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HYBRID LOCALIZED SPECTRAL DECOMPOSITION FOR
MULTISCALE PROBLEMS

ALEXANDRE L. MADUREIRA AND MARCUS SARKIS

ABSTRACT. We consider a finite element method for elliptic equations with heterogeneous
and possibly high-contrast coefficients based on primal hybrid formulation. We assume
minimal regularity of the solutions. A space decomposition as in FETI and BDCC induces
an embarrassingly parallel pre-processing and leads to a final system of size independent of
the coefficients. The resulting solution is in equilibrium, and all PDEs involved are elliptic.
One of the problems in the pre-processing step is non-local but with exponentially decaying
solutions, enabling a practical scheme where the basis functions have an extended, but still
local, support.

To make the method robust with respect to high-contrast coefficients, we enrich the space
solution via local eigenvalue problems, obtaining optimal a priori error estimate that miti-
gates the effect of having coefficients with different magnitudes. The technique developed

is dimensional independent and easy to extend to other elliptic problems such as elasticity.

1. INTRODUCTION

[ Consider the problem of finding the weak solution u : Q@ — R of
—divAVu=g in (),

1
S u=0 on 0,

where 0 C R? with d = 2 or 3 for simplicity, and is an open bounded domain with polyhe-
dral boundary 0f2, the symmetric tensor A € [L“(Q)]g;n‘f is uniformly positive definite and
bounded, and g is part of the given data.

It is hard to approximate such problem in its full generality using numerical methods, in
particular because of the low regularity of the solution and its multiscale behavior. Most
convergent proofs either assume extra regularity or special properties of the coefficients [2-4]
|§|,,,, ,,,,. Some methods work even considering that the solution
has low regularity ,,,, but are based on ideas that differ considerably from what

we advocate here and do not cover in depth the high-contrast case.
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1Some of the methods analyzed here have been previously discussed in the 8-page proceeding paper \\
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As in many multiscale methods previously considered, our starting point is the decom-
position of the solution space into fine and coarse spaces that are adapted to the problem
of interest. The exact definition of some basis functions requires solving global problems,
but, based on decaying properties, only local computations are required, although these are
not restricted to a single element. It is interesting to notice that, although the formulation
is based on hybridization, the final numerical solution is defined by a sequence of elliptic
problems.

The idea of using exponential decay to localize global problems was already considered by
the interesting approach developed under the name of Localized Orthogonal Decomposition
(LOD) [45-47,59] which are related to ideas of Variational Multiscale Methods [38,39]. In
their case, convergence follows from a special orthogonality property.

One difficulty that hinders the development of efficient methods is the presence of high-
contrast coefficients 12,14} 24,31,136,63]. When LOD or VMS methods are considered,
high-contrast coefficients might slow down the exponential decay of the solutions, making
the method not so practical. Here in this paper, in the presence of rough coefficients, spectral
techniques are employed to overcome such hurdle, and by solving local eigenvalue problems
we define a space where the exponential decay of solutions is insensitive to high-contrast
coefficients. Additionally, the spectral techniques remove macro-elements corner singularities
that occur in LOD methods based on mixed finite elements. We note the proposal in [15] of
generalized multiscale finite element methods based on eigenvalue problems inside the macro
elements, with basis functions with support weakly dependent of the log of the contrast. Here,
we propose eigenvalue problems based on edges of macro element removing the dependence
of the contrast.

We now further detail the problem under consideration. For almost all € € let the

positive constants apin and am,., be such that
(2) amin|V? < a_(x)|v]? < Ax)v - v < ay (2)|v]* < apaxv|*  for all v € RY,

where a_(x) and a, (x) are the smallest and largest eigenvalues of A(x).

The remainder of the this paper is organized as follows. Section [2| describes a suitable
primal hybrid formulation for the problem (1)), which is followed in Section [3| by its a discrete
formulation. A discrete space decomposition is introduced to transform the discrete saddle-
point problem into a sequence of elliptic discrete problems. The analysis of the exponential
decay of the multiscale basis function is considered in Section [3.2] To overcome the possible
deterioration of the exponential decay for high-contrast coefficients, in Section the Lo-
calized Spectral Decomposition (LSD) method is designed and fully analyzed. To allow an
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efficient pre-processing numerical scheme, Section [4] discusses how to reduce the right-hand
side space dimension without losing a target accuracy, and also develops L?*(§2) a priori error
estimates. Section [J] gives a global overview of the LSD algorithm proposed. Appendix [A]

provides some mathematical tools and Appendix [B|refers to a notation library for the paper.

2. CONTINUOUS PROBLEM USING HYBRID FORMULATION

We start by recasting the continuous problem in a weak formulation that depends on a
polyhedral regular mesh 7y and let Fy be the set of faces on Ty — we assume that each
element has diameter smaller than H, and at most Nf faces. Without loss of generality we
adopt above and in the remainder of the text the terminology of three-dimensional domains,
denoting for instance the boundaries of the elements by faces. For a given element 7 € Ty
let 07 denote its boundary and n” the unit size normal vector that points outward 7. We

denote by n the outward normal vector on 9f2. Consider now the following spaces:

HY(Ty) ={ve L*(Q): v|, € H(7), T € Tu},

ANTu) = { H T-n"|o : T € H(div; Q)} - H HY2(0r).

TETH TE€ETH

(3)

For w, v € H'(Ty) and pu € A(Ty) define

(w’v)TH = Z wv d, (/~L7 U)aTH = Z (:U'vv)a’ra

€T YT T€ETH

where (-, ), is the dual product involving H~'/2(97) and H'/?(d7). Then

(u,v)aT:/divavd:c+/a-Vvdaz

for all o € H(div;7) such that o - n™ = u. We also define

oy = A7 20 B + H2 | div o3,
4 2 _ 1/2 2 _ :
D el = 2 APV il =l el
TETH on"=pon O, 7€TY

We use analogous definitions on subsets of 7y, in particular when the subset consists of a
single element 7 (and in this case we write 7 instead of {7}). We note that since an;, is
positive and amax is bounded, then [ - [z, (aivi0) and | - | (7;,) are equivalent to the usual
norms || - [| aivie) and [ - [gr(7).-
In the primal hybrid formulation [60], v € H'(Tx) and X € A(Ty) are such that
(AVu, V), — (\v)ar, = (9,0)7, forallve H (Ty),

5
(5) (1, W)ors, =0 for all p € A(Ty).
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Following [60, Theorem 1], it is possible to show that the solution (u, A) of is such that
u € Hg(Q) satisfies (1)) in the weak sense and A = AV u-n" for all elements 7.
In the spirit of the Multiscale Hybrid Methods [2,[32,|33/53] and FETT methods [18,26,28,

44.166], we consider the decomposition
HY(Tu) = P(Tu) & H'(Tu),

where P°(T;;) is the space of piecewise constants, and H'(Ty) is its L2(7) orthogonal com-

plement, i.e., the space of functions with zero average within each element 7 € Ty:

P°(Ty) = {v € H(Tz) : v, is constant, 7 € Ty},

6 ~ ~
©) HY(Ty) ={v € H (Ty) : /f;da: =0,7€Tu}, HY (1) ={0|, : © € H(Tn)}.

T

We then write u = u® + @, where u® € P°(Ty) and @ € H'(Ty), and find from (5)) that

- (A, 0o, = —(g,0°) 7, forall v’ e P'(Ty),
7
(:u? UO + ﬂ)@TH =0 for all IS A(TH)>
and that
(8) (AV @, V)7, = (\0)or, + (9,0)7, forall o€ H (Ty).

Let T : A(Ty) — HY(Ty) and T : L*(Q) — H(Ty) be such that, for € A(Ty), g € L2(Q)
and 7 € Ty,

9) /AV(T,LL)-V@d:I; = (i, 0)or, /AV(Tg)-Vf}dm = (9,0), foralloe H (Ty).
It follows from the above definition that Tg = 0 if g € P°(Ty), and that, for all u € A(Tx),

(10) (. T9)ory = >, | AV(T) - V(Tg)dz = (9,T)7,.

€Ty ¥ ™

Note from (§) that @ = T\ + Tg, and substituting in (7)), we have that u® € P°(7) and
A € A(Tw) solve

(:U’J T)‘)()TH + (:U’J UO)aTH - _(M7Tg)87—}1 for all IS A(TH)a
(A, 0)a7, = —(g,0°)7,  forall v° € P'(Ty).

(11)

We use these unknowns u° and \ to reconstruct v and the flux o as follows:

(12) u=1u’+a=u’+T)+Tg, o=AV(TA\+Tg).
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Remark 1. With the above definitions, it is possible to rewrite the energy norm as below:

|T)\’§{}4(TH) = Z (A TN) o, = ||.A*1/20,\Hi2(9), where oy = AV T\

TE€ETH

3. HYBRID LOCALIZED FINITE ELEMENTS

In this section we decompose the space A(7Ty) into a direct sum of subspaces, and then
rewrite problem into an equivalent form that is convenient for our purposes. Consider
F, be a partition of the faces of elements in Ty, refining them in the sense that every (coarse)
face of the elements in T can be written as a union of faces of Fj,. Let Ay, C A(Tx) be the
space of piecewise constants on Fj, i.e.,

(13)
o H T-n"|gr 1 T € H(div;Q), T7-n"|g, is constant on each face Fj, € ]:h} C A(Ty).
T€ETH

There is a delicate aspect regarding the space A(7y), since their elements are functionals.
In particular, an element p, € A, C A(Ty) have “different values,” with opposite signs at
each side of a face F}, € Fp,, if F}, is not a subset of 9€2. However, to simplify notation, we
write p5|p, to indicate the restriction of py, to Fp,.

