arXiv:0907.4737v1 [quant-ph] 27 Jul 2009

QIP = PSPACE

Rahul Jain* Zhengfeng Jit Sarvagya Upadhyay* John Watroust

*Department of Computer Science and Centre for Quantum Technologies
National University of Singapore

Y Perimeter Institute for Theoretical Physics
Waterloo, Ontario

Fnstitute for Quantum Computing and School of Computer Science
University of Waterloo

July 27, 2009

Abstract

We prove that the complexity class QIP, which consists of all problems having quantum
interactive proof systems, is contained in PSPACE. This containment is proved by applying a
parallelized form of the matrix multiplicative weights update method to a class of semidefinite
programs that captures the computational power of quantum interactive proofs. As the con-
tainment of PSPACE in QIP follows immediately from the well-known equality IP = PSPACE,
the equality QIP = PSPACE follows.

1 Introduction

Efficient proof verification is a fundamental notion in computational complexity theory. The most
direct complexity-theoretic abstraction of efficient proof verification is represented by the com-
plexity class NP, wherein a deterministic polynomial-time verification procedure decides whether
a given polynomial-length proof string is valid for a given input. One cannot overstate the im-
portance of this class and its presently unknown relationship to P, the class of problems solvable
deterministically in polynomial time. This problem, which is known as the P versus NP problem,
is one of the greatest of all unsolved problems in mathematics.

In the early to mid 1980’s, Babai [Bab85] and Goldwasser, Micali, and Rackoff intro-
duced a computational model that extends the notion of efficient proof verification to interactive
settings. (Journal versions of these papers appeared later as and [GMR89].) In this model,
which is known as the interactive proof system model, a computationally bounded verifier interacts
with a prover of unlimited computation power. The interaction comprises one or more rounds
of communication between the prover and verifier, and the verifier may make use of randomly
generated bits during the interaction. After the rounds of communication are finished, the verifier
makes a decision to accept or reject based on the interaction.

A decision problem A is said to have an interactive proof system if there exists a verifier,
always assumed to run in polynomial time, that meets two conditions: the completeness condition
and the soundness condition. The completeness condition formalizes the requirement that true

http://arxiv.org/abs/0907.4737v1

statements can be proved, which in the present setting means that if an input string x is a yes-
instance of A, then there exists a course of action for the prover that causes the verifier to accept
with high probability. The soundness condition formalizes the requirement that false statements
cannot be proved, meaning in this case that if an input string x is a no-instance of A, then the
verifier will reject with high probability no matter what course of action the prover takes. One
denotes by IP the collection of decision problems having interactive proof systems. (Here, and
throughout the rest of the paper, we take the term problem to mean promise problem, and consider
that all complexity classes to be discussed are classes of promise problems. Promise problems
were defined by Even, Selman and Yacobi [ESY84]], and readers unfamiliar with them are referred
to the survey of Goldreich [Gol05]].)

The expressive power of interactive proof systems was not initially known when they were
tirst defined, but it was soon determined to coincide with PSPACE, the class of problems solvable
deterministically in polynomial space. The containment IP C PSPACE, which is generally at-
tributed to Feldman [Fel86], is fairly straightforward—and readers not interested in proving this
fact for themselves can find a proof in [HO02]. Known proofs of the re-
verse containment PSPACE C IP, on the other hand, are not straightforward, and make essential
use of a technique commonly known as arithmetization. This technique involves the extension of
Boolean formulas to multivariate polynomials over large finite fields whose 0 and 1 elements are
taken to represent Boolean values. Through the use of randomness and polynomial interpolation,
verifiers may be constructed for arbitrary PSPACE problems.

Many variants of interactive proof systems have been studied, including public-coin interac-
tive proofs IGS89], multi-prover interactive proofs [BOGKW8S]|, zero-knowledge in-
teractive proofs IGMWO1], and competing-prover interactive proofs [FK97]. The present
paper is concerned with quantum interactive proof systems, which were first studied a decade after
IP = PSPACE was proved [KWO00]. The fundamental notions of this model are the same as
those of classical interactive proof systems, except that the prover and verifier may now process
and exchange quantum information. Similar to the classical case, several variants of quantum in-
teractive proof systems have been studied (including
)-

One of the most interesting aspects of quantum interactive proof systems, which distinguishes
them from classical interactive proof systems (at least to the best of our current knowledge), is that
they can be parallelized to three messages. That is, quantum interactive proof systems consisting
of just three messages exchanged between the prover and verifier already have the full power of
quantum interactive proofs having a polynomial number of messages [KW00]. Classical inter-
active proofs are not known to hold this property, and if they do the polynomial-time hierarchy
collapses to the second level [BM88].

The complexity class QIP is defined as the class of decision problems having quantum inter-
active proof systems. QIP trivially contains IP, as the ability of a verifier to process quantum
information is never a hindrance—a quantum verifier can simulate a classical verifier, and a com-
putationally unbounded prover can never use quantum information to an advantage against a
verifier behaving classically. The inclusion PSPACE C QIP is therefore immediate. The best upper
bound known prior to the present paper was QIP C EXP, which was proved in through
the use of semidefinite programming. The optimal probability with which a given verifier can
be made to accept in a quantum interactive proof system can be represented as an exponential-
size semidefinite program, and known polynomial-time algorithms for semidefinite programming
provide the required tool to prove the containment. It has been an open problem for the last decade

to establish more precise bounds on the class QIP.

It was recently shown in the paper that QIP(2), the class of problem having 2-message
quantum interactive proof systems, is contained in PSPACE. That paper made use of a parallel
algorithm, based on a method known as the matrix multiplicative weights update method, to ap-
proximate optimal solutions for a class of semidefinite programs that represent the maximum
acceptance probabilities for verifiers in two-message quantum interactive proofs. In this paper we
extend this result to all of QIP, establishing the relationship QIP = PSPACE. Similar to [JUW09],
we use the matrix multiplicative weights update method, together with parallel methods for ma-
trix computations.

