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Abstract—This paper introduces a decentralized state-
dependent Markov chain synthesis (DSMC) algorithm for finite-
state Markov chains. We present a state-dependent consensus
protocol that achieves exponential convergence under mild tech-
nical conditions, without relying on any connectivity assumptions
regarding the dynamic network topology. Utilizing the proposed
consensus protocol, we develop the DSMC algorithm, updating
the Markov matrix based on the current state while ensuring
the convergence conditions of the consensus protocol. This
result establishes the desired steady-state distribution for the
resulting Markov chain, ensuring exponential convergence from
all initial distributions while adhering to transition constraints
and minimizing state transitions. The DSMC’s performance is
demonstrated through a probabilistic swarm guidance example,
which interprets the spatial distribution of a swarm comprising
a large number of mobile agents as a probability distribution
and utilizes the Markov chain to compute transition probabilities
between states. Simulation results demonstrate faster convergence
for the DSMC based algorithm when compared to the previous
Markov chain based swarm guidance algorithms.

Index Terms—Markov Chains, Consensus Protocol, Decentral-
ized Control, Probabilistic Swarm Guidance.

I. INTRODUCTION

Markov chain synthesis has garnered attention from various
disciplines, including physics, systems theory, computer sci-
ence, and numerous other fields of science and engineering.
This attention is particularly notable within the context of
Monte Carlo Markov Chain (MCMC) algorithms [1]–[3].
The fundamental idea underlying MCMC algorithms is to
synthesize a Markov chain that converges to a specified steady-
state distribution. Random sampling of a large state space
while adhering to a predefined probability distribution is the
predominant use of MCMC algorithms. The current litera-
ture covers a broad spectrum of methodologies for Markov
chain synthesis, incorporating both heuristic approaches and
optimization-based techniques [4]–[6]. Each method provides
specialized algorithms tailored to the synthesis of Markov
chains in alignment with specific objectives or constraints.
Markov chain synthesis plays a central role in probabilistic
swarm guidance, which has led to the development of various
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algorithms incorporating additional transition and safety con-
straints [7]–[17]. The probabilistic swarm guidance algorithm
models the spatial distribution of the swarm agents as a
probability distribution and employs the synthesized Markov
chain to guide the spatial distribution of the swarm.

Consensus protocols form an important field of research that
has a strong connection with Markov chains [18]. Consensus
protocols are a set of rules used in distributed systems to
achieve agreement among a group of agents on the value of
a variable [19]–[22]. Markov chains are often employed to
model and analyze the dynamics and convergence properties
of consensus protocols, providing insights into their behavior
and performance [23]–[26].

The current paper presents a consensus protocol specifically
tailored to operate on a dynamic graph topology. We establish
that the protocol provides exponential convergence guarantees,
even under mild technical conditions. Consequently, our ap-
proach eliminates the reliance on conventional connectivity
assumptions commonly found in the existing literature [27]–
[32]. Building on this new consensus protocol, the paper intro-
duces a decentralized state-dependent Markov chain (DSMC)
synthesis algorithm. It is demonstrated that the synthesized
Markov chain, formulated using the proposed consensus al-
gorithm, satisfies the aforementioned mild conditions. This,
in turn, ensures the exponential convergence of the Markov
chain to the desired steady-state. Subsequently, the DSMC
algorithm’s performance is demonstrated on the probabilistic
swarm guidance problem, with the objective of controlling
the spatial distribution of swarm agents. Through simulations,
it is shown that the DSMC algorithm achieves considerably
faster convergence compared to other existing Markov chain
synthesis algorithms.

A. Related Works

The Metropolis-Hastings algorithm is widely recognized as
one of the most prominent techniques for MCMC algorithms
[4]. For the fastest mixing Markov chain synthesis, the prob-
lem is formulated as a convex optimization problem in [5],
assuming that the Markov chain is symmetric. This paper also
presents an extension to the method that involves synthesizing
the fastest mixing reversible Markov chain with a given
desired distribution. Furthermore, the number of variables in
the optimization problem is reduced in [6] by exploiting the
symmetries in the graph.

The probabilistic swarm guidance problem has been a
crucial domain for the application and enhancement of Markov
chain synthesis algorithms. A comprehensive review of the
broader category of multi-agent algorithms is presented in
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[33], while a survey specifically focusing on aerial swarm
robotics is provided in [34]. Additionally, [35] offers an
overview of existing swarm robotic applications. For swarm
guidance purposes, certain deterministic algorithms have been
developed in [36]–[41]. However, these algorithms may be-
come computationally infeasible when dealing with swarms
that comprise hundreds to thousands of agents. In the context
of addressing the guidance problem for a large number of
agents, considering the spatial distribution of swarm agents
and directing it towards a desired steady-state distribution
offers a computationally efficient approach. In this regard, both
probabilistic and deterministic swarm guidance algorithms are
presented in [42]–[48] for continuous state spaces. For discrete
state spaces, a probabilistic guidance algorithm is introduced
in [7]. This algorithm treats the spatial distribution of swarm
agents, called the density distribution, as a probability distribu-
tion and employs the Metropolis-Hastings (M-H) algorithm to
synthesize a Markov chain that guides the density distribution
toward a desired state. The probabilistic guidance algorithm
led to the development of numerous Markov chain synthesis
algorithms involving specific objectives and constraints [8]–
[17]. In [8], the Metropolis-Hastings algorithm is extended to
incorporate safety upper bound constraints on the probability
vector. This paper includes numerical simulations that demon-
strate the application of the extension in a probabilistic swarm
guidance problem. In order to enhance convergence rates, [9]
introduces a convex optimization-based technique for Markov
chain synthesis. This technique formulates the objective func-
tion and constraints using linear matrix inequalities (LMIs)
to synthesize a Markov chain capable of achieving a desired
distribution while adhering to specified transition constraints.
Notably, this study does not impose any assumptions on the
Markov chain, rendering the problem inherently non-convex.
The problem is convexified for practical purposes but the
optimal convergence rate of the original non-convex problem
cannot be attained. In [10], the approach presented in [9] is
enhanced by incorporating state-feedback to further improve
the convergence rate. These works are also extended to impose
density upper bounds and density rate constraints in [11] and
density flow and density diffusivity constraints in [12]. In
[13], a more general approach is proposed for cases where
the environment is stochastic, and the resulting Markov chain
is shown to be a linear function of the stochastic environment
and decision policy. These convex optimization problems can
be solved using the interior-point algorithm but the compu-
tation time of the algorithm increases rapidly with increasing
dimensionality of the state space [49]. Furthermore, neither
the M-H algorithm nor convex optimization-based approaches
attempt to minimize the number of state transitions. The
swarm guidance problem is formulated as an optimal transport
problem in [50] to minimize the number of agent transitions.
However, besides the similar computational complexity issues,
the performance of the algorithm drops significantly if the
current density distribution of the swarm cannot be estimated
accurately. The time-inhomogeneous Markov chain approach
to the probabilistic swarm guidance problem (PSG-IMC algo-
rithm) is developed in [14] to minimize the number of state
transitions. This algorithm is computationally efficient and

yields reasonable results with low estimation errors. However,
all feedback-based algorithms mentioned above require global
feedback on the state of the density distribution. Communi-
cation between all agents has to be established to estimate
the density distribution in the probabilistic swarm guidance
problem. Generating perfect feedback of the density distribu-
tion is often impractical, leading to the routine occurrence of
estimation errors. An alternative approach that requires only
local information is developed in [15]. In this work, the time-
inhomogeneous Markov chain approach presented in [14] is
modified to work with local information, and the algorithm
is used for minimizing the number of state transitions. Nev-
ertheless, in both global and local information based time-
inhomogeneous Markov chain approaches, it is observed that
the convergence rate diminishes significantly when the state
transition capabilities become more restricted. As it can be
seen in Corollary 1 in [14] or Corollary 3 in [15], the transition
probability from a state to any directly connected state cannot
be higher than the desired density value of the corresponding
directly connected state. In situations where there are sparsely
connected regions in the state space, it is common to observe
a relatively low sum of desired density values among directly
connected states. Consequently, there is a higher probability
of remaining in the same state rather than transitioning to
other states. In terms of the convergence rate, these algorithms
are only effective in cases with high transition capabilities.
Additionally, the performance of these algorithms is highly
sensitive to hyperparameters and requires careful selection for
optimum results in each experiment.

Graph temporal logic (GTL) is introduced in [16] to
impose high-level task specifications as a constraint to the
Markov chain synthesis. Markov chain synthesis is formulated
as mixed-integer nonlinear programming (MINLP) feasibility
problem and the problem is solved using a coordinate descent
algorithm. In addition, an equivalence is proven between the
feasibility of the MINLP and the feasibility of a mixed-integer
linear program (MILP) for a particular case where the agents
move along the nodes of a complete graph. While this study
assumes homogeneous swarms for Markov chain synthesis
subject to finite-horizon GTL formulas, an improved version
of the formulation is presented in [17] to enable probabilistic
control of heterogeneous swarms subject to infinite-horizon
GTL formulas. Instead of solving the resulting MINLP using
a coordinate descent algorithm, a sequential scheme, which is
faster, more accurate, and robust to the choice of the starting
point, is developed in the aforementioned paper.