To simplify the presentation we do not discretize H'(7) and H(div;7) for 7 € Tyz. We
remark that the method developed here extends easily when we discretize H(div;7) by
simplices or cubic elements with lowest order Raviart—Thomas spaces [71], or discretize
H'(7) fine enough to resolve the heterogeneities of A(z) and to satisfy inf-sup conditions
with respect to the space Ay.

We pose then the problem of finding u9 € P°(7) and A\, € Ay, such that

(14) (:Lbha TAh)aTH + (ll’ha U’?L)aTH = _(ll’ha Tg)aTH for all JS Ah7
(An, ’UO)aTH = —(g,vO)TH for all v° € P°(Ty).

Since (|14)) is finite dimensional, it is well-posed if and only if it is injective. Assuming that

g = 0, we easily gather that A\, = 0 and u = 0; see Lemma . We define our approximation

as in , by
(15) up = ul) + Th, + Ty, on=AV(TA, +Tg).
Simple substitutions yield that u, A, solve (5)) if A is replaced by Ay, i.e.,

" (AV up, Vo), — (A, 0)or, = (9,0)7, for allv e H(Ty),
16
=0

(fths un)oty for all uy, € Ay,.



6 ALEXANDRE L. MADUREIRA AND MARCUS SARKIS

We assume that Aj is chosen fine enough so that
(17) lu— Uhﬁ{;\(TH) = (A= M T =), < 29l

where 77 represents a “target precision” the method should achieve. For instance, one could
choose 77 = H or h®, for 0 < s < 1. It must be mentioned that )\, is never computed, the
main goal of this paper is to develop an efficient approximation of order .5 for )\, using
O(H~?) degrees of freedom.

Above, and in what follows, ¢ denotes an arbitrary constant that does not depend on H,
FC, h, A, depending only on the shape regularity of the elements of Ty.

Taking a further step, we decompose A into a space of “constants” plus “zero-average”
functionals over the border of the elements of Tg. For each 7; € Ty, let A € A, such that

(18) A o7, = [v] dx for all v € H' (Ty),
oT;

where [ -] denotes the jump operator, defined as follows. For each face F' belonging to the
boundaries of two different elements 7;, 7;, fix np as the constant unitary normal vector
pointing either inward or outward. If np is oriented from 7; to 75, let [v] = vilp — vj|F,
where v; = v|,, if not [v] = v;|p — vi|p. As usual, if F' belongs to 02, then np = n points

outward and [v] = v.

Remark 2. It is also possible to define N} explicitly, given 7, € Ty. Consider the face
F € Fy. If F does not belong to Ot; then \?|p = 0. If it does, \?|pror, = —A|pror, = 1 or

—1 depending whether ng points outward or inward of 7;, respectively. Note that \) € Ay,.
Let N be the number of elements of Tz and
A’ =span{)\):i=1,... N},

(19) ~
Ay =PUT)t = {un € Ay (pn, v")or, = 0 for all v° € P°(T)}.

We can now decompose A, = A® @ Ay as follows [11]. Given py € Ay, let 4 € A and
[n € Kh such that

(/L(]?UO)(?TH - (,uhﬂfo)aTH, (ﬂh7v)a7—H = (/l’huv)aTH - (NOaU)BTHa

for all v° € P°(Ty) and v € H'(Ty). Note that i, € Ay, since (fin, v°)or, = (1, v2)o7, —
(/’L()? UO)@TH - 07 and Mp = :LLD + ﬂh‘
We also decompose A, = A) & Ai. Basically, the elements of A) are constants on each

element face of 7}, but still with zero average over the element boundaries, and the elements



HYBRID LOCALIZED SPECTRAL DECOMPOSITION FOR MULTISCALE PROBLEMS 7
of A{L have zero average on each face:
A = {u, € Ap, : pp|r is constant for each face ' C 1, 7 € Ty},

(20) - ~
A{l ={pn € Ay : / pr ds = 0 for each face FF C 01, 7 € Ty }.
ja

Considering again , from the decomposition for Aj,, we gather that A\, = \° 4 5\2 + 5\£
Thus, v € P(Ty), A% € A%, X € A9 and X, € A solve

(A%, 0% a7, = —(g,7°) 7, for all v° € P(Ty),
- (7ih- A°+T§2+T§£>m - —(ﬁﬁvTig)aTH for all fi}, € §£,

(2, TA° + TXO + T\ )or, = —(jin, Tg)or, forall iy € A},

(1, TA° + TA + TN omsy + (17, uf)ory, = — (1, Tg)or, for all p” € A,

It is possible to compute the unknowns step-by-step as we detail below. After that we
discuss the well-posedness of each problem. The first equation of determines \°. To
deal with the second equation, we define the operator P : H'(Tz) — /~\£ such that, for
we HY(Ty),

(22) (i, TPw)or, = (i, w)or, forall il € AJ,
ie., (ﬂi, (I — TP)w)aTH = 0. Note that PT is an orthogonal projection from Ay, to /~X£ since
(il , TPTA)or, = (i, TA) o7, for all i € AL,
The second equation of becomes
(23) M = —P(TX\ +TX) +Tg).

Solving efficiently is crucial for the good performance of the method, since it is the only
large dimensional system of , in the sense that its size grows with order of h~¢. This
issue is treated in Section by taking into account the exponential decay of PT(A\° + 5\2)
It is also required to compute or to approximate Tg and PTg efficiently. These issues are
treated in Sections 3.2 and [l

Now, we can write the third equation of as

(24) (i, TAD oy = — (15, T9)omy — (i, TA = TP(TA° + TX) + Tg)) .-
and then

(A, TAY — TPTX)) o7, = — (i, Tg — TPTg)o7, — (i, TA° = TPTAY) a7,
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Since PTJ) € A,

(fin — PTPR, (I = TP)TAY) .
= —(fi — PTi), (I — TP)Tg)ar, — (i1 — PTif, (I — TP)TA)ar,.

Thus, A0 is computed from

(25) ((I — PT)ii), T(I — PT)X?I)@TH = —(([ — PT)ii, (I — TP)Tg)
— (I = PT), T(I = PT)X')

Ty

o7, forall iy € AY,

and 5\£ is recovered from ([23)).
We note that ((I — PT)i,, TPTg),, =0 since

(PTpy, TPTg),, = (TPTj, PTq),. = (Tiy, PTg),. = (i, TPTg),,

where we have used the symmetry of 7', the definition of P and again the symmetry of 7T'.
This simplification in is very important since PTg cannot be pre-processed. Finally, the
fourth equation of yields 9, and the post-processing recovers the main variables:

(26) up =u) + T+ X+ M)+ Tg, o, =AV[TO + ) + M) + Ty,

yielding uj, and A, = \° + :\2 + :\i, solutions of .

To show the existence and uniqueness of solutions for , we proceed by parts. The
existence of solution for the first equation follows from Lemma [I0] Solving the second
equation is equivalent to , and such system is well-posed due to the coercivity of (-, T-)ar;,
on /~X£; see [2,32] and [27,/43,/66]. The same arguments hold for the third equation of ,
rewritten in . Another way to see this is to consider with zero right hand side. From
the coercivity of (-, T-)a7, on A we have (I — PT)A) = 0. But since A9 N A/ = {0}, then
;\2 = 0. Finally, the fourth equation of is again finite dimension, and if (u°, u?)s7;, = 0
for all 1 € A°, then, from Lemma , u) = 0.

Henceforth, we consider the following algorithm, based on (21)):

(i) Find X\° € A° from the first equation of (2I)).
(ii) Find X from (25).
(iti) Find A/ from (23).
(iv) Find v} from from the fourth equation of (21).
(v) Compute uj, and o), from (26)).

Except for (ii), all steps above above can be performed efficiently as the matrices involved

are sparse and either local or independent of h. Solving on the other hand involves
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computing the h-dependent, global operator P, leading to a dense matrix in . From now
on, we concentrate on approximating P so that can be accurately and efficiently solved.

The key to approximate (25)) is the exponential decay of Pw, as long as w € H*(Ty) has
local support. That allows replacing P by a semi-local operator P/. That works fine for low-
contrast coefficients and is the subject of Section 3.2l For high-contrast coefficients however,
the exponential decay rate is smaller, and to circumvent that we consider in Section [3.1] a

spectral decomposition of /~\£

3.1. Decaying High-Contrast. It is essential for the performing method that the static
condensation is done efficiently. The solutions of decay exponentially fast if w has local
support, so instead of solving the problems in the whole domain it would be reasonable to
solve it locally using patches of elements. We note that the idea of performing global static
condensation goes back to the Variational Multiscale Finite Element Method-VMS [38|
39]. Recently variations of the VMS and denoted by Localized Orthogonal Decomposition
Methods-LOD were introduced and analyzed in [45-47,59].

The main bottle-neck in dealing with high-contrast coefficients is that the decay is slower,
albeit still exponential, forcing the use of larger patches. To deal with this situation, we
use a subspace of /~X£ to augment K% by selecting eigenfunctions associated to a proper
generalized eigenvalue problem associated to each face of the mesh 7. We then remove the
“slow decaying modes” from /~\£. To define these generalized eigenvalue problems, we first

introduce some theoretical tools for high-contrast coefficients.

