x⟩ : θ ∈ Rp}, ∥⟨θ, ·⟩∥A = ∥θ∥1, and F = {x → ξxi : i ∈ [p], ξ ∈ {−1, 1}}.

Then the estimator in Proposition 4, with δn,ζ ≤ λ ≤ γ
8s

, produces an estimate â(·) = ⟨θ̂, ·⟩

which satisfies, with probability 1− ζ, that ∥θ̂∥1 ≤ ∥θ0∥1 + δn,ζ/λ and that

∥â− a0∥2 ≤ O

[
max

{
1,

1

λ

γ

s

}√
s

γ

{
(∥θ0∥1 + 1)

√
log(p)

n
+

√
log(p/ζ)

n

}]
.

If the unrestricted minimum eigenvalue of V is at least γ, then the restricted eigenvalue

condition always holds. We only require a condition on the population covariance matrix V

and not on the empirical covariance matrix.
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The Dantzig selector objective of [Chernozhukov et al., 2022c] is essentially

ã′ = argmin
a∈A

∥a∥A such that ∥En{m(Z; f)− a(X) · f(X)}∥∞ ≤ λ

where f : X → Rp is a pre-specified dictionary of basis functions. The lasso objective of

[Chernozhukov et al., 2022b] is essentially

ã′′ = argmin
a∈A

En

{
−2m(Z; a) + a(X)2

}
+ 2λ∥a∥A.

The constraint in the former may be viewed as the first order condition of the latter when

a(X) = θ′f(X). By contrast, our objective in Proposition 4 is

ǎ = argmin
a∈A

sup
f∈F

En{m(Z; f)− a(X) · f(X)}+ λ∥a∥A,

which may be viewed as directly regularizing the lasso first order condition. A key point of

departure from previous work in sparse linear settings is the adversarial choice of f ∈ F .

C.3 Semiparametric inference

We provide formal results for the sparse linear case. We appeal to the generality of

Assumption 5, whereby it suffices to study the complexity of (Ĝ − g∗)B, {m ◦ (Ĝ − g∗)}B,

and (Â − a∗)B whose elements are bounded in [−b, b].

We introduce the following general notation, which we will subsequently specialize for

each of the function spaces of interest. Let A = {θ′ϕ(X)} with ϕ(X) ∈ Rp and ∥ϕ(X)∥∞ ≤ 1

almost surely. Throughout, we assume E[ϕ(X)ϕ(X)′] ⪰ γI. Let ∥θ′ϕ(X)∥A = ∥θ∥1. Let

a∗ = θ′∗ϕ(X) and suppose that a∗ is s-sparse. Let ν = θ − θ∗. Let T denote the set of

coordinate indices of the support of θ∗, and let T c denote its complement.

Definition 1 (Restricted cone). For any µ, κ ≥ 0, we define the restricted cone

(A− a∗)B = {ν ′ϕ(X) : ∥ν∥21 ≤ B, ∥νT c∥1 ≤ µ∥νT∥1 + κ}.

Its elements are bounded in [−b, b] with b =
√
B.

Corollary 11 (Sparse linear hypothesis spaces are restricted cones). Consider the sparse

linear hypothesis space of the form

(Ã − a∗)B̃ = {ν ′ϕ(X) : ∥θ∥21 ≤ B̃}, B̃ = (κ+ ∥θ∗∥1)2, κ→ 0.

This space is a special case of the restricted cone with B = (κ+2∥θ∗∥1)2, µ = 1, and κ→ 0.
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Proposition 5 (Critical radius of restricted cone). The critical radius of (A− a∗)B is

δn = c1 · log(n) log(B)B1/2 ·max

{
µ

√
s log(p)

nγ
, κ1/2

(
log(p)

n

)1/4
}
.

where c1 is a universal constant.

Corollary 12 (Critical radius of (Ĝ − g∗)B). For ĝ, consider the constrained lasso with a

hard constraint of B that is sufficiently large. Let g∗ be the minimizer of the population

square loss over the high dimensional linear function space. Then Ĝ is the restricted cone

with µ a small constant and κ = 0. If g∗ is s sparse and E[ϕ(X)ϕ(X)′] ⪰ γI then the critical

radius of (Ĝ − g∗)B is δn = c1 · log(n) log(B)B1/2 · µ
√

s log(p)
nγ

.

Corollary 13 (Critical radius of {m ◦ (Ĝ − g∗)}B). Suppose the conditions of Corollary 12

hold, replacing E[ϕ(X)ϕ(X)′] ⪰ γI with E[ψ(X)ψ(X)′] ⪰ γI where ψ(X) = m ◦ ϕ(X).

Then the critical radius of {m ◦ (Ĝ − g∗)}B is δn = c1 · log(n) log(B)B1/2 · µ
√

s log(p)
nγ

.

Corollary 14 (Critical radius of (Â − a∗)B). For â, consider the sparse linear adversarial

estimator of Corollary 10 with λ = γ/8s. Then Â is the restricted cone with µ = 1 and

κ = c2
s
γ

√
log(p/ζ)

n
where c2 is a universal constant. If a∗ is s sparse, s = o

{√
n

log(p)

}
, and

E[ϕ(X)ϕ(X)′] ⪰ γI then the critical radius of (Â − a∗)B is δn = c3 · log(n) log(∥θ∗∥1)∥θ∗∥1 ·√
s log(p/ζ)

nγ
where c3 is a universal constant.

The rates for ĝ and â are rn = O

{√
s log(p)

n

}
. Corollaries 12, 13, and 14 imply

δ̄ = O

{√
s log(p)

n
log(n)

}
. Hence our complexity-rate robustness condition

√
nδ̄ rn → 0

holds when s = o{
√
n

log(p) log(n)
}.

C.4 Computational analysis

In the case of sparse linear functions, the estimator in Proposition 4 optimizes

min
θ∈Rp:∥θ∥1≤B

max
i∈[2p]

En [m(Z; fi)− fi(X) ⟨θ,X⟩] + λ∥θ∥1,

where fi(X) = Xi for i ∈ {1, . . . , p} and fi(X) = −Xi for i ∈ {p + 1, . . . , 2p}. One

optimization approach is sub-gradient descent, which yields an ϵ-approximate solution after
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O (p/ϵ2) steps. In what follows, we present and analyze an alternative optimization approach

that improves the number of steps to O {log(p)/ϵ}.

In this approach, we view the problem as a zero sum game with players θ and i, and use

simultaneous gradient descent. The minimizer uses a strategy called Optimistic-Follow-the-

Regularized-Leader (OFTRL) with an entropic regularizer. The maximizer uses a strategy

called Optimistic Hedge (OH) over probability distributions on the finite set of test functions,

analogous to [Dikkala et al., 2020, Proposition 13].

To present the optimization routine, we rewrite the problem so that the maximizer

optimizes over distributions in the 2p-dimensional simplex, i.e.

min
θ∈Rp:∥θ∥1≤B

max
w∈R2p

≥0:∥w∥1=1
En [m(Z; ⟨w, f⟩)− ⟨w, f⟩(X) ⟨θ,X⟩] + λ∥θ∥1,

where f = (f1, . . . , f2p) denotes a 2p vector-valued function. To avoid the non-smoothness

of the ℓ1 penalty, we introduce the augmented vector V = (X;−X). We further rewrite

the problem so that the minimizer optimizes over the positive orthant of a 2p-dimensional

vector ρ = (ρ+; ρ−), with an ℓ1 bounded norm. Matching symbols, θ = ρ+ − ρ−, and

min
ρ∈R2p

≥0:∥ρ∥1≤B
max

w∈R2p
≥0:∥w∥1=1

En [m(Z; ⟨w, f⟩)− ⟨w, V ⟩ ⟨ρ, V ⟩] + λ

2p∑
i=1

ρi

where ⟨w, f⟩(X) = ⟨w, V ⟩. Finally, for a matrix A, define the notation ∥A∥∞ = maxi,j |Aij|.

Proposition 6 (Sparse linear optimization converges). Consider the procedure that for

t = 1, . . . , T sets

ρ̃i,t+1 = ρ̃i,te
−2 η

B
{−En(Vi ⟨V,wt⟩)+λ}+ η

B
{−En(Vi ⟨V,wt−1⟩)+λ} ρt+1 = ρ̃t+1 min

{
1,

B

∥ρ̃t+1∥1

}
w̃i,t+1 = wi,te

2 η En{m(Z;fi)−Vi⟨V,ρt⟩}−η En{m(Z;fi)−Vi⟨V,ρt−1⟩} wt+1 =
w̃t+1

∥w̃t+1∥1

with ρ̃i,−1 = ρ̃i,0 = 1/e and w̃i,−1 = w̃i,0 = 1/(2p). Return ρ̄ = 1
T

∑T
t=1 ρt. Then for

η =
1

4∥En(V V ⊤)∥∞
, T = 16∥En(V V

⊤)∥∞
4B2 log(B ∨ 1) + (B + 1) log(2p)

ϵ
,

where η is the step size and T is the number of steps, the parameter θ̄ = ρ̄+ − ρ̄− is an

ϵ-approximate solution for the estimator in Proposition 4.
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D Fast rate details

D.1 Additional results: Mean square continuity and critical radius

Proposition 7 (Mean square continuity). Under simple conditions, the average treatment

effect, average policy effect, policy effect from transporting covariates, cross effect, regression

decomposition, average treatment on the treated, and local average treatment effect are

mean square continuous.

Lemma 1 (Comparing critical radii). Consider the space F , and define F b = {f/b : f ∈ F}.

Let δn be the critical radius of F b. Then the critical radius of F is bounded by bδn.

D.2 Proof of corollaries

Proof of Corollary 1. By Riesz representation and the first order condition,

max
f∈F

E [m(Z; f)− a(X) · f(X)]− ∥f∥22 = max
f∈F

E
[
{a0(X)− a(X)} · f(X)− f(X)2

]
=

1

4
E
[
{a0(X)− a(X)}2

]
=

1

4
∥a− a0∥22.

Proof of Corollary 2. The metric ∥ · ∥F satisfies the triangle inequality:

∥a+ b∥F ≤
√

sup
f∈F

⟨a, f⟩ − 1

4
∥f∥22 + sup

f∈F
⟨b, f⟩ − 1

4
∥f∥22 ≤ ∥a∥F + ∥b∥F .

