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Experimental estimation of entanglement at the quantum limit
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Entanglement is the central resource of quantum information processing and the precise charac-
terization of entangled states is a crucial issue for the development of quantum technologies. This
leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such
measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here
we present an experiment where the amount of entanglement of a family of two-qubit mixed photon
states is estimated with the ultimate precision allowed by quantum mechanics.

PACS numbers: 03.67.Mn, 03.65.Ta

Entanglement is the central resource of quantum in-
formation processing and the precise characterization of
entangled states is a crucial issue for the development of
quantum technologies. In turn, quantification and detec-
tion of entanglement have been extensively investigated,
see [1, 2, 3] for a review, and different approaches have
been developed to extract the amount of entanglement of
a state from a given set of measurement results [4, 5, 6, 7].
Of course, in order to evaluate the entanglement of a
quantum state one may resort to full quantum state to-
mography [8] which, however, becomes impractical in
higher dimensions and may be affected by large uncer-
tainty [9]. Other methods, requiring a reduced number
of observables, are based on visibility measurements [10],
Bell’ tests [11, 12, 13], entanglement witnesses [14, 15, 16]
or are related to Schmidt number [17, 18]. Many of them
found an experimental application [19, 20, 21, 22], also
in the presence of decoherence effects [23, 24].

Any quantitative measure of entanglement corresponds
to a nonlinear function of the density operator and thus
cannot be associated to a quantum observable. As a con-
sequence, ultimate bounds to the precision of entangle-
ment measurements cannot be inferred from uncertainty
relations. Any procedure aimed to evaluate the amount
of entanglement of a quantum state is ultimately a pa-
rameter estimation problem, where the value of entan-
glement is indirectly inferred from the measurement of
one or more proper observables [25]. An optimization
problem thus naturally arises, which may be properly
addressed in the framework of quantum estimation the-
ory [26, 27], which provides analytical tools to find the
optimal measurement and to derive ultimate bounds to
the precision of entanglement estimation.

Suppose one has a family of quantum states ̺ǫ la-
beled by the value of entanglement, say negativity, and

wants to estimate ǫ from the outcomes χ = (x1, .., xN )
of N repeated measurements of the (generalized) observ-
able described by a Positive Operator Valued Measure-
ment (POVM) Πx,

∑

xΠx = 11. Any inference strat-
egy amounts to find an estimator, i.e. a map ǫ̂(χ)
from the experimental sample to the parameter space.
According to the Cramer-Rao theorem the precision of
any estimation procedure, i.e. the variance of any un-
biased estimator based on the measurement of Πx is
bounded by the inequality Var(ǫ̂) ≥ [NFǫ]

−1, where
Fǫ =

∑

x p(x|ǫ) [∂ǫ ln p(x|ǫ)]
2 is the Fisher information

and p(x|ǫ) = Tr[̺ǫ Πx] is the conditional probability of
getting the outcome x when the actual value of entangle-
ment is ǫ. Upon maximizing the Fisher information over
all the possible quantum measurements we arrive at the
quantum Fisher information (QFI) Fǫ ≤ Hǫ = Tr[L2

ǫρǫ]
expressed in terms of the symmetric logarithmic deriva-
tive Lǫ, i.e. the selfadjoint operator satisfying the equa-
tion ∂ǫρǫ = 1

2
(Lǫρǫ + ρǫLǫ). The ultimate bounds to

precision are thus determined by the quantum Cramer-
Rao bound (QCRB) Var(ǫ̂) ≥ [NFǫ]

−1 ≥ [NHǫ]
−1. The

meaning of QCRB is that quantum mechanics does not
allow entanglement estimation with arbitrary precision.
In turn, QCRB represents the ultimate bound to the pre-
cision of any procedure aimed to estimate the amount of
entanglement of a state belonging to the family ̺ǫ. In
order to optimally estimate entanglement we thus need
i) a measurement with Fisher information Fǫ = Hǫ equal
to the QFI and ii) an estimator saturating the Cramer-
Rao bound [28]. In [25], bounds to precision have been
evaluated for several classes of pure and mixed quan-
tum states. Here we demonstrate experimentally for the
first time that optimized correlations measurements al-
lows for the estimation of entanglement with the ultimate
precision imposed by quantum mechanics. In particular,
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we present the results of an experiment to estimate the
amount of entanglement (negativity) of two-qubit pho-
ton states. This represents a substantial advance, paving
the way for further progresses. In fact, with a judicious
choice of correlation measurements one can devise a pro-
cedure to optimally estimate entanglement for a generic
class of two-photon entangled states.
The family of entangled states we are dealing with is