For K € Ty, define To(K) =0, T1(K) = {K}, and for j = 1,2,... let
(27) Tii(K)={7 €Ty : TNT; # 0 for some 7; € T;(K)}.
Let 7 € Ty, F a face of 07, and let F° = O7\F. Define
(28) AL ={fmlor - fin € ALY, AF ={inlr: e}, Ay = {finlre: fn € AL}

Abusing the notation, we identify /~\; = /N\,f X /1576, and for any given [i; € /~\IL, denote
_ P ~FC X s
an = {ah . "} € Ay x A;7. Define

T}F : Ag — (]\5)/7 T}‘;CF : Ag — (Afﬁ)/’
o UAFE (R 7o AT (AFF
TFFC : Ah — (Ag)l, TFch . Ah — (Ah >/7

by

~ ~ ~ ~F¢ ~ ~F¢
(,Lth, T,Uh)t?‘r = ({Mf? /JJhT }7 T{:u}};a :uhT })3-,-

P o - Py o FE FE o - P e - FE
= (fiy,, Tppity ) r + (i, Tppeity, ) r + (i, aTFCFﬂf)FTC + (i, Tepefty” ) Fe-
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We remind that 7' : AT — H'(7), satisfies
(29) (AV(Ti;), Vo), = (7, v)e. forallve H'Y(r),
and AV(Th7) -m™ = fiy, on OT.
It follows from the properties of T' that both 77, and T}f.p. are symmetric and positive
definite matrices, and follow from Schur complement arguments that for any {j? /ZSTC} c A7

(30) (it Trpity)r = min ({77}, T{ith , 7, Do

1/57 GA

< ~F ~F7 TLF ~Fr — (LT . T

> (‘{Mh»l% b T, i, })87' (£t Thig,) o
where

T;“F =Tpp — Tppe (TECFc)flTECE

and the minimum is attained at 7,7 = —(Tpepe) " Trepiit . In what follows, to take into
account high contrast coefficients, we consider the following generalized eigenvalue problem:
Find eigenpairs (o, iy ;) € (R, A, where of < of < af, ... such that

I) If the face F' is shared by elements 7 and 7’ we solve
IT) If the face F' is on the boundary 02 we solve
(32) (), Thpitn ;) p = af (0 ,T}FﬁfZ)F, for all 7f" € AL

Let agtan, > 1 be a user-defined constant, aiming to “control” the localization of basis
functions. Roughly, the basis functions become more localized with smaller agg,y,, in a sense
that we make clear further on.

We decompose AF := Al® @ AT as

AFH

(33) AFA = span{,u,” : af < Olstab } = span{,u,” : af > Qigtab -

The eigenfunctions /i, ; are chosen to be orthonormal with respect to (-, (Trp+ T )r if
F is an interior face, and with (-, Tpp-)p if F C 9.

Generalized eigenvalue problems of this type have appeared in the literature to make
preconditioners robust with respect to coefficients [8}|13}|16},40-42,48.|49}55],65]. In particu-
lar [51] shows, for a similar problem, that af — 1 decays exponentially to zero since, when h
goes to zero, the operators Ty (related to (HY2(F))) and Tpp (related to (Hd*(F))') differ
only by a compact operator. We note that in [51] and also here, the generalized eigenvalue
problems have a dual algebraic relation with the parallel sums first introduced in the classical

article by [1]. Additionally, since there are no degrees of freedom at the vertices (in 2D) or
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edges (in 3D), we do not have generalized eigenvalue problems associated to vertices (in 2D)
or edges (in 3D), respectively.

In [29] is shown that the number of eigenvalues that are very large is related to the number
of connected sub-regions on 7 U 7 with large coefficients surrounded by regions with small
coefficients. Generalized eigenvalue problems also have been used on overlapping domain
decomposition solvers [17,25,129,/64]. The design of robust discretizations with respect to
coefficients using domain decomposition ideas have been studied in [34,35,37] assuming some
regularity on the solution, and in [29] for a class of problems when the weighted Poincaré
constant [20454,/56] is not large, otherwise the exponential decay of the multiscale functions
deteriorates. See also [23,24] where a priori error estimates are obtained in terms of spectral

norms.

In the following result, we provide stability estimates for T" acting on certain subspaces of

]\i, and some upper bounds for the generalized eigenvalues.

Lemma 1. Let F be a face of Ot shared by the elements T, 7' € Ty. If F is on the boundary

0, assume 7' = 0. Then

(34) iy, 0}|12q;1(7) + [T (i, 0}@;\(7/) < astab(|Tﬂg|?¥}4(T) + |Tﬂﬁl|§{;\(7/))

for all iy = {aF®, ir7} € AP x A7 and all i = {[Li’A,ﬁffl} e Al® x Aff'. Also,
(35) T4tk 033y, oy < Q|TiiR oy for all if, = {fif i } € A x A7,

where o = ’}/Hﬁ%{/h, the positive constant v depends only on the shape reqularity of Ty, and

Bum =1+10g(H/h), k=maxk", K =% a.=supar(x), a,,=infa_(x).
TE€TH Apin xeT TET

Finally, if af is an eigenvalue of @, then 1 < af’ < a.

Proof. Assume that F' is a face shared by 7, 7’ € Ty. The case when F is on the boundary
0N is similar. To show , let /Zf’A € Af’A. Then the eigen-expansion ﬁf’A => ciﬁi ;
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holds and «; < ogap. Then

~F,A ~F,A ~FA mr ~FA ' ~FA
T 1y, 70}’%1;(7)+|T{M 70}‘125(1(7/)—( s Tppity, )F+(Mh TFF fi, ") F

T ~FA ‘I' "’FA
_ZC’LC] ,uhz ) F:uh] >F+(:uhz 7T F:uh] )F)

r ~FA S LFA
= Zc,c]a] Mm aTFFNh] )P+ (Nm Tppiy; )F)

P~ P! ~FA
= ch@j Mh] »TFFNhJ )r + (th T ppiy; )F)

< astab(( TFF:uh )F + (Mh T;F~5A) ) < Oéstab((llzaT/lZ)t?r + (ﬂg/aTﬂ;l>aT’)‘

To show , let us first define 77 by @D with A = Z, the identity tensor, that is, T7 is
the classical harmonic extension with Neumann boundary condition. From Lemma in
the Appendix and a direct application of |71, Lemma 4.4] since both fir and ] have zero

average on 01, we have

Co 7
1 T{fi , O} %1 (T) ’TZ{IM}mO}’Hl 0}@—1/2(37) < aT_ﬁé/h‘Mh ?1—1/2(37)

mln min min

(T) - amaxﬁH/h|TMh|Hl (r)

min min

and then follows.
Next, taking ﬁ,ffc = /1570 in 1 , we gather from that af > 1. Finally, without loss
of generality assume that holds and 7 and 7’ share the face F. Then

of (g (Tpp + Thp)iing) p = (s (Thp + Thp)fihs)
= ({:&517 0}7 T{ﬂgzﬁ 0})87- + ({ﬁﬁw 0}7 T{:&ii’ 0})87'

~ ~F ~ Fe,
< of Frplil (i o Y Tt 2 Vor + min ({27 1 Tt i 13,7 Yor)
vpT € z”th €A,

= a(ﬂii» (Trp + TEF)ﬁﬁi)Fa
where we used and (35). Thus, af < a. O

To define our LSD-Localized Spectral Decomposition Method for high-contrast coeffi-

cients, let us introduce the non-localized version. Let us first define

0 AV = i e A 2 finlr € AP for all F e 9Ty},

36 - ~ -
Ay = {jin € AL : jun|r € Ap® for all F € 0T}

From Lemma , if aigiap, > « then AE is empty.
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We now follow the same procedure as in except that now we replace K% by
(37) AV .— A9 @ AL
replace K£ by KhA and replace P by P* : H'(Ty) — KhA such that, for w € HY(Ty),
(38) (i, TPPw)or, = (i, w)ar, forall i € A2,
The outcome is that A" € K%’H solves (cf. with (27))

(1 = PAT)RT(1 = PATIRM), = —((1 = PATYRM, (1~ TPA)Tg) .

— (I = P*T)i", T(I = PAT)XY) . for all iy € AP™,
and
up =u) +Thy +Tg, A= —P2T\ + T\ 4 Tg),

(39) Ap = A0+ AT L A8 — (1 — PAT)(AO 4+ 20 — PATy.

Note that uy, uf) and \° in (39) are the same as in . Also, since the space /NXh =
A @ Al @ A2 is a direct sum,
(40) ME=XN AN AR =X
where A) and A/ are the same as in and A € AJl.
The lemma that follows provides a crucial estimate for solutions of , allowing the

establishment of the exponential decay of solutions in Theorem

Lemma 2. Let v € H'(Ty) such that suppv C K, and ﬁf = P®v. Then, for any integer
J=1,
~ A2 f ~AN2
T Ve i 7 ey < N @stab T i, (77, V7 100y

where Nt is the mazimum number of faces that an element might have.

Proof. Choose 7> € A% defined by 75'|p = 0 if F is a face of an element of 7;(K) and

A A . .
vy, |r = [y, |p otherwise. We obtain

~/\ 2 ~ A\ ~A
Thy i gy = Do (- Th)ar
T€Tu\Tj+1(K)
~/\ ~/A\ ~A ~A ~ A\ ~ A ~A
= Z (7 Thy, )or — Z (A, , T'iiy, )or + Z (1, — vy Tiy, )or
€T TETj+1 (KO\T;(K) T€Tj+1(K)\T;(K)

~A ~A ~/\ ~A
= —|THy, |§{;(Tj+1(K)\Tj(K)) + E (B = iy )or,
T€Tj+1(F)\T;(K)
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where we used that > - (70, Tjie )or = 0 due to the definition of 7" and the local support
of v.