The multiplicative weights method is a framework for algorithm design having its origins in
various fields, including learning theory, game theory, and optimization. Its matrix variant, as
discussed in the survey paper and the PhD thesis of Kale [Kal07], gives an iterative
way to approximate the optimal value of semidefinite programs WKO6]. In addition to its
application in [JUW0Q9], it was applied to quantum complexity in to prove the containment
of the complexity class QRG(1) in PSPACE. The key strength of this method for these applications
is that it can be easily parallelized for some special semidefinite programs.

A key result that allows our technique to work for the entire class QIP is the characterization
QIP = QMAM proved in [MWO05]. This characterization, which is described in greater detail in
the next section, concerns a restricted notion of interactive proof systems known as Arthur-Merlin
games. An Arthur-Merlin game is an interactive proof system wherein the verifier can only send
uniformly generated random bits to the prover. Following Babai [Bab85]|, one refers to the verifier
as Arthur and to the prover as Merlin in this setting. It is also typical to refer to the individual bits of
Arthur’s messages as coins, given that they are each uniformly generated like the flip of a fair coin.
The restriction that Arthur sends only uniformly generated bits to Merlin, and therefore does not
have the option to base his messages on private information unknown to Merlin, would seem to
limit the power of Arthur-Merlin games in comparison to ordinary interactive proof systems. But
in fact this is known not to be the case, both for classical and quantum interactive
proof systems. In the quantum setting, this characterization admits a significant simplification in
the semidefinite programs that capture the complexity of the class QIP.

The remainder of this paper has the following organization. Section 2 includes background
information, notation, and other preliminary discussions that are relevant to the remainder of the
paper. Section [describes a semidefinite programming problem that captures the complexity of
the class QIP based on quantum Arthur-Merlin games, and Sectionl presents the main algorithm
that solves this problem. Finally, Section Bl discusses a parallel approximation to the algorithm
from Section@dand explains how its properties lead to the containment QIP C PSPACE.

2 Preliminaries

This section contains a summary of the notation and terminology on linear algebra, quantum in-
formation, semidefinite programming, and quantum Arthur-Merlin games that is used later in
the paper. For the most part, these discussions are not meant to provide an introduction, but in-
stead are intended to make clear the notation and terminology that we use. We assume, moreover,
that the reader already has familiarity with complexity theory and quantum computing, and refer
readers who are not to and [NCO00].

2.1 Linear algebra and quantum information

A quantum register refers to a collection of qubits, or more generally a finite-size component in a
quantum computer. Every quantum register V has associated with it a finite, non-empty set =
of classical states and a complex vector space of the form V = C¥. We use the Dirac notation
{|a) : a € X} to refer to the standard basis (or elementary unit vectors) in V, and define the inner
product and Euclidean norm on V in the standard way. The set {(a| : a € X} consists of the
elements in the dual space of V that are in correspondence with the standard basis vectors.

For such a space V, we write L (1) to denote the space of linear mappings, or operators, from 1V
to itself, which is identified with the set of square complex matrices indexed by X in usual way. An
inner productonL (V) is defined as (A, B) = Tr(A*B), where A* denotes the adjoint (or conjugate
transpose) of A. The identity operator on V is denoted 1y, (or just 1 when V is understood).

The following special types of operators are relevant to the paper:

1. An operator A € L (V) is Hermitian if A = A*. The eigenvalues of a Hermitian operator are
always real, and for m = dim(V) we write

M(A) > 0a(A) = - > An(A)

to denote the eigenvalues of A sorted from largest to smallest.

2. An operator P € L (V) is positive semidefinite if it is Hermitian and all of its eigenvalues are
nonnegative. The set of such operators is denoted Pos (V). The notation P > 0 also indicates
that P is positive semidefinite, and more generally the notations A < B and B > A indicate
that B — A > 0 for Hermitian operators A and B.

3. A positive semidefinite operator P € Pos (V) is also said to be positive definite if all of its eigen-
values are positive (which implies that it must be invertible). The notation P > 0 also indicates
that P is positive definite, and the notations A < B and B > A indicate that A — B > 0 for
Hermitian operators A and B.

4. An operator p € Pos (V) is a density operator if it is both positive semidefinite and has trace
equal to 1. The set of such operators is denoted D (V).

5. An operator IT € Pos (V) is a projection if all of its eigenvalues are either 0 or 1.

A quantum state of a register V is a density operator p € D (V), and a measurement on V is a
collection {P, : b € T} C Pos (V) satisfying } e P, = 1y. The set I’ is the set of measurement
outcomes, and when such a measurement is performed on V while it is in the state p, each outcome
b € T occurs with probability (P, p).

The spectral norm of an operator A € L (V) is defined as

[A]l = max{[|Av]| : v €V, [Jo]| = 1}.

The spectral norm is sub-multiplicative, meaning that || AB|| < || A|| || B for all operators A, B €
L (V), and it holds that || P|| = A1 (P) for every positive semidefinite operators P. For any operator
A € L(V), the exponential of A is defined as

exp(A) =1+ A+ A%/2+ A3/64 -

The Golden-Thompson Inequality (see Section IX.3 of [Bha97]) states that, for any two Hermitian
operators A and B on V, we have

Tr (eA+B) < Tr (eAeB))

4

The tensor product ¥V & W of vector spaces V = C* and W = C! may be associated with the
space C**T, and the tensor product of operators A € L (V) and B € L (W) is then taken to be the
unique operator A® B € L (V ® W) satisfying (A ® B)(v®@ w) = (Av) ® (Bw) forall v € V and
w € W. Alternately these notions may be associated with the usual Kronecker product of vectors
and matrices. For quantum registers V and W, the space V ® W is associated with the pair (V, W),
viewed as a single register.