It is also positive definite i.e. ∥0∥F = 0, but not necessarily homogeneous, i.e. ∥λa∥F =

|λ|∥a∥F for λ ∈ R. Observe that ∥ · ∥F satisfies

∥a∥2F = inf
f∈F

1

4
∥f∥22 − ⟨a, f⟩2 + ∥a∥22 − ∥a∥22 = inf

f∈F
∥a− f/2∥22 − ∥a∥22 ≤ inf

f∈F
∥a− f∥22 − ∥a∥22

where in the last inequality we use the fact that F is star-convex. Thus it is at most the

projection of a on F . Hence, it suffices that A approximates a0 in this weak sense: for some

a∗ ∈ A the projection of a∗−a0 on F is at most ϵn. Any component of a0 that is orthogonal

to F can be ignored, since if we decompose a0 = a⊥0 + a
∥
0, then supf∈F⟨a⊥0 , f⟩2 = 0 and

hence ∥a0 − a∗∥F = ∥a∥0 − a∗∥F .
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Proof of Corollary 3. The assumption of norm constraints implies ∥f∥A ≤ U for all f ∈ F ,

and hence ∥a∥A ≤ U for all a ∈ A. The result follows from Theorem 1, taking B → ∞,

FB → F , and m ◦ FB → m ◦ F .

Proof of Corollary 4. Recall (1): 64√
n

∫ δ
δ2

2b

√
log [Nn{ϵ;Bn(δ;F)}]dϵ ≤ δ2

b
. By definition of

Bn(δ;F) as the ball of radius δ,

Bn(δ;F) = {f ∈ F : ∥f∥2,n ≤ δ} = ∪d
i=1{f ∈ F i : ∥f∥2,n ≤ δ} = ∪d

i=1Bn(δ;F i).

Note that Nn{ϵ;B1 ∪ B2} ≤ Nn{ϵ;B1} + Nn{ϵ;B2} due to its definition as the covering

number at approximation level ϵ, i.e. the size of the smallest ϵ-cover. Therefore

log [Nn{ϵ;Bn(δ;F)}] = log
[
Nn{ϵ;∪d

i=1Bn(δ;F i)}
]

≤ log

[
d∑

i=1

Nn{ϵ;Bn(δ;F i)}

]
≤ log(d) + max

i
log(Nn{ϵ;Bn(δ;F i)}).

Consider the integral of the former term. Integrating from 0 to δ amounts to muliplying by

δ. Therefore the former term contributes an additive quantity of the order 64δ√
n

√
log(d) ≤ δ2

b
.

If δ ≥ 2 · 64b
√

log(d)
n

, then the inital term is at most δ2/(2b) . If δ ≥ 2maxi δ
i
n, then the

integral of the latter term will also be at most δ2/(2b). Taking the sum delivers the result

noting that Assumption 2 takes b = 1.

D.3 Proof of additional results

Proof of Proposition 7. Recall the definition of mean square continuity: ∃M ≥ 0 such that

∀f ∈ F :
√

E [m(Z; f)2] ≤M ∥f∥2. We verify mean square continuity for several important

functionals.

1. Average treatment effect (ATE): θ0 = E[g0(1,W )− g0(0,W )]. To lighten notation, let

π0(w) := P(D = 1|W = w) be the propensity score. Assume π0(w) ∈
(

1
M
, 1− 1

M

)
for

M ∈ (1,∞). Then

E[g(1,W )− g(0,W )]2 ≤ 2E[g(1,W )2 + g(0,W )2]

≤ 2ME
[
π0(W ) g(1,W )2 + [1− π0(W )] g(0,W )2

]
= 2ME[g(X)]2.
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2. Average policy effect: θ0 =
∫
g0(x)dµ(x) where µ(x) = F1(x) − F0(x). Denote the

densities corresponding to distributions (F, F1, F0) by (f, f1, f0). Assume f1(x)
f(x)

≤
√
M

and f0(x)
f(x)

≤
√
M for M ∈ [0,∞). In this example, m(Z; g) = m(g). Then

E[m(Z; g)]2 = {m(g)}2 =
{∫

g(x)dµ(x)

}2

=

{
E
[
g(X)

{
f1(X)

f(X)
− f0(X)

f(X)

}]}2

≤
{
2
√
ME|g(X)|

}2

≤ 4ME[g(X)]2.

3. Policy effect from transporting covariates: θ0 = E[g0(t(X)) − g0(X)]. Denote the

density of t(X) by ft(x). Assume ft(x)
f(x)

≤M for M ∈ [0,∞). Then

E[g(t(X))− g(X)]2 ≤ 2E[g(t(X))2 + g(X)2] = 2E
[
g(X)2

{
ft(X)

f(X)
− 1

}]
≤ 2(M + 1)E[g(X)]2.

4. Cross effect: θ0 = E[Dg0(0,W )]. Assume π0(w) < 1− 1
M

for some M ∈ (1,∞). Then

E[Dg(0,W )]2 ≤ E[g(0,W )]2 ≤ME[{1− π0(W )}g(0,W )2] ≤ME[g(X)]2.

5. Regression decomposition: E[Y |D = 1]− E[Y |D = 0] = θresponse0 + θcomposition
0 where

θresponse0 = E[g0(1,W )|D = 1]− E[g0(0,W )|D = 1]

θcomposition
0 = E[g0(0,W )|D = 1]− E[g0(0,W )|D = 0].

Assume π0(w) < 1− 1
M

for some M ∈ (1,∞). Then re-write the target parameters in

terms of the cross effect:

θresponse0 =
E[DY ]− E[Dg0(0,W )]

E[D]

θcomposition
0 =

E[Dγ0(0,W )]

E[D]
− E[(1−D)Y ]

E[1−D]
.

We reduce the regression decomposition into cross effects and population means.

6. Average treatment on the treated (ATT): θ0 = E[g0(1,W )|D = 1]−E[g0(0,W )|D = 1].

Assume π0(w) < 1− 1
M

for some M ∈ (1,∞). Then re-write the target parameters in

terms of the cross effect and population means:

θ0 =
E[DY ]− E[Dg0(0,W )]

E[D]
.
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7. Local average treatment effect (LATE): θ0 = E[g0(1,W )−g0(0,W )]
E[h0(1,W )−h0(0,W )]

. The result follows from

the view of LATE as a ratio of two ATEs.

Proof of Lemma 1. The Rademacher complexity is

R(δ;F b) = E

{
sup

f∈Fb:∥f∥2≤δ

1

n

n∑
i=1

ϵif(Xi)

}
= E

{
sup

f∈F :∥f∥2/b≤δ

1

n

n∑
i=1

ϵif(Xi)/b

}

= b−1E

{
sup

f∈F :∥f∥2≤bδ

1

n

n∑
i=1

ϵif(Xi)

}
=

1

b
R(bδ;F).

By hypothesis, R(δn;F b) ≤ δ2n. Combining these results,

1

b
R(bδn;F) = R(δn;F b) ≤ δ2n ⇐⇒ R(bδn;F) ≤ bδ2n =

(bδn)
2

b
.

Hence, taking δ′n = bδn, R(δ′n;F) ≤ bδ2n = (δ′n)
2

b
, so the critical radius of F is upper bounded

by δ′n.

E Semiparametric inference details

E.1 Comparison to the Donsker condition

The critical radius condition, in place of the Donsker condition, implies semiparametric

inference in Theorem 3. We now clarify the similarities and differences between these

concepts. A standard decomposition (restated in Appendix A) shows that

√
n(θ̂ − θ0) = νn(g0, a0) + {νn(ĝ, â)− νn(g0, a0)}+

√
nE[{a0(X)− â(X)}{ĝ(X)− g0(X)}]

where νn(g, a) =
√
n(En − E)[m(Z; g) + a(X){Y − g(X)}] is an empirical process indexed

by nuisance functions. A central limit theorem gives νn(g0, a0)
d→ N(0, σ2), and a product

rate condition gives
√
nE[{a0(X)− â(X)}{ĝ(X)− g0(X)}] p→ 0. What remains to show is

that {νn(ĝ, â)− νn(g0, a0)}
p→ 0, for which we refine previous arguments.

The Donsker condition involves stochastic equicontinuity, which means that ∥g1−g2∥2 ≤

rn and ∥a1−a2∥2 ≤ rn, where rn ↓ 0, imply {νn(g1, a1)−νn(g2, a2)}
p→ 0, so that the desired
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result holds [Andrews, 1994b]. A sufficient condition is Pollard’s condition [Pollard, 1982],

which we now state for the function class F , uniformly bounded in [−b, b]:∫ ∞

0

sup
Q∈Q

√
log [N{εb;F ;L2(Q)}]dε <∞ (6)

where Q is the the set of all finite discrete probability measures. A common analytic ap-

proach is to verify (6) for simple function spaces [Pakes and Pollard, 1989, Andrews, 1994a,

Pakes and Olley, 1995, Ai and Chen, 2003, Chen et al., 2003]. While smooth Sobolev spaces

satisfy this condition, even rearranged Sobolev spaces do not [Chernozhukov et al., 2022c,

Section 4.5], nor do Lq balls for q ∈ (0, 1] [Raskutti et al., 2011, Lemma 2].

By contrast, the less strict condition (1) gives the critical radius δn. When ∥ĝ−g0∥2 ≤ rn

and ∥â− a0∥2 ≤ rn, Theorem 3 clarifies that {νn(ĝ, â)− νn(g0, a0)} = Op{
√
n(δnrn + δ2n)},

simplifying and generalizing [Hirshberg and Wager, 2021, eq. 19].12 We call this condition

complexity-rate robustness since higher complexity can be compensated by better estimation

rates. The Donsker approach does not have such a condition. In summary, the critical radius

approach gives a weaker sufficient condition than the Donsker approach for {νn(ĝ, â) −

νn(g0, a0)}
p→ 0. It recovers known results in the sparse linear special case; see Appendix C.

E.2 Additional results: Local Riesz, mis-specification

To lighten notation, when stating the local Riesz estimator results, we suppress indexing by

the fold k, similar to Section 2.

Assumption 6 (Critical radius for local Riesz representation). Define the set F(rn) =

{f ∈ star (∂(G − ĝ)) : ∥f∥2 ≤ rn}. Assume δn upper bounds the critical radius of {Z →

m(Z; f)− a(X) f(X) : f ∈ F(rn), a ∈ A}. To lighten notation, let δ̄ := δn + c0

√
log(c1/ζ)

n
.

