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GENERALIZATION OF HYPERVIRIAL AND FEYNMAN-
HELLMANN THEOREMS FOR SINGULAR POTENTIALS 

 
   Using well-known methods we generalize (hyper)virial theorems to case of singular potential. Discussion 
is performed for most general second order differential equation, which involves all physically interesting 
cases, as Schrödinger and Klein-Gordon equations with singular potentials. Some physical consequences 
are discussed. The connection with Feynman-Hellmann like theorems are also considered and some 
relevant differences are underlined.  
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I. Introduction 
 

        Virial theorem has a wide application in classical as well as in quantum mechanics. This 
theorem connects average values of kinetic and potential energies for the systems confined in 
limited areas. Moreover it allows making definite conclusions about some interesting problems 
without solving to equations of motion.  
  There are many generalizations of virial theorem, especially in relativistic quantum mechanics 
for investigating of bound states [1].  
   Recently much attention was devoted to singular potentials, namely, to potentials, behaving 
as  )  fo 0  in the Schrodinger equation, an −=  

0→r  in the Klein-Gordon and Dirac equa
( ) 0

2 VrVr −→ ;  0VrV

   Such behaved potentials appear in large classes of physical problems. Particularly, in 
Calogero model [2], Coulomb or Hulthen potential  in Klein-Gordon and Dirac equations [3], 
Black Hole theory [4] and etc. Virial like theorems can make things clear while studying such 
problems.  

                Therefore, it seems natural to make attempts for generalization of virial theorem for such 
(singular) potentials too.  
    The most general methods for obtaining various virial like theorems were developed in [5] 
by C. Quigg for regular potentials in the Schrodinger equation. The general character of these 
methods allows us to carry over singular potentials as well. It appears that formally the 
theorem almost keeps the form familiar for regular potentials with obvious differences.  
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   But the main difference is provided by additional solutions, which are the relevant property 
of singular potentials and is related to the necessity of self-adjoint extension (SAE).         
   This article is organized as follows: 
   First of all we remember the needed methods for deriving of virial like theorems and apply 
them to general second order differential equation.  
   Consequences for regular potentials are reviewed and then the singular potentials are 
considered. It is shown, that there arise additional terms in the usual virial like theorems, which 
depend on the additional solution for singular potential. Some consequences of the new form of 
virial theorems are also considered. 
   After that the corresponding corrections to the Feynman-Hellmann theorem are discussed. 
 

 
II. Derivation of Hypervirial  (generalized virial) Theorems 

 
     Let us consider the second order differential equation of most general form (exclusion of 
first derivative terms is always possible by using suitable transformation [6])  
                         0)()()( =+′′ rurLru ,                             (2.1) 
 
where L(r) is an arbitrary function of r . Central potential in three-dimensions will be important 
for us in following. Exactly to equation (2.1) reduces the radial Schrodinger equation 
with . Even the one-dimensional case may be investigated on the same foot, as well, 
where

∞<< r0
∞<<∞− x . In the following some of physical requirements will be used to restrict this 

function, L(r).   
    Now we proceed to the methods of C.Quigg [5]. Let us multiply (2.1) by and integrate in 
the interval .  (here is an arbitrary three-times differentiable function, which will be 
restricted somewhere in the following). We derive  

uf ′
( ∞,0 ) )(rf

                                                                                (2.2) ∫∫
∞∞

′=′′′−
00

drufLudruuf

Let us mention that using the following relations  ( )21
2

u u′ u′′ ′=  and  21 ( )
2

uu u′ ′= , one can 

perform partial integration in (2.2)  

                          ∫ ∫∫
∞ ∞

∞
∞

∞ ′−′−=′′+′−
0

2

0

2
0

22

0
0

2 ][][ druLfdrLuffLudrufuf              (2.3) 

 For bound states  at large distances and therefore one neglects contributions from 
upper bound in (2.3), if  and 

0, →′uu
f L are to be restricted as follows 

                                      (2.4) 0lim;0lim 22 →→′
∞→∞→

fLuuf
rr

  
(For scattering problems are not decaying functions and the conditions (2.4) may not take 
place, if we do not require it by special choice of ).  

uu ′,
f

     Therefore there remain expressions in (2.3) only at lower bound 

                                     ∫
∞

′−′−−=′′+′
0

0
22

0
2 LfLffLudrufuf ,                    (2.5) 
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where <    > denotes averaging by means of u  function. For example,  