For a given linear mapping of the form & : L (V) — L (W), one defines the adjoint mapping
®* : L (W) — L (V) to be the unique linear mapping that satisfies (B, ®(A)) = (®*(B), A) for all
operators A € L (V) and B € L(W).

Finally, for spaces V and W, one defines the partial trace Try : L (V ® W) — L (W) to be the
unique linear mapping that satisfies Try(A ® B) = (TrA)Bforall A € L(V)and B € L(W). A
similar notation is used for the partial trace Tryy, or partial traces defined on three or more tensor
factors. When this notation is used, the spaces on which the trace is not taken are determined by
context. When a pair of registers (V, W) is viewed as a single register and has the quantum state
p € D(V ® W), one defines the state of W to be Try(p). In other words, the partial trace describes
the action of destroying, or simply ignoring, a given quantum register.

2.2 Semidefinite programming

A semidefinite program over complex vector spaces V and W is a pair of optimization problems as
follows.

Primal problem Dual problem
maximize: (C, X) minimize: (D,Y)
subject to: ¥(X) < D, subjectto: ¥*(Y) > C,

X € Pos (V). Y € Pos (W).

Here, the operators C € L(V) and D € L (W) are Hermitian and ¥ : L (V) — L (W) must be
a linear mapping that maps Hermitian operators to Hermitian operators. Readers familiar with
semidefinite programming will note that the above form of a semidefinite program is different
from the well-known standard form, but it is equivalent and better suited for this paper’s needs.
The form given above is, in essence, the one that is typically followed for general conic program-
ming [BV04].

It is typical that semidefinite programs are stated in forms that do not explicitly describe ¥, C
and D, and the same is true for the semidefinite programs we will consider. It is, however, routine
to put them into the above form.

With the above optimization problems in mind, one defines the primal feasible set P and the
dual feasible set D as

P={Xe€Pos(V): ¥(X) <D},
D ={Y € Pos(W) : ¥7(Y) > C}.
Operators X € P and Y € D are also said to be primal feasible and dual feasible, respectively. The

functions X — (C,X) and Y — (D, Y) are called the primal and dual objective functions, and the
optimal values associated with the primal and dual problems are defined as follows:

- C,X d — inf (D,Y).
o ;g;() an p=inf (D,Y)

Semidefinite programs have associated with them a powerful theory of duality, which refers
to the special relationship between the primal and dual problems. The property of weak duality,
which holds for all semidefinite programs, states that « < . This property implies that every dual
feasible operator Y € D provides an upper bound of (D, Y) on the value (C, X) that is achievable
over all choices of a primal feasible X € P, and likewise every primal feasible operator X € P
provides a lower bound of (C, X) on the value (D, Y) that is achievable over all choices of a dual
feasible Y € D.

It is not always the case that « = 8 for a given semidefinite program, but in most natural cases
it does hold. The condition « = B is known as strong duality, and several conditions have been
identified that imply strong duality. One such condition is strict dual feasibility: if « is finite and
there exists an operator Y > 0 such that ¥*(Y) > C, then « = . The symmetric condition of strict
primal feasibility also implies strong duality.

2.3 Single-coin quantum Arthur-Merlin games

Quantum Arthur-Merlin games were proposed in as a natural quantum variant of clas-
sical Arthur-Merlin games. Here, one simply mimics the classical definition in requiring that
Arthur’s messages to Merlin consist of uniformly generated random bits. Merlin’s messages to
Arthur, however, may be quantum; and after all of the messages have been exchanged Arthur is
free to perform a quantum computation when deciding to accept or reject.

Of particular interest to us are quantum Arthur-Merlin games in which three messages are
exchanged, and where Arthur’s only message consists of a single bit. In more precise terms, such
an interaction takes the following form:

1. Merlin sends a quantum register W to Arthur. Merlin is free to initialize this register to any
quantum state of his choice, and may entangle it with a register of his own if he chooses.

2. After receiving W from Merlin, Arthur chooses a bit a € {0,1} uniformly at random. Merlin
learns the value of a.

3. Merlin sends Arthur a second quantum register Y. He does this after step 2, so he has the
option to condition the state of Y upon the value of a. The register Y could, of course, be
entangled with W in any way that quantum information theory permits.

4. After receiving Y, Arthur performs one of two binary-valued measurements, determined by
the value of the random bit 4, on the pair (W, Y). The measurement outcome 1 is interpreted
as acceptance, while 0 is interpreted as rejection.

Arthur’s measurements must of course be efficiently implementable. This notion is formalized
by requiring that the measurements are implementable by polynomial-time generated families of
quantum circuits, which naturally requires the registers W and Y to consist of a number of qubits
that is polynomial in the length of the input. Further details may be found in [MWO05].

The result of that we make use of is that every problem A € QIP has a single-coin
Arthur-Merlin game as just described. The game is such that if x is a yes-instance of the problem
A, then Arthur accepts with probability 1, whereas if the input x is a no-instance of the prob-
lem then Arthur accepts with probability at most 1/2 + ¢, for any desired constant ¢ > 0. (In
the construction given in [MWO5]], Arthur’s measurements are always nontrivial projective mea-
surements. This implies that even for no-instance inputs, Merlin can cause Arthur to accept with
probability at least 1/2 by simply guessing in advance Arthur’s random bit.)

3 A semidefinite programming formulation of the problem

Consider Arthur’s verification procedure for a given single-coin QMAM protocol on a fixed input
string x. Arthur first receives a register W, then generates a random bit a € {0,1}, and then re-
ceives a second register Y. He then measures (W, Y) with respect to a binary-valued measurement

{P,1—P,} CPos(W®)Y),

where we take each of the operators Py and P; to represent acceptance and 1 — Py and 1 — P; to
represent rejection. If the quantum state of (W, Y) is given by a density operator p € D (W ® Y)
when Arthur measures, he will therefore accept with probability (P,, p).