made of polarization entangled photon pairs obtained by
coherently superimposed type-I parametric downconver-
sion (PDC) generated in two BBO crystals [19]. The
experimental set-up is schematically depicted in Fig.
1. A CW Argon pump laser beam with wavelength
λ = 351nm is filtered with a dispersion prism and then
passes through a Glan-Thompson prism with horizontal
axis of transmission that selects the polarization |H〉. An
halfwave plate WP0 rotates the polarization by the angle
φ, which in turn determines the amount of entanglement
in the output state. PDC light is generated by two thin
type-I BBO crystals (l=1mm), positioned with the planes
that contain optical axes orthogonal to each other. PDC
occurs only in crystal 1(2) if the polarization of the pump
beam is horizontal(vertical).

FIG. 1: (Color online) Experimental setup to generate po-
larization entangled photon pairs with variable entanglement
and estimate its value with the ultimate precision allowed by
quantum mechanics.

The crystals are cut for collinear frequency degener-
ate phase-matching at working wavelength and the phase
shifts due to ordinary and extraordinary path in the
crystals are compensated by rotating the quartz plates
QP. To maintain stable phase-matching conditions, BBO
crystals and QP are placed in a closed box which is kept
heated at fixed temperature. Overall, the output states
are described by the family of density matrices ̺ǫ =
p|ψφ〉〈ψφ|+ (1− p)Dφ which represent the mixing of the
ideal pure entangled states |ψφ〉 = cosφ|HH〉+sinφ|V V 〉
(negativity ǫ = sin 2φ) with a small fraction of a separa-
ble mixture Dφ = cos2 φ|HH〉〈HH | + sin2 φ|V V 〉〈V V |.
The angle φ may be tuned at will upon rotating the
waveplate WP0, whereas the mixing parameter p comes
from the decoherence mechanisms occurring in the exper-
imental setup. These are mostly due to fluctuations of
the relative phase between the two polarization compo-
nents, which themselves derive from residual temperature
fluctuations: in order to obtain different mixed states

these fluctuation are eventually magnified by eliminat-
ing the isolating box. The entanglement (negativity) of
the state ̺ǫ is given by ǫ = p sin 2φ and its purity by
µ = 1 − (1 − p2) sin 2φ. Upon inverting these relations
and express the family of states in terms of ǫ and µ or
p we may evaluate the QFI for entanglement estimation,
which turns out to be a function of ǫ only,Hǫ = (1−ǫ2)−1.
In the following, we describe our detection strategy and
show it allows entanglement estimation with precision
saturating the QCRB independently on the purity.
After the crystal, the pump is stopped by a filter

(UVF), and the biphoton field is split on a non-polarizing
50-50 beam splitter (BS). The measurement stage con-
sists in projecting the beams on vertical polarizers af-
ter passing through halfwave plates (WP1, WP2). After
spectral selection by an interference filters (IF) centered
at the degeneracy 702nm (FWHM=3nm), biphotons are
collimated by a short focal length lens and detected on
SPAD (D1, D2). Electrical signals from detectors are
registered with a coincidence scheme (CC) with a time
window of coincidences set to 1ns. Overall, the measure-
ment scheme is described by projection measurements
onto two-qubit states

Πt(α, β) = |α+ s
π

2
〉〈α+ s

π

2
| ⊗ |β + s′

π

2
〉〈β + s′

π

2
|

where t = {s+ 2s′}, s, s′ = 0, 1. The polarization angles
α, β are set by Glen-Thompson polarizers, whereas the
rotations of ±π/2 are obtained by putting the half-wave
plates WP1 and WP2 at ±22, 5o (mounted on precision
rotation stages with high resolution and fully motor con-
trolled).
Let us first illustrate precision analysis assuming the

generation of the pure states |ψφ〉. In this case neg-
ativity is given by ǫ = sin 2φ and the estimation of
entanglement reduces to a measurement of coincidence
rates in a two-particle interferometer setting [10]. In-
deed, upon inspecting the expression of the probabili-
ties pt(ǫ;α, β) = 〈ψφ|Πt(α, β)|ψφ〉, t = 0, 1, 2, 3 one finds
out that an unbiased estimator for the negativity can
be written as ǫ̂ = V (α, β) csc 2α csc 2β− cot(2α) cot(2β),
where V (α, β) = p0 − p1 − p2 + p3 is the expected
value of two-qubit quantum correlations (QC). The cor-
responding Fisher information is thus given by Fǫ =
∑