Proposition 8 (Local Riesz representation). Suppose Assumptions 1 and 6 hold, and that

∥ĝ − g0∥2 ≤ rn with probability 1− ζ. Consider the estimator

â′ = arg inf
a∈A

sup
f∈F(rn)

1

n

n∑
i=1

(m(Zi; f)− a(Xi) · f(Xi)) .

Then with probability 1− ζ,

E[(â′(X)− a0(X)) (ĝ(X)− g0(X))] ≤ O

(
M rnδ̄ + δ̄2 + rn inf

a∈A
∥a0 − a∥2

)
.

12We also allow limited mis-specification.
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If in addition rn δ̄ = o(n−1/2), δ̄ = o(n−1/4), and rn infa∈A ∥a0 − a∥2 = o(n−1/2), then

Assumption 3 holds.

If a0 ∈ A and both A and G are VC-subgraph classes with constant VC dimension, then

δ̄ = O

(√
log(n/ζ)

n

)
. For the conclusions of Proposition 8 to hold, it suffices that rn = o(1),

i.e. that ĝ is consistent in L2.

For the local Riesz results above, we require A to have a small approximation error to

a0 with respect to the weaker norm ∥a0 − a∥F = supf∈F(1)⟨a0 − a, f⟩. Thus a does not need

to match the component of a0 that is orthogonal to the subspace F .

For example, assume that F lies in the space spanned by top K eigenfunctions of a

reproducing kernel Hilbert space. Then it suffices to consider as A the space spanned by

those functions too, and infa∈A ∥a0 − a∥F = 0.

As another example, if G is a finite dimensional linear function space and g0 ∈ G, then

it suffices to consider A that is also finite dimensional linear, even if the true a0 does not lie

in that sub-space. The conditions of Corollary 8 will be satisfied, even if â will never be

consistent with respect to a0.

Assumption 7 (Mixed bias condition: Inconsistent nuisance). Suppose that ∀k ∈ [K]:
√
nE[{âk(X)− a∗(X)} {ĝk(X)− g∗(X)}] →p 0, where g∗ or a∗ may not necessarily equal

g0 or a0.

Proposition 9 (Normality with inconsistent nuisance). Suppose Assumptions 1 and 7 hold.

Further assume (i) boundedness: Y , g(X), and a(X) are bounded almost surely, for all

g ∈ G and a ∈ A; (ii) individual rates: ∥âk − a∗∥2
L2

→ 0 and ∥ĝ − g∗∥2
L2

→ 0, where g∗ or a∗

may not necessarily equal g0 or a0. Finally assume that ĝk admits an asymptotically linear

representation around the truth g0, i.e.

√
|Pk| (ĝk(X)− g0(X)) =

1√
|Pk|

∑
i∈Pk

ψ(X,Zi; g0) + op(1), E[ψ(X,Zi; g0) | X] = 0.

Then
√
nσ−1

∗
(
θ̌ − θ0

)
→d N (0, 1) where σ2

∗ := VarZi
(ma∗(Zi; g∗)+EX [{a0(X)− a∗(X)}ψ(X,Zi; g0)]).

Similarly, if âk has an asymptotically linear representation around the truth, then the state-

ment above holds with σ2
∗ := VarZi

(ma∗(Zi; g∗) + EX [ψ(X,Zi; a0) {g0(X)− g∗(X)}]).
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E.3 Proof of corollaries

Proof of Corollary 8. The result is well known. For completeness, we state the proof for θ̌.

The proof for θ̃ is similar; see e.g. [Chernozhukov et al., 2022b, Corollary 4].

Observe that θ0 = E[ma(Z; g0)] for all a. Moreover,

θ̌ − θ0 =
1

n

K∑
k=1

∑
i∈Pk

(mâk(Zi; ĝ)− EZ [mâk(Z; ĝk)]) +
1

K

K∑
k=1

(EZ [mâk(Z; ĝk)]− EZ [mâk(Z; g0)])

=
1

n

K∑
k=1

∑
i∈Pk

(mâk(Zi; ĝk)− EZ [mâk(Z; ĝk)]) +
1

K

K∑
k=1

EX [(a0(X)− âk(X)) (ĝk(X)− g0(X))].

Hence by Assumption 3,

√
n
(
θ̌ − θ0

)
=

√
n
1

n

K∑
k=1

∑
i∈Pk

(mâk(Zi; ĝk)− EZ [mâk(Z; ĝk)])︸ ︷︷ ︸
A

+op(1).

If ∥âk − a∗∥2 →p 0 and ∥ĝk − g∗∥2 →p 0 then we can further decompose A as

A = En[ma∗(Z; g∗)]− EZ [ma∗(Z; g∗)]

+
1

n

K∑
k=1

∑
i∈Pk

mâk(Zi; ĝk)−ma∗(Zi; g∗)− EZ [mâk(Z; ĝk)−ma∗(Z; g∗)]︸ ︷︷ ︸
Vi

.

To lighten notation, let B := 1
n

∑K
k=1

∑
i∈Pk

Vi =: 1
n

∑K
k=1Bk. If nE[B2] → 0, then

√
nB →p 0. The second moment of each Bk is:

E
[
B2

k

]
=
∑
i,j∈Pk

E[ViVj] =
∑
i,j∈Pk

E[E[ViVj | ĝk]] =
∑
i∈Pk

E
[
V 2
i

]
where in the last equality appeal to cross fitting: for any i ̸= j, Vi is independent of Vj and

mean zero, conditional on the nuisance ĝk estimated on samples outside of fold k. Moreover,

by Jensen’s inequality with respect to 1
K

∑K
k=1Bk,

E[B2] = E

( 1

n

K∑
k=1

Bk

)2
 =

K2

n2
E

( 1

K

K∑
k=1

Bk

)2
 ≤ K

n2

K∑
k=1

E[B2
k] =

K

n2

K∑
k=1

∑
i∈Pk

E[V 2
i ] =

K

n2

n∑
i=1

E[V 2
i ].

Finally, observe that E[V 2
i ] →p 0, by Assumption 1 and boundedness. More elaborately,

E[V 2
i ] ≤ E

[
(mâ(Zi; ĝk)−ma∗(Zi; g∗))

2]
≤ 2E

[
(m(Zi; ĝk)−m(Zi; g∗))

2]+ 2E[(âk(X) (Y − ĝk(X))− a∗(X) (Y − g∗(X)))2].
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The latter can further be bounded as

4E[(ak(X)− a∗(X))2 (Y − gk(X))2] + 4E[a∗(X)2(g∗(X)− gk(X))2] ≤ 4C
(
E
[
∥âk − a∗∥22 + ∥ĝ − g∗∥22

])
if (Y − ĝk(X))2 ≤ C and a∗(X)2 ≤ C almost surely. Finally, by linearity and Assumption 1,

E[(m(Zi; ĝk)−m(Zi; g∗))
2] = E[(m(Zi; ĝk − g∗))

2] ≤M E
[
∥ĝk − g∗∥22

]
.

In summary,

E[V 2
i ] ≤ (2M + 4C)

(
E
[
∥âk − a∗∥22 + ∥ĝ − g∗∥22

])
→ 0.

Thus as long as K = Θ(1), we have that

nE[B2] =
K

n

n∑
i=1

E[V 2
i ] ≤ (2M + 4C)K E

[
∥ĝ − g∗∥22 + ∥â− a∗∥22

]
→ 0

and we can conclude

√
n
(
θ̌ − θ0

)
=

√
n (En[ma∗(Z; g∗)]− EZ [ma∗(Z; g∗)]) + op(1).

By the central limit theorem, the final expression is asymptotically normal with asymptotic

variance σ2
∗ = Var(ma∗(Z; g∗)).

E.4 Proof of additional results

Proof of Proposition 8. By a localized concentration bound, ∀a ∈ A, f ∈ F(rn),

|Ψn(a, f)−Ψ(a, f)| = O
(
δ̄∥m(·; f)− a f∥2 + δ̄2

)
= O

(
(M + 1)δ̄∥f∥2 + δ̄2

)
= O

(
(M + 1)δ̄rn + δ̄2

)
=: ϵn.

Hence

sup
f∈F(rn)

Ψ(â, f)− ϵn ≤ sup
f∈F(rn)

Ψn(â, f) ≤ sup
f∈F(rn)

Ψ(a∗, f) + ϵn = inf
a∈A

sup
f∈F(rn)

Ψ(a, f) + ϵn.

We conclude that

sup
f∈F(rn)

Ψ(â, f) ≤ inf
a∈A

sup
f∈F(rn)

Ψ(a, f) + 2 ϵn.

Moreover, if a0 is a local Riesz representer, i.e. if a0 satisfies Riesz representation for any

ĝ − g, where g ∈ G is within a ball of size rn around ĝ, then

inf
a∈A

sup
f∈F(rn)

Ψ(a, f) = inf
a∈A

sup
f∈F(rn)

⟨a0 − a, f⟩ ≤ rn inf
a∈A

sup
f∈F(1)

⟨a0 − a, f⟩ ≤ rn inf
a∈A

∥a0 − a∥2.
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Proof of Proposition 9. Observe that θ0 = E[ma(Z; g0)] for all a. Moreover,

θ̌ − θ0 =
1

n

K∑
k=1

∑
i∈Pk

(mâk(Zi; ĝ)− E[mâk(Z; ĝk)]) +
1

K

K∑
k=1

(E[mâk(Z; ĝk)]− E[mâk(Z; g0)])

=
1

n

K∑
k=1

∑
i∈Pk

(mâk(Zi; ĝk)− E[mâk(Z; ĝk)])︸ ︷︷ ︸
A

+
1

K

K∑
k=1

E[(a0(X)− âk(X)) (ĝk(X)− g0(X))]︸ ︷︷ ︸
C

.

By the proof of Corollary 8,

√
nA =

√
n (En[ma∗(Z; g∗)]− E[ma∗(Z; g∗)]) + op(1).

Now we analyze term C. We will prove one of the two conditions in the “or” statement,

when ĝk has an asymptotically linear representation. The case when âk is asymptotically

linear can be proved analogously.

Let Ck := E[(a0(X)− âk(X)) (ĝk(X)− g0(X))]. We can then write:

Ck = E[(a∗(X)− âk(X)) (ĝk(X)− g0(X))] + E[(a0(X)− a∗(X)) (ĝk(X)− g0(X))].