Markov chains and consensus protocols share a close rela-
tionship. The rich theory of Markov chains has proven to be
valuable in analyzing specific consensus protocols. Notable
works such as [23]–[26] have leveraged Markov chain theory
to provide insights and analysis for consensus protocols.
Consensus protocols, in contrast to Markov chains, operate
without the limitations of non-negative nodes and edges or
the requirement for the sum of nodes to equal one [18].
This broader scope enables consensus protocols to address a
significantly wider range of problem spaces. Therefore, there
is a significant interest in consensus protocols in a broad
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range of multi-agent networked systems research, including
distributed coordination of mobile autonomous agents [27]–
[31], [51], distributed optimization [52]–[56], distributed state
estimation [57], [58], or dynamic load-balancing for parallel
processors [59], [60]. There are comprehensive survey papers
that review the research on consensus protocols [19]–[22].
In many scenarios, the network topology of the consensus
protocol is a switching topology due to failures, formation
reconfiguration, or state-dependence. There is a large number
of papers that propose consensus protocols with switching
network topologies and convergence proofs of these algorithms
are provided under various assumptions [27]–[32]. In [27],
a consensus protocol is proposed to solve the alignment
problem of mobile agents, where the switching topology is
assumed to be periodically connected. This assumption means
that the union of networks over a finite time interval is
strongly connected. Another algorithm is proposed in [28]
that assumes the underlying switching network topology is
ultimately connected. This assumption means that the union
of graphs over an infinite interval is strongly connected. In
[29], previous works are extended to solve the consensus
problem on networks under limited and unreliable information
exchange with dynamically changing interaction topologies.
The convergence of the algorithm is provided under the
ultimately connected assumption. Another consensus protocol
is introduced in [30] for the cooperation of vehicles performing
a shared task using inter-vehicle communication. Based on
this work, a theoretical framework is presented in [31] to
solve consensus problems under a variety of assumptions on
the network topology such as strongly connected switching
topology. In [32], a consensus protocol with state-dependent
weights is proposed and it is assumed that corresponding
graphs are weakly connected, which means that the network
is assumed to be connected over the iterations. Additionally,
optimization-based algorithms are proposed to obtain a high
convergence rate for the consensus protocol in [23] and [61].

B. Main Contributions

In this paper, we first propose a consensus protocol with
state-dependent weights. The proposed consensus protocol
does not require any connectivity assumption on the dynamic
network topology, unlike the existing methods in the literature
[27]–[32]. We provide an exponential convergence guarantee
for the consensus protocol under some mild technical condi-
tions, which can be verified straightforwardly. We then present
a decentralized Markov-chain synthesis (DSMC) algorithm
based on the proposed consensus protocol and we prove that
the resulting DSMC algorithm satisfies these mild conditions.
This result is employed to prove that the resulting Markov
chain has a desired steady-state distribution and that all
initial distributions exponentially converge to this steady-state.
Unlike the homogeneous Markov chain synthesis algorithms
in [4]–[9], the Markov matrix, synthesized by our algorithm,
approaches the identity matrix as the probability distribution
converges to the desired steady-state distribution. Hence the
proposed algorithm attempts to minimize the number of state
transitions, which eventually converge to zero as the proba-

bility distribution converges to the desired steady-state distri-
bution. Whereas previous time-inhomogeneous Markov chain
synthesis algorithms in [14], [15] only provide asymptotic
convergence, the DSMC algorithm provides an exponential
convergence rate guarantee. Furthermore, unlike previous al-
gorithms in [14], [15], the convergence rate of the DSMC
algorithm does not rapidly decrease in scenarios where the
state space contains sparsely connected regions. Due to the
decentralized nature of the consensus protocol, the Markov
chain synthesis relies on local information, similar to the
approach presented in [15], and a complex communication ar-
chitecture is not required for the estimation of the distribution.
By presenting numerical evidence within the context of the
probabilistic swarm guidance problem, we demonstrate that
the convergence rate of the swarm distribution to the desired
steady-state distribution is substantially faster when compared
to previous methodologies. In summary:

• We propose a consensus protocol with state-dependent
weights and prove its exponential convergence under
mild technical conditions, without relying on the typical
connectivity assumptions associated with the underlying
graph topology.

• Based on the proposed consensus protocol, we introduce
the DSMC algorithm, which is shown to meet the con-
vergence conditions outlined by the consensus protocol.

• Simulation results demonstrate that the DSMC algo-
rithm achieves faster convergence, characterized by an
exponential convergence guarantee, compared to existing
homogeneous and time-inhomogeneous Markov chain
synthesis algorithms presented in [7] and [14].

C. Organization and Notation

The paper is organized as follows. Section II presents the
consensus protocol with state-dependent weights. The de-
centralized state-dependent Markov matrix synthesis (DSMC)
algorithm is introduced in Section III. Section IV introduces
the probabilistic swarm guidance problem formulation, and
presents numerical simulations of swarms converging to de-
sired distributions. The paper is concluded in Section V.

Notation: R and C represent the set of real numbers and
complex numbers, respectively. R+ and Z+ represent the set of
non-negative real numbers and non-negative integers, respec-
tively. Rn is the n dimensional real vector space. 0 is a zero
matrix and 1 is a matrix of ones in appropriate dimensions.
x[i](k) represents the ith element of the vector x ∈ Rn at time
k. ∥x∥p denotes the ℓp vector norm. (v1, v2, ..., vn) represents
a vector, such that (v1, v2, ..., vn) ≡ [vT1 , v

T
2 , ..., v

T
n ]

T where
vi have arbitrary dimensions. M > (≥) 0 implies that
M ∈ Rm×n is a positive (non-negative) matrix. Im

1 denotes
the set of integers such that Im

1 = {1, 2, . . . ,m}. λi(A)
is the ith eigenvalue of a matrix A ∈ Rm×m such that
λi(A) ≤ λi+1(A) for i ∈ Im−1

1 . σ(A) is the set of eigenvalues
of A ∈ Rm×m such that σ(A) = {λ1, λ2, . . . , λm}. ∅ denotes
the empty set. V \W represents the elements in set V that are
not in set W . P denotes the probability of a random variable.



4

II. A CONSENSUS PROTOCOL
WITH STATE-DEPENDENT WEIGHTS

The consensus protocol is a process used for achieving
an agreement among distributed agents. In this section, we
introduce a consensus protocol with state-dependent weights
to reach a consensus on time-varying weighted graphs. Unlike
other proposed consensus protocols in the literature, the con-
sensus protocol we introduce does not require any connectivity
assumption on the dynamic network topology. We provide
theoretical analysis for proof of exponential convergence under
some mild technical conditions. We then use the proposed
consensus protocol for the synthesis of the column stochastic
Markov matrix in Section III. It is proven that these mild
assumptions required by the proposed consensus protocol are
satisfied by the Markov matrix synthesis algorithm. We first
define the graph for our consensus approach.
Definition 1. (Time-varying weighted graph) A time-varying
weighted graph is a tuple, Gw(k) = (V, E , w(k)), where V =
{v1, ..., vm} is the set of vertices, E ⊆ V × V is the set of
undirected edges, and w(k) is a time-varying function such
that w : E −→ R+, where wi,j(k) represents the value of
weight for edge {vi, vj} ∈ E at time k.

• (Values of vertices) A time-varying vector e(k) ∈ Rm

such that 1T e(k) = 0 for k ∈ Z+ can define a vector of
values of vertices, i.e., e[i](k) represents the value of the
vertex vi at time k.

• (Uniform graph induced by time-varying weighted graph)
G = (V, E) is the uniform graph induced by Gw(k) and
it is obtained by setting wi,j(k) = 1, where {vi, vj} ∈ E
for all k ∈ Z+.

• (Adjacency matrices) Two vertices vi and vj are called
adjacent if {vi, vj} ∈ E . The adjacency matrix of
the uniform graph G is represented by Aa(G), where
Aa(G)[i, j] = 1, if vi and vj are adjacent, and is
0 otherwise. The adjacency matrix of the time-varying
weighted graph Gw(k) is represented by Aa(Gw(k)),
where Aa(Gw(k))[i, j] = Aa(G)[i, j]wi,j(k).

• (Degree matrices) D(G) and D(Gw(k)) are the diago-
nal degree matrices of the graphs G and Gw(k) such
that D(G)[i, i] =

∑
j Aa(G)[i, j] and D(Gw(k))[i, i] =∑

j∈Im
1
Aa(Gw(k))[i, j].

• (Laplacian matrices) L(G) and L(Gw(k)) are the Lapla-
cian matrices of the graphs G and Gw(k) such that
L(G) = D(G) − Aa(G) and L(Gw(k)) = D(Gw(k)) −
Aa(Gw(k)).

• (Activated and Deactivated Edges) If wi,j(k) = 0, where
{vi, vj} ∈ E , the edge {vi, vj} is deactivated. EA(k) and
ED(k) represent the activated and deactivated edges for
time k such that E = EA(k) ∪ ED(k).

For convenience, we use Aa, Aaw(k), D, Dw(k), L and
Lw(k) instead of using Aa(G), Aa(Gw(k)), D(G), D(Gw(k)),
L(G) and L(Gw(k)), respectively.

The following assumption on the topology of the uniform
graph G is needed for convergence analysis.
Assumption 1. The uniform graph G is a connected graph,
which means there exists a path between all vertices, or
equivalently, (I + Aa)

m−1 > 0 for Aa = AT
a ∈ Rm×m [18,

section 2.1].

We will consider time-varying weighted graphs where the
weights of the edges depend on the values of vertices. The
following definition is needed to present the relation between
the weights of the edges and the values of vertices.

Definition 2. (Index sets with respect to values of vertices)
The index sets Ip(k) and In(k) contain the indices of the
non-negative and negative valued vertices for time k, i.e.,

Ip(k) = {i : e[i](k) ≥ 0},
In(k) = {i : e[i](k) < 0}.