Now define

1 1
Q=310)(0]@Py+3[1)(1|@P €Pos(X¥ @ W@),

where we take X = C{%!} to be the vector space corresponding to Arthur’s random choice of
a € {0,1}, and consider the optimal probability that Merlin can cause Arthur to accept. If, for
each of the values a € {0,1}, Merlin is able to leave the state p, in the registers (W, Y) right before
Arthur measures, he will convince Arthur to accept with probability

2 (Po.po) + 5 (Prpn) = (QX) 0

for
X =10) (0] ®po +|1) (1| ® p1.

There is, of course, a constraint on Merlin’s choice of pyp and p;, which is that they must agree on
W, as Merlin cannot touch the register W at any point after Arthur chooses the random bit 2. In
more precise terms, it must hold that

Try(po) = o = Try(po1) 2)

for some density operator o € D (W). This, in fact, is Merlin’s only constraint—for if he holds a
purification of the state ¢, he is free to set the state of (W,Y) to any choice of py and p; satisfying
@) without needing access to W.

Now, we note that the condition (@) implies that

Try(X) =1y ®@0. ©)

Moreover, for an arbitrary operator X € Pos (X ® W ®) satisfying the constraint (3), one has
that the operators pg and p; defined as

pa = ((a| @ Lygy) X (|a) @ Iwey)

for a € {0,1} satisfy the conditions (1)) and (@). It follows that the following semidefinite program
represents the optimal probability with which Merlin can convince Arthur to accept.

Primal problem Dual problem
maximize: (Q, X) minimize: || Try(Y)]|
subjectto: Try(X) <1y ®o0, subjectto: Y®1y > Q,

X €ePos(XaWe)y), Y € Pos (X @ W).
ceD(W).

Note that the inequality in the primal problem can be exchanged for an equality without changing
the optimal value. This is because any primal feasible X can be inflated to achieve the equality
Try(X) = 1y ® o for some choice of 7, and this can only increase the value of the objective function
by virtue of the fact that Q is positive semidefinite. It is immediate that the primal problem is
bounded and the dual problem is strictly feasible, from which strong duality follows; the primal
and dual problems have the same optimal values.

Now, under the assumption that Q is invertible, one may perform a change of variables to put
the above semidefinite program into a form that more closely resembles the one in [JUW09]. To
do this, we define a linear mapping® : L(X @ W®)Y) - L(X @ W) as

O(X) = Try (Q‘”zXQ‘”Z) , 4)
whose adjoint mapping ®* : L(X ® W) — L (X @ W ® Y) is given by
'(Y) =Q A(Y®1y)Q 17,

and consider the following semidefinite program.

Primal problem Dual problem
maximize: Tr(X) minimize: ||Try(Y)]|
subjectto: @(X) <1y ®o, subject to: " (Y) > Axvewey,

X €ePos(XaWwWey), Y € Pos (X @ W).
ceD(W).

It is clear that this semidefinite program has the same optimal value as the previous one.

We will be interested in the optimal value of this semidefinite program in the case that ||Q
is upper-bounded by a fixed constant ¢ and where there is a promise on the optimal value. The
promise, which comes from the properties of the quantum Arthur-Merlin games under consider-
ation, is that the optimal value lies in one of the intervals [1/2, 5/8] and [7/8, 1], and the goal is
to determine which one it is.

For readers familiar with the semidefinite program for QIP(2) presented in [JUWQ9], we note
that there are two essential differences between it and the one above. The first difference is that
the semidefinite program in effectively replaces the density operator ¢ with the scalar
value 1, which would seem to suggest added difficulty for the case at hand. The second difference
is that X" is two-dimensional for the semidefinite program above, whereas it has arbitrary size in
[JUWOQ9]. This second difference more than compensates for the difficulty induced by the first,
and we find that the above semidefinite program is actually much easier to solve than the one for

QIP(2).

!l

4 The main algorithm and its analysis

We now present the main algorithm for the semidefinite programming problem from the previous
section. The algorithm, which is described in Figure[T] takes as input an operator

Q€ePos(XAW®RY)

1. Let N = dim(X ® W® Y) and M = dim()V), and define
Wo = lxewey, po = Wo/N, Zo =1y and ¢o = Zo/ M.

Also let

4
oc:§, £ = — 0

€ 310g(N)-‘
, = and T=|—"2—1|.
64 21Q1 {

€30
2. Repeat foreacht =0,..., T —1:

(a) LetII; be the projection onto the positive eigenspaces of the operator

Do) —ally @,

where @ is defined from Q as in (@), and set f; = (IT;, ®(p;)).
(b) If B < e then accept, else let

t

Wip1 = exp (-65 Z@*(Ht/ﬁt)> , Pr+1 = Wip1/ Tr(Wipa),
i=0

and

¢
Zi11 = exp (8(5 XTrX(Ht/ﬁt)> , Cii1 = Zi1/ Te(Zpsq).

j=0

3. If acceptance did not occur in step 2, then reject.

Figure 1: An algorithm that accepts if the optimal value of the semidefinite program in Section[3is
larger than 7/8, and rejects if the optimal value is smaller than 5/8.

that is obtained from a single-coin QMAM protocol as in Section 3l It is assumed that Q is in-
vertible and that ||Q!|| is upper-bounded by a fixed constant (that we will take to be 64 for
concreteness), and moreover that the optimal value of the corresponding semidefinite program in
Section[3lies in one of the intervals [1/2, 5/8] and [7/8, 1].

Our goal is to prove that the algorithm accepts when the optimal value lies in the interval
[7/8, 1] and rejects when it is in the interval [1/2, 5/8]. Here we present the correctness of the
algorithm under the assumption that all computations are performed exactly. Issues that arise
due to small perturbations in the computation are discussed in the next section.