Since√
|Pk|E[(a∗(X)−âk(X)) (ĝk(X)−g0(X))] ≤

√
|Pk|∥a∗−âk∥2 ∥ĝk−g0∥2 = ∥a∗−âk∥2Op(1) = op(1),

we have that√
|Pk|Ck =

√
|Pk|E[(a0(X)− a∗(X)) (ĝk(X)− g0(X))] + op(1)

=
1√
|Pk|

∑
i∈Pk

EX [(a0(X)− a∗(X))ψ(X,Zi; g0)] + op(1).

Since K = Θ(1) and n/|Pk| → K, we can therefore show

√
nC =

√
n

K

K∑
k=1

Ck =

√
K

K

K∑
k=1

√
|Pk|Ck + o(1)

=
1√
K

K∑
k=1

1√
|Pk|

∑
i∈Pk

EX [(a0(X)− a∗(X))ψ(X,Zi; g0)] + op(1)

=
1√
n

K∑
k=1

∑
i∈Pk

EX [(a0(X)− a∗(X))ψ(X,Zi; g0)] + op(1)

=
1√
n

∑
i∈[n]

EX [(a0(X)− a∗(X))ψ(X,Zi; g0)] + op(1)

=
√
nEn [EX [(a0(X)− a∗(X))ψ(X,Zi; g0)]] + op(1).
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In summary,

√
n
(
θ̌ − θ0

)
=

√
n (En [ma∗(Z; g∗) + EX [(a0(X)− a∗(X))ψ(X,Zi; g0)]]− E[ma∗(Z; g∗)]) + op(1).

By the central limit theorem, the final expression is asymptotically normal with asymptotic

variance σ2
∗ = VarZi

(ma∗(Zi; g∗) + EX [(a0(X)− a∗(X))ψ(X,Zi; g0)]).

F Computational analysis details

F.1 Stochastic gradient descent for neural network

Consider the setting of Corollary 5, which uses neural network function spaces. When F and

A are represented by deep neural networks, then the optimization problem in Estimator 1

is highly non-convex. Beyond the challenge of using a non-convex function space, which

also appears in problems with square losses, we face the challenge of a non-convex and

non-smooth min-max loss. We describe off-the-shelf optimization methods for generative

adversarial networks (GANs) that apply to our problem, and describe a closely related

approximate guarantee for stochastic gradient descent.

Similar to the optimization problem of GANs, our our estimator solves a non-convex,

non-concave zero sum game, where the strategy of each player is a set of neural net-

work parameters. A variety of recent iterative optimization algorithms for GANs inspired

by zero sum game theory apply to our problem. See e.g. the “optimistic Adam” pro-

cedure [Daskalakis et al., 2017], which has been adapted to conditional moment models

[Bennett et al., 2019, Dikkala et al., 2020]. The “extra gradient” procedures [Hsieh et al., 2019,

Mishchenko et al., 2019] provide further options.

In practice, we find that a simple optimization procedure converges to the solution of

Estimator 1 when using overparametrized neural networks. The procedure is to implement

simultaneous gradient descent-ascent, then to obtain the average path by averaging over

several iterations. We directly extend the main procedure of [Liao et al., 2020], who prove

convergence for min-max losses that are similar to our own, building on principles used to

study square losses [Allen-Zhu et al., 2018, Du et al., 2018, Soltanolkotabi et al., 2019].

Neural networks that are sufficiently wide and randomly initialized behave like linear

functions in an RKHS called the neural tangent kernel space. As long as the error of
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this approximation is carefully accounted for, one can invoke the analysis of sparse linear

function spaces given in Appendix C. Future work may formalize this intuition, generalizing

the main result of [Liao et al., 2020].

To facilitate optimization, computational analysis increases the width of the neural

network. Doing so deteriorates the statistical guarantee in Corollary 5, since the critical

radius grows as a function of the width; see Section 1. Future work may improve the

dependence on width, sharpening the results of [Liao et al., 2020], to alleviate this trade-off.

F.2 Tuning regularization hyperparameters

We provide details on tuning the regularization hyperparameters (λ, µ) in a theoretically jus-

tified manner. This section amounts to a summary of various computational results provided

in the paper, as well as heuristics for additional hyperparameters that arise. Each approach

is implemented in our publicly available replication package: https://colab.research.

google.com/github/vsyrgkanis/adversarial_reisz/blob/master/Results.ipynb.

Neural network. Consider the setting of Corollary 5. Its justification appeals to

Theorem 1, which requires µ ≥ 6λ ≥ 12δ̄2/B. We take µ = 6λ and λ = 10−4. In addition,

we use early stopping as a form of adaptive regularization similar to [Bennett et al., 2019,

Dikkala et al., 2020]. Specifically, we train with simultaneous optimistic ADAM, as described

above, for 200 epochs, storing test functions after every few training iterations. Then we

re-initiate training and use the maximum of moment violations over these finitely many

stored test functions on an out-of-sample set, as a proxy for the maximum out-of-sample

moment violation. The analyst does not need to train a neural network for every evaluation,

and instead can use a representative set of test functions.

Random forest. Consider the setting of Corollary 6. Its justification appeals to

Proposition 1, which requires λ = µ = 0. We use similar settings to [Dikkala et al., 2020]:

each tree is linear in original variables, with a maximimum depth of two and minimum of

20 samples per leaf node. The estimator â has five trees in a forest, while the estimator f̂

has 100 trees in a forest.

RKHS. Consider the setting of Corollary 7. Its justification appeals to Theorem 1,

which requires µ ≥ 6λ ≥ 12δ̄2/B and also λ = C
n
. We take µ = 6λ and C = 0.001. We use
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the product kernel k(x, x′) = k(d, d′)k(w,w′) where k(d, d′) is a binary kernel and k(w,w′)

is a radial basis function kernel with lengthscale set as the inverse of dim(w)× var(w). For

the Nyström approximation, we consider S = 100 landmarks.

Sparse linear function. Consider the setting of Corollary 14. There is one regular-

ization parameter λ = γ/8s, where s is the sparsity and γ is the restricted eigenvalue. We

take λ = 0.01. We use the optimization routine of Proposition 6 with B = 10, similar to

[Dikkala et al., 2020].

Cross validation. As an extension, we consider a general purpose and automated

tuning procedure for (λ, µ). Take µ = 6λ. Consider a grid Λ of possible λ values. We

explicitly write regularization hyperparameters as arguments: f̂a(λ) and â(λ, µ).

Estimator 6 (Nested cross validation). Fix λ ∈ Λ. On a training set, fit a candidate â(λ, 6λ).

On a test set, partition observations into part one and part two. For each λ′ ∈ Λ, calculate

f̂â(λ,6λ)(λ
′), the optimal test function over observations in part one using regularization λ′

and the candidate â(λ, 6λ). Evaluate the moment violation for f̂â(λ,6λ)(λ′) on part two. Save

it as score(λ, λ′). Reverse the roles of part one and part two, and save the average of the

scores. Repeat this exercise across λ ∈ Λ, then set λ∗ = argminλmaxλ′ score(λ, λ′), i.e.

the value with the smallest out-of-sample maximum moment violation.

See our earlier draft for simulations demonstrating the efficacy of this general and

automated tuning procedure.

F.3 Proof for random forest

Proof of Proposition 1. The loss function −ℓ(a, ·) is strongly convex in f with respect to the

∥·∥2,n norm: −1
2
Dffℓ(a, f)[ν, ν] ≥ En[ν(X)2]. The difference ℓ(a, f)−ℓ(a′, f) = En[(a(X)−

a′(X)) · f(X)] is an ∥a− a′∥2,n-Lipschitz function with respect to the ℓ2,n norm by Cauchy-

Schwarz inequality. Thus by [Syrgkanis, 2019, Lemma 1], ∥ft − ft+1∥2,n ≤ ∥āt−1 − āt∥2,n.

By [Syrgkanis, 2019, Proof of Theorem 1], the cumulative regret of follow-the-leader is

at most R(T ) ≤
∑T

t=1 |ℓ(at, ft)− ℓ(at, ft+1)|. Since ∥at∥∞, ∥ft∥∞ ≤ 1, each summand of the

latter is upper bounded by |En[m(Z; ft − ft+1)]|+ 3∥ft − ft+1∥1,n.

We assume that the empirical operator En[m(Z; f)] is bounded by Mn. Therefore
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|En[m(Z; ft − ft+1)]| ≤Mn∥ft − ft+1∥2,n. Overall,

|ℓ(at, ft)− ℓ(at, ft+1)| ≤ (Mn + 3)∥ft − ft+1∥2,n ≤ (Mn + 3)∥āt−1 − āt∥2,n ≤ 2 (Mn + 3)

t

where we use |āt−1(X)− āt(X)| ≤ 2
t
, since ∥a∥∞ ≤ 1. We conclude that R(T ) ≤ 2 (Mn +

3)
∑T

t=1
1
t
= O(Mn log(T )).

After T = Θ
(

Mn log(1/ϵ)
ϵ

)
iterations, f has regret of at most ϵ. By standard results for

convex-concave zero sum games, the average solutions f̄T = 1
T

∑T
t=1 ft and āT = 1

T

∑T
t=1 at

are an ϵ-equilibrium. Therefore āT is an ϵ-approximate solution to the minimax problem.

F.4 Proof for RKHS

Kernel matrices and vectors. To begin, we formally define the kernel matrices and

vectors that appear in the closed form. Their entries are given by

[K(1)]ij = k(Xi, Xj), [K(2)]ij = km(Xi, Xj), [K(3)]ij = km(Xj, Xi), [K(4)]ij = kmm(Xi, Xj)

[K
(1)
xX ]j = k(x,Xj), [K

(2)
xX ]j = km(x,Xj), [K

(3)
xX ]j = km(Xj, x), [K

(4)
xX ]j = kmm(x,Xj).

All that remains is to define the kernels km and kmm, which combine the kernel k with the

functional θ : g 7→ E[m(g;Z)]. For simplicity, let Z = X.