t pt(ǫ;α, β)[∂ǫ log pt(ǫ;α, β)]
2 and it equals the QFI,

Hǫ, for α = ±π/4, β = ±π/4. In other words ǫ̂ =
V (±π/4,±π/4), which can be measured with the exper-
imental setup described above, are good candidates for
being optimal estimators of entanglement. In practice,
at fixed φ, α and β and for each measurement run j =
1, ..,M one records the vector kj = {k0,j , k1,j , k2,j , k3,j},
where kt,j ≡ kt,j(α, β), is the number of coincidence
counts, as measured for the given set of parameters by
the coincidence circuit during a single time window (10
seconds). For large values of the total number of coin-
cidences Kj =

∑

t kt,j (determined irrespectively of the
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polarizers’ orientation in the j − th run), the expected
value of the coincidence rate kt,j(α, β)/Kj converges to
the probability pt(ǫ;α, β) and the estimator can thus be
written in terms of the coincidences’ vector ǫ̂ ≡ ǫ̂(kj). In
our implementation we have performedM = 30 measure-
ments of the coincidence vector for fixed values α = −π/4
and β = π/4.
For finite Kjs the uncertainty in the estimation of en-

tanglement are mostly due to fluctuations δkt in the co-
incidence counts kt,j around their average values 〈kt〉 =
∑

j kt,j/M . Using standard error propagation with the
derivatives ∂t ≡ ∂/∂kt evaluated for kt ≡ 〈kt〉, and
assuming independence among fluctuations at different
angles, we have Var(ǫ̂) =

∑

t |∂tǫ̂|
2δk2t = 4[(〈k0〉 +

〈k3〉)
2(δk21+δk

2
2)+(〈k1〉+〈k2〉)

2(δk20+δk
2
3)]/ 〈K〉

4
. If we

now assume that the counting processes have a Poisso-
nian statistics, i.e. δk2t = 〈kt〉

2, then it is straightforward
to prove that

Var(ǫ̂) = 4(k0 + k3)(k1 + k2)/ 〈K〉
3
= (1− ǫ̂2)/ 〈K〉

i.e. QC measurements allow for optimal estimation of
entanglement with precision at the quantum limit. Since
the QFI is given by Hǫ = (1 − ǫ2)−1 for a wide range of
two-qubit families of states [25], the above calculations
suggest that this is a general result. In other words,
given a source emitting polarization two-qubit states with
coincidence counting statistics satisfying the Poissonian
hypothesis, then the experimental setup of Fig 1 allows
for optimal estimation of entanglement at the quantum
limit by means of a QC estimator.
This is indeed the case for the experimental setup of

Fig. 1 and the family of output states ̺ǫ where, upon
evaluating the probabilities pt(ǫ;α, β) = Tr[̺ǫ Πt(α, β)],
one sees that ǫ̂ = V (−π/4, π/4) is still an optimal (un-
biased) estimator of entanglement. In practice, we have
collected M = 30 repeated acquisitions of coincidence
vector kj = {k0j , k1j , k2j , k3j}, then we have random-
ized the composition of kj over the sequence of mea-
surements to avoid spurious correlations, and finally we
have estimated entanglement as the sample mean 〈ǫ̂〉 =
∑

j ǫ̂(kj)/M . The corresponding uncertainty has been
evaluated by the sample variance Var(ǫ̂) =

∑

j [ǫ̂(kj) −

〈ǫ̂〉]2/(M − 1). In order to compare the estimated value
of entanglement with the actual one we need to esti-
mate also the additional parameter p, quantifying the
amount of mixing introduced by decoherence processes.
An unbiased estimator p̂ for this parameter may be ob-
tained by measuring QC with a different set of angles,
e.g. upon collecting the coincidences rj ≡ kj(α = β = 0)

to form p̂(rj ,kj) = 1
2
ǫ̂(kj)Rj/

√

r3,j(1− r3,j), where
Rj =

∑

t rt,j is the total number of coincidences with
the four orientations α, β = 0, π/2. The actual (”true”)
value of negativity is then inferred as ǫt = 〈p̂〉 sin 2φ, i.e.
using the knowledge of the rotation angle of the wave-
plate WP0 and the estimation of the mixing parameter.
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FIG. 2: Estimation of entanglement at the quantum limit.
The plot shows the estimated value of entanglement 〈ǫ̂〉 as a
function of the actual one ǫt. The uncertainty bars on 〈ǫ̂〉

denotes the quantity
p

Var(ǫ̂)× 〈K〉, i.e. the square root
of the sample variance multiplied by the average number of
total coincidences 〈K〉. The gray area corresponds to val-

ues within the inverse of the Fisher information ǫt ± H
−1/2
ǫt .