For each 7 € T;,1(K)\T;(K) and let F(7) be the set of faces of 7 that are also faces of an
element in T;(K). Let 7/(F) € T;(K) be the element sharing F.

Z (ﬁh Vh7T:uh,) Z Z Nha

T€Tj+1(K\T;(K) T€Tj+1(K\T;(K) FeF(r)

< Qigtab Z Z (|T |H1 +|T |H1(T( )))

TETj+1(FO\T;(K) FeF(r)

< Nagan (| T, |H1 (Tr1 (K + [T |Hl T(K)))
from (34), and since F (1) contains at most N' faces. O

Remark 3. The conclusion of Lemma |9 also holds if suppv C T;(K) for some positive
integer v < 7.

Theorem 3. Let v € HY(Ty) such that suppv C K, and [LhA = P%v. Then, for any integer
J =1,

N [(J+1)/2]
7 Nfq
TEs sy < € 7N [T i

where [s] is the integer part of s, and N' is the mazimum number of faces that an element

might have.
Proof. Using Lemma [2] we have

f ~/\12
T s, i ey < N @stab Ty s 7 )y = N stan| T T, (750 10

and then
|T~A|2 M| A|2 < e‘ﬂiNflastab |T”A|2
Fon Vi (T \ T (1)) S 1+ Nfon, Ti ey i) = Fon Vi (T \ T -1 ()

The theorem then follows from recursive applications of Lemma 0

We now localize Pv since it decays exponentially when v has local support. We consider
two families of localizations. The first family P24 is based on elements in Ty, and utilized
to localize T'g, while the second family P2 is based on faces of Fy with the purpose to
localize T'\y,.

Fixing K € Ty and a positive integer j, let Af’K’j C Af be the set of functions of Af
vanishing on faces of elements in Ty\7;(K), and P&5J - HY(Ty) — A" such that, for
ve HY (Ty),

(41) (ﬁhA e TP 0) o7, = (ﬁhA’K’j,vK)afrH for all ﬁhA’K’j € AhA’K’j’
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where we let vy to be equal to v on K and zero otherwise. We define then P29 by

(42) P&y = Z PRy,

KeTu
We next introduce a new localization, this time based on faces. For a fixed ' € Fp shared
by elements 7{" and 7" or shared by only one element 71, define 7o(F) = 0, T, (F) = {7, 7'}
or Ti(F) = {rF}, and for j =1,2,... let
Tis1(F)={7 €Ty : 7N7; # 0 for some 7; € T;(F)}.

Let A2 < A% be the set of functions of A5 vanishing on faces of elements in Tz \F;(F).
Let us decompose A\, € Ay, into A\, = ZFGIH )\f where )\i = )\, on the face F' and zero
everywhere else on F. The operator PAFIT @ Aj, — AhA’F’J is defined by

(43) (i TP TN om, = (i TN ot + (B, TA Dorg for all iy € Ay,
We define then P29T\, € /~\hA by

(44) PAITN, = ) PATIT),.

FeFy
The reason to introduce P29T\, is because we could not prove that PAITAS = S\hA and
this property is fundamental on what follows.

Lemma 4. Let j > 1 and 5\,? € /~X and P> be defined as above. Then PAJT)\A = >\A

Proof. Let F' € Fy and A} = A, on F and zero everywhere else. Since
(ﬁf,TS\f’F)an + (i, TAS o0 r = (fiy, S TN Yoy, forall iy € Ar,
and X,?F € ]\hA’F’j . then it follows from the existence and uniqueness of P>F ’jTS\,f that

PA’F’J'TS\,?’F = S\hAF Also, PA’FJTS\,% = PA’F’J'TS\}?’F, and it then follows from that

PAITAR = Y PAPITAM = Y arf = AP

FeFy FeFn

In Lemmas [5{ and |§| we estimate the accuracy of P27 and P®7 with respect to P%.

Lemma 5. Consider v € H'(Ty), and the operators P* defined by and P29 by .

Then
__1G=1/2)
[T(P> = P> )ul7, LTy S cjIN a2 e T e ’V‘Hl (Ti)

where Nt is the mazimum number of faces of an arbitrary element.
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Proof. For K € Ty, let jit"" = PPvg and jip ™7 = PA9Kyg and
N AK  ~AK
Yy, = E (" = [, 7).
KeTy

For each K € Ty, let &f’K € Af be defined by @Z,LAK|F = 0 if I is a face of an element of
T:(K) and 0" |z = ¢ | ¢, otherwise. We obtain

(45) [T iy = D D W =8 T =i ™) or+ (0 Ty ™ =i ™)) o
KeTy €Ty
See that the second term of vanishes since
S T~ ) = 3 G T )y =0

T€TH T€ETH

For the first term of we use a direct application of , yielding

D W = O T = "),

TE€TH
< Z |T(1Z;LA - &f’K)‘H}L‘(TﬂT(ﬂf’ - ﬂhA’K’J)‘H}L‘(T)
T€Tj+1(K)
<Na slfb\Tﬁf\H;‘(ml T (™ = i J)|H}4(’rj+1(1<))-
Let v2™7 € A2 be equal to zero on all faces of elements of Tz \7;(K) and equal to ji5""

otherwise. Using Galerkin best approximation property, , and Theorem [3| we obtain

|T(~A,K ~NK,j

AK | ~AKj
HFno = My )’Hl LK) = < |7( olF

~ ALK ALK
Br' = M )|H1( <|T(@, " —vy ™’ :

O e
= 1)/2]

~AK2 ~TiNTe 2

< Nf astab|T |H}4(7’H\7}71(K)) < Nf Oést ab€ ey |TM |H}4(7’H)‘
We gather the above results to obtain
“A12 __lG-n/2
|T¢h ’H}A(T < N ast be 2(14Nf Ogtab) Z ’Twh ’Hl 7~+1 K) ’T/Lh ’Hl TH
KeTu

(=2 AK 1/2
< NP agape 0 o) S TP iy o (D Ta L) )

KeTn
We finally gather that

|T~AK|H1 Tu) = (:D“}?J(aTPUK)aTH = (ﬁhAJ(?,UK)aTH = /KAV(T:&}LAJ() ' V(UK) dx

and from Cauchy—Schwarz, ]TﬁhA’K]H}A(TH) < ‘UK|H}4(K), we have

~ ALK )2 2
Z |Tﬂh |H}4(TH) < |U|H}4(TH)
KeTy
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Lemma 6. Consider \,, € Ay, and the operators P> defined by and P~ by . Then

. . 4 _ [G= 1)/2]
’T(PA - PA’])T)"JJ%I}L\(TH) < C]2de O‘stab HHNTesiap ’T/\h|H1

A(Tu)

Proof. For F' € 0Ty, let i ~A F = = PATA and [LhA’F’j = PAPITAF, and
A “AF A
Py = Z Ay — Hp ).
FedTy

For each F' € 07y, let z/zhAF € /N\,? be defined by @hAF| »=0if F'is a face of an element of
T:(F) and 4" | 2 = 4| 5, otherwise. We obtain
. ~AF, TA, AF A Fj
(46) |T0; [r iy = D > @ =00 T =)o+ (Wi T = i ™))
T7€Ty FEdTH

See that the second term of vanishes since

D @O T iy ))or = 30 @O T o =0

TETH TETH

For the first term of we use a direct application of , yielding

YA TAF ~AF ~AF “A _AF F,
E :(wh — T (i, =), < E T (4, — )‘Hl T (g, — iy, J)\HA(T)
T€TH T€7}+1( )
£ 1/2 | IA ~AF  ~AF,
< Ny 21T s 7, o | T = ™) s, (7 )

Let v2%7 € A2 be equal to zero on all faces of elements of Ty \T;(F) and equal to ji.""

otherwise. Using Galerkin best approximation property, 7 and Theorem [3| we obtain

|T(~AF ~/N\,F,j

~AF  ~AF
Hp, Hp, )|H}4(T <|T( 7

~AF _ AFj
— My’ )|H1 1 (Tw) <|T(w," — vy ])’Hl 1 (Tw)

_ _[G=1)/2]
< N Oéstab|T,LLh |H1 (Tu\T5-1(K)) < N astabe 1+N astab|TM |H1 (Ti)"

We combine the above results to obtain

[(J 1)/2

~ (11Nt . o) NA’
e D Wl L e e

FedTy
6-1)/2 AF 1/2
< CN Oést b€ 2(1+N stdb)J |T’¢1h |H1 (TH)( Z |T |H1 TH)) 5
FeoTu
and finally gather that
T, Vs oy = (" TPATA)ory = (i " TN, oy = AV (Tj") - V(TAL) de.

T1UT2
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From Cauchy—Schwarz and |T' ﬂhA’F| Y (To) < | TAE | i 1 (nUr,) We have

~/N\F (2 F 2
D T By < ITAL B -
FeoTy

The LSD method is defined by computing
(47) yLSDY = yLSD0G { RIS 4 g LS _ 30 | 0L | 504
based on modifications of , , and the fourth equation of . Indeed, define S\?L’H’j €
A%H from
(48) ((I = P, T(I = PAT)N), = =((I = PAIT) ", (1 = TPA9)Tg)
— (I = PAIT) )", T(I — PAIT)N)

OTH

~0JT _~ R0,
T for all 1, € A},

and compute A2/ € A2 and w27 € PO(T) from
(49) Al = —PAI(TA0 4 TN — pAiTyg,
(50) (1, up™* PN )ary = —(u®, TA° + TAY™ + TAR)ors, — (1%, T9)om, for all 4u® € A”,

The next result presents an error estimate of the method.