We define these additional kernels via the feature map representation. Given a kernel

k : X×X → R, its feature map is ϕ : x 7→ k(x, ·). One can conceptualize ϕ(x) = {
√
λjφj(x)}

where {λj} and {φj(x)} are the eigenvalues and eigenfunctions of the kernel, and {φj(x)} is

an orthonormal basis in L2. Given a kernel k and a functional θ : g 7→ E[m(g;X)], we define

the modified feature map ϕ(m)(x) = {
√
λjm(x, φj)}. With these definitions, for f ∈ H,

f(x) = ⟨f, ϕ(x)⟩H and m(x; f) = ⟨f, ϕ(m)(x)⟩H. Finally,

k(x, x′) := ⟨ϕ(x), ϕ(x′)⟩H, km(x, x
′) := ⟨ϕ(x), ϕ(m)(x′)⟩, kmm(x, x

′) := ⟨ϕ(m)(x), ϕ(m)(x′)⟩.

In summary, each kernel matrix and vector can be computed as linear combinations of

kernel evaluations at pairs of points.

Proposition 10 (Computing kernel matrices). Let X = (D,W ) where D is the treatment

and W is the covariate. Consider the average treatment effect functional θ : g 7→ E[(1,W )−
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g(0,W )]. The induced kernels are

k(x, x′) = k((d, w), (d′, w′)), km(x, x
′) = k((d, w), (1, w′))− k((d, w), (0, w′))

kmm(x, x
′) = k((1, w), (1, w′))− k((1, w), (0, w′))− k((0, w), (1, w′)) + k((0, w), (0, w′)).

Proof. Observe that

km(x, x
′) = ⟨ϕ(x), ϕ(m)(x′)⟩H = ⟨ϕ(d, w), ϕ(1, w′)− ϕ(0, w′)⟩H = k((d, w), (1, w′))− k((d, w), (0, w′));

kmm(x, x
′) = ⟨ϕ(m)(x), ϕ(m)(x′)⟩H = ⟨ϕ(1, w)− ϕ(0, w), ϕ(1, w′)− ϕ(0, w′)⟩H

= k((1, w), (1, w′))− k((1, w), (0, w′))− k((0, w), (1, w′)) + k((0, w), (0, w′)).

Maximizer closed form. We proceed in steps. We prove the result via a sequence of

lemmas. To simplify the proofs, we introduce some additional operator notation. Given a

kernel k, define the feature operator Φ with ith row ϕ(Xi)
⊤. Hence K(1) = ΦΦ⊤, where Φ⊤

is the adjoint of Φ. Given a kernel and a functional, similarly define the operator Φ(m) with

ith row ϕ(m)(Xi)
⊤. Finally define Ψ as the operator with 2n rows that is constructed by

concatenating Φ and Φ(m):

Ψ :=

 Φ

Φ(m)

 , K = ΨΨ⊤ =

 ΦΦ⊤ Φ(Φ(m))⊤

Φ(m)Φ⊤ Φ(m)(Φ(m))⊤

 =

K(1) K(2)

K(3) K(4)

 .
Lemma 2 (Existence). There exists a coefficient γ̂a ∈ R2n such that the maximizer f̂a takes

the form f̂a = Ψ′γ̂a.

Proof. Write the objective as

E1(f) :=
1

n

n∑
i=1

⟨f, ϕ(m)(Xi)⟩H − a(Xi)⟨f, ϕ(Xi)⟩H − ⟨f, ϕ(Xi)⟩2H − λ∥f∥2H.

For an RKHS, evaluation is a continuous functional represented as the inner product with

the feature map. Due to the ridge penalty, the stated objective is coercive and strongly

convex with respect to f . Hence it has a unique maximizer f̂a that obtains the maximum.

To lighten notation, we suppress the indexing of f̂a by a for the rest of this argument.

Write f̂ = f̂n + f̂⊥
n where f̂n ∈ row(Ψ) and f̂⊥

n ∈ null(Ψ). Substituting this decomposition

of f̂ into the objective, we see that E1(f̂) = E1(f̂n) − λ∥f̂⊥
n ∥2H. Therefore E1(f̂) ≤ E1(f̂n).

Since f̂ is the unique maximizer, f̂ = f̂n.
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Lemma 3 (Formula). The explicit formula for the coefficient is given by γ̂a = 1
2
∆− [V − Ua],

where

U :=

K(1)

K(3)

 ∈ R2n×n ∆ := UU ′ + nλK ∈ R2n×2n V :=

K(2)

K(4)

1n ∈ R2n.

Proof. Write the objective as

E1(f) =
1

n

n∑
i=1

⟨f, ϕ(m)(Xi)⟩H − ⟨a, ϕ(Xi)⟩H⟨f, ϕ(Xi)⟩H − ⟨f, ϕ(Xi)⟩2H − λ⟨f, f⟩H

=
1

n
f ′(Φ(m))′1n − f ′T̂ a− f ′T̂ f − λf ′f

where T̂ := 1
n

∑n
i=1 ϕ(Xi)⊗ ϕ(Xi). Appealing to Lemma 2,

E1(γ) =
1

n
γ′Ψ(Φ(m))′1n − γ′ΨT̂ a− γ′ΨT̂Ψ′γ − λγ′ΨΨ′γ

=
1

n
γ′

K(2)

K(4)

1n −
1

n
γ′UΦa− 1

n
γ′UU ′γ − λγ′Kγ =

1

n
γ′V − 1

n
γ′UΦa− 1

n
γ′UU ′γ − λγ′Kγ.

The first order condition yields 1
n
V− 1

n
UΦa− 2

n
UU ′γ̂a−2λKγ̂a = 0. Hence γ̂a = 1

2
[UU ′ + nλK]− [V − UΦa].

Finally, note that a = Φa ∈ Rn with [a]i = a(Xi).

Lemma 4 (Evaluation). To evaluate the adversarial maximizer, set f̂a(x) =
[
K

(1)
xX K

(2)
xX

]
γ̂a

where [K
(1)
xX ]j = k(x,Xj) and [K

(2)
xX ]j = km(x,Xj).

Proof. By Lemma 2 f̂a(x) = ⟨f̂a, ϕ(x)⟩H = ϕ(x)′Ψ′γ̂a =
[
K

(1)
xX K

(2)
xX

]
γ̂a.

Lemma 5 (Evaluation). To evaluate the functional applied to the adversarial maximizer,

set m(x, f̂a) =
[
K

(3)
xX K

(4)
xX

]
γ̂a where [K

(3)
xX ]j = km(Xj, x) and [K

(4)
xX ]j = kmm(x,Xj).

Proof. By Lemma 2, m(x, f̂a) = ⟨f̂a, ϕ(m)(x)⟩H = ϕ(m)(x)′Ψ′γ̂a =
[
K

(3)
xX K

(4)
xX

]
γ̂a.

Proof of Proposition 2. The result is immediate from the lemmas above.

Minimizer closed form. Once again, we prove the result via a sequence of lemmas.

Lemma 6 (Existence). There exists a coefficient β̂ ∈ Rn such that the minimizer â takes

the form â = Φ′β̂.
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Proof. Observe that by Lemmas 3, 4, and 5,

f̂a(x) =
1

2

[
K

(1)
xX K

(2)
xX

]
∆− [V − UΦa] , m(x; f̂a) =

1

2

[
K

(3)
xX K

(4)
xX

]
∆− [V − UΦa]

∥f̂a∥2H = γ̂′aΨΨ′γ̂a =
1

4
[V − UΦa]′ ∆−K∆− [V − UΦa] .

Write the objective as

E2(a) =
1

n

n∑
i=1

m(Xi; f̂a)− ⟨a, ϕ(Xi)⟩Hf̂a(Xi)− f̂a(Xi)
2 − λ∥f̂a∥2H + µ∥a∥2H

where the various terms involving f̂a only depend on a in the form Φa. Due to the ridge

penalty, the stated objective is coercive and strongly convex with respect to a. Hence it has

a unique maximizer â that obtains the maximum.

Write â = ân+â
⊥
n where ân ∈ row(Φ) and â⊥n ∈ null(Φ). Substituting this decomposition

of â into the objective, we see that E2(â) = E2(ân) + µ∥â⊥n ∥2H. Therefore E2(â) ≥ E2(ân).

Since â is the unique minimizer, â = ân.

Lemma 7 (Formula). The explicit formula for the coefficient is given by β̂ =
(
A′∆−A+

4nµ ·K(1)
)−
A′∆−V , where A := UK(1).

Proof. By Lemma 2,

E1(f) =
1

n
f ′(Φ(m))′1n − f ′T̂ a− f ′T̂ f − λf ′f =

1

n
γ′Ψ(Φ(m))′1n − γ′ΨT̂ a− γ′ΨT̂Ψ′γ − λγ′ΨΨ′γ

with first order condition

0 =
1

n
Ψ(Φ(m))′1n −ΨT̂ a− 2ΨT̂Ψ′γ̂a − 2λΨΨ′γ̂a =

1

n
Ψ(Φ(m))′1n −ΨT̂ a− 2ΨT̂ f̂a − 2λΨf̂a.

Hence 2Ψ(T̂ + λI)f̂a = Ψ
[
1
n
(Φ(m))′1n − T̂ a

]
and therefore multiplying both sides by γ̂′a

gives 2f̂ ′
a(T̂ + λI)f̂a = f̂ ′

a

[
1
n
(Φ(m))′1n − T̂ a

]
. Thus we have

E2(a) =
1

n
f̂ ′
a(Φ

(m))′1n − f̂ ′
aT̂ a− f̂ ′

aT̂ f̂a − λf̂ ′
af̂a + µa′a = 2f̂ ′

a(T̂ + λI)f̂a − f̂ ′
aT̂ f̂a − λf̂ ′

af̂a + µa′a

= f̂ ′
a(T̂ + λI)f̂a + µa′a = f̂ ′

aT̂ f̂a + λf̂ ′
af̂a + µa′a.

By Lemma 2,

E2(a) =
1

n
γ̂′aΨΦ′ΦΨ′γ̂a + λγ̂′aΨΨ′γ̂a + µa′a =

1

n
γ̂′aUU

′γ̂a + λγ̂′aKγ̂a + µa′a =
1

n
γ̂′a∆γ̂a + µa′a.
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By Lemma 3,

E2(a) =
1

4n
(V − UΦa)′∆−∆∆−(V − UΦa) + µa′a =

1

4n
(V − UΦa)′∆−(V − UΦa) + µa′a.

By Lemma 6,

E2(β) =
1

4n
(V − UΦΦ′β)′∆−(V − UΦΦ′β) + µβ′ΦΦ′β

=
1

4n
(V − UK(1)β)′∆−(V − UK(1)β) + µβ′K(1)β =

1

4n
(V − Aβ)′∆−(V − Aβ) + µβ′K(1)β.