                                                     ∫
∞

′=′
0

2drLufLf                                 (

Now p

2.6) 

erform a partial integration in the second term of RHS of eq. (2.5), using evident relation 

                            

uuuuuu ′′+′′=′′)( . It follows 

∫∫∫
∞∞

∞
∞

′′′−′′′−′′=′′≡
00

0
2

0

druufdruufuufdrufI                       (2.7) 

FFFor bound states the first term on RHS at the upper limit may be neglected, if  
       (2.8) 

 on RH

                            

                                          0lim →′′ uuf                                  
∞→r

Now let us integrate the last term S of (2.7) 

>′′′<−′′=′′′=′′′= ∞
∞∞ 1 2∫∫ fufdrufdruufI

2
1

2
1)(

2 0
2

00
1          (2.9) 

    For bound states  must be restricted as follows 
                             (2.10) 

otion (2.1)) 

f
                               0lim 2 →′′uf

∞→r

Therefore, we have (accounting equation of m

>′′′<+′′+>′<+′′−= fufLfuufI
2
1

2
1                                                     0

2
0          (2.11) 

At last, from (2.5) and (2.11) for bound states we derive the following hypervirial theorem: 

>′′′<−>′<−>′<−=
⎭
⎬
⎫⎧ ′′−′′+′′−′ fLfLfufuufuufuf 121 22                           

⎩
⎨

=r 22 0

   (2.12) 

FFor scattering states (2.4), (2.8) and (2.10) restrictions are not satisfied and instead of (2.12) 

   

we have  

>′′′<−>′<−>′<−=

=
⎭
⎬
⎫

⎩
⎨
⎧ ′′−′′+′′−′+

⎭
⎬
⎫

⎩
⎨
⎧ 2 ′′−′′+′′−′−

=∞=

fLfLf

ufuufuufufufuufuufuf
rr

2
12

2
1

2
1

0

222

           (2.13) 

  After substitution here  function at infinity corresponding hypervirial theorem can be 

nection to (2.12) about restrictions on : 
 rresponding 

(b) )2 , then (2.12) coincides with (2.27) from [7], in which only the 

                                                   

u
derived for scattering problems as well.  
  Now let us make some comments in con f
(a) Because <  > means averaging by u -functions, f  must be such, that co

integrals do exist.  
When (rf q −≥= lq
Schrödinger equation is considered, i.e.  

⎥⎦
⎤

⎢⎣
⎡ −= 2 EmL +

− 22
)1(

mr
llV                                                   (2.14) 

with regular V. 
hat the choice  satisfies to (2.4), (2.8) and (2.10) restrictions.  

 [7], only 
Schrodinger equation was considered.   

      Let us note t  qrf =
(c) (2.12) - like expression for arbitrary f is derived in [8], but here also, as in
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III.   Some Applications of Hypervirial Theorem 
 
   Choosing  one ). Let us consider 

me of them. 
f , can obtain several interesting expressions from (2.12

so
   Consider a particular case for )(rL  in (2.1) 

                       2) )1((
r
ssrAL +

−= ,                          (3.1) 

rm. 
ion  instead of (2.14) 

tential participates in different manners.  

  Consider each etail: 
(i) regular ca

                                (3.2) 

=rVr                            (3.3) 

f we take

0≥s

i.e. we separate a centrifugal te
   We use here a general notat because a lot of physical equations  )(rA
reduce to form, like (3.1), where po
   It is necessary to make distinction between two cases: 0)(lim 2

0
=

→
rAr

r
 (regular) and 

2 0)(lim
0

≠
→

rAr
r

 (singular). 

of them in d
se, when  

                                                        0)(lim 2

0
=

→
rAr

r

It is easy to guess, that only regular potentials  
                                                          0)(lim 2

0→r

quation (iobey to (3.2) in case of Schrödinger e 2,1,0; == lls ) 

While, for example, for one- and two-particle Klein-Gordon equations (3.2) is satisfied if   
                                                             0)(lim

0
=

→r

When (3.2) is satisfied it follows the following behavior of wave function at the origin  

rrV                             (3.4) 

ra + +≈ 1
.5) 

The second term in (3.5) does not obey to condition of hermiticity for Hamiltonian [9,10] 