Theorem 7. Let uh be defined by (39 . or one of its equivalent formulations , , and
let uhSDJ be as in (A7) for j > 1. Then there exists a constant ¢ such that

_ _[G=1)/2]
Jun — uy ™ 3 72y < N 0 e T et (ITAu s, o) + T8l (7)) -

Proof. Tt follows immediately from the definitions of u, and u;>"7 that

LSD,j LSD,j LSD,j LSD,j
up, — u, ]‘?{1 W(Ta) — T (An — Ay ])ﬁ{;(TH) = (A =X"7) T = Ay ]>)67'H'

Defining v, %77 = (I = PAIT)\’ 4 (I — PAT) X\ = PAITg, let

(51) (<>‘h - /\}I:SDJ>7 T(>‘ - /\}L;SDJ>)37—H

(()\h _ LSD])7T()\]L N )\I];SD,j))aTH + ((V}[LJSD,]' . )\ESD,j),T()\h . )\ESDJ))&TH.

Since 1,7 — AP = (1 — PAITYAYT = A9y and A — A2 ¢ A%Y then by using
and , respectively, the second term of the right-hand side of vanishes. Indeed,

from (7). (@), (@9

(1 — PAIT)0, TASPS) = (1 — PAIT)fip, Tg) . for all fiy € A",

0TH
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and from (21)) we have
((] - PAJT):&?L?TA}I)@TH = _((I - PAJT):&%?TQ)QT
since [L?L € ]\2 and PAJT[LQ € /N\£ Thus, choosing [L% = j\g,n — :\%H’j7

((VII;SDJ . )\};SD,j), T(/\h . )\};SDJ)) ((I PA,]T)()\O T xg,n,j)’ T(}\h . )\ESDJ)> =0.

OTH OTH

Next, it follows from and the Cauchy—Schwarz inequality that

Jun =™ iy = (n = 7 T = X07) = O = 03— 1 oy

Ty
LSD,j LSD,j
< 17O = ) i i lan = 3 iy 7

since A, — 1507 € An. We now use Lemma {4 where (P2 — PAI)TAS = 0, and then
Lemmas [ and [6] to obtain

(52) fun —w, ™ i oy < (IT(P2 = PAOTNf3p o,y + TP = PA) Tl 7.1)

__1G=1)/2]
< C]Zde be 1+NFage, (|T)\h|H1 (Ti) + |T‘g|H1 (Ta ))

OJ
Remark 4. We note that |T)\h|12LI}4(TH) < 2|uh|§ﬁ(7’ + 2|Tg|Hl (i) therefore
2 D) 2 D)
TNl ey + 1T 73y < Al = wnli oy + 4l ey + 31T 905 700
Defining global and local Poincaré constants to obtain

lullr2) < Ca,plulmy (1) T 9l (1) < cpH||gllz2(0),

it follows from Theorem 7 that if j is taken such that

[G=1/2]
c2INT' Q2 e T agan (4567 4 4C2 ba+3cH?) < 7
then, from (L7)),
lu— U;LLSD’j!H;(TH) < | 9ll12(0)-
We obtain j = O(Nf2ozstab log((Cp,c + cpH) /). There is a light log dependence of j on

the Poincaré constants Cpg and c,.

Remark 5. We remark that the post-processed stress crLSD’j AV[T ()\0+5\2’H’j +5\hA’j )+Tg]

18 in equilibrium, in the sense that

(53) / LSDT N v dx = /gv dx  for allv € Hy(7).



20 ALEXANDRE L. MADUREIRA AND MARCUS SARKIS

Indeed, given v € H(7), let v° be constant and v € H'(t) with zero average such that

v=1v"4+70. Hence

/gvdm:/AVTg-V{;dm—ir/gvoda:

= /[afl”’j — AV T+ X0 L X))V i da + /gvo da.

T

However, v = —v° on 07 since v € HY(7), and then
— /AV T+ XM 4 A -V b dae + /gvo dx = —(\ 4+ A" £ AT ), + /gvo dx

(A0 4 RO 3B 0y, / o da — 0,

T

where the final estimate follows from . Thus, holds.

3.2. Decaying Low-Contrast. The method for the low-contrast case is a particular case

of the high-contrast one by choosing
Qstab > Q.

It then follows from Lemmall|that 1 < Ozf < «a for all the local eigenvalues. Thus, A = Kfl
and Al = @ from and (36).

Of course, the numerical scheme and the estimates developed in Section hold. However,
several simplifications are possible when the coefficients have low-contrast, leading to sharper
estimates. We remark that in this case, our method is similar to that of [46], with some
differences. First we consider that T' can be nonzero. Also, our scheme is defined by a
sequence of elliptic problems, avoiding the annoyance of saddle point systems. We had to
reconsider the proofs, in our view simplifying some of them.

We now establish the following fundamental result for low-contrast. The technique used
for the proof is extended in Lemma [2| for the high contrast case. The Lemma [2] is now
replaced by the following.

Lemma . Let v € HY(Ty) where suppv C K € Ty, and /li = Puv. Then, for any integer
J =1,

~fi12 f ~f 2
T i, 7o 0y < N ol Tl (7 k700

where « is defined in Lemma [1]
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Proof. Choose 7 € Al defined by 7/|p = 0 if F is a face of an element of T;(K) and
ol |p = il | otherwise. We obtain, as in the proof of Lemma ,
TEA 5 (T a a0y S > (i =T
T€Tj+1(K)\T;(K)

Next, let F' be a face of an element 7 € T;1(K)\7;(K) and let xp be the characteristic
function of F being identically equal to one on F and zero on d7\F. See that xp(ji} — 7})
vanishes for faces F' on 7 € T;41(K)\T;(K) that are not shared by an element in 7;(K)
however it is not known a priori how many. Let F(7) be the set of faces of 7 that are also
faces of an element in 7;(K). For the shared faces, (il — 7)) = xrfil. Since it is possible

that all d faces of 7 share faces of elements of 7;, hence, the following bound always holds:

T (1], — 5;{)@1}4(7) < ). |T(XFﬁ£)|§{}4(T)-

FeF(r)
It follows from that |T(xpit]) i’i\(ﬂ < a|Ti! 314(7) and the final result holds since F(7)
has at most NI faces. O

Comparing Lemma [2]] with Lemma [2| we see that the right hand side of the estimate de-
pends on T;41 (K)\7;(K)) instead of T;11(K)\T;—1(K)). This more local versions is possible
due to instead of . The result of Lemma [2f| allows a better decay estimate with
respect to j in Theorem [3[| compared to that of Theorem |3 (cf. also Theorems [7[| and .
However, in general, the estimate is not as good since « increases with the local contrast;

see Lemma [1]

Remark 6. Even though the proof of Lemma [g] concentrates the analysis to hybrid dis-
cretization and u;, € H*(Ty), the analysis also extends easily to mized finite element dis-
cretizations or to finite dimensional approzimations of H'(Ty). We also could have used the
fluz approach for the proof, that is, let o' = AV Tup, 0% = VTiup, o = .AVT/]£ and
or=V Tzﬂz, or the corresponding ones arising from the lower-order Raviart-Thomas case

(associate to a triangulation Ty (7)). We would have

B 1 1 C2 y
A2 ) < —— 107 IEar) < ——prliyasagon < =Bl idli1/2(0r)
Ain Apnin Anin
< LG ullorlfg, < 12252, A o
S 7 PamllOTlie e S 07 Phjh L3(r):

min min

Remark 7. We note that |71, Lemma 4.4] is based on H~'/?(7) norms and therefore it
holds whether we use H(), H(div;T) or corresponding discretized versions inside 7. We

point out that the h in log(H/h) is related to the space Ay, not to the interior. The a in
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this paper is estimated as the worst case scenario, that is, using Lemma and |71, Lemma
4.4). For particular cases of coefficients A and discretizations for H'(7) or H(div; T), sharper
estimated for a can be derived using weighted and generalized Poincaré inequalities techniques
and partitions of unity that conform with A in order to avoid large energies on the interior
extensions 9510,20,,30,143.[54} 56159, 63| .

Following a similar analysis, we next replace Theorem |3| with g, instead of a.

Theorem ’. Let v € H(Ty) such that suppv C K, and ﬂ£ = Pv. Then, for any integer
J=1

~ 12 —— L | 12
(54) |TMh|H,14x(TH\7}‘+1(K)) S e N |T/”Lh’H,14(7’H)’
Proof. 1f [L£ = Pv where suppv C K, then using Lemma [2| we have

~f12 f ~f 12 f ~f 12
Tt e 70750y < N Tl i 00y = N T i, (773, )
and then

Nfa N
~f12 ~f12 ~f12
Lll g0 < Tonia L Enlm g ooy < € 5 Tl 00y

and the theorem follows. OJ

Note that if the coefficient A is nearly constant and isotropic inside each element 7, the
exponential decay will depend only mildly on Sp/,. However, the decay of Pv deteriorates
as the contrast x gets larger. That is the reason for developing a contrast-free method in
Section where we consider high contrast and eliminate the o dependence.