The index set Inp
(k) ⊆ In(k) consists of the indices of the

negative valued vertices that are adjacent to the non-negative
valued vertices, i.e.,

Inp
(k) = {i : i ∈ In(k), j ∈ Ip(k) and Aa[i, j] = 1}.

The set that contains the edges between vi, i ∈ In(k) and vj ,
j ∈ Inp

(k) is defined as

Inp,n(k) = {{i, j} : i ∈ In(k), j ∈ Inp
(k) and Aa[i, j] = 1}.

We provide a condition that represents a relation between
the values of the vertices and the weights of the edges of
the graph Gw(k). This condition is the key to providing
the convergence proof of the consensus protocol with state-
dependent weights.

Condition 1.
(a) If i ∈ Ip(k), then there exists a c1 such that 0 <

c1 ≤ wi,j(k) for all {vi, vj} ∈ E .
(b) If {i, j} ∈ Inp,n(k), then wi,j(k) = 0.

In other words, Condition 1a implies that the weight of
an edge that connects a non-negative valued vertex to any
other vertex cannot be arbitrarily close to 0. Therefore, if
Aaw

[i, j](k) = 0 where e[i](k) ≥ 0, then Aa[i, j](k) = 0.
Condition 1b implies that no transition is allowed between
two negative valued vertices if at least one of them is adjacent
to a non-negative valued vertex. Edges that have zero weights
are called deactivated edges. Note that although G is assumed
to be a connected graph in Assumption 1, Gw(k) may not be
a connected graph for some k, due to these deactivated edges.

The following example is provided to help the reader
interpret the implication of Condition 1.

Example 1: The values of vertices and weights of the
edges are represented on a graph for a time k in Figure 1. Ac-
cording to Definition 2, Ip(k) = {1}, In(k) = {2, 3, 4, 5, 6},
Inp(k) = {2, 4} and Inp,n(k) = {{2, 3}{2, 5}{4, 5}}. Condi-
tion 1a implies that 0 < c1 ≤ w1,2(k) and 0 < c1 ≤ w1,4(k)
since 0 ≤ e[1](k). Condition 1b implies that weights of all
other edges of the nodes v2 and v4 are zero, which means
that w2,3(k) = w2,5(k) = w4,5(k) = 0.

The following lemma shows that each non-negative valued
vertex is connected to a negative valued vertex in the graph
Gw under Condition 1.

Lemma 1. Assume that Condition 1 holds. If e(k) ̸= 0, then
for each i such that e[i](k) ≥ 0, ∃j such that e[j](k) < 0,
where An

aw
[i, j](k) ̸= 0 for some exponent n ∈ Z+.

Proof. Since 1T e(k) = 0 by Definition 1 and e(k) ̸= 0, ∃i, j
such that e[i](k) > 0 and e[j](k) < 0.
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w1, 2(k)
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Fig. 1: Vertices of the graph and corresponding values are
represented by circles. The indices of the vertices are shown
in their corners. Edges of the vertices are represented by lines
and weights of the edges are represented on the sides of the
edges. Green and red lines represent the edges that are implied
by Condition 1a and Condition 1b, respectively. Black lines
represent the remaining edges of the graph.

The lemma is proven by contradiction. Suppose that there
exists one non-negative valued vertex vi such that e[i](k) ≥ 0
and for all j such that e[j](k) < 0, An

aw
[i, j](k) = 0, ∀n ∈ Z+.

In other words, there exists one non-negative valued vertex that
is not connected to any negative valued vertices. Denote the
set of such non-negative valued vertices as V+(k). The set of
remaining vertices is denoted as V−(k) such that V−(k) =
V \ V+(k). Note that all negative valued vertices and all non-
negative valued vertices that are connected to negative valued
vertices are in V−(k). According to the assumption provided
at the beginning of the proof, vertices in V+(k) cannot be
connected to the vertices in V−(k), then adjacency matrix of
the time-varying weighted graph can be permuted as

Âaw(k) = P (k)Aaw(k)P (k)T =

[
A+

aw
(k) 0

0 A−
aw

(k)

]
,

where P (k) is a permutation matrix, A+
aw

(k) and A−
aw

(k)
are the adjacency matrices of sub-graphs that consist of the
vertices in V+(k) and V−(k), respectively. Note that due to
Condition 1a, if Aaw

[i, j](k) = 0, where e[i](k) ≥ 0, then
Aa[i, j](k) = 0. Therefore, Aa can also be permuted as

Âa(k) = P (k)AaP (k)T =

[
A+

a (k) 0
0 A−

a (k)

]
. (1)

Due to Assumption 1, G is a connected graph, the Aa matrix
is an irreducible matrix, and then Âa(k) matrix is also an ir-
reducible matrix. However, the matrix in Eq. (1) is a reducible
matrix, which means it contradicts the assumption provided at
the beginning of the proof. Therefore, all non-negative valued
vertices are connected to some negative valued vertices.

Therefore, even if Gw(k) may not be a connected graph
for some k, there always exists at least one connected sub-
graph that consists of both non-negative and negative valued
vertices. It is important to note that in these connected sub-
graphs, each edge is between a non-negative valued vertex and
any other vertex and there is no edge between two negative
valued vertices due to Condition 1b. Therefore, weights of all
edges are at least c1 due to Condition 1a.

The following lemma provides a bound for the eigenvalues
of the Laplacian matrix Lw(k) of a connected time-varying
weighted graph when the weights are within a certain range.

Lemma 2. Let Gw(k) be a connected time-varying weighted
graph with m vertices. Assume that the following inequality
is satisfied for the weights of the edges of the graph Gw(k),

c1 ≤ wi,j(k) ≤
1− c2

max(D[i, i],D[j, j])
, (2)

where 0 < c1 and 0 < c2 < 1. Then, the following inequality
holds for the eigenvalues of the Laplacian matrix Lw(k),

σ(Lw(k)) ⊆ [c3, (2− c3)] ∪ {0},

where 0 < c3 = min
(
c1

4
m(m−1) , 2c2

)
≤ 1.

Proof. According to Gershgorin’s Circle Theorem [62], eigen-
values of a Lw(k) matrix satisfy, σ(Lw(k))

⊆
⋃
i

{
λ ∈ C : |λ− Lw[i, i](k)| ≤

∑
j∈Im

1 \{i}

|Lw[i, j](k)|
}
.

(3)
Since Lw[i, i](k) =

∑
{vi,vj}∈E wi,j(k) for weighted Lapla-

cian matrix, where 0 < c1 ≤ wi,j(k), Eq. (3) implies that,
σ(Lw(k))

⊆
⋃
i

{
λ ∈ C :

∣∣∣∣λ−
∑

{vi,vj}∈E

wi,j(k)

∣∣∣∣ ≤ ∑
{vi,vj}∈E

wi,j(k)
}

=
⋃
i

{
λ ∈ C : 0 ≤ λ ≤ 2

∑
{vi,vj}∈E

wi,j(k)
}
.

According to Eq. (2), wi,j(k) ≤ (1−c2)/D[i, i] and wi,j(k) ≤
(1 − c2)/D[j, j]. Then, eigenvalues of the Laplacian matrix
Lw(k) satisfy that,

0 ≤ λi(k) ≤ (2− 2c2) for λi(k) ∈ σ(Lw(k)). (4)

We now show that the second smallest eigenvalue of the
Laplacian matrix Lw(k) is also lower bounded. In [63, Theo-
rem 4.2], the following lower bound is provided for the second
smallest eigenvalue of the Laplacian matrix of a connected
unweighted graph G,

4

diam(G)m
≤ λ2(L),

where diam(G) is the diameter of the graph, which is the
length of the longest shortest path between any two vertices,
and m is the number of vertices of the graph. Let us define
the Laplacian matrix Lc1 for the case that weights of all edges
of the graph G are c1 instead of 1. Suppose that, λi(L) and
λi(Lc1) are the ith eigenvalues of L and Lc1 matrices such that
λi(L) ≤ λi+1(L) and λi(Lc1) ≤ λi+1(Lc1) for i ∈ Im−1

1 .
Then, c1λi(L) = λi(Lc1) for i ∈ Im

1 . Since c1 ≤ wi,j for
the graph Gw(k), Lw(k)−Lc1 is also a positive semi-definite
Laplacian matrix, which means uT (Lw(k) − Lc1)u ≥ 0 for
all u ∈ Rm. Let us denote unit eigenvector u2 ∈ Rm such
that Lw(k)u2 = λ2(Lw(k))u2 and unit eigenvector zi ∈ Rm

such that Lc1zi = λi(Lc1)zi for all i ∈ Im
1 . Note that 1 is

the eigenvector of these Laplacian matrices with the associated
eigenvalue of 0. Since these Laplacian matrices are symmetric,
all other eigenvectors of them are orthogonal to 1. Then,
uT
2 z1 = uT

2 1 = 0 and u2 ∈ span(z2, z3, ..., zm), which means
u2 =

∑
i∈Im

2
αizi, where

∑
i∈Im

2
α2
i = 1. Thus,

0 ≤ uT
2 (Lw(k)− Lc1)u2
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= λ2(Lw(k))− uT
2 Lc1u2

= λ2(Lw(k))−
∑
i∈Im

2

αiz
T
i λi(Lc1)αizi

= λ2(Lw(k))−
∑
i∈Im

2

α2
iλi(Lc1)

≤ λ2(Lw(k))− λ2(Lc1).