Assume first that the algorithm accepts, and write

p=p;, =1L, ¢=¢& and p=p;

fort € {0,..., T — 1} corresponding to the iteration in which acceptance occurs. For the sake of
clarity, let us note explicitly that

peED(XRIW®Y), IT € Pos (X @ W) and ¢eD(W).

We wish to prove that the optimal value of our semidefinite program is at least 7/8, and we will
do this by constructing a primal feasible solution that achieves an objective value strictly larger

than 5/8.
By the definition of I1T, it holds that

H@(0)IT > (D (p) —aly @I > P(p) —aly @, (5)
and by Lemma [l (which is stated and proved below) it holds that
21 @ Trx (LD (p)IT) > [()IL. ®)

Combining the equations (5) and (€) one has

P(p) <Ly @ (ag +2Try (TID(p)IT)) . (7)
It therefore holds that
_ 4 ag +2Try (I1d(p)IT)
O) A T K1),

represent a feasible solution to the primal problem under consideration, achieving the objective

value , , . 5
= >

A1 2(IL®(p)) at2p at2 8

as required.
Now assume that the algorithm rejects, and consider the operator

y — (1 —|—28

Z 1/ By

We claim that Y is dual feasible and achieves an objective value that is strictly smaller than 7/8.
This will imply that the optimal value of the semidefinite program is at most 5/8.

Let us first prove that Y is dual feasible. It is clear that Y is positive semidefinite, so it suffices
to prove that ®*(Y) > Lygwey, or equivalently that Ax(P*(Y)) > 1. Observe, for each t =
0,...,T—1, that

Tr(Wiia) = Tr [exp (—e6®™ (Ilo/Bo + - - - + 111/ By))]
< Tr[exp (—ed0®*(ITo/Po + - - +TTt-1/Bi-1)) exp (—ed D" (I1;/By))]
= Tr [W;exp (—e6®* (11;/B¢))]

by the Golden-Thompson inequality. As each I1; is a projection operator, we have

Jor (1) = o2y w12 < o2 = o

where we have used the sub-multiplicativity of the spectral norm. Given that f; > ¢ in the case at
hand, it follows that ||6®*(I1;/B;)|| < 1. By Lemma[2 (also presented below) it therefore follows
that

exp (—ed @ (I1;/B:)) <1 —edexp(—e)P*(I1;/By).

10

As each W, is positive semidefinite, we obtain

Te(Wyay) < Tr(W,) <1 — ed exp(—e) <Trmt),<p*(nt//st)>> . ®)

Substituting oy = W;/ Tr(W;) yields

Tr(Wit1) < Tr(W) (1 — ed exp(—e) (pr, @ (IL/B1)))
= Tr(W;) (1 — edexp(—e))
< Tr(W;) exp(—ed exp(—¢)),

where the equality follows from (p;, ®*(I1;)) = (®(p;), I1;) = B: and the last inequality follows
from the fact that 1 + z < exp(z) for all real numbers z. As Tr(Wp) = N, it follows that

Tr(Wr) < Tr(Wp) exp(—Ted exp(—¢)) = exp(—Ted exp(—e) + log(N)).)

On the other hand, we have

Tr(Wr) = Tr [exp (—S&Tz:_lq)* (Ht/ﬁt)>] > exp <—85/\N <<I>* <TZ_:1 Ht/ﬁt> >> . (10)
t=0 t=0
Combining (@) and (10), we have

log(N)

AN (cp* <TZ:1Ht/,Bt>> > Texp(—e) — ;i
=0

Using the inequality exp(—¢) — ¢2/3 > 1 — ¢, and substituting the value of T specified by the
algorithm, we have

log(N)
Tebd

AN(D*(Y)) > (1+2¢) <exp(—e)— >> (14+25)(1—e) > 1

as required.

Now it remains to establish an upper bound on the dual objective value achieved by Y. A
similar method to the one used to prove the feasibility of Y above will provide a suitable bound.
We begin by observing, for each t =0,...,T — 1, that

Tr(Zi+1) = Tr[exp (e Try (T1o/Bo + - - - + 11/ Bt))]
< Trlexp (ed Tra (ITo/Po+ -+ +11i-1/Bi—1)) exp (60 Tra (I1:/Bt))]
=Tr[Z;exp (ed Try(I1;/Bt))] -

Given that
[Tra (TT) | < [[(ep @A) IT; (60 @) [| + || (67 @ L) [T (e1 @ Ay || < 2,

and using the fact that f; > € in the case at hand, it follows that ||6 Try (I1;/B¢)|| < 1. We now
apply Lemma 2lto obtain

exp (&6 Try (I1;/Bt)) < 1+ ed exp(e) Try (I1;/Bs).

11

As each Z; is positive semidefinite it follows that

Z
Tr(Zi11) < Tr(Zy) (1 + edexp(e) <T£0,Tr/y(ﬂt/ﬁt)>> . (11)
Substituting ¢; = Z;/ Tr(Z;) gives

Tr(Ziy1) < Tr(Zy) (1 +edexp(e) (G, Tra(I1:/Br))) = Tr(Zs) (1 +edexp(e) (Ly @ &, 111/ By)) -

Now, as (P(p;) —ally ® &, IT;) > 0, we may again use the fact that 1 +z < exp(z) for all real
numbers z to obtain

T(Ze) < 1(z0) (1+ 222 (@00, m/p)) < T(zexp (222D). 2
Consequently
Tr(Zr) < Tr(Zp) exp <T£(5eTxp(s)> = exp <T€5e?xp(s) —I—log(M)> .
On the other hand we have

Tr(Zr) = Tr [exp <8(5 Til Try (Ht/ﬁt)>] > exp <852\1 (Tr/y (Til IL/,Bt> >> ,
t=0 t=0

and therefore
=1 T log(M
A <T1‘;\a <Z Ht/ﬁt>> < e);p(s) + Ogs((s)
t=0

Given that M < N it follows that

ITea() | = M(Tex(1) < (14 26) (22 2B) %

Thus, Y is a dual feasible solution whose objective value is smaller than 7/8, and we conclude that
the optimal value of our semidefinite program is at most 5/8 as required.