For each fixed element K and positive integer j, let /N\fl’K’j C /NXi be the set of functions
of A/ which vanish on faces of elements in T \7;(K). We introduce the operator PX7 :
H'(Ty) — A" such that, for v e H'(Ty),

(55) (ﬂiaTPK’jU)aTH = (ﬂi, Uk )or, for all ﬂ{L € /~\£’K’j,

where v is equal to v on K and zero otherwise. For v € H'(T;;) we define then PITwv € /~\£

by

(56) Piy = Z PRIy

KeTy

We next introduce a localization based on faces. Let /~X£’F’j C ]\i be the set of functions

of /~\£ vanishing on faces of elements in 7y \JF;(F). Let us decompose A, € Aj, into A\, =
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Y Fery A where A" = \j, on the face F' and zero everywhere else on Fy. The operator
PP Ay — AP s defined as

(57) (fih, TP TN omy = (i, TAY arr + (Fin TAR )y for all iy, € AT

We define then PIT), € A by

(58) PTA, = Y PHMT),
FeFy

Lemma . Consider v € HY(Ty), and the operators P defined by and P7 by .
Then
(59) |T(P—]5j)v|§{}‘( < NFP2e TN VI, (720
Proof. We follow similar arguments of the proof of Lemma . For K € Ty, let ,&h’K = Pug
and "7 = PKiyg, and o] = ZKETH( — @™, Let @f% € Al be defined by
1| p = 0if F is a face of an element of 7'-( ) and 91" |z = ! |, otherwise. Then
(60) |78 iy = D 2 Wk =S TS = ™)) or + WFF TS = 3")ar

KeTy €Ty

See that the second term of vanishes since
S G TG = G))or = 32 @ T or = 0.

TETH TE€ETH

For the first term of , as in Lemma [2]| we use ([35]), yielding

7 TfLK ~f K ~f.K,j 7 7K ~f K ~f.K,j
ST = T - w5, < S AT, = ) o TGS = )

= T€Tj+1(K)
- ~fK K,
< N2 T i 5, o TG = ™) i 75,000

Let y,{’K’j € JN\{L’K’j be equal to zero on all faces of elements of 7y \7;(K) and equal to ,&fl’K

otherwise. Using Galerkin best approximation property, (35)) and Theorem [3[| we obtain
_f, _FKj K, K K,j
|T(M£ - N£ ])|H}4(7;+1(K)) < |T( _H£ j)|H1( < |T(, A V}{ J)|H}4(TH)
~fK|2
< N2 o Thy, |H}4(TH\T Ky S Nqe Tinta T 2 L (T

We gather the above results to obtain

1K £2 =2 ~£K £ K
T4, [,y < N ae 2048 > T s o7, Ty L, (720
KeTh

1/2
< NPqe” T jd [ TgEK |, m(Z |T~fK|Hh<TH)) :

KeTu
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We finally gather that
Tl iy = (™ TPoR)ory = (7™ vr)or, = / AV (T") - V (vk) da
K

and from Cauchy-Schwarz, |Tﬂ£7K|H}4(’TH) < |vk|m(x), we have

~f7K 2 2
Z |Tﬂh |H}4(TH) < |U|H}4(TH)'
KeTy

Remark 8. Using arguments as in the proof of Lemma with estimate , we obtain
(61) T(P = PYT X2 ) < chda%—ﬁﬁAhliwm
for A\, € Ay,.
Recall from and that up = u) + Ty, + Tg, where
A= (I = PT)X° + (I — PT)X\) — PTy.

Motivated by the above decaying results and 7, we define the solution of the localized
algorithm by

(62)  w) =wuy? +TX +Tg, where N, = (I — PPT)A° + (I — PPT)\)? — PiTyg,
and A” solves the first equation of (21)). Also, similarly to (48), N e A9 solves
(63) ((I - PJT)/jL%,T(I - PjT)S\?L’j)aTH - _((I - PJT)ﬂ?H (I - TPj)Tg)BTH
— (I = P'T) iy, T(I = PT)N") . for all jij € A},

and similarly to the fourth equation of (21)), we obtain ug’j by

(uo,u%j)aTH = —(u°, TA\° + Tj\g’j + T:\z’j)aTH — (uO,Tg)aTH for all u° € A°.
and as in (23)) we have defined
(64) MA = _PI(TX + TAY) — PITy.

A fundamental difference between our discretization and some multiscale mixed finite ele-
ments methods such as the ones in [4,|45] is that here we avoid solving a saddle point problem
by computing /\z’j = \? using the first equation of , while there the equation is ex-
tended to the whole space A° @ /N\?L and solved together with an equation for ug’j .

A new version of Theorem [7] follows.



HYBRID LOCALIZED SPECTRAL DECOMPOSITION FOR MULTISCALE PROBLEMS 25

Theorem ’. Let uy, and ufl be defined by and . Then there exists a constant c
such that

. . 4 __j=2 ~
|uh — uiﬁ{}“(TH) S CJQde 0426 14+ Nfo (|TAh|I2"I}4(TH) + |Tg|%{}4(7_H))

Proof. 1t follows immediately from the definitions of u; and u% that

|up, — Uiﬁzi(ﬁ,) =[T(An — Ai)ﬁ{;\(m) = ((An — )\;L), T(An — )\%))BTH-
Defining v} = (I — PIT)\° + (I — PIT)\) — PITyg, it follows that
(65> (()‘h - Ai)? T<>‘h - A‘ZL))@TH = (()‘h - yi), T()‘h - Ail))c’)TH + ((U;L - )\%), T(Ah - )‘;L))aTH'
Since ) — A7 € AY and i — N = (I — PPT)(A\) — A\)7) € A, then by using
and , respectively, the second term of the right-hand side of vanishes. Indeed,
from (52, @), €.

((I = PPT)fip, TX,) 5. = —((I = P'T)ji, Tg) . for all fi € Aj,
and from (21)) we have

((I - PjT)la?wT)\h)aTH = _((I - PjT)ﬂ%Tg)aTH
since /i) € A9 and PIT[i) € AJ. Thus, choosing i = X) — A%,
(= M) TOw = X)) 57, = (T = PTG = N7, T = X)) o, = 0.
By Cauchy—Schwarz inequality, we have from that

o= By = (O =), TO = M), = O = v = o,

< AT (An = vl (e ltn — g i (720)

since A\, — 1/,]; € A,. We now use Lemmawhere (P — Pj)TS\fL = 0 and then Lemma and
Remark [§] to obtain

[un = ui i ) < T Ow = 2) 3 7y = |T(P = POTN + T(P = POTgli o7,
< chdeA‘aQe_erQfa (’T)\h‘l%li‘(TH) + |Tg’?{;(ﬂ{))'
OJ
Remark 9. Arguing as remark [, we gather from Theorem[T] that if j is taken such that
chde4a2e_ﬁ(4%2 +4C} ¢ + 3 H?) < 27,

then,
LSD,j
lu =" oy < N9l r20)-
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We obtain j = (’)(Nfszlog((CpG + cpH) /) log?(H/h)), and j is large not only in the
high contrast case (k large), but also if h < H.

4. FINITE DIMENSIONAL RIGHT-HAND SIDE

We first note that the solution given by the four steps of is exact, in the sense that it
solves as well, and hence the solution error vanishes. To compute 5\2 and 5\{; is necessary
to compute PTg, and that hampers efficiency, and it is the only part of algorithm that
does not permit exact pre-processing. In order to allow pre-processing, we replace the space
L?(Q), which contains g, by a finite dimensional one in such a way that the solution error is
O(H). If v; is a basis function of this finite dimensional space, PT; can be built in advance
as a pre-processing computation. To guarantee order .7 convergence in the energy norm, it
is enough to define the basis using elementwise generalized eigenvalues problems. For each
7 € Ty, find eigenpairs (0, v;) € (R, H'(7)), i € N, such that
(66) /AVUj'demzaj/viwdw for all w € H'(7)

.
Let us order the eigenvalues 0 = 01 < 09 < 03 < .... First note that o; — oo since H*(7)
is compactly embedded in L?(7) and A is uniformly positive definite and bounded. Define
J; as the minimum integer such that U}Tlﬂ < ¢, where S was introduced in ((17)), and
define the space

Fy. =span{vy,..., vy }.
Then we obtain

UE}"jTLQ = /UQdeC%”Q/.AVU-Vvdw.

Indeed, let v € ]—"JLTLQ. Using the fact that the eigenfunctions v,; define an orthogonal basis

in both H(7) semi-norm and L*(7) norm, we can write v = >~ ; ., a;v;, and then

(67) /UQd:B: Z a?/v?dw: Z a?aiQ/AVvi~Vvidw§

i>J 41 i>Jr+1

o2 Z a?/AVvi-Vvidwg(c%”f Z a?/AV@i-Vvidw

i>Jr+1 i>Jr+1
= (c%)Q/.AVv-Vvdm.

Clearly, F;_ is nonempty since it contains the constant function.
Let

(68) ]:J:{?JEHl(TH)Z U|T€fJT},
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and let IT1;g € F; be the L?(2) orthogonal projection of g on F;. Note that the computation
of Tg becomes now trivial since, on each element 7 and i > 1, Tv; = o, Yv;. This follows
from the second equation of @D, and .