Hence, Eq. (5) can be provided for the second smallest
eigenvalue of Lw(k),

c1
4

diam(G)m
≤ λ2(Lw(k)). (5)

Since 0 < diam(G) ≤ m − 1 for a connected graph and due
to Eq. (4), the following equation represents the eigenvalues
of the matrix Lw(k),

σ(Lw(k)) ⊆ [c3, (2− c3)] ∪ {0},

where 0 < c3 = min
(
c1

4
m(m−1) , 2c2

)
≤ min(2c1, 2c2) ≤

min(2− 2c2, 2c2) < 1.

The following theorem shows that values of vertices of
Gw(k) converge to 0 under specific value transition dynamics.

Theorem 1. Suppose that Assumption 1 and Condition 1 are
satisfied, and e(k) vector in Definition 1 evolves according to

e[i](k + 1) = e[i](k) +
∑
j∈Im

1

(
e[j](k)− e[i](k)

)
Aaw [i, j](k),

(6)
for all i ∈ Im

1 , where Aaw [i, j](k) = Aa[i, j]wi,j(k), 0 ≤
wi,j(k) ≤ (1− c2)/(max(D[i, i],D[j, j])), 0 < c2 < 1. Then
e(k) exponentially convergences to 0, i.e. ||e(k+1)||/||e(k)||≤
γ, where 0 ≤ γ < 1.

Proof. Eq. (6) is equivalent to following equation,

e(k + 1) = F (k)e(k), where
F (k) = I−Lw(k).

Note that F (k) is a doubly stochastic symmetric matrix,
where 1TF (k) = 1T , F (k)1 = 1, F (k)T = F (k) and non-
zero, non-diagonal elements of F (k) represents the weights of
activated edges.

Condition 1a forces weights of the edges connecting non-
negative valued vertices to other vertices to be at least c1.
However, the weights of some other edges may be 0. Thus,
the weighted graph may not be connected, which means Lw(k)
and F (k) matrices may be reducible. Hence, Lw(k) may
have repeated eigenvalues at 0, and F (k) may have repeated
eigenvalues at 1.

Even if Gw(k) may not be connected, due to Lemma 1,
all non-negative valued vertices belong to a connected sub-
graph in Gw(k), which consists of both non-negative and
negative valued vertices. Note that in these connected sub-
graphs, there is no edge between two negative valued vertices
due to Condition 1b. Therefore, weights of all edges are at least
c1 due to Condition 1a, which enables us to apply Lemma 2
in later parts. Let us denote the number of these connected

sub-graphs as s(k) ≥ 1 and denote the reordered F (k) matrix
and e(k) vector as

F̂ (k) = P (k)F (k)P (k)T

=


F̂0(k)

F̂1(k)
. . .

F̂s(k)(k)

 ,

ê(k) = P (k)e(k)

= (ê0(k), ê1(k), ..., ês(k)(k)),

where P (k) is a permutation matrix, F̂i(k), i ∈ Is(k) =
{1, ..., s(k)} are irreducible matrices that correspond to con-
nected sub-graphs and F̂0(k) is a matrix that corresponds to
remaining sub-graph. Note that there are both non-negative
and negative elements in êi(k), i ∈ Is(k) and all elements of
ê0(k) are negative.

Recall that, in Example 1, s(k) = 1, values of v1, v2 and
v4 vertices belong to the ê1(k) vector and values of v3, v5
and v6 vertices belong to the ê0(k) vector.

Suppose that, αi(k) is the average of elements in êi(k) such
that αi(k) = 1T êi(k)/mi(k), where mi(k) is the number
of elements in êi(k) and αi(k) = 1αi(k), αi(k) ∈ Rmi(k).
Lemma 2 implies that only one eigenvalue of F̂i(k), i ∈ Is(k)
is 1 with associated eigenvector 1, and other eigenvalues
are in [−(1 − c3i), (1 − c3i)], 0 < c3i ≤ 1 since F̂i(k),
i ∈ Is(k) matrices corresponds to a connected sub-graphs
in which weights of all edges are at least c1 > 0. Since
the values of all vertices are negative in the remaining sub-
graph that corresponds to the F̂0(k) matrix, there is no lower-
bound for the weights of the edges, while there is an upper
bound provided in Eq. (6). Hence, σ(F̂0(k)) ∈ [−(1−c30), 1],
0 < c30 ≤ 1. Therefore the following equation holds,

||F̂i(k)êi(k)−αi(k)||2=
= ||F̂i(k)êi(k)− F̂i(k)αi(k)||2

= ||F̂i(k)(êi(k)−αi(k))||2

= (êi(k)−αi(k))
T F̂i(k)

T F̂i(k)(êi(k)−αi(k))

≤ c24(êi(k)−αi(k))
T (êi(k)−αi(k))

= c24||êi(k)−αi(k)||2,

(7)

where c24 = (1−mini c3i)
2 < 1 for all i ∈ Is(k).

Here, we will show that ||F̂i(k)êi(k)||2 is also smaller than
or equal to c25||êi(k)||2 for all i ∈ Im

1 , where c25 < 1. Note
that if 1Tαi(k) = 1T êi(k), then αi(k) and (êi(k) − αi(k))
are orthogonal to each other,

αi(k)
T (êi(k)−αi(k)) = αi(k)

T êi(k)−αi(k)
Tαi(k)

= αi(k)1
T êi(k)−αi(k)

Tαi(k)

= αi(k)1
Tαi(k)−αi(k)

Tαi(k)

= αi(k)
Tαi(k)−αi(k)

Tαi(k)

= 0.
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Hence, it can be shown that,

||êi(k)−αi(k)||2 = ||êi(k)||2−2αi(k)
T êi(k) + ||αi(k)||2

= ||êi(k)||2−2αi(k)
Tαi(k) + ||αi(k)||2

= ||êi(k)||2−||αi(k)||2,

and ||F̂i(k)êi(k)−αi(k)||2=

= ||F̂i(k)êi(k)||2−2αi(k)
T F̂i(k)êi(k) + ||αi(k)||2

= ||F̂i(k)êi(k)||2−2αi(k)1
T F̂i(k)êi(k) + ||αi(k)||2

= ||F̂i(k)êi(k)||2−2αi(k)1
T êi(k) + ||αi(k)||2

= ||F̂i(k)êi(k)||2−2αi(k)1
Tαi(k)

T + ||αi(k)||2

= ||F̂i(k)êi(k)||2−2αi(k)
Tαi(k) + ||αi(k)||2

= ||F̂i(k)êi(k)||2−||αi(k)||2.
If i ∈ Is(k), then êi(k) ̸= 0 because there are both

non-negative and negative values in êi(k). Therefore, Eq. (7)
implies that

||F̂i(k)êi(k)−αi(k)||2 ≤ c24||êi(k)−αi(k)||2

||F̂i(k)êi(k)||2−||αi(k)||2 ≤ c24(||êi(k)||2−||αi(k)||2)
||F̂i(k)êi(k)||2 ≤ c24||êi(k)||2+(1− c24)||αi(k)||2

||F̂i(k)êi(k)||2

||êi(k)||2
≤ c24 + (1− c24)

||αi(k)||2

||êi(k)||2
.

(8)
Here, we will show that ||αi(k)||2

||êi(k)||2 < m−1
m for all i ∈ Is(k).

Suppose that, êi(k) = Pêi(k)(êip(k), êin(k)), where Pêi(k) is
a permutation matrix such that êip(k) ≥ 0 and êin(k) < 0. Let
mip(k) and min(k) represent the number of elements in êip(k)
and êin(k), where mip(k)+min(k) = mi(k). Since there are
both non-negative and negative values in êi(k), mip(k) ≥ 1,
min(k) ≥ 1 and 1T êi(k) < ||êi(k)||1, then

||αi(k)||2

||êi(k)||2
=

αT
i αi

||êi(k)||2

=
1T1(1T ei(k))

2

m2
i (k)||êi(k)||2

=
(1T ei(k))

2

mi(k)||êi(k)||2

<
(1T êip(k))

2 + (1T êin(k))
2

mi(k)||êi(k)||2

=
||êip(k)||21+||êin(k)||21

mi(k)||êi(k)||2

≤
mip(k)||êip(k)||2+min(k)||êin(k)||2

mi(k)||êi(k)||2

≤
max(mip(k),min(k))(||êip(k)||2+||êin(k)||2)

mi(k)||êi(k)||2

=
max(mip(k),min(k))

mi(k)

≤ mi(k)− 1

mi(k)
≤ m− 1

m

for all i ∈ Is(k). It then follows that Eq. (8) implies

||F̂i(k)êi(k)||2 ≤ c25||êi(k)||2 for all i ∈ Is(k),

where c25 < c24 + (1− c24)
m−1
m < 1.

Here, we will present that ||e(k + 1)||≤ c6||e(k)||, where
0 < c6 < 1. Since e(k) ̸= 0,

||e(k + 1)||2

||e(k)||2
=

||F̂ (k)ê(k)||2

||ê(k)||2
=

∑s(k)
i=0 ||F̂i(k)êi(k)||2∑s(k)

i=0 ||êi(k)||2
.