                             ssr→0
                      (3

srbu −s

and radial momentum operator )( 1
rr

ipr +
∂
∂

−= [11], which is imposed on the wave 

function at origin  
                                               0)0()(lim)(lim

00
===

→→
ururrR

rr
       (3.6) 

s a rule (see, any textbook in quantum me  
t term remains 

                          

 Therefore it is neglected a chanics). Then at
small distances only the firs
                                                         1+≈ s

ss rau                               (3.7) 

Substituting this into (2.12) one obtains 

>′′′<−>−
′

<++

+>′<−>′<−=
⎭
⎬
⎫⎧ ⎤⎡

⎩
⎥
⎦
′′+′

=

f

⎨ ⎢
⎣

+−+

f
r r
fss

AfAffrf
r

2
1)1(2

2
2

32

0   (3.8) 

Now consider special form for  [5]  

r 2

sfsra s
s )1()1(22

f
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                                                                                          (3.9) 

                        

qrf =
   We have  

><⎥⎦
⎤

⎢⎣ 2
1)(1(2 qqss⎡ −−+−+−

−>′+<−=
⎭
⎬
⎫

⎩
⎨ −+−+

−

−
=

+

3

1
0

22

)2)(1(1)

2)1(
2
1)1)(1(

q

qq
r

sq
s

rqq

ArAqrraqqqs
    (3.10) 

⎧

In order the LHS of this expression be not diverging at 0=r , we must require  
 
                                                     sq 2−≥                                  (3.11) 
 

) becomes  

                  

Therefore, (3.10

>⎥⎦
⎤

⎢⎣
⎡ −+−++′+<−= −− 31 )2)(1

2
1)1)(1(22 qqq rqqqssArAqr

      (3.12) 
−

=+ −2,
22

(

)12( sqs

q

as δ

eneraliIt must be noted that (3.12) is a g zation of relation (2.30) from paper [5] for L in 
rm (3.1). 

teresting values of in (3.12):  
   a)     

s from (3.12) that  

fo
  Let now consider various in  q

1=q
  Then it follow

                                                       02 =′+ ArA                           (3.13) 

In case of Schrodinger equation, when  
                                                        )(2 VEmA −=                                                     (3.14) 
we derive  

                                                          VrVE ′+=
2
1

                         (3.15) 

which is the usual virial theorem 

                                                          VrT< ′>=
2
1

                          (3.16) 

 account separability of total wave function  
b) lq 2−=  

Taking into

                                       ( ) ( ) ( ) ( ) ( )ϕθϕθ ϕθψ ,,, ,en Y
ru

Rr =            (3

we deri

, ememne r
Yr = .17) 

ve 

                                       ( ) ( ) ( ) ( ) enll
e
en r

A
r

All 22 4!0 >Rl ,212,12 2 ′
−<=+              (3.18) 

re  e

+

HHe ,
( ) ( )0eR  is the l-th order derivative of radial wave function at origin. (3.18) n

generalizes eq. (1.4) of [7] for Schrodinger equation  

                              ( ) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡ −
+=+12l           (3.19) +12

22
,

2 41!20 l
l

l
e
en r

VEl
dr
dV

r
lmR
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c) q=0 or constf =  
 

This case is well-known in the Schrodinger equation [5,8]. Now it follows from (2.12): 
                                                  { } >′<−=′′−′ = Luuu r 0

2                       (3.20) 

or 

                          2 2
0 3

2 ( 1)( 1) ( )l
l r

l ll a r A r
r=

+′+ = − < > −         (3.21) 

take then 
                                                                      (3.22)            

n 
nown relation  

                                                   

If now we , 0=l
>′<−=′= )()0()( 2

0
2
0 rAua

It generalizes eq. (39a) from [8] to arbitrary )(rA . When we take expression (3.14), the
it follows from (3.22) the well-k

      
dr
dVm

π
ψ

2
)0( 2

0 =                       (3.23) 

 , the LHS of (3.21) is zero and therefore we obtain  

               

 
In case  0≠l

                                     A
r

ll ′−=+ 3

1)1(2                        (3.24) 

trary
 eq s of motion, the potential 

appears in various form  must take care, which restrictions arise on potential 

            
have

which generalizes eq. (39b) from [8]  for arbi    )(rA . The relations (3.22) and (3.24) 
are formulated in terms of )(rA . Depending on uation )(rV  

s and one
)(rV . 