Lemma 8. Consider uy € H} () weakly satisfying —div AV uy =1;g. Then
lu—wilm () < €| gll12(0) = AN [l r2(0)-

Proof. Note that the error e; = u — uy; € H}(Q2) weakly satisfies —div.AVe; = (I —11;)g,

and note that u; does not necessary belong to F;. We have

\eJ\?q;‘(TH) =(AVe;, Ve, =1 -11)g,e5)m = ((I —1ly)g,e; — ses) 7,
< gllzz@lles = Wiesllrz@) < clgll2@)les — Woesluy iy < ¢ gllr2)les|m ()

where we have used that IIy;e; € F;, and II; is an orthogonal projection in both LQ(Q) and
H(Tx) inner-products. O

Remark 10. The above arguments can be extended to the discrete case uy and uy, ; solutions
of with g and ;g as the forcing term, respectively. Denote 6g = (I — 11;)g. The
solution error ep; = up — up,y can be decomposed as ey ; = e%ﬁ, + ToN, + T&g, where
oA = (I — PT)6X° — PTég. Note that 6X° vanishes. Using the definitions of T and T,
and we obtain

(69)  lenalip i = TN + Togl5p, (72 = (en5,09)12(2) < e len,sl (i |9l 2.

Remark 11. On Section [ we have assumed g as the right-hand side. In case we use I1;g
as the right hand side, we obtain the same bound since ||11;g|2(q) < ||9]|r2()- Thus, if ufw

1s the localized solution of the method with 11;g as the right-hand side , then

[[un — “ﬁ,JHH}A(TH) < lun — th“H}L\(TH) + llun.s — Ui,JHH;(TH)a

and a final estimate follows from and Theoremm OT@ with g replaced by 11 ;g.

5. ALGORITHMS

In this section we give a practical guideline on how both “versions” of the method could be
implemented. We highlight the high-contrast case here, commenting on simplifications for
the general case afterwards. Also, for simplicity, we consider g € P(Tg), i.e., g is piecewise
constant; then T'g = 0. If that is not the case and a pre-processing as described in Section
is desired, then compute I1;g as described in Lemma [§ and proceed with the computation

replacing g by 1l;g. This is particularly useful in the case of multiple right-hand sides.
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Algorithm 1 Localized Spectral Decomposition-LSD

1: Generate a partition 7y of Q, and a partition F;, of the faces of elements in Ty

2: Define bases for P°(T5), A°, A and Af

3: Build approximations 7}, for 7" in @D, and compute the action of T}, on all basis functions
of A, /NX?L and A/

4: Compute generalized eigenvalues from , . Define AE and ]\hA by , and set

RO _ R0 g A

Find \° € A° from the first equation of

Compute the action of P27 for all basis functions of _/~\2’H from (44))

Find \)'™" ¢ K%’H from (48))

Find /N\f’j € Af from (49))

Find u)"**?7 € P°(Ty) from

10: Compute ngSD’j and aI,;SD’j from and Remark

Remark 12. The low-contrast case is a particular and simpler instance of the high-contrast
one, and can be chosen by picking asiar, > . If however one is only interested in low-contrast
cases then there is no need to compute eigenvalues, and the algorithm is simpler. Indeed,
Step of Algorithm is no longer necessary, and one should set Af = ]\{“ K%H = K% Also,
in Step @ let P27 = PJ from (58)).

Note that the sub-problems in Algorithm [I| are either local, semi-local or global. The
problems of Step |3|are local and can be solved in parallel. The eigenvalue problems of Step
are also local since each face F' belongs to at most two elements. The computation of \°
in Step [f] involves a system that depends on H only. Step [f] requires solving semi-local
problems, since it involves solving systems , posed on local patches of elements. The
computation of Step [7| requires solving a global problem with dimension of ]\%H. There are
no matrix inversions for the remaining steps of the algorithm, since all the operators were

pre-computed at this point.

6. NUMERICAL EXAMPLES

In this section we consider numerical tests for three different problems. The first one in-
volves a smooth problem with analytical solution, allowing exact error computation. In the
second and third problem this is no longer possible, and we compare solutions obtained by
the LOD or LSD methods with the exact discrete solution obtained by solving the whole sys-
tem (14)). In the tests that follow (with the exception of the high-contrast channel Test [6.4)),

we use the following notation and data:
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FIGURE 1. Mesh and submesh employed in all numerical tests. We consider
H=1/8 and h ~ H/9.

e H =1/8 is the maximum size of macro-elements
e N, = 8 is the dimension of /N\f on each face F

e h~ H/9 is the maximum size of micro-elements.

For all tests, Q2 = (0,1) x (0,1), and the corresponding mesh and sub-mesh with the above

parameters is as in Figure [1| (the exception is Table

The acronyms NLOD stands for Non-local Orthogonal Decomposition and corresponds to

is fully solved and no localization techniques are applied.

the case where the system (
6.1. Exact Solution available. Let A(x,y) = 1 and the exact solution u(z,y) = z(x —
1)y(y — 1). For such kernel, we display in Figure [2| the energy decay of Theorem 3| if AE is
empty. The various relative errors with respect to the exact solution u in the energy norm
we compute the relative error for the NLOD, and for the

follow in Tables
the LOD with various localizations. As expected the error increases as one reduces the patch

size where basis functions are computed. For Table [2|the analysis is more complex since both
the localization and agta, play important roles. For a small ag,p, = 1.1 the dimension of AE
(=1260) becomes large compared the the total dimension of A (=2624) and the errors are
small and comparable to the NLOD. For a large agi., = 3.0 however, the dimension of AE
is relatively small (=634), that is, about two eigenvectors per each macro-element edge, and

the errors are similar to the NLOD if the patches are not too small. These two eigenvectors
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FIGURE 2. Test : Log-plot of energy decay in the case of empty A}}

Relative energy error
NLOD 0.0025

LOD (J=3) | 0.0095

LOD (J=2) | 0.0385

LOD (J=1) | 0.0683

TABLE 1. Test [6.1} LOD version with no localization (NLOD), and different
localizations (J=1,2,3).

Relative energy error

gtab = 1.1 (dim Al = 1260) | agtan = 3.0 (dim Al = 634)
LSD (J=3) | 0.0025 0.0025
LSD (J=2) | 0.0025 0.0026
LSD (J=1) | 0.0035 0.0229

TABLE 2. Test [6.1} Relative energy error for LSD versions with different
localizations (J=1,2,3). The total dimension of /~X£ is 2624.

are responsible for eliminating the singularities at the macro-elements corners that are found
in the LOD method; see the two dominating eigenvalues in Figure
For J = 1, there is a larger error, but the method is better than LOD (cf. Table .

6.2. Oscillatory kernel. Consider f = 1 and the oscillatory kernel

Az, y) = ﬁ%&(l + sin(27z/€) sin(2my/e)) + a,

where v = 0.01, § = 10 and € = 1/16.
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Eigenvalues
T

FIGURE 3. Test[6.2; Eigenvalues for problems I, II.

LOD
0.0092
J=210.0499 | 0.0071

J=110.0778 | 0.0186
TABLE 3. Test[6.2} Relative energy error for LOD and LOD with incomplete

LU versions, with different localizations (J=1,2,3)

iLOD
0.0040

J=3

Qstab, = 1.1 | Qgtap = 3.0 Qstab = 1.1 | Qgtap = 3.0
LSD (J=3) | 5.7080e-11 | 2.7741e-06 iLSD (J=3) | 1.1617e-08 | 1.7775e-05
LSD (J=2) | 3.2054e-06 | 7.0387e-04 iLSD (J=2) | 2.3785e-07 | 8.1785e-05
LSD (J=1) | 0.0032 0.0291 iLSD (J=1) | 7.6412e-06 | 6.1034e-04

TABLE 4. Test Relative energy error for LSD versions with different
localizations (J=1,2,3) using LSD and LSD with incomplete LU

In this example, we also test the use of incomplete LU Decomposition of j-th fill-in to
invert P* instead of using P~ in the case of LSD, and to invert P instead of using P’
in the case of LOD. We name the above schemes iLSD and iLOD. As we show below, the
results are encouraging, albeit the lack of theory.

The eigenvalues of problems I (equation ) for a fixed edge are plotted in Figure .
Note the clustering of the eigenvalues at 1. Then, Table |3| presents the results for the LOD
and iLOD (with incomplete LU) versions, with different localization levels. Finally, Tables
present results for LSD and iL.SD (with incomplete LU) with different values of ajggap.
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FIGURE 4. Test [6.3] Top: Exact solution and LOD with J = 1. Bottom:
LSD solutions with J = 1 and cg.p, = 3.0 and o, = 1.7.

6.3. Beanbag test. Consider 2 = (0,1) x (0, 1), constant f =1 and

1 if |z — 0.5+ |y —0.25] < 0.3,
A(z,y) =

amin Otherwise.

A refined exact solution and some approximations are depicted in Figure 4] for amp, = 1072,
The figure on the left displays the “exact” solution, computed by solving without
localization. On the top right we display the LOD solution for J = 1. On the bottom
figures, two solutions for J = 1 are shown. On the left figure ag., = 3.0, and on the right
one Qgpap = 1.7. Next, Table [5| compares the approximation results using LOD for different
localization levels, and Table [6] presents the results for LSD with different localization levels
and different aga1,. The final Table[7]is also interesting, the number of eigenvalues per macro-

element edge is not very sensitive with respect to V., it depends more on the coefficient A.
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Relative energy error
LOD (J=3) | 0.0616
LOD (J=2) | 0.1008
LOD (J=1) | 0.5289
TABLE 5. Test 6.3} LOD version with different localizations (J=1,2,3)

Relative energy error

stab = 1.1 (dim Al = 1250) | agian = 1.7 (dim A}l = 734) | agiap = 3.0 (dim A}l = 620)
LSD (J=3) | 1.4477¢-10 1.1590e-06 1.1479e-05
LSD (J=2) | 5.4182e-05 0.0022 0.0130
LSD (J=1) | 0.0274 0.0346 0.2211

TABLE 6. Test Relative energy error for LSD versions with different
localizations (J=1,2,3). The total dimension of the eigenspace K{L is 2624

H ‘ Ne | dim /~X£ Relative energy error (dim /~\1,;I)

Qgtap = 1.1 Qstap = 1.7 Qstap = 3.0
1/8 |8 [2624 | 5.4182e-05 (1250) | 0.0022 (734) | 0.0130 (620)
1/8 |4 [1312 | 3.4172e:05 (975) |0.0063 (644) | 0.0072 (445)
1/16 | 8 | 10720 | 1.1227¢-05 (5170) | 0.0016 (2948) | 0.0111 (2604)
1/16 | 4 | 5360 3.0627e-05 (3991) | 0.0011 (2663) | 0.0122 (1869)

TABLE 7. Test [6.3; Test with H = 1/16 and J = 2. Relative energy error for

LSD versions with localization J = 2.