Since σ(F̂0(k)) ⊆ [−(1−c30), 1], 0 < c30 ≤ 1, the equation
is derived as

||e(k + 1)||2

||e(k)||2
≤

||ê0(k)||2+c25
∑s(k)

i=1 ||êi(k)||2

||ê0(k)||2+
∑s(k)

i=1 ||êi(k)||2
. (9)

Here, we derive an upper bound for ||ê0(k)||2 with respect
to other terms to show that, there is an upper bound for
the right side of Eq. (9). Since 1T e(k) = 0 and ê0(k) <

0, ||ê0(k)||1+
∑s(k)

i=1 ||êin(k)||1 =
∑s(k)

i=1 ||êip(k)||1. Note that
||êin(k)||1> 0 for any i ∈ Is(k) due to Lemma 1. Then,

||ê0(k)||1 <

s(k)∑
i=1

||êip(k)||1+
s(k)∑
i=1

||êin(k)||1

=

s(k)∑
i=1

||êi(k)||1.

(10)

The following inequalities can be provided using equiva-
lence of norms,

||ê0(k)||2≤ ||ê0(k)||21≤ m0||ê0(k)||2,
s(k)∑
i=1

||êi(k)||2≤
s(k)∑
i=1

||êi(k)||21≤ (m−m0)

s(k)∑
i=1

||êi(k)||2.

Thus, Eq. (10) implies that

||ê0(k)||2< (m−m0)

s(k)∑
i=1

||êi(k)||2.

The strict upper-bound for ||ê0(k)||2 can be inserted into
Eq. (9) as

||e(k + 1)||2

||e(k)||2
≤ 1−

(1− c25)
∑s(k)

i=1 ||êi(k)||2

||ê0(k)||2+
∑s(k)

i=1 ||êi(k)||2

< 1−
(1− c25)

∑s(k)
i=1 ||êi(k)||2

(m−m0 + 1)
∑s(k)

i=1 ||êi(k)||2

=
m−m0 + c25
m−m0 + 1

.

Since 0 ≤ c25 < 1 and 0 ≤ m0 ≤ m− 2,

||e(k + 1)||
||e(k)||

≤ γ,

where γ <
√

max0≤m0≤m−2
m−m0+c25
m−m0+1 =

√
m+c25
m+1 < 1.

Therefore, ||e(k)|| exponentially converges to 0.
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III. DECENTRALIZED STATE-DEPENDENT
MARKOV CHAIN SYNTHESIS

Based on the consensus protocol developed in Section II,
we propose the decentralized state-dependent Markov chain
synthesis (DSMC) algorithm that achieves convergence to the
desired distribution with an exponential rate and minimal state
transitions. Additionally, we present a shortest path algorithm
that can be integrated with the DSMC algorithm, as utilized
in [7], [14], [15], to further enhance the convergence rate.

A. The DSMC Algorithm

We define a finite-state discrete-time Markov chain evolving
on the vertices of the uniform graph G in Definition 1.
Definition 3. (Markov chain) Let V = {v1, ..., vm}, which
is the vertices of the graph in Definition 1, be the finite
set of states of the Markov chain and X (k) ∈ V be the
random variable of the Markov chain for time k ∈ Z+. The
connectivity of the states is determined by the adjacency matrix
Aa of the uniform graph G. Additionally, we define:

• (Probability distribution) Let x(k) ∈ Rm be the proba-
bility distribution at time k : x[i](k) = P(X (k) = vi).

• (Markov matrix) Markov matrix determines the state
transitions of the Markov chain M(k) ∈ Rm×m, where
M [i, j](k) = P(X (k + 1) = vi|X (k) = vj) for all
i, j ∈ Im

1 . Hence x(k + 1) = M(k)x(k) for k ∈ Z+.
• (Desired steady-state distribution) There exists a pre-

scribed desired steady-state probability distribution v ∈
Rm such that

lim
k→∞

x(k) = v.

Let the error vector e(k) be the difference between the
probability distribution at time k and the desired steady-state
distribution e(k) = x(k)−v. The DSMC algorithm is designed
to ensure that the dynamics of the error vector are identical
to the dynamics of the value vector described in Theorem
1. This design guarantees consistency between the two, en-
suring desirable convergence properties and performance in
the DSMC algorithm. Similar to the consensus protocol in
Section II, transitions in the DSMC algorithm occur from the
states with higher error values to their adjacent states with
lower error values to equalize the error values across all states
of the Markov chain. Since the sum of these error values is
equal to 0, the error values at all states will eventually become
balanced at 0, resulting in the convergence of the probability
distribution to the desired distribution.

We present the synthesis of the Markov matrix in Algorithm
1, and its convergence proof is presented in Theorem 2. To this
end, let Iij be the set of indices of states adjacent to either vi
or vj , such that Iij = {l : Aa[l, i] = 1 or Aa[l, j] = 1}.
It should be noted that e[ℓ] < 0 for all ℓ ∈ {i, j} and
e[l](k) ≥ 0 for some l ∈ Iij if and only if {i, j} ∈ Inp,n(k),
which is introduced in Definition 2. To determine the transition
probability from state vj to state vi for time k, the required
inputs of the algorithm are x[l](k) and v[l] for all l ∈ Iij , the
corresponding rows of the adjacency matrix for states vi and
vj , and a hyper-parameter c2 ∈ (0, 1) that scales the transition
probabilities. In Line 1 of Algorithm 1, the algorithm computes
the error values at the states associated with the set Iij . From

Algorithm 1 Decentralized state-dependent Markov chain
synthesis algorithm
Input: x[l](k), v[l], ∀l ∈ Iij , Aa[ℓ, ·], ∀ℓ ∈ {i, j}, c2 ∈ (0, 1)
Output: M [i, j](k)

1: Compute error values at the states associated with set Iij :

e[l](k) := x[l](k)− v[l], ∀l = Iij

2: Calculate the non-negative error differences between ad-
jacent states:

E[i, j](k) := max

(
0,
(
e[j](k)− e[i](k)

)
Aa[i, j]

)
3: Determine the total number of adjacent states:

d[ℓ] :=
∑

l∈Im
1 \ℓ

Aa[ℓ, l], ∀ℓ ∈ {i, j}

4: Calculate the scaling factor to ensure algorithm stability:

s1[i, j] :=
1− c2

max(d[i], d[j])

5: Set the scaling factor based on the probability of state vj :

s2[j](k) :=

{
x[j](k)∑

l∈Im
1

E[l,j](k) if
∑

l∈Im
1
E[l, j](k) ̸= 0

1 otherwise

6: Determine the scaling factor to satisfy Condition 1b:

s3[i, j](k) :=

0
if e[ℓ] < 0 for all ℓ ∈ {i, j} and
e[l](k) ≥ 0 for some l ∈ Iij

1 otherwise

7: Obtain the resulting scaling factor:

W [i, j](k) := min
(
s1[i, j], s2[j](k), s3[i, j](k)

)
8: Calculate the scaled non-negative error differences be-

tween adjacent states:

T [i, j](k) := E[i, j](k)W [i, j](k)

9: Compute the transition probability from vj to vi:

F [i, j](k) :=

{
T [i,j](k)
x[j](k) if x[j](k) ̸= 0

0 otherwise

10: Synthesize the Markov matrix:

M [i, j](k) :=

{
F [i, j](k) if i ̸= j

1−
∑

l∈Im
1
F [l, j](k) if i = j

the state vj , there will be a transition to any adjacent state vi
only if e[j](k) > e[i](k). Also, the transition probabilities vary
proportionally with the differences in error values. Therefore,
the difference of the error value e[j](k) from the error value
e[i](k) is calculated in Line 2 if e[j](k) > e[i](k), otherwise
it is set to 0. As in Theorem 1, appropriately scaling the
differences between error values relative to the number of
adjacent states is crucial for the stability of the convergence.
Also, it is required to scale these differences with respect to
the probabilities of the corresponding states. For this purpose,
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a scaling factor is determined in Line 4 for the stability of
the convergence, while another scaling factor is determined
by the probability of the state vj in Line 5. Furthermore, if∑

l∈Im
1
E[l, j](k) = 0, then there will be no transition from

state vj to any adjacent state vi. In this case, the value of
s2[j](k) becomes irrelevant and is set to 1. If e[i](k) < 0 and
e[j](k) < 0, and either vi or vj has an adjacent state with a
positive error value, then another scaling factor s3[i, j](k) is
set to 0 in Line 6 to satisfy Condition 1b. The minimum of
these three scaling factors is chosen in Line 7 to satisfy all
conditions simultaneously. Hence, the scaled difference of the
error value e[j](k) from the error value e[i](k) is calculated in
Line 8. Note that T [i, j](k) represents the amount of increase
in the error value at state vi due to the transition from state
vj . Equivalently, it represents the amount of decrease of the
error value at state vj due to the transition to the state vi. This
amount is divided by the probability of the state vj in Line 9
to decide the transition probability from state vj to state vi. In
Line 10, the remaining probabilities are added to the diagonal
elements, finalizing the synthesis of the Markov matrix. The
complexity of the DSMC algorithm is O(m2), where m is the
number of states.

The following proposition shows that the matrix synthesized
by Algorithm 1 is a column stochastic Markov matrix.
Proposition 1. The matrix synthesized by Algorithm 1 satisfies
M(k) ≥ 0 and 1TM(k) = 1T constraints.