 d) lq 2,1,0 −≠
Now we  

                       0)2)(1(
2
1)1)(1(22 1 >=⎥⎦

−−+′+< − qq rqqArAqr     (3.25) 3⎤
⎢⎣

+−+ −qqqll⎡

  This expression allows us to connect average values of various degrees of r .  
For example, in Schrodinger equation we have  

         ( ) ( ) 012
4

)1(22 311 =⎥⎦
⎤

⎢⎣
⎡ +−−

−
+′−− −−− qqqq rllqq

m
qVrVrqrEq     (3.26) 

For e potentipower-lik al,   it follows from (3.26), that  nrVV 0=

          ( ) ( ) 012
4

)1()2(2Eq 31
0

1 =⎥⎦
⎤

⎢⎣
⎡ +−−

−
++− −−+− qnqq rllqq

m
qrnqVr   (3.27) 

well-known Kramer’s formula [12] follows for the Coulomb poIf  1−=n , the tential 

r
V α

−= , (i.e. 1; +=−= sqV0 α ) 

           0)1(
4

1)12()1(2 2
2

1 =⎥
⎦

⎤
⎢
⎣

⎡
+−

−
++++ −− sss rlls

m
srsrsE α       

n for iso

     (3.28) 

But when 2=n , the relatio tropic harmonic oscillator 22

2
1 rV = ω  is derived [13] 
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                       0)1(
4

1)2()1(2 2
2

22 =⎥
⎦

⎤
⎢
⎣

⎡
+−

−
++−+ −+ sss rlls

m
srsrsE ω         (3.29) 

Also it is possible to derive recurrence like relations between different powers of r for 
various relativistic equations. Such relations have many applications in various physical 
problem
 

se .  Now 
                                                  >−= VVrAr                       (3.30) 

A wn i ass particles’ Klein-Gordon 
equations, that besides the standard levels there appear additional levels as well, whose 
wave function behaves at small distances as  

                                                

s [14].  

ii) Singular ca
)0(;)(lim 00

2

0→r

As was sho n [15-16],  for Schrodinger and two equal m

P

stst rau
+

≈ 2
1

 ;   
P

addadd rau
−

≈ 2
1

                 (3.31) 

w
  

here, for example, in Schrodinger equation 
                                            02)2/1( 2 >−+= mVlP                           (3.32) 

ile in the Klein-G
0

w ordon equation for two equal mass particles 
                                             

h
04/)2/1( 2

0
2 >−+= VlP                             (3.33) 

r given L for each relativiLikely it is possible to find P fo stic equation. At the same time, as 
is indicated in [15-16], for the existence of additional levels following constraint must be 
satisfied 
                                              2/10 <≤ P                                    (3.34) 

which is expression of vanishing of the radial wave function ( )u r  at the origin,  ( )0 0u = . 
  Now if we take the wave fun l form [15] ction at small distances as genera

                                             
P

add

P+1

st rara
−

+= 2
1

2                             (3.35) u
and use (3.9) for f , then (2.13) gives 

[ ]
31 )2)(1(

2
)1)(1(22 −−

⎥⎦
⎤

⎢⎣
⎡ −−+−++′+−= qqq rqqqqllArAqr

  

(3.36) 

1,
22

21,
2 4)1)2/2/1)(1( − =−−−+− qaddstpqst aaPqaqPq δδ 21, ()2/2/1)(1( + +−−−+ PqaddaqPq δ

              

2

HHere we must require that Pq 21−≥ .If 00 =V , or we return egular case (3.2 e  to r ),becaus
of (3.12) 

 (3.36) as above. 

  Then from (3.36) follows                   
                                                 

the RHS of (3.36) remains unchanged, but the LHS transforms into the LHS 

Let consider various q-s in

   a)  2/10;1 <<≠= PPq  ,0

addst aaPArA 242 =′+                          (3.37) 

FFFor the Schrodinger equation this means 
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                                          addst aa
m

VrVE
2

+′+=                         (3.38) 
P 21

Therefore, for singular potential om that of regular ones by the 
ex

                                       

 the virial theorem differs fr
tra term  

          addst aa
m

e only standard or only 

P 2

=                                (3.39) 

 cas

b

This term vanishes when we tak additional solutions. 
Comment: Separate considerati 0on needs the e =P

     

. As is indicated in [15], we have in 
this case 

                                            rrarau addstr
ln2

1
2
1

0
+≈

→
                         (3.40)  