Finally, Figure [5| shows how the relative energy error behaves with LOD (in blue) and

LSD (in red) as the contrast (=1/ap,) increases.

6.4. High-contrast channels. In this example we consider the macro element diameter
H = 1/8, the second-level mesh diameter h = H/17, and the dimension of Kﬁ on each face

F as N, = 16. For a given positive number a, the kernel A is defined by

a if ||(z — 0.5,y —0.5)|]2 < 1/40 and y > 1/2,
(70) Az, y) =< a  if |y —0.6] < 1/40,

a~ ' otherwise.

The level curve defined by A is depicted in Figure [6]
We consider a sequence of problems defined by increasing values of a. Note that the

contrast k = a®>. We test the performance of the LOD and LSD methods, presenting the
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0.6

0 ‘ ‘ ‘
100 10’ 102 108 104

FIGURE 5. Test[6.3} Relative energy error with respect to contrast (=1/amn).-
The blue curve corresponds to LOD with J = 1 and the red curve is related
to the LSD method with J =1 and agta, = 1.7

FIGURE 6. The left figure displays the coarse mesh and the level curve of the
coefficient . Basically, the geometry is defined by a channel that bifurcates,

1

forming an “island.” The coefficient is equal to a™" inside the channel and a on

the “plateau” and in the island. On the right we present the “exact” solution
for a = 107/2. The total contrast is 107.

results in Table[§l We test the LOD method with J = 4, and it is clear that the performance
deteriorates as the contrast increases. For the LSD method, we set J = 2 and present results
for various values of g, We remark that that the full system has 5248 equations,
while the LSD final systems range from 1151 (g = 1.3) to 632 equations (aggan = 3.0).

APPENDIX A. AUXILIARY RESULTS

Lemma 9. Let \) defined as in (18). Then {\}X, are linearly independent.
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Relative energy error
LOD (J = 4) LSD (J = 2)
a K Qstab = 1.3 | Qstab, = 1.4 | Qgtap, = 1.5 | agtap, = 3.0
102 | 10* | 0.002 0.002 0.003 0.003 0.025
10%/2 | 10° | 0.005 0.004 0.005 0.006 0.021
10% | 105 | 0.015 0.002 0.005 0.005 0.021
107/2 { 107 | 0.042 0.003 0.006 0.006 0.021

TABLE 8. Test [6.4f First and second columns give the value of a and the
contrast x; third column lists relative energy error with LOD method with
J = 4; Fourth-seventh columns shows relative energy error with LSD scheme

with J = 2 and increasing values of aggap.-

Proof. Assume that there exist constants (1, ..., 8y such that ZZ]\LI BiA) = 0. Consider 7,
7; two adjacent triangles sharing a face F' and let v € H'(Ty) with support in 7; such that
vl =0if F # F and [, v =1. Then

N
0= Zﬁi()‘?ﬂ))@TH = BZ + /Bj'
i=1

If ¥ C 00N Or; then using the same arguments we have 5; = 0. Then §; = 0 for all
1=1,..., N by using the connectivity of Ty. 0

Lemma 10. Let p € Ay,. Then the problem of finding pu° such that (1°,v°)ar, = (1, v,
for all v° € P°(Ty) is well-posed.

Proof. Since we are dealing with finite dimensional spaces, it is enough to prove that the
N x N matrix with components (A}, v?)s7;, is non-singular, where v} is the characteristic
function of the element 7;. Note that it follows from the definition of \? that

|07 ifi =y,

(A v | = ,

|0, N O7;]  otherwise,
and then the matrix is diagonally dominant. Consider now an element 7; such that dr;N0S) #
(). Then,
(O, o)) | = 107 > Y |07 0 0.
J#

We note that the matrix is irreducible since given any two distinct elements 7; and 7, there
exists a path of adjacent faces connecting 7; to 7. Then the matrix is irreducibly diagonally

dominant, and from [67, Theorem 1.11], it is non-singular. O
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Lemma 11. Let u € Ay, and 7 € Ty, assume that holds, and denote by Ty the harmonic

extension defined by @D replacmg A by the identity operator. It follows then that

1
|TZ/’L|H1(T > |T:u’H1 )— ar |TIILL|§{1(’T)

mln max

Proof. First note that, for any non-vanishing A,

1 1
inf —(AVv,V0); — (1,0)9- = inf —(AVAI 0, VI 0), — (1, A\ '0)a,

veEHL(T) veEHL(T)
1
= — mf (V v, Vu)r — (1,0)ar
A veH(r
Then
1 , 1 :
— =(u, Tp)or = inf —(AVo, Vo), —(u,v)e, < inf al, = (Vv V), — (1,0)ar
2 veH (1) veH(7) 2
1
- Tri)on
2a;.nax (:LL7 IM)@
Similarly,
1 1 1
—§(M,T[L)a7- > inf amln (VU7 VU)T - (,u7v)57' = T 5.7 (MaTIu)aT
veH () 2 207,

APPENDIX B. NOTATIONS

Inner products, dualities and norms:

e (,)7y, (,)a7y, (v, *)or: inner and duality products; Section
o - Detatas - i |1+ a2y caruation
Functional spaces:

o H 1('TH) and A(Tg): piecewise H' functions, and trace of H(div; () functions; equa-
tion

o PO(7; H), H'(Ty), H'(7): piecewise constants and zero average functions; equation (©)

e F;. eigenspace generating a finite dimension space for the right-hand side; equa-
tion

e A, piecewise constants on the refined skeleton; equation ({13

e A constants flux traces on element boundaries; equation (19

° Kh = PO(Ty)*: zero average flux traces on element boundaries; equation (19)

° K?f constants on faces with zero average on element boundaries; equation ([20)

° Ag: zero average flux traces on faces; equation ([20))
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° /~X£’T’j C ]\{L: equation
e Aj: local space; equation (28)
o AL Affc . restriction of ]X{l to F, F¢; equation ([28))
o Ay2 AT AN AL spectral spaces; equations (B3),
o A% = A9 @ All: replaces A in the high-contrast case; equation

Operators

P : H'(Ty) — Al non-local operator; equation (22)

PKi pi_pFi Pi. equations 3D, (GE), (7).

P&, pAKI pAd pAERT - pAd: equations B8, [@1), (@2), (43),
II;: L*(2) orthogonal projection on Fj: Section

o T, T, Tip, Thpe, Thep, Thepe, T\EF: local operators; Sections [2[ and

Unknowns:

e \: trace of the elementwise fluxes; equation (5))

e )\, traces of “surrogate” flux; equation

e X% X0 N decompose Ap; equation (21)

o« M. /\fl’]: solutions using the P’ operator; equations and

) S\?L’H, 5\,?: components of the solution using the P® operator; equations ,
° X%H’j , S\hA’j : components of the solution using the P~ operator; equation (47)
e o flux; equation ({12

e o “surrogate” flux; equation ([15)

° Ust’j : LSD flux; Remark

e wu: solution of the original problem; equation

e v, 4: average and zero average components of u; equations and

e uy: solution of the “surrogate” discrete problem; equation ({15

e uY: average of uy; equation ([14)

° ufl, ug’j: solutions using the P’ operator; equation ((62))

LSD,j  0.LSD,j : . ; .
. uhs Iy D7 solutions using the P27 operator; equation (47)

® v, Uy, U3, ...: eigenfunctions generating a finite dimension space for the right-hand
side; equation
Other notations:

® Gmin, Omax, G—, Gy, G a’ . : bounds for the eigenvalues of A; equation and

-

min’ “max-*
Lemma [T]

e A: symmetric coefficients tensor; equation (|1

® (i controls the decay rate of the solutions to the non-local problems; equation ((33)
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[4]

[5]

[6]

[7]
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e cp, Cpg: local and global weighted Poincaré inequality constants; Remark
® Bu/m =1+1og(H/h): Lemmall]

e d: dimension; equation (|1

e F;: partition of the faces of elements in 7Tg; Section

o [ =0r\F: Or except the face F'; above equation ([28))

g: right-hand side of the original problem; equation ([1))

e ~: constant depending on shape regularity of Ty; Lemma

H, h: coarse and fine mesh characteristic lengths
e J7: the method’s “target precision”; equation (|17))
® K =maX.e7, K7, k¥ =al, /al. : Lemma

nT.

unit size normal vector pointing outward 7; Section

Q, 0€): bi- or tri-dimensional domain and its boundary; Section

T, OT: typical element in Ty and its boundary
e Ty partition of ; Section
o T;(K): equation ([27))
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