It remains to state and prove the two lemmas that were required in the analysis above. They
are as follows.

Lemma 1. Let X and Z be finite dimensional Hilbert spaces with dim(X') = 2, and let P € Pos (X ® 2Z).
Then P <21y ® Trx(P).

Proof. Let 0y, 0, and 0, denote the Pauli operators on X'. In matrix form they are

0 1 0 —i 1 0
aleo, oy = i 0 and UZ:O—l'

As each of these operators is Hermitian, we have that (cy ® 1z)P(0x ® 1z), (0, ® 1z)P (0, ® 1z)
and (0; ® 1z)P(0, ® 1z) are positive semidefinite. It therefore holds that

21 y ®Trx(P) =P+ (O'x ®ﬂz)P(0’x ®]13) + (O'y ®ﬂz)P(0'y ®ﬂz) + (U'Z ®]13)P(0’Z ®]13) > P

as required. O

12

Lemma 2. Let P be an operator satisfying 0 < P < 1. Then for every real number 1 > 0, the following
two inequalities hold:

exp(7P) <1+ rnexp(n)P,
exp(—nP) <1 —rnexp(—1y)P.

Proof. It is sufficient to prove the inequalities for P replaced by a scalar A € [0, 1], for then the op-
erator inequalities follow by considering a spectral decomposition of P. If A = 0 both inequalities
are immediate, so let us assume A > 0. By the Mean Value Theorem there exists a value Ay € (0, A)
such that

exp(nA) —1

T = 1exp(rdo) < exp(n),
from which the first inequality follows. Similarly, there exists a value Ag € (0, A) such that
exp(—nA) —1
% = —nexp(—jAo) < —rexp(—1),
which yields the second inequality. O

5 Proof that QIP is contained in PSPACE

With the algorithm from the previous section in place, the proof that QIP C PSPACE follows the
same approach used in to prove QIP(2) C PSPACE. For the sake of completeness we
describe this approach here as well.

5.1 Simulation by bounded-depth Boolean circuits

Let A = (Ayes, Ano) be a promise problem in QIP. Our goal is to prove that A € PSPACE. Using
Theorem 5.4 of we have that there exists a single-coin QMAM-protocol for A with perfect
completeness and soundness probability 1/2 + ¢, for ¢ = 1/64. (Of course any other positive
constant would do, and in fact one can replace ¢ with an exponentially small value—but this
choice is sufficient for our needs.)

We may make a small modification in Arthur’s specification so that he always accepts outright
with probability ¢, and otherwise measures the registers sent by Merlin according to his original
specification. With this modification in place, we have that if x € Ayes, then Arthur can be made
to accept with certainty, while if x € A, then the maximum probability with which Arthur can
be made to accept is smaller than 1/2 + 2¢. As was remarked at the end of Section[2.3] it is always
possible for Merlin to cause Arthur to accept with probability at least 1/2.

As aresult, we find that for each choice of an input string x € Ayes U Ao, and for the operator Q
defined from Arthur’s specification on the input x as described in Section 3] we have the following
assumptions. First, Q is invertible, and given that the smallest eigenvalue of Q is at least € it holds
that ||Q~!|| < 1/e = 64. Moreover, the semidefinite program based on Q described in Section 3
has an optimal value in one of the two ranges [1/2, 5/8] and [7/8, 1]; the first in the case that
x € Apo and the second in the case that x € Ayes. Of course we could take these ranges to be
smaller based on our assumptions, and indeed the optimal value is equal to 1 in the case x € Ayes,
but it is convenient to choose ranges that will accommodate small perturbations in Q, that are
symmetric about 3/4, and are given by simple fractions.

13

Next, we require the definitions of two complexity classes based on bounded-depth circuit
families: NC and NC(poly). The class NC contains all functions computable by logarithmic-space
uniform Boolean circuits of polylogarthmic depth, and NC(poly) contains all functions that can
be computed by polynomial-space uniform families of Boolean circuits having polynomial-depth.
By restricting these definitions appropriately, one may view them as classes of decision problems
as necessary. It follows from that NC(poly) C PSPACE, and it therefore suffices to prove
A € NC(poly).

To prove that A € NC(poly) we will make use of the observation thatif F : {0,1}* — {0,1}* is
a function in NC(poly) and G : {0,1}* — {0,1}* is a function in NC, then the composition G o F
is also in NC(poly). This follows from the most straightforward way of composing the families
of circuits that compute F and G. With this fact in mind we consider a computation having two
steps:

1. Compute from a given input string x an explicit description of the operator Q specified above.

2. Run an NC implementation of the algorithm from the previous section on Q.

The first step of this computation can be performed in NC(poly) using an exact computation.
This follows from the fact that in NC(poly) one can first compute explicit matrix representations of
all of the gates in the quantum circuit specifying Arthur’s measurements, and then process these
matrices using elementary matrix operations to obtain Q. The matrices involved have entries
with rational real and imaginary parts, and elementary matrix operations on such matrices can
be performed in NC as described (for instance) in [Gat93]]. For convenience we will assume that
Q12 is known exactly, which causes no loss of generality because a small perturbation in Q
causes a small perturbation in the value of our semidefinite program.

The second step of the computation, which is the NC implementation of the algorithm from
the previous section, is not quite as straightforward. In fact, it is only possible for us to approxi-
mate this algorithm in NC, as we only know how to approximate the matrix exponentials and the
computation of each I'l;. Nevertheless, it is possible to implement an approximate version of the
algorithm in NC that satisfies the same conditions that were specified in Section] which are that
the algorithm accepts when the optimal value of the semidefinite program from Section[Blis larger
than 7/8 and rejects when the optimal value is smaller than 5/8. By composing this approximate
version of the algorithm with the computation that constructs an explicit description of Q, we
obtain an NC(poly) algorithm for A as required.