Proof. (Proof of M(k) ≥ 0) W (k) ≥ 0 since s1[i, j] > 0,
s2[j](k) ≥ 0 and s3[i, j](k) ≥ 0, ∀i, j ∈ Im

1 . Since E(k) ≥ 0
and W (k) ≥ 0, T (k) ≥ 0. x(k) ≥ 0 and T (k) ≥ 0 imply
that M [i, j](k) = F [i, j](k) ≥ 0, ∀i, j ∈ Im

1 if i ̸= j.
If x[j](k) = 0 or

∑
i∈Im

1
E[i, j](k) = 0, then∑

i∈Im
1
F [i, j](k) = 0 and M [j, j](k) = 1. If x[j](k) ̸= 0

and
∑

i∈Im
1
E[i, j](k) ̸= 0, then

∑
i∈Im

1

F [i, j](k) =

∑
i∈Im

1
T [i, j](k)

x[j](k)

=

∑
i∈Im

1
E[i, j](k)W [i, j](k)

x[j](k)

≤
∑

i∈Im
1
E[i, j](k)

x[j](k)
s2[j](k)

=

∑
i∈Im

1
E[i, j](k)

x[j](k)

x[j](k)∑
i∈Im

1
E[i, j](k)

= 1.

Therefore,
∑

i∈Im
1
F [i, j](k) ≤ 1 and M [j, j](k) ≥ 0.

(Proof of 1TM(k) = 1T ) 1TM(k) = 1T requires
that

∑
i∈Im

1
M [i, j](k) = 1, ∀j ∈ Im

1 . Note that∑
i∈Im

1 \{j} F [i, j](k) =
∑

i∈Im
1
F [i, j](k) since F [i, i](k) =

0. Then,
∑

i∈Im
1
M [i, j](k) =

∑
i∈Im

1 \{j} F [i, j](k) + 1 −∑
i∈Im

1
F [i, j](k) = 1. This shows that 1TM(k) = 1T .

The following proposition shows that the error dynamics in
Algorithm 1 are identical to the evolution of the value vector
in the consensus protocol presented in Theorem 1.
Proposition 2. The error dynamics of Algorithm 1 satisfy Eq.
(6).

Proof. In Algorithm 1, the increase in the error value at state
vi caused by state vj is denoted by T [i, j](k) in Line 8. Equiv-
alently, T [i, j](k) represents the decrease in the error value at
state vj caused by state vi. Since

∑
i∈Im

1
F [i, j](k) ≤ 1 in

Line 9 of Algorithm 1, the amount of change determined in
Line 8 is not suppressed by x(k). Thus, the error value at the
state vi changes as

e[i](k + 1) = e[i](k) +
∑
j∈Im

1

T [i, j](k)−
∑
j∈Im

1

T [j, i](k)

= e[i](k)+
∑
j∈Im

1

E[i, j](k)W [i, j](k)−
∑
j∈Im

1

E[j, i](k)W [j, i](k)

= e[i](k)+
∑
j∈Im

1

e[j](k)≥e[i](k)

(
e[j](k)− e[i](k)

)
Aa[i, j]W [i, j](k)

−
∑
j∈Im

1

e[j](k)<e[i](k)

(
e[i](k)− e[j](k)

)
Aa[j, i]W [j, i](k).

(11)
Let us denote wi,j(k) as

wi,j(k) = W [i, j](k) if e[j](k) ≥ e[i](k). (12)

Note that 0 ≤ W [i, j](k) ≤ s1[i, j] = (1−c2)/max(d[i], d[j]),
for all i, j ∈ Im

1 , where 0 < c2 < 1 due to Line 4 and Line
7 of the Algorithm 1. Since d[i] in Line 3 of the Algorithm 1
represents the degree similar to D[i, i] in Definition 1, wi,j(k)
satisfies the constraints given in Theorem 1. Thus, Eq. (11)
implies that

e[i](k + 1) = e[i](k) +
∑
j∈Im

1

(
e[j](k)− e[i](k)

)
Aaw

[i, j](k)

(13)
for all i ∈ Im

1 , where Aaw [i, j](k) = Aa[i, j]wi,j(k), 0 ≤
wi,j(k) < (1 − c2)/(max(D[i, i],D[j, j])), 0 < c2 < 1.
Since Eq. (13) is identical to Eq. (6), the error dynamics of
Algorithm 1 are identical to the evolution of the value vector
in Theorem 1.

Note that Assumption 1 is already satisfied for the DSMC
algorithm due to Assumption 3. We now show that Condition
1, which is crucial for the convergence of the proposed
consensus protocol, is satisfied by Algorithm 1.

Proposition 3. Condition 1 is satisfied by Algorithm 1.

Proof. To ensure Condition 1a it must be shown that there
exists a c1 such that 0 < c1 ≤ wi,j(k) if 0 ≤ e[i](k). Then,
due to Eq. (12), it is sufficient to show that there exists a c1
such that 0 < c1 ≤ W [i, j](k) if 0 ≤ e[j](k).

(Proof of Condition 1a) Since s1[i, j] > 0 and it is not
time-varying, there exists a c′1 such that 0 < c′1 ≤ s1[i, j].
The inequality 0 ≤ e[j](k) implies that s3[i, j] = 1 for all
i ∈ Im

1 due to Line 6 of the Algorithm 1. Note that∑
i∈Im

1

E[i, j](k) =
∑
i∈Im

1

(
0,
(
e[j](k)− e[i](k)

)
Aa[i, j]

)
≤

∑
i∈Im

1

|e[j](k)− e[i](k)|

≤ (m− 1)|e[j](k)|+
∑

i∈Im
1 \{j}

|e[i](k)|.
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Since ||e[i](k)||∞≤ 1,
∑

i∈Im
1
|e[i](k)|≤ 2, and m ≥ 2, then∑

i∈Im
1

E[i, j](k) ≤ (m− 1)|e[j](k)|+(2− |e[j](k)|)

= m|e[j](k)|+2− 2|e[j](k)|
≤ m.

It then follows that Line 5 of the Algorithm 1 implies
x[j](k)

m = min
(

x[j](k)
m , 1

)
≤ min

(
x[j](k)∑

i∈Im
1

E[i,j](k) , 1
)

≤
s2[j](k). Let vmin = mini∈Im

1
v[i]. Then, the inequality

0 ≤ e[j](k) implies that vmin ≤ x[j](k). Thus, vmin/m ≤
x[j](k)/m ≤ s2[j](k). Since vmin/m is not time-varying,
there exists a c′′1 such that 0 < c′′1 ≤ vmin/m ≤ s2[j](k).
Hence, if 0 ≤ e[j](k), then there exist a c1 such that
0 < c1 ≤ min

(
s1[i, j], s2[j](k), s3[i, j]

)
= W [i, j](k), where

c1 = min(c′1, c
′′
1 , 1).

(Proof of Condition 1b) Condition 1b requires that wi,j = 0
if {i, j} ∈ Inp,n, where Inp,n is the set defined in Definition 2.
Note that {i, j} ∈ Inp,n if and only if e[ℓ] < 0 for all ℓ ∈ {i, j}
and e[l] ≥ 0 for some l ∈ Iij . Therefore, if {i, j} ∈ Inp,n,
both s3[i, j](k) and s3[j, i](k) are set to 0, which imply that
both W [i, j](k) and W [j, i](k) are 0. Hence, wi,j(k) = 0 if
{i, j} ∈ Inp,n.

The following theorem shows that Algorithm 1 achieves the
desired convergence.

Theorem 2. The probability distribution x(k) exponentially
converges to the desired distribution v if the corresponding
Markov matrix is synthesized by Algorithm 1.

Proof. In Proposition 2, it is proven that the dynamics of the
error vector in Algorithm 1 are identical to the dynamics of the
value vector in Theorem 1. Condition 1 is used in Theorem 1
to prove that the value vector exponentially converges to 0. In
Proposition 3, it is proven that Algorithm 1 satisfies Condition
1 which means that probability distribution x(k) exponentially
converges to the desired distribution v.

B. The Modified DSMC Algorithm

In this section, we introduce a shortest-path algorithm that
is proposed as a modification to the Metropolis-Hastings
algorithm in [7, Section V-E] and integrated with the Markov
chain synthesis methods described in [14] and [15]. This
algorithm can also be integrated with the DSMC algorithm
to further increase the convergence rate. Our approach begins
by categorizing the states of the desired distribution.
Definition 4. (Recurrent and transient states) The states with
non-zero elements in the desired distribution v are called
recurrent states. The other states with zero elements in the
desired distribution v are called transient states.

The shortest-path algorithm is used for the synthesis of the
Markov chain for the transient states while the Markov chain
for the recurrent states is synthesized by the DSMC algorithm.
Let us split the desired distribution and the Markov matrix
to synthesize the Markov matrix for recurrent and transient
states separately. Assume that there are mr recurrent states
and mt = m−mr transient states of the desired distribution.

Then the Markov matrix and the desired distribution are split
as

v = (vt, vr), M(k) =

[
M1 0
M2 M3(k)

]
m×m

, (14)

where vt = 0, vt ∈ Rmt , vr > 0, vr ∈ Rmr , M1 ∈ Rmt×mt

and M3(k) ∈ Rmr×mr . Since the desired distribution and the
Markov matrix are partitioned by renumbering the elements,
the probability distribution and the adjacency matrix are also
partitioned using the same renumbering as

x(k) = (xt(k), xr(k)), Aa =

[
Aa1

0
Aa2

Aa3

]
m×m

.

Note that while the time-invariant matrices M1 and M2

in Eq. (14) are synthesized by the shortest-path algorithm,
the time-varying Markov matrix M3(k) is synthesized by
the DSMC algorithm. If the shortest-path is to be combined
with another Markov chain synthesis algorithm, it is also
necessary to assume that the recurrent states are connected
among themselves, which requires the following assumption.

Assumption 2. The graph defined by the recurrent states
is connected, which means there exists a path between all
recurrent states, or equivalently, (I + Aa3

)mr−1 > 0 for
Aa3

∈ Rmr×mr [18, section 2.1].