                             

Clearly 0)0( =u .Now instead of (3.36) it follows 

0)2)(1(
2 ⎦

1)1)(1(22 31 =⎥
⎤

⎢⎣
⎡ −−+−+−′+ −− qqq rqqqqllArAqr   (3.41) 

And virial theorem for Schrodinger theory takes the form  A

                          VrVE ′+=
2

                        (3.42) 

which is analogous to

1
    

 regular potential case, but difference appears in averaging by 
function (3.40). 
     For pure singular potential  

                                                      )0(; 02
0 >−= V

r
V

                          (3.43) 

7) that 

  

V

it follows from (3.3

                                                        addst aa
m

E =         
P 2

                   (3.44) 

This is a single level, which appears in quantum mechanical consideration, when we 
 necessary ingre

3.37) is rather general relation and many physical 
 it.  

    Consider, for example, two-particle Klein-Gordon equation with equal masses : 

A 
retain the additional solution as dient for providing a self-adjointness of 
Hamiltonian via self-adjoint extension (SAE) [15].  
   This level disappears immediately as we neglect pure standard or pure additional 
solutions.  
   It is evident that the equality (
consequences can be derived from

m

                                   ;0)1(
424 2⎢

⎣
−+′′

r
u 2

22

=
+

−⎥
⎦

⎤
−+ ullumMMVV                       (3.45) 

⎡

M  is a total mass of composite state.. Comparison to (2.1) and (3.1) gives  

                                               2
22

424
mMMVVA −+−=  

UUUsing this in (3.36), we obtain 

                                     ( ) addst aaPmMMVVrMVV 22 42
222

=−+−
′

+−       (3.46) 
22
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L Le  assless 
bound state in case of Coulomb potential (attraction or repulsion)? Existence of bound states for 
both e of the relativistic structure of Klein-Gordon equation, where for 

t literature [17]. 
   For t

                        

t us now consider the following problem: Can two massive particles produce m

cases is a consequenc
0=M  here remains only V in (3.45).This problem was considered in scientific 

his aim one must take 0=M  in (3.46). We derive 
2

addst aaV PmVVr 22
2

42
2

=−
′

+               (3.47)   

For Coulomb potential it follows 
                                  (3.48)          

an

2

                   addst aaPm 22 2=−
d we see that the positive answer this problem has only if 0≠sta  and  0≠adda (if 

)0<addst aa . Correctness of this result may be verified also by direct solution of the Klein-
Gordon equation. Indeed, substituting 0=M  in (3.45), one finds    

                                                       ;0)1(2
2

=
+⎤⎡

ullV                        (3.49)               
4 2−⎥

⎦
⎢
⎣

−+′′
r

umu

If we take here 
r

V α
m=   this equation becomes 

                          02 =⎥
⎦
u                    (3.50)  

4/12
2 ⎤

⎢
⎣

⎡ −
−−+′′

r
Pmu

where P  is given by (3.33). Note that this equation coincides to the Schrodinger equation with 
y of notations. Therefore we can use the results of our paper [15] and write down the 

general solution derived there                            
the accurac

                               

              ( ) { })()( mrBImrAImrru PP −+=                                   (3.51)  
ied Bessel functions. We have th

infinity 

                            

 

where PI  and PI−  are the modif e following behaviour at 

{Aru ≈
1)( } mr

r
eB+

∞→ π2
                                                 (3.52) 

Requiring vanishing of e solution we have to take )(ru  at infinity as for bound stat
                                                                      AB −=                              (3.53) 
A Remembering the well-known relation  

                         [ ])()(
sin2

)(K −= zPIzI
P

z PP −π
π

                   (3.54)        

                   

our wave function takes the form 

        )(sin2 mrKPmrAu P⋅−= π
π

                         (3.55) 

at infinity and in thwhich is exponentially damping e interval 2/10 <≤ P  satisfies to 
fundamental requirement (3.6). It is evident, that our solution is derived by the requirements 
                               0;0 ≠≠ BA                        

w ved on
      (3.56)     

s  conclu
hich means, that  0=M  state can be deri ly by SAE procedure. We see that explicit 

ol he sion, derived by Virial theorem.  ution of Klein-Gordon equation repeats t
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   One important remark is in order: W. Krolikowski [17] derived the same solution for 
e s the only Bessel functi

pears that a massless bound state for Coulomb potential may 
be constructed from 2 massive particle in nonzero orbital momentum 5].But 