The first order condition then becomes

− 1

2n
A′∆−(V − Aβ) + 2µK(1)β = 0 ⇔ (A′∆−A+ 4nµK1)β = A′∆−V.

Solving for β yields the desired solution.

Lemma 8 (Evaluation). To evaluate the minimizer, set â(x) = K
(1)
xX β̂.

Proof. By Lemma 6 â(x) = ⟨â, ϕ(x)⟩H = ϕ(x)′Φ′β̂ = K
(1)
xX β̂.

Proof of Proposition 3. The result is immediate from the lemmas above.

Nyström approximation. Computation of kernel methods may be demanding due to

the inversions of matrices that scale with n such as ∆ ∈ R2n×2n. One solution is Nyström

approximation. We now provide alternative expressions for (f̂a, â) that lend themselves to

Nyström approximation, then describe the procedure.

Lemma 9 (Maximizer sufficient statistics). The adversarial maximizer may be expressed as

f̂a =
1
2
(T̂ +λI)−1(µ̂(m)− T̂ a) where µ̂(m) := 1

n

∑n
i=1 ϕ

(m)(Xi) and T̂ := 1
n

∑n
i=1 ϕ(Xi)⊗ϕ(Xi).

Proof. Recall the loss

E1(f) =
1

n
f ′(Φ(m))′1n − f ′T̂ a− f ′T̂ f − λf ′f = f ′(µ̂(m) − T̂ a)− f ′(T̂ + λI)f.

Informally, we see that the first order condition must be 2(T̂ + λI)f̂a = µ̂(m) − T̂ a. See

[De Vito and Caponnetto, 2005, Proof of Proposition 2] for the formal derivation, which

incurs additional notation. Rearranging yields the desired result.

Lemma 10 (Minimizer sufficient statistics). The minimizer may be expressed as â =

[T̂ (T̂ + λI)−1T̂ + 4µI]−1T̂ (T̂ + λI)−1µ̂(m).
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Proof. By Lemma 9,

E2(a) =
1

n
f̂ ′
a(Φ

(m))′1n − f̂ ′
aT̂ a− f̂ ′

aT̂ f̂a − λf̂ ′
af̂a + µa′a = f̂ ′

a(µ̂
(m) − T̂ a)− f̂ ′

a(T̂ + λI)f̂a + µa′a

= f̂ ′
a[2(T̂ + λI)f̂a]− f̂ ′

a(T̂ + λI)f̂a + µa′a = f̂ ′
a(T̂ + λI)f̂a + µa′a

=
1

4
[(T̂ + λI)−1(µ̂(m) − T̂ a)]′(T̂ + λI)[(T̂ + λI)−1(µ̂(m) − T̂ a)] + µa′a.

Informally, we see that the first order condition must be

0 =
1

4
[−2T̂ (T̂ + λI)−1](T̂ + λI)[(T̂ + λI)−1(µ̂(m) − T̂ a)] + 2µa.

See [De Vito and Caponnetto, 2005, Proof of Proposition 2] for the formal way of de-

riving the first order condition, which incurs additional notation. Simplifying, 0 =

T̂ (T̂ + λI)−1(T̂ a− µ̂(m)) + 4µa. Rearranging yields the desired result.

The closed form solution in Lemma 10 is in terms of the sufficient statistics T̂ =

1
n

∑n
i=1 ϕ(Xi) ⊗ ϕ(Xi) and µ̂(m) = 1

n

∑n
i=1 ϕ

(m)(Xi). Nyström approximation is a way

to approximate these sufficient statistics. In particular, the Nyström approach uses the

substitution ϕ(x) 7→ ϕ̃(x) = (K
(1)
SS )

− 1
2K

(1)
Sx , where S is a subset of S = |S| ≪ n observations

called landmarks. K
(1)
SS ∈ RS×S is defined such that [K

(1)
SS ]ij = k(Xi, Xj) for i, j ∈ S.

Similarly, K(1)
Sx ∈ RS is defined such that [K

(1)
Sx ]i = k(Xi, x) for i ∈ S. We conduct a similar

substitution for ϕ(m). For example, for ATE, ϕ(m)(x) = ϕ(1, w) − ϕ(0, w) 7→ ϕ̃(1, w) −

ϕ̃(0, w) = ϕ̃(m)(x) where ϕ̃(x) is defined above. In summary, the approximate sufficient

statistics are T̃ = 1
n

∑n
i=1 ϕ̃(Xi)⊗ ϕ̃(Xi) ∈ RS×S and µ̃(m) = 1

n

∑n
i=1 ϕ̃

(m)(Xi) ∈ RS.

G Simulated and real data details

G.1 Additional results: Baseline design

A baseline design showcases how eliminating sample splitting may improve precision—

a simple point with practical consequences for applied statistics, that underscores the

importance of Theorems 2 and 3.

In a baseline setting with dim(W ) = 10, every variation of our estimator achieves

nominal coverage when the sample size is sufficiently large. We document performance in
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100 simulations for sample sizes n ∈ {100, 200, 500, 1000, 2000}, which are representative for

empirical social scientific research.

n
Estimator Prop. score Adversarial

Function space logistic R.F. sparse RKHS Nystrom R.F. N.N.

coverage 95 95 97 96 91 93 53

100 bias -1 5 1 2 3 8 -11

length 138 99 118 113 93 106 34

coverage 95 92 95 96 85 92 57

200 bias 2 2 0 4 0 4 -6

length 80 65 77 98 63 68 33

coverage 95 95 97 98 93 97 82

500 bias -1 0 -3 1 -2 0 -5

length 48 42 46 64 41 44 34

coverage 95 87 91 99 88 86 90

1000 bias 0 3 1 1 3 3 0

length 34 30 32 42 29 30 32

coverage 96 92 95 97 91 89 94

2000 bias 0 2 1 1 2 2 1

length 23 21 22 28 21 21 23

Table 3: Simple design, sample splitting {dim(W ) = 10}. Values are multiplied by 102.
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n
Estimator Prop. score Adversarial

Function space logistic R.F. sparse RKHS Nystrom R.F. N.N.

coverage 92 - 94 95 91 92 50

100 bias 0 - 1 0 1 7 -8

length 94 - 94 96 86 88 32

coverage 92 - 95 94 88 93 58

200 bias 1 - -1 1 0 2 -6

length 68 - 68 73 58 65 34

coverage 92 - 91 92 87 90 77

500 bias -2 - -3 -3 -2 -2 -6

length 41 - 41 43 37 40 33

coverage 86 - 85 97 83 85 84

1000 bias 0 - 0 0 1 1 0

length 27 - 26 32 25 26 28

coverage 94 - 92 93 90 92 93

2000 bias -1 - 0 0 0 1 0

length 20 - 19 20 19 19 20

Table 4: Simple design, no sample splitting {dim(W ) = 10}. Values are multiplied by 102.

Tables 3 and 4 present results. We find that every version of our adversarial estimator

(i-v) achieves nominal coverage with and without sample splitting, as long as the sample

size is large enough. In particular, (i-iv) achieve nominal coverage with n = 100, but (v)

requires n = 2000. The propensity score estimators (vi-vii) also achieve nominal coverage.

Comparing entries across tables, we see that eliminating sample splitting always reduces

the confidence interval length. For example, with n = 100, (i) has length 1.18 with sample

splitting and length 0.94 without sample splitting; eliminating sample splitting reduces the

confidence interval length by 20%. Another general trend is that our estimators have the

shortest confidence intervals among those implemented—tied with the parametric estimator

(vi), and shorter than (vii). For example, with n = 100, (i) has length 0.94 without sample

splitting while the lengths of (vi-vii) are at best 0.94 and 0.99, respectively.
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G.2 Simulation designs

We generate one draw from the high dimensional setting as follows. Define the vector β ∈ Rp

such that βj = j−2 and the matrix Σ ∈ Rp×p such that Σii = 1 and Σij = 0.5·1|i−j|=1 for i ̸= j.

We draw the covariates W ∼ N(0,Σ), the treatment D ∼ Bernoulli(0.05 + 0.5Λ(W⊤β))

where Λ(·) is the logistic function, and then calculate the outcome Y = 2.2D + 1.2W⊤β +

DW1 + ϵ where ϵ ∼ N(0, 1). To convey a high dimensional setting, we take n = 100 and

p = 100.

We generate one draw from the highly nonlinear setting as follows. We draw the

covariates W ∼ N(0,Σ), the treatment D ∼ Bernoulli(0.1 + 0.8 · 1W1>0), and then calculate

Y = 2.2D + 1.2 · 1W1>0 +DW1 + ϵ where ϵ ∼ N(0, 1). We take n = 1000 and p = 10.

To generate one draw from the baseline design, we modify the high dimensional design

to have p = 10. We vary n ∈ {100, 200, 500, 1000, 2000}.

G.3 Heterogeneous effects by political environment

We follow variable definitions of [Karlan and List, 2007]. The outcome Y is dollars donated

in Figure 1, and an indicator of whether the household donated in Figure 2. The treatment

D indicates receiving a 1:1 matching grant as part of a direct mail solicitation. For simplicity,

we exclude other treatment arms, namely 2:1 and 3:1 matching grants. A “red” unit of

geography is one in George W. Bush won more than half of the votes in the 2004 presidential

election. The raw covariates W ∈ R15 are political environment, previous contributions,

race, age, household size, income, home-ownership, education, and urban status. Specifically,

the initial covariate W1 indicates whether the political environment is a red state.

We exclude 4147 observations with extreme propensity scores based on these covariates,

yielding n = 21712 observations for analysis. Specifically, we dropped observations with

propensity scores outside of [0.1, 0.9] based on simple logistic models for the treatment

propensity score and red state propensity score. For tractability with this large sample size,

we approximate our adversarial RKHS estimator using our adversarial Nyström estimator

with 1000 landmarks.

Proposition 11 (Riesz representation and mean square continuity). To lighten notation,
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define g0(D,A, V ) = E(Y |D,A, V ) and

E{m(Z; g)} = E[{g(1, 1, V )− g(0, 1, V )} − {g(1, 0, V )− g(0, 0, V )}].