Furthermore, we demonstrate that the condition 1Txr(k) =
1, which is crucial for the Markov chain synthesis algorithm
of the recurrent states, is satisfied for all k ≥ K, K ∈ Z+ in
the shortest-path algorithm.

Let us first define the following index sets to present the
algorithm.

Definition 5. (Index sets with respect to recurrent states) The
index sets Ir and It contain the indices of the recurrent and
transient states, respectively. Indices of transient states can be
split into subsets as Is, Is−1, ..., and so on. The index set Is
consists of the indices of the states that are adjacent to the
states corresponding to Ir and Is∩ Ir = ∅, the index set Is−1

consists of the indices of states that are adjacent to the states
corresponding to Is and Is−1 ∩ (Ir ∪ Is) = ∅, and so on.

The synthesis of the Markov matrix using the DSMC
algorithm and the shortest-path algorithm for the recurrent and
transient states of the desired distribution is given as

M [i, j]

=


as in Algorithm 1 if i ∈ Ir, j ∈ Ir

0 if i ∈ Is−n, j ∈ Ir for n ∈ Z+

1/(
∑

l∈Ir
Aa[j, l]) if i ∈ Ir, j ∈ Is, Aa[j, i] = 1

1/(
∑

l∈Is−n
Aa[j, l])

if i ∈ Is−n, j ∈ Is−n−1, Aa[j, i] = 1
for n ∈ Z+

In the proposed shortest-path algorithm, the transition prob-
ability from any state in set Is−k−1 to any state in set Is−k,
k ∈ Z+, and from any state in set Is to any state in set Ir is 1.
Therefore, the total probability of the transient states becomes
zero in a finite time. In [7], it is shown that the condition
ρ(M1) < 1 is satisfied using the properties of M-matrices,
which are shown in Theorem 2.5.3 (parts 2.5.3.2 and 2.5.3.12)
of [64].
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IV. AN APPLICATION OF THE DSMC ALGORITHM
ON PROBABILISTIC SWARM GUIDANCE

In this section, we apply the DSMC algorithm to the
probabilistic swarm guidance problem and provide numerical
simulations that show the convergence rate of the DSMC
algorithm is considerably faster as compared to the previous
Markov chain synthesis algorithms in [7] and [14].

A. Probabilistic Swarm Guidance

Most of the underlying definitions and baseline algorithms
in this section are based on [7]. We briefly review this material
for completeness.
Definition 6. (Bins) The operational region is denoted as R.
The region is assumed to be partitioned as the union of m
disjoint regions, which are referred to as bins Ri, i = 1, ...,m,
such that R = ∪m

i=1Ri, and Ri ∩Rj = ∅ for i ̸= j. Each bin
can contain multiple agents.

Bins, as in the states of a Markov chain, in the operational
region are represented as vertices of a graph. The allowed
transitions between bins are specified by the adjacency matrix
of the graph.
Definition 7. (Transition constraints) An adjacency matrix
Aa ∈ Rm×m is used to restrict the allowed transitions between
bins. Aa[i, j] = 1 if the transition from Ri to Rj is allowable,
and is 0 otherwise. The bins Ri and Rj are called neighboring
bins if Aa[i, j] = 1.

Assumption 3. The graph describing the bin connections is
connected, that is, (I + Aa)

m−1 > 0 for Aa ∈ Rm×m [18,
section 2.1].

Consider a swarm comprised of N agents. Let n[i](k) be the
number of agents in bin Ri at time k. Then x(k) = n(k)/N
represents the swarm density distribution at time k where
x(k) ≥ 0 and 1Tx(k) = 1. It is desired to guide the swarm
density distribution to a desired steady-state distribution v ∈
Rm, where v ≥ 0 and 1T v = 1. The distance between
the swarm density distribution and the desired distribution is
monitored via the total variation between the swarm density
distribution at time k and the desired distribution

Tx,v(k) =
1

2
||x(k)− v||1.

Assumption 4. All agents can determine their current bins,
and they can use this information to move between bins.

Each swarm agent changes its bin at time k by using a
column stochastic, Markov, matrix M(k) ∈ Rm×m called a
Markov matrix [65]. The entries of matrix M(k) define the
transition probabilities between bins, that is, for any k ∈ Z+

and i, j ∈ Im
1 ,

M [i, j](k) = P(r(k + 1) ∈ Ri|r(k) ∈ Rj),

i.e., an agent in Rj moves to Ri with probability M [i, j](k) at
time k. Algorithm 2 is an implementation of this probabilistic
guidance algorithm. The first step of the algorithm is to
determine the agent’s current bin. In the following steps, each
agent samples from a uniform discrete distribution and goes to
another bin depending on the column of the Markov matrix,
which is determined by the agent’s current bin.

Algorithm 2 Probabilistic Guidance Algorithm [7]
1: Each agent determines its current bin, e.g., rl(k) ∈ Ri.
2: Each agent generates a random number z that is uniformly

distributed in [0, 1].
3: Each agent goes to bin j, i.e., rl(k + 1) ∈ Rj , if{∑j−1

s=1 M [s, i](k) ≤ z ≤
∑j

s=1 M [s, i](k).

The main idea of the probabilistic swarm guidance is to
drive the propagation of density distribution vector x(k),
instead of individual agent positions {rl(k)}Nl=1. Swarms are
viewed as a statistical ensemble of agents to facilitate the
swarm guidance problem. The density distribution of the
swarm x(k) satisfies the properties of a probability distribu-
tion, which are x(k) ≥ 0, and 1Tx(k) = 1. However, the
number of agents is finite and, using the law of large numbers
[66, Section V], the Algorithm 2 ensures that x(k + 1) =
M(k) x(k) is satisfied as N −→ ∞. Furthermore, any given
desired distribution v ∈ Rm cannot always be accurately
represented by the finite number of agents of the swarm. For
example, if v = [0.5, 0.5]T and N = 1, then the best-quantized
representation of the distribution that can be obtained is either
[1, 0]T or [0, 1]T . In this case, the total variation between the
density distribution of the swarm and the desired distribution
cannot be less than 0.5.
Definition 8. (Quantization error) The quantization error is
the minimum total variation value that can be achieved by the
density distribution of the swarm x(k) = n(k)/N to represent
a given desired distribution v. It is denoted as qN (v) and is
the solution to the following problem

qN (v) = min
n

{
1

2
||n/N − v||1: n ∈ Zm

+ ,1Tn = N

}
.

Let QN be the maximum value of the quantization error
that considers the worst possible desired distribution v for a
given number of agents N such that

QN = max
v

{qN (v) : v ∈ Rm
+ ,1T v = 1}.

The following theorem provides the maximum quantization
error value for a given number of agents N .
Lemma 3. For any given desired distribution v ∈ Rm

+ ,
1T v = 1, the maximum quantization error value between
x(k) = n(k)/N and v is not greater than m/(4N), where
N is the total number of agents.

Proof. Let us split the integer and fractional part of Nv such
that Nv = t+f , where t ∈ Zm

+ and 0 ≤ f < 1. Let s = 1T f .
Note that s ∈ Z+ and s = N − 1T t. Let n∗[i] be the optimal
value of n[i] that minimizes |n[i]−Nv[i]|. Then, n∗[i] = t[i] or
n∗[i] = t[i]+1. Without loss of generality, suppose that f [1] ≥

f [2] ≥ . . . ≥ f [m]. Then n∗[i] =

{
t[i] + 1 if i ≤ s

t[i] otherwise
,

where 1Tn = 1T t + s = N . Therefore ||n − vN ||1= (1 −
f [1])+ · · ·+(1−f [k])+f [k+1]+ · · ·+f [m]. Since s = 1T f ,
||n− vN ||1= 2(f [k+1]+ · · ·+ f [m]). Also, f [k+1] ≤ s/m
since f [i] ≥ f [i+ 1] for all i ∈ Im

1 and 1T f = s. Therefore,
||n− vN ||1≤ 2(m− s)(s/m). The maximum value of 2(m−
s)(s/m) is m/4, where s = m/2. Hence, ||n− vN ||1≤ m/2
and 1

2 ||n/N − v||1≤ m/(4N).
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B. Synthesis of the Markov Matrix

The DSMC algorithm presented in Section III-A is em-
ployed for synthesizing the Markov chain, which serves as
the stochastic policy for the swarm agents. It is worth noting
that the bins comprising the operational region, as defined in
Definition 6, determine the vertices of the uniform graph in
Definition 1. Consequently, these vertices correspond to the
states of the Markov chain defined in Definition 3. Similarly,
the transition constraints of the swarm, defined by an adja-
cency matrix in Definition 7, determine the adjacency matrix
of the uniform graph in Definition 1, which subsequently
corresponds to the adjacency matrix of the Markov chain in
Definition 3. The connectivity requirement for the vertices
of the consensus protocol, as outlined in Assumption 1, is
satisfied by Assumption 3. Furthermore, if the recurrent states
of the desired distribution are also connected among them-
selves, then Assumption 2 is satisfied, allowing the utilization
of the Modified DSMC algorithm presented in Section III-B
for Markov chain synthesis. Since the DSMC algorithm is
state-dependent, we use the density distribution of the swarm
for feedback, which requires the following assumption.
Assumption 5. All agents know the density values of their
own and neighboring bins.