5.2 A high precision NC implementation of the algorithm

It remains to argue that the algorithm from Section Ml can be approximated by an NC computation
with sufficient precision to preserve the requirements from before—which are that the algorithm
accepts when the optimal value of the semidefinite program from Section[3is larger than 7/8 and
rejects when the optimal value is smaller than 5/8.

To do this we will make use of the fact that many computations involving matrices can be
performed by NC algorithms. As stated above, one may compute elementary matrix operations
(including additions, multiplications, and inversions) in NC, and moreover matrix exponentials
and spectral decompositions can be approximated with high precision in parallel. In more precise
terms, we have that the following problems are in NC, where we assume as before that the given
matrices have entries with rational real and imaginary parts.

14

Matrix exponentials

Input: An n x n matrix M, a positive rational number 7, and an integer k expressed in
unary notation (i.e., 1¥), such that || M|| < k.

Output: Ann x n matrix X such that ||exp(M) — X|| < 7.

Spectral decompositions

Input: Ann x n Hermitian matrix H and a positive rational number 7.

Output: Ann X n unitary matrix U and an n x n real diagonal matrix A such that

M — UAU* || < 1.

We note that in the above problems, the description of the error parameter 1 has roughly log(1/7)
bits, which implies that highly accurate approximations are possible in NC. The fact that matrix
exponentials can be approximated in NC follows by truncating the series

exp(M) =1+ M+ M?*/2+M*/6+- -

to a number of terms polynomial in k and log(1/#). The fact that spectral decompositions can
be approximated in NC follows from a composition of known facts: in NC one can compute
characteristic polynomials and null spaces of matrices, perform orthogonalizations of vectors, and
approximate roots of integer polynomials to high precision
Nefo4].

Now, consider the two steps (a) and (b) that are performed within each iteration of the loop in
step 2 of the algorithm. Let us take u to be a small positive constant, say u = 279, and let us re-
quire that approximations of the computations in steps (a) and (b) satisfy the following properties.
For step (a), we will require that the projection operator Il; computed by the algorithm satisfies
the condition

IT(®(pr) — ally @ &e)IT; + %L(@W@W > P, (13)

where P; is the positive part of ®(p;) — aly ® &;. It is possible to perform this computation in NC
by taking 7 = p¢/N in an approximate spectral decomposition of ®(p;) — aly ® ¢ and setting I
appropriately.

For the approximations of the matrix exponentials in step (b) of the algorithm, it will be helpful
to introduce the following convention. We let Iy, ..., IIr_1, Bo,..., Br-1,p1,---,prand ¢1,...,Cr
denote the actual operators/scalars that are computed by the algorithm, and we let Wy, ..., Wt
and Zy, ..., Z be defined as in the specification of the algorithm, i.e.,

t t
Wit = exp <—€5) @ (Ht/,Bt)> and Ziyq = exp <£<5 ZTrX(Ht/,Bt)> ,

j=0 j=0

fort =0,...,T — 1. The algorithm cannot compute these operators exactly, so we must be content
with approximations
Wl,...,WT and Zl,...,ZT
of these operators. It is these approximations that determine the density matrices py, ..., pr and
(?1, e ,(?T, i.e.,
ot = Wt/ Tr (Wt) and Ci = Zt/ Tr (Zt>

15

fort = 1,...,T —1. With these conventions in mind, our requirement will be that the matrix
exponential computations are performed with sufficient accuracy so that

))
W/ Te(We) =il < 55 and 120/ Te(z0) - & < B (14)

Given that the matrix exponentials are computed for operators having norm bounded by T, it is
clear that approximations to this accuracy can be computed in NC.

One may now analyze the behavior of the algorithm in almost exactly the same way as was
presented in Sectiond Even though the operators

00,---,07-1, Co,---,67—1, and Ilo/Bo,...,IIr—1/BT-1

do not satisfy the precise equations that were assumed in Section [they may nevertheless be
used to construct primal and dual solutions to the semidefinite program that satisfy the required
bounds.

In the case that the algorithm accepts, a consideration of the operators p = p;, Il = I1;, and
¢ = (; as before allows for the construction of a primal feasible solution with a large objective
value. In place of (7), we have

®(p) < 1y @ (a8 + 2 Tra (P()I) + £ Iwey)

which allows for a lower bound of 1/(« 4 2e + p/2) for the primal objective function. For y =
210 this quantity is still lower-bounded by 5/8, which implies that the algorithm has operated
correctly in this case.
A similar analysis to the one before holds for the case of rejection as well. We consider the
operators
Ilo/Bo, -, IIr—1/Br-1

produced by the algorithm, and take

14 2¢)(1+2u) =1
t=0

By the conditions (14) above we may conclude that Y is dual feasible, owing to the fact that

<%,q>*(nt/m> S

Using (13) and (@4), the dual objective value achieved by Y is again bounded from above by 7/8,
and therefore the algorithm operates correctly in this case as well.

Acknowledgments

We thank Xiaodi Wu for helpful discussions. Rahul Jain’s research is supported by the inter-
nal grants of the Centre for Quantum Technologies, which is funded by the Singapore Ministry
of Education and the Singapore National Research Foundation. Zhengfeng Ji's research at the
Perimeter Institute is supported by the Government of Canada through Industry Canada and by
the Province of Ontario through the Ministry of Research & Innovation. Sarvagya Upadhyay’s
research is supported in part by Canada’s NSERC, CIFAR, MITACS, QuantumWorks, Industry
Canada, Ontario’s Ministry of Research and Innovation, and the U.S. ARO. John Watrous’s re-
search is supported by Canada’s NSERC and CIFAR.