Then E{m(Z; g)} = E{a0(D,A, V )g(D,A, V )} where

a0(D,A, V ) =
1A=1

P(A = 1|V )

{
1D=1

P(D = 1|A = 1, V )
− 1D=0

P(D = 0|A = 1, V )

}
− 1A=0

P(A = 0|V )

{
1D=1

P(D = 1|A = 0, V )
− 1D=0

P(D = 0|A = 0, V )

}
=

{
1A=1

P(A = 1|V )
− 1A=0

P(A = 0|V )

}{
1D=1

P(D = 1|A, V )
− 1D=0

P(D = 0|A, V )

}
and the functional is mean square continuous when P(D = 1|A, V ) and P(A = 1|V ) are

bounded away from zero and one almost surely.

Proof. We directly generalize the argument for average treatment effect in Proposition 7.

H Sparse linear case details

H.1 Fast rate

Proof of Corollary 9. The critical radius δn is of order O
(√

s log(p n)
n

)
. The ϵ-covering

number of such a function class is of order Nn(ϵ;F) = O
((

p
s

) (
b
ϵ

)s) ≤ O
((

p b
ϵ

)s)
, since

it suffices to choose the support of the coefficients and then place a uniform ϵ-grid on

the support. Thus (1) is satisfied for δ = O

(√
s log(p b) log(n)

n

)
. Moreover, observe that if

m(Z; f) is L-Lipschitz in f with respect to the ℓ∞ norm, then the covering number of m ◦F

is also of the same order. Finally, we appeal to Corollary 3.

To simplify notation, we let â = ǎ in this subsection.

Proof of Proposition 4. By the definition of â: 0 ≤ supf Ψn(â, f) ≤ supf Ψn(a0, f) +

λ (∥a0∥A − ∥â∥A) . Let δn,ζ = maxi {R(F i) +R(m ◦ F i)} + c0

√
log(c1/ζ)

n
for some univer-

sal constants c0, c1. By [Shalev-Shwartz and Ben-David, 2014, Theorems 26.5 and 26.9],

since F i is a symmetric class and since ∥a0∥∞ ≤ 1, with probability 1 − ζ, ∀f ∈ F i :

|Ψn(a0, f)−Ψ(a0, f)| ≤ δn,ζ . Since Ψ(a0, f) = 0 for all f ∈ F , with probability 1− ζ,

0 ≤ sup
f

Ψn(a0, f) + λ (∥a0∥A − ∥â∥A) ≤ δn,ζ + λ (∥a0∥A − ∥â∥A)
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which implies ∥â∥A ≤ ∥a0∥A + δn,ζ/λ.

Let Bn,λ,ζ = (∥a0∥H + δn,ζ/λ)
2, AB · F i := {a · f : a ∈ AB, f ∈ F i} and

ϵn,λ,ζ = max
i

{
R(ABn,λ,ζ

· F i) +R(m ◦ F i)
}
+ c0

√
log(c1/ζ)

n

for some universal constants c0, c1. Then again by [Shalev-Shwartz and Ben-David, 2014,

Theorems 26.5 and 26.9], ∀a ∈ ABn,λ,ζ
, f ∈ F i

U : |Ψn(a, f)−Ψ(a, f)| ≤ ϵn,λ,ζ . By a

union bound over the d function classes composing F , we have that with probability 1− 2ζ

supf∈F Ψn(a0, f) ≤ supf∈F Ψ(a0, f)+δn,ζ/d = δn,ζ/d and supf∈F Ψn(â, f) ≥ supf∈F Ψ(â, f)−

ϵn,λ,ζ/d.

If ∥â − a0∥2 ≤ δn,ζ , the result follows immediately. Thus we consider the case when

∥â− a0∥2 ≥ δn,ζ . Since, by assumption, for any a ∈ AB with ∥a− a0∥ ≥ δn,ζ it holds that
a0−a

∥a0−a∥2 ∈ spanκ(F), we have a0−â
∥a0−â∥2 =

∑p
i=1wifi, with p <∞, ∥w∥1 ≤ κ and fi ∈ F . Thus

sup
f∈F

Ψ(â, f) ≥ 1

κ

p∑
i=1

wiΨ(â, fi) =
1

κ
Ψ

(
â,
∑
i

wifi

)
=

1

κ

1

∥â− a0∥2
Ψ(â, a0 − â)

=
1

κ

1

∥â− a0∥2
E[(a0(X)− â(X))2] =

1

κ
∥â− a0∥2.

Combining results, with probability 1−2ζ, ∥â−a0∥2 ≤ κ
(
{ϵn,λ,ζ/d + δn,ζ/d + λ (∥a0∥A − ∥â∥A)

}
.

Moreover, since functions in A and F are bounded in [−b, b], we have that the function

a · f is b-Lipschitz with respect to the vector of functions (a, f). Thus we can apply a vec-

tor version of the contraction inequality [Maurer, 2016] to get that R(ABn,λ,z
· F i) ≤

2
{
R(ABn,λ,z

) +R(F i)
}
. Finally, since A is star-convex, we have that R(ABn,λ,z

) ≤√
Bn,λ,z R(A1), leading to the final bound of

∥â− a0∥2 ≤ κ
[
2 {∥a0∥A + δn,ζ/λ}R(A1) + 2 max

i

{
R(F i) +R(m ◦ F i)

}]
+ κ

(
c0

√
log(c1 d/ζ)

n
+ λ (∥a0∥A − ∥â∥A)

)
.

Since λ ≥ δn,ζ , we arrive at the desired result.

Proof of Corollary 10. We will apply Proposition 4 with A = {⟨θ, ·⟩ : ∥θ∥ ≤ B} and norm

∥⟨θ, ·⟩∥A = ∥θ∥1. By standard results on the Rademacher complexity of linear function

classes [Shalev-Shwartz and Ben-David, 2014, Lemma 26.11], R(AB) ≤ B
√

2 log(2 p)
n

maxx∈X ∥x∥∞
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and R(F i),R(m ◦F i) ≤
√

2 log(2)
n

maxx∈X ∥x∥∞ . The latter holds since each F i, and there-

fore also m ◦ F i, contains only two elements; then invoke Masart’s lemma. Thus we can

apply Proposition 4 with

δn,ζ := 2max
i

{
R(F i) +R(m ◦ F i)

}
+ c0

√
log(c1 p/ζ)

n
= c2

√
log(c1 p/ζ)

n

for some universal constant c2. Hence, we derive from Proposition 4 that with probability

1− ζ, ∥â∥A ≤ ∥a0∥A + δn,ζ/λ which implies ∥θ̂∥1 ≤ ∥θ0∥1 + δn,ζ/λ.

We will now verify the span condition of Proposition 4 and derive the constant κ.

Consider any â = ⟨θ̂, ·⟩ ∈ ABn,λ,ζ
and let ν = θ̂ − θ0. Then

δn,ζ/λ+ ∥θ0∥1 ≥ ∥θ̂∥1 = ∥θ0 + ν∥1 = ∥θ0 + νS∥1 + ∥νSc∥1 ≥ ∥θ0∥1 − ∥νS∥1 + ∥νSc∥1.

Hence ∥νSc∥1 ≤ ∥νS∥1 + δn,ζ/λ and ν lies in the restricted cone for which the restricted

eigenvalue of V holds. Since |S| = s,

∥ν∥1 ≤ 2∥νS∥1 + δn,ζ/λ ≤ 2
√
s∥νS∥2 + δn,ζ/λ ≤ 2

√
s∥ν∥2 + δn,ζ/λ ≤ 2

√
s

γ
ν⊤V ν + δn,ζ/λ.

Moreover, observe that ∥â − a0∥2 =
√
E[⟨ν, x⟩2] =

√
ν⊤V ν. Thus we have â(x)−a0(x)

∥â−a0∥2 =∑p
i=1

νi√
ν⊤V ν

xi. As a consequence, for any â ∈ ABn,λ,ζ
, we can write â−a0

∥â−a0∥2 as
∑p

i=1wifi,

with fi ∈ F and

∥w∥1 =
∥ν∥1√
ν⊤V ν

≤ 2

√
s

γ
+
δn,ζ
λ

1

∥â− a0∥2
.

In summary, â−a0
∥â−a0∥2 ∈ spanκ(F) for κ = 2

√
s
γ
+

δn,ζ

λ
1

∥â−a0∥2 .

Next, by the triangle inequality,

∥a0∥A − ∥â∥A = ∥θ0∥1 − ∥θ̂∥1 ≤ ∥θ0 − θ̂∥1 = ∥ν∥1 ≤ 2

√
s

γ
ν⊤V ν + δn,ζ/λ.

Therefore by Proposition 4, as long as λ ≥ δn,ζ

∥â− a0∥2 ≤
(
2

√
s

γ
+
δn,ζ
λ

1

∥â− a0∥2

)
·

(
2(∥θ0∥1 + 1)

√
log(2p)

n
+ δn,ζ + λ

√
s

γ
∥â− a0∥2

)
.

The right hand side is upper bounded by the sum of the following four terms:

Q1 := 2

√
s

γ

(
2(∥θ0∥1 + 1)

√
log(2p)

n
+ δn,ζ

)

Q2 :=

(
δn,ζ
λ

1

∥â− a0∥2

)(
2(∥θ0∥1 + 1)

√
log(2p)

n
+ δn,ζ

)

Q3 := 2λ
s

γ
∥â− a0∥2, Q4 := δn,ζ

√
s

γ
.
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If ∥â− a0∥2 ≥
√

s
γ
δn,ζ and λ ≤ γ

8s
, then

Q2 ≤ 8
1

λ

√
γ

s

(
2(∥θ0∥1 + 1)

√
log(2p)

n
+ δn,ζ

)
, Q3 ≤

1

4
∥â− a0∥2.

Thus bringing Q3 on the LHS and dividing by 3/4, we have

∥â−a0∥2 ≤
4

3
(Q1+Q2+Q4) =

4

3
max

{√
s

γ
,
1

λ

√
γ

s

}(
20 (∥θ0∥1 + 1)

√
log(2p)

n
+ 11δn,ζ

)
.

On the other hand if ∥â− a0∥2 ≤
√

s
γ
δn,ζ , then the latter inequality trivially holds. Thus it

holds in both cases.

H.2 Semiparametric inference

Proof of Corollary 11. Note that√
B̃ ≥ ∥θ∥1 = ∥θ∗ + ν∥1 = ∥(θ∗ + ν)T∥1 + ∥νT c∥1 ≥ ∥θ∗∥1 − ∥νT∥1 + ∥νT c∥1.