A complex communication architecture is not required since
communication only with neighboring bins is sufficient for an
agent to determine its transition probabilities. If agents have
only access to the number of agents of their own and neigh-
boring bins, then they also need to know the total number of
agents in the swarm, which is global information, to determine
their density values. Distributed consensus algorithms, which
work under the strongly-connected communication network
topology assumption, can be used to estimate the total number
of agents of the swarm. The consensus protocol that is used to
estimate the density distribution of the swarm in [14, Remark
13] can also be used to estimate the total number of agents of
the swarm.

C. Numerical Simulations

The convergence performance of the DSMC algorithm is
demonstrated on the probabilistic swarm guidance application
with numerical simulations shown in Figure 2 and 5. We
monitor the total variation between the density distribution of
the swarm and the desired distribution. The finite number of
agents causes the quantization error outlined in Definition 8.
Theorem 3 limits the quantization error to m/(4N), where m
is the number of bins and N is the number of agents.

In the first simulation, which is the same numerical example
presented in [7], agents converge to the letter “E” in 250 time-
steps. Then approximately 1/3 agents are removed and the
remaining agents converge to the desired distribution again
in 500 time-steps, demonstrating the “self-repair” property
of the proposed algorithm for swarm guidance. Comparisons
of the total variation and the total number of transitions for
the M-H, PSG-IMC, and the DSMC algorithms are given
in Figures 3, 4, and Tables I, II for two different cases. In
the first case, the adjacency matrix only allows transitions to
the bins, which are above, below, right, and left to a given
bin, i.e., the bins that are 1-step away. In the second case,

the adjacency matrix allows transitions to 10-step away bins.
When compared to the M-H and PSG-IMC algorithms, in
total variation at the 750th time-step, the DSMC algorithm
provides approximately 1.26 and 60.67 times improvement
in the speed of convergence (the ratios of the total amount
of changing of the total variations in the given time-step) in
the first case and 1.51, and 1.25 times improvement in the
second case. The PSG-IMC algorithm does not perform as
well in the first case because of the issues caused by having
a sparse adjacency matrix as discussed in Section I-A. In
the second case, which has a much denser adjacency matrix,
the PSG-IMC algorithm provides approximately 1.21 times
improvement in total variation compared to the M-H algorithm
but the DSMC algorithm still provides faster convergence
than the PSG-IMC algorithm. Furthermore, the total variation
value of the DSMC algorithm converges to a value below the
maximum value of the quantization error provided by Theorem
3. In the DSMC algorithm, as the distribution converges, the
Markov matrix turns into an identity matrix, and unnecessary
transitions are avoided as in the PSG-IMC algorithm. Since the
transition of agents rarely occurred in the PSG-IMC algorithm
in the first case due to the sparse adjacency matrix, the total
number of transitions of the DSMC algorithm is approximately
49.56 times less than the M-H algorithm, and 4.93 times more
than the PSG-IMC algorithm. For the second case, the total
number of transitions of the DSMC algorithm is approximately
74.96 times less than the M-H algorithm, and 1.17 times less
than the PSG-IMC algorithm.

In the second simulation, a more comprehensive comparison
is provided. The swarm distribution converges to various
multimodal Gaussian distributions (i.e., a mixture of multiple
Gaussian distributions). The desired distribution is changed
to another multimodal Gaussian distribution every 40 time-
steps, except for the time-steps between 160 and 240. Up
to the 160th time-step, agents converge to the 4 different
multimodal Gaussian distributions. To show the self-repair
property of the swarm, approximately 1/3 of the agents are
removed at the 161th time-step and the remaining agents
converge to the same desired distribution in 40 time-steps.
Moreover, 7500 agents are uniformly added to the operational
region at 201th time-step and all agents converge to the same
desired distribution again in 40 time-steps. After the 240th

time-step, agents converge to the 3 new multimodal Gaussian
distributions up to the 360th time-step. Comparisons of the
total variation and the total number of transitions for the M-
H, PSG-IMC, and DSMC algorithms are given in Figure 6 and
Table III. In this case, the adjacency matrix allows transitions
to 10-step away bins. When compared to the M-H and PSG-
IMC algorithms, the DSMC algorithm provides a significant
improvement in the speed of convergence for each desired
multimodal Gaussian distribution, as well as causing fewer
transitions compared to both algorithms. Similar to the first
simulation, the total variation value of the DSMC algorithm
reaches the maximum value of the quantization error given in
Theorem 3. Furthermore, when some agents are removed or
new agents are added to the operational region, the DSMC
algorithm recovers the desired distribution faster than the
previous algorithms.



13

(a) t = 0 (b) t = 250 (c) t = 251 (d) t = 750

Fig. 2: Representation of the distribution of the swarm for the time-steps 0, 250, 251, and 750, respectively. There are 400
(20 × 20) bins and 5000 agents in the operational region at the beginning of the simulation. The agents converge to the “E”
letter in 250 time-steps and approximately 1/3 agents are removed from the operational space. Then, the remaining agents
converge to the desired distribution again in 500 time-steps.
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Fig. 3: Comparison of change of the total variation and the number of transitions with time for the algorithms. In this case,
the adjacency matrix only allows agents to transition to 1-step away bins.

TABLE I: Comparison of change of the total variation and the total number of transitions with time for the algorithms. In this
case, the adjacency matrix only allows agents to transition to 1-step away bins.

Total Variations Ratios of change of Total Variation Total Number of Transitions
Time 0 250 251 750 0-250 250-750 0-750 750 750 (Ratios)

M-H Algorithm 0.268 0.107 0.273 0.123 1.27 1.16 1.26 2282394 49.56
PSG-IMC Algorithm 0.260 0.169 0.282 0.257 2.25 6.96 60.67 9348 1/(4.93)

DCMS Algorithm 0.261 0.056 0.253 0.079 1.00 1.00 1.00 46051 1.00

0 100 200 300 400 500 600 700
time

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28

To
ta

l V
ar

ia
tio

n

M-H Algorithm: 
PSG-IMC Algorithm: 
DSMC Algorithm: 
Quantization Error: 

0 100 200 300 400 500 600 700
time

0
400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400

Nu
m

be
r o

f t
ra

ns
iti

on
s

M-H Algorithm: 
PSG-IMC Algorithm: 
DSMC Algorithm: 

Fig. 4: Comparison of change of the total variation and the number of transitions with time for the algorithms. In this case,
the adjacency matrix allows agents to transition to 10-step away bins.

TABLE II: Comparison of change of the total variation and the total number of transitions with time for the algorithms. In
this case, the adjacency matrix allows agents to transition to 10-step away bins.

Total Variations Ratios of change of Total Variation Total Number of Transitions
Time 0 250 251 750 0-250 250-750 0-750 750 750 (Ratios)

M-H Algorithm 0.271 0.101 0.269 0.113 1.44 1.48 1.51 2663105 74.96
PSG-IMC Algorithm 0.263 0.039 0.253 0.072 1.09 1.28 1.25 41483 1.17

DCMS Algorithm 0.261 0.017 0.253 0.022 1.00 1.00 1.00 35529 1.00
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(a) t = 0 (b) t = 40 (c) t = 80 (d) t = 120

(e) t = 160 (f) t = 161 (g) t = 200 (h) t = 201

(i) t = 240 (j) t = 280 (k) t = 320 (l) t = 360

Fig. 5: Representation of the distribution of the swarm for several time-steps. There are 600 (20× 30) bins and 20000 agents
in the operational region at the beginning of the simulation. Swarm distribution converges to a different multimodal Gaussian
distribution in every 40 time-step except the time-steps between 160 and 240. Agents converge to the 4 different multimodal
Gaussian distributions up to the 160th time-step. At the 161th time-step, approximately 1/3 agents are removed and the
remaining agents converge to the same desired distribution in 40 time-steps. Then, 7500 agents are uniformly added to the
operational region at 201th time-step and all agents converge to the same desired distribution again in 40 time-steps. After the
240th time-step, agents converge to the 3 new multimodal Gaussian distributions up to the 360th time-step.
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Fig. 6: Comparison of change of the total variation and the number of transitions with time for the algorithms.

TABLE III: Comparison of change of the total variation and the total number of transitions with time for the algorithms.

Ratios of change of Total Variation Total Number of Transitions
Time 0-40 40-80 80-120 120-160 161-200 201-240 240-280 280-320 320-360 360 360 (Ratios)

M-H Algorithm 2.57 1.47 1.34 2.00 1.29 7.06 1.77 1.24 1.34 6058502 77.09
PSG-IMC Algorithm 1.37 1.24 1.36 1.36 1.38 0.94 1.26 1.25 1.89 95277 1.21

DCMS Algorithm 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 78592 1.00
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V. CONCLUSION AND FUTURE WORKS

This paper introduces a decentralized state-dependent
Markov chain synthesis (DSMC) algorithm with an application
to the probabilistic swarm guidance problem. The proposed
algorithm is theoretically proven to exhibit exponential conver-
gence, and numerical experiments confirm faster convergence
compared to existing homogeneous and time-inhomogeneous
Markov chain synthesis algorithms, which respectively guar-
antee exponential and asymptotic convergence. Furthermore,
it is observed that the number of state transitions is relatively
low for the fast convergence rates it provides when compared
with existing algorithms.

For the probabilistic swarm guidance application, removing
the assumption that agents have access to density values
of their own and neighboring bins will be the subject of
future studies. A useful extension of this research may involve
imposing safety constraints on the density distribution of the
swarm, such as density upper bounds or density rate bounds.
Additional future work may include the swarm engagement
problem, which considers matching the distribution of a non-
collaborative swarm whose density distribution evolves with a
known Markov chain. In that case, having a fast converging
algorithm, such as DSMC, would possibly be advantageous to
quickly react to such changing desired distributions.
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