Uncertainty bars on the abscissae correspond to fluctuations
δǫt =

p

Var(p̂) sin 2φ in the determination of ǫt, due to fluc-
tuations in the estimation of the mixing parameter.

In Fig. 2 we show the estimated value of en-
tanglement as a function of the actual one for seven
values of φ = 10◦, 15◦, 20◦, 28◦, 40◦, 45◦, 45◦ of the
WP0 rotation angle (corresponding to estimated mix-
ing 〈p̂〉 = 0.85, 0.88, 0.88, 0.85, 0.92, 0.93, 0.97 respec-
tively). The uncertainty bars on 〈ǫ̂〉 denotes the quan-
tity

√

Var(ǫ̂)× 〈K〉, i.e. the square root of the sample
variance multiplied by the average number of total co-
incidences 〈K〉. This is in order to allow a direct com-
parison with the Cramer-Rao bound in term of the in-
verse of the Fisher information (the gray area). Uncer-
tainty bars on the abscissae correspond to fluctuations
δǫt =

√

Var(p̂) sin 2φ in the determination of ǫt, due to
fluctuations in the estimation of the mixing parameter.
As it is apparent from the plot entanglement is estimated
with precision at the quantum limit for any value of the
the rotation angle φ. Notice that this conclusion is robust
against the fact that the statistics is not exactly Poisso-
nian: in the left panel of Fig. 3 we show the Fano factor
for the four recorded coincidence counts kj and the six
values of φ employed in the experiment.
Our statistical model ̺ǫ may be checked for consis-

tency on the basis of the recorded data themselves, and
other possible models to describe decoherence of our fam-
ily of states are ruled out as they cannot fit the experi-
mental sample. As for example, if one tries to describe
the output from our source by the family of (depolar-
ized) Werner states ̺′ǫ = p|ψφ〉〈ψφ|+

1
4
(1−p)11⊗ 11, than

one sees from the expression of the coincidence proba-
bility p′t(ǫ;α, β) = Tr[̺′ǫ Πt(α, β)] that unbiased estima-
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tors for the mixing parameters and the negativity may
be expressed as p̂′ = V (0, 0), ǫ̂′ = − 1

2
+ 1

2
V (0, 0) +

V (−π/4, π/4). These may be written in terms of the co-
incidence vectors k and r as p̂′(rj) = (rr0,j − r1,j − r2,j +
r3,j)/Rj and ǫ̂′(rj ,kj) = − 1

2
+ 1

2
p̂′(rj) + (k0,j − k1,j −

k2,j +k3,j)/Kj. Upon evaluating the corresponding sam-
ple means and variances one realizes that the model is
incompatible with the observed data. This is illustrated
in the right panel of Fig.3 where we report the estimated
value of entanglement as a function of the actual one
assuming, for the description of the output signals, the
families ̺ǫ (top plot) and ̺′ǫ (bottom plot). Here the
uncertainty bars denote the 3σ confidence interval and
thus it is apparent that ̺′ǫ cannot fit the data. We also
performed measurements of the coincidence counts for a
complete set of polarization angles and check the model
̺ǫ by full two-qubit state tomography [29, 30].
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FIG. 3: (Color online) Left: Fano factors of the coincidence
counts kj , j = 0, 1, 2, 3. Each groups contains the Fano factor
for the seven values of φ reported in the text. Right: esti-
mated value of entanglement as a function of the actual one
assuming, for the description of the output signals, the fami-
lies ̺ǫ (top plot) and ̺′ǫ (bottom plot). The uncertainty bars
stays for to the 3σ confidence interval.

In conclusion, we have suggested and demonstrated a
measurement scheme based on quantum correlation mea-
surements to optimally estimate entanglement for a fam-
ily of two-photon entangled states. Our procedure is self-
consistent and allows to estimate the amount of entan-
glement with the ultimate precision imposed by quantum
mechanics. With an appropriate choice of correlation
measurements our results may be extended to a generic
class of two-photon entangled states. The statistical re-
liability of our method suggests a wider use in precise
monitoring of external parameters assisted by entangle-
ment.
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