16

References

[ABO9]

[AHKO5]

[AKO7]

[Bab85]

[BCP83]

[BGHS2]

[Bha97]
[BMSS]

[BOFKTS6]

[BOGKWSS]

[Bor77]

[BV04]

[Csa76]

[ESY84]

[Fel86]

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

S. Arora, E. Hazan, and S. Kale. Fast algorithms for approximate semidefinite pro-
gramming using the multiplicative weights update method. In Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science, pages 339-348, 2005.

S. Arora and S. Kale. A combinatorial, primal-dual approach to semidefinite pro-
grams. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Com-
puting, pages 227-236, 2007.

L. Babai. Trading group theory for randomness. In Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, pages 421-429, 1985.

A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed
rings and space-bounded probabilistic machines. Information and Control, 58:113—
136, 1983.

A.Borodin, J. von zur Gathen, and]. Hopcroft. Fast parallel matrix and GCD compu-
tations. In Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer
Science, pages 65-71, 1982.

R. Bhatia. Matrix Analysis. Springer, 1997.

L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36(2):254—
276, 1988.

M. Ben-Or, E. Feig, D. Kozen, and P. Tiwari. A fast parallel algorithm for determining
all roots of a polynomial with real roots. In Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, pages 340-349, 1986.

M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive
proofs: how to remove intractability assumptions. In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, pages 113131, 1988.

A. Borodin. On relating time and space to size and depth. SIAM Journal on Comput-
ing, 6:733-744, 1977.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing,
5(4):618-623, 1976.

S. Even, A. Selman, and Y. Yacobi. The complexity of promise problems with appli-
cations to public-key cryptography. Information and Control, 61(2):159-173, 1984.

P. Feldman. The optimum prover lies in PSPACE. Manuscript, 1986.

17

[FK97]

[Gat93]

[GMRS5]

[GMR89]

[GMW91]

[Gol05]

[GS89]

[HKSZ08]

[HO02]
[JUW09]

[JWO09]

[Kal07]

[KKMV09]

[KMO3]

U. Feige and J. Kilian. Making games short. In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 506-516, 1997.

J. von zur Gathen. Parallel linear algebra. In J. Reif, editor, Synthesis of Parallel
Algorithms, chapter 13. Morgan Kaufmann Publishers, Inc., 1993.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. In Proceedings of the 17th Annual ACM Symposium on Theory of Com-
puting, pages 291-304, 1985.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186-208, 1989.

O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their valid-
ity or all languages in NP have zero-knowledge proof systems. Journal of the ACM,
38(1):691-729, 1991.

O. Goldreich. On promise problems (a survey in memory of Shimon Even [1935-
2004]). Electronic Colloquium on Computational Complexity, Report TR05-018,
2005.

S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof
systems. In S. Micali, editor, Randomness and Computation, volume 5 of Advances in
Computing Research, pages 73-90. JAI Press, 1989.

S. Hallgren, A. Kolla, P. Sen, and S. Zhang. Making classical honest verifier zero
knowledge protocols secure against quantum attacks. In Proceedings of the 35th Inter-
national Colloquium on Automata, Languages and Programming, volume 5126 of Lecture
Notes in Computer Science, pages 592-603. Springer, 2008.

L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion. Springer, 2002.

R.]Jain, S. Upadhyay, and J. Watrous. Two-message quantum interactive proofs are in
PSPACE. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science, 2009. To appear.

R. Jain and]. Watrous. Parallel approximation of non-interactive zero-sum quantum
games. In Proceedings of the 24th IEEE Conference on Computational Complexity, pages
243-253, 2009.

S. Kale. Efficient algorithms using the multiplicative weights update method. PhD thesis,
Princeton University, 2007.

J. Kempe, H. Kobayashi, K. Matsumoto, and T. Vidick. Using entanglement in quan-
tum multi-prover interactive proofs. Computational Complexity, 18(2):273-307, 2009.

H. Kobayashi and K. Matsumoto. Quantum multi-prover interactive proof systems
with limited prior entanglement. Journal of Computer and System Sciences, 66(3):429—
450, 2003.

18

[Kob08]

[KWO00]

[LFKN92]

[MWO5]

[NC00]

[Nefo4]

[Sha92]

[She92]

[Wat99]

[Wat09]

[WKO6]

H. Kobayashi. General properties of quantum zero-knowledge proofs. In Proceedings
of the Fifth IACR Theory of Cryptography Conference, volume 4948 of Lecture Notes in
Computer Science, pages 107-124. Springer, 2008.

A. Kitaev and J. Watrous. Parallelization, amplification, and exponential time simu-
lation of quantum interactive proof system. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, pages 608-617, 2000.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. Journal of the ACM, 39(4):859-868, 1992.

C. Marriott and J. Watrous. Quantum Arthur-Merlin games. Computational Complex-
ity, 14(2):122-152, 2005.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

C. A. Neff. Specified precision polynomial root isolation is in NC. Journal of Computer
and System Sciences, 48(3):429-463, 1994.

A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, 1992.
A. Shen. IP = PSPACE: simplified proof. Journal of the ACM, 39(4):878-880, 1992.

J. Watrous. PSPACE has constant-round quantum interactive proof systems. In
Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science,
pages 112-119, 1999.

J. Watrous. Zero-knowledge against quantum attacks. SIAM Journal on Computing,
39(1):25-58, 2009.

M. Warmuth and D. Kuzmin. Online variance minimization. In Proceedings of the
19th Annual Conference on Learning Theory, volume 4005 of Lecture Notes in Computer
Science, pages 514-528. Springer, 2006.

19

	Introduction
	Preliminaries
	Linear algebra and quantum information
	Semidefinite programming
	Single-coin quantum Arthur–Merlin games

	A semidefinite programming formulation of the problem
	The main algorithm and its analysis
	Proof that QIP is contained in PSPACE
	Simulation by bounded-depth Boolean circuits
	A high precision NC implementation of the algorithm