So if
√
B̃ = κ+ ∥θ∗∥1 then ∥νT c∥1 ≤ ∥νT∥1 + κ as desired. What remains to characterize is

∥ν∥1 ≤ ∥θ∥1 + ∥θ∗∥1 ≤
√
B̃ + ∥θ∗∥1 = κ+ 2∥θ∗∥1 =

√
B.

Proof of Proposition 5. Let F be the subset of (A− a∗)B with ν ′E[ϕ(X)ϕ(X)′]ν ≤ δ2. We

first show that F ⊂ G where G =
{
ν ′ϕ(X) : ν ∈ Rp, ∥ν∥21 ≤ B, ∥ν∥1 ≤ (µ+1)

√
s√

γ
δ + κ

}
. In

particular, since ν ′(γI)ν ≤ ν ′E[ϕ(X)ϕ(X)′]ν

∥ν∥1 = ∥νT∥1 + ∥νT c∥1 ≤ (µ+ 1)∥νT∥1 + κ ≤ (µ+ 1)
√
s∥νT∥2 + κ

≤ (µ+ 1)
√
s∥ν∥2 + κ ≤ (µ+ 1)

√
s

√
γ

√
ν ′E[ϕ(X)ϕ(X)′]ν + κ.

Next we characterize the empirical metric entropyHn(G, ϵ) = log [N{ϵ;G; ℓ2}]. By [Zhang, 2002,

Theorem 3],

Hn({ν ′ϕ(X) : ν ∈ Rp, ∥ν∥1 ≤ a1, ∥ϕ(X)∥∞ ≤ a2}, ϵ) = O

{
a21a

2
2

ϵ2
log(p)

}

which in our case implies Hn(G, ϵ) = O

[{
(µ+1)

√
s√

γ
δ + κ

}2
1
ϵ2
log(p)

]
. Note that the same

holds replacing
{

(µ+1)
√
s√

γ
δ + κ

}2

with B.
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Finally, we turn to (1):
∫ δ

δ2

2b

√
log[N{ϵ;G;ℓ2}]

n
dϵ ≤ δ2

64b
. The left hand side simplifies, for some

universal constant c0, as∫ δ

δ2

2b

√
log [N{ϵ;G; ℓ2}]

n
dϵ ≤ c0

{
µ
√
s

√
γ
δ + κ

}√
log(p)

n

∫ δ

δ2

2b

1

ϵ
dϵ

= c0

{
µ
√
s

√
γ
δ + κ

}√
log(p)

n
log(2b/δ) = c0

µ
√
s

√
γ
δ

√
log(p)

n
log(2b/δ) + c0κ

√
log(p)

n
log(2b/δ).

The former term is bounded by δ2/64b when c0bµ
√
s√
γ

√
log(p)

n
log(2b) ≤ δ

log(1/δ)
. The latter term

is bounded by δ2/64b when
{
c0bκ

√
log(p)

n
log(2b)

}1/2

≤ δ√
log(1/δ)

. An analogous argument

gives the condition
{
c0b

√
B
√

log(p)
n

log(2b)

}1/2

≤ δ√
log(1/δ)

. Hence it suffices to take

δn = c1 · log(n) log(B)B1/2 ·max

{
µ

√
s log(p)

nγ
, κ1/2

(
log(p)

n

)1/4

,

(
log(p)

n

)1/4
}
.

The middle term dominates the final term.

Proof of Corollary 12. Since κ = 0, we ignore the second term in Proposition 5.

Proof of Corollary 13. The proof is similar to the proof of Corollary 12. The key observation

is that, for this function space, m(z; g − g∗) = (θ − θ∗)(m ◦ ϕ)(x) = ν(x)′ψ(x).

Proof of Corollary 14. By Corollary 10 and λ = γ/8s, with probability 1− ζ,

∥θ̂∥1 ≤ ∥θ∗∥1 + c2
s

γ

√
log(p/ζ)

n
=
√
B̃ = ∥θ∗∥1 + κ.

Hence by Corollary 11 we consider the restricted cone with µ = 1, κ = c2
s
γ

√
log(p/ζ)

n
, and

√
B = κ+ 2∥θ∗∥1. By Proposition 5,

δn = c3 · log(n) log(B)B1/2 ·max

{√
s log(p)

nγ
,

√
s

γ

(
log(p/ζ)

n

)1/4(
log(p)

n

)1/4
}

≤ c3 · log(n) log(B)B1/2 ·

√
s log(p/ζ)

nγ
.

Finally, note that if s = o

{√
n

log(p)

}
then for n sufficiently large,

√
B = κ + 2∥θ∗∥1 =

c2
s
γ

√
log(p/ζ)

n
+ 2∥θ∗∥1 ≤ 3∥θ∗∥1.

71



H.3 Computational analysis

Lemma 11 (OFTRL; c.f. Proposition 7 of [Syrgkanis et al., 2015]). Consider an online

linear optimization algorithm over a convex strategy space S and consider the OFTRL

algorithm with a 1-strongly convex regularizer with respect to some norm ∥ · ∥ on space

S: ft = argminf∈S f
⊤ (∑

τ≤t ℓτ + ℓt
)
+ 1

η
R(f). Let ∥ · ∥∗ denote the dual norm of ∥ · ∥ and

R = supf∈S R(f)− inff∈S R(f). Then for any f ∗ ∈ S:

T∑
t=1

(ft − f ∗)⊤ℓt ≤
R

η
+ η

T∑
t=1

∥ℓt − ℓt−1∥∗ −
1

4η

T∑
t=1

∥ft − ft−1∥2.

Proof. [Syrgkanis et al., 2015, Proposition 7] holds verbatim for any convex strategy space

S and not necessarily the simplex.

Lemma 12 (Approximate equilibrium; c.f. Lemma 4 of [Rakhlin and Sridharan, 2013] and

Theorem 25 of [Syrgkanis et al., 2015]). Consider a minimax objective minθ∈Θmaxw∈W ℓ(θ, w).

Assume that Θ,W are convex sets, ℓ(θ, w) is convex in θ for every w, and ℓ(θ, w) is concave

in θ for any w. Let ∥ · ∥Θ and ∥ · ∥W be arbitrary norms in the corresponding spaces.

Moreover, suppose that the following Lipschitzness properties are satisfied:

∀θ ∈ Θ, w, w′ ∈ W : ∥∇θℓ(θ, w)−∇θℓ(θ, w
′)∥Θ,∗ ≤ L∥w − w′∥W

∀w ∈ W, θ, θ′ ∈ Θ : ∥∇wℓ(θ, w)−∇wℓ(θ
′, w)∥W,∗ ≤ L∥θ − θ′∥Θ

where ∥ · ∥Θ,∗ and ∥ · ∥W,∗ correspond to the dual norms of ∥ · ∥Θ, ∥ · ∥W . Consider the

algorithm where at each iteration each player updates their strategy based on:

θt+1 = argmin
θ∈Θ

θ⊤

(∑
τ≤t

∇θℓ(θτ , wτ ) +∇θℓ(θt, wt)

)
+

1

η
Rmin(θ)

wt+1 = argmax
w∈W

wT

(∑
τ≤t

∇wℓ(θτ , wτ ) +∇wℓ(θt, wt)

)
− 1

η
Rmax(w)

such that Rmin is 1-strongly convex in the set Θ with respect to norm ∥ · ∥Θ and Rmax is

1-strongly convex in the set W with respect to norm ∥ · ∥W and with any step-size η ≤ 1
4L

.

Then the parameters θ̄ = 1
T

∑T
t=1 θt and w̄ = 1

T

∑T
t=1wt correspond to an 2R∗

η·T -approximate

equilibrium and hence θ̄ is a 4R∗
ηT

-approximate solution to the minimax objective, where

R∗ := max

{
sup
θ∈Θ

Rmin(θ)− inf
θ∈Θ

Rmin(θ), sup
w∈W

Rmax(w)− inf
w∈W

Rmax(w)

}
.
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Proof. The lemma is essentially a re-statement of [Syrgkanis et al., 2015, Theorem 25], spe-

cialized to the case of the OFTRL algorithm and to the case of a two-player convex-concave

zero-sum game. That result, in turn, adapts [Rakhlin and Sridharan, 2013, Lemma 4]. If

the sum of regrets of players is at most ϵ, then the pair of average solutions corresponds to

an ϵ-equilibrium [Freund and Schapire, 1999].

Proof of Proposition 6. Let RE(x) =
∑2p

i=1 xi log(xi). For the space Θ := {ρ ∈ R2p : ρ ≥

0, ∥ρ∥1 ≤ B}, the entropic regularizer is 1
B

-strongly convex with respect to the ℓ1 norm

and hence we can set Rmin(ρ) = BRE(ρ). Similarly, for the space W := {w ∈ R2p : w ≥

0, ∥w∥1 = 1}, the entropic regularizer is 1-strongly convex with respect to the ℓ1 norm and

thus we can set Rmax(w) = RE(w). For these regularizers, the update rules can be verified

to have the closed form solution provided in Proposition 6 by writing the Lagrangian of each

OFTRL optimization problem and invoking strong duality. Next, we verify the Lipschitz

conditions. Since the dual of the ℓ1 norm is the ℓ∞ norm, ∇ρℓ(ρ, w) = En[V V
⊤]w + λ so

∥∇ρℓ(ρ, w)−∇ρℓ(ρ, w
′)∥∞ = ∥En[V V

⊤](w − w′)∥∞ ≤ ∥En[V V
⊤]∥∞∥w − w′∥1

∥∇wℓ(ρ, w)−∇wℓ(ρ
′, w)∥∞ = ∥En[V V

⊤](ρ− ρ′)∥∞ ≤ ∥En[V V
⊤]∥∞∥ρ− ρ′∥1.

Therefore L = ∥En[V V
⊤]∥∞. Since

sup
ρ∈Θ

BRE(ρ)− inf
ρ∈Θ

BRE(ρ) = B2 log(B ∨ 1) +B log(2p), sup
w∈W

RE(w)− inf
w∈W

RE(w) = log(2p)

we can take R∗ = B2 log(B∨1)+(B+1) log(2p). If η = 1
4∥En[V V ⊤]∥∞ , then after T iterations,

θ̄ = ρ̄+ − ρ̄− is an ϵ(T )-approximate solution to the minimax problem, with

ϵ(T ) = 16∥En[V V
⊤]∥∞

4B2 log(B ∨ 1) + (B + 1) log(2p)

T
.

Finally appeal to Lemma 12.
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