0= state only. It is true, becaus on, which behaves in a needed l  )(zKP i
fashion at infinity (vanishes!).It ap

 states also, 0≠l [1
SAE procedure is necessary. 
   Owing to the fact, that repulsive case also forms a massless bound state, we conclude, that the 
following alternatives take place: 

(i) Those values of SAE parameter 
sta

        deflected in order to  suppress such unphysical results. 

add=τ , whea n this strange fact occurs, must be         

(ii) We must recognize, that the SAE procedure produces an effective attraction , which may 
be seen from equation (3.50), where the factor ( )4/12 −P  has a negative sign in area 
(3.34) and gives a quantum anticentrifugal potential, which is attractive [15]. 

(iii) It is not excepted that such unphysical fact is a pathology of the Klein-Gordon equation. 
For example if we reverse the problem and ask if two massless particles can compose a 
massive bound state in Coulomb field, we can easily see that (3.46) gives a positive 
answer in case of Coulomb repulsion, but not for attraction .                                       

   b)  Cases  Pq 21m=  and q l2,1,0 −≠  may be discussed in full analogy. One derives some 
recurrence like relations between average values of various powers of r .  

 
nd Hellmann Theorem 

    It is
are cl

of Ha
   We 
when

raditional 

IV. Connection with the Feynman a
 
 known that the Feynman-Hellmann (FH) [18 -19] and generalized FH [20-21] theorems 

osely related to the hypervirial theorems.  
    FH like theorems connect average values of energy derivative by some parameters to those 

miltonians.  
want to take attention to the fact, that for singular potentials in Schrödinger equation, 

 SAE is necessary, FH theorem also should be modified.  
  Indeed, in  a t way [20], we consider a wave equation of the form 
                                         0),( =ψλEF                                         (4.1) 

where ψ is the wave function of a bound state with energy E, which depends on the 

param tere λ . Then we can write 

                  0=
∂

+
∂

+
∂

∂
∂

+
∂
∂

=
∂
∂ ψψψψψ

λ
ψψψ

λ
FFE

E
FFF

∂∂∂ λλλ              (4.2) 

If F has the property that (this property is fulfilled in the regular (3.2) case!)     

                                                          
λ
ψψ

λ
ψψ

∂
∂

=
∂
∂ FF                                                 (4.3) 

then in view of (4.1), from (4.2) we obtain 

                                                  
ψψ

ψ
λ

ψ

λ F∂
−=

∂
                                                                (4.4) 

E

E

∂

∂∂
F∂
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EHF −=  If , then (4.4) reduces to the usual Feynman – Hellmann theorem [20-21] 
 

                                                   ψψ
∂

=
∂ HE ˆ

λ∂                               (4.5) 

                                                   

λ∂

     Now from (2.1) and (3.1) we have 
( )

22
1)(

r
llrA

dr
dF +

−+=                                              (4.6) 

ad of (4.3) w
                       
 and in the singular (3.30) case, inste e obtain additional term on the right side  

λ∂
n

nn Fuu +λ
∂

=
∂
∂ n uuF ⎥⎦⎢⎣ ∂

−
∂→ drdr

ru nnn
n

r
),(lim

0 λλ
λ (4

⎤⎡ ∂∂ rdururud ),(),(),( λλλ
.7) 

 and it follows 
 

                                                 
ψψ

ψ
λ

ψ

λ
E
F

BF
E

−=
∂

∂
∂

+
∂
∂

∂
                                                        (4.8) 

                         

where    

⎥⎦

⎤
⎢⎣

⎡
∂

∂
−

∂
∂

=
→ dr

rdururu
dr
druB nnn

n
r

),(),(),(
),(lim

0

λ
λ
λ

λ
λ

λ                          (4.9) 

   We see that FH theorem is modified as well. 
s because is not a self-adjoint operator in singular case (3.30) and the 

                                                          

    This happen
ndamental relation 

F
fu

ϕψϕψ FF =                                                      (4.10)                                 
e SAE procedure is necessary.      does not takes place. Therefore th

Inserting (3.35) we obtain 

    { }P
addnaddnstnr

stn
addn

addn
stn raraPa

d
dPa

a
a

aPB= 22
,,,0

,
,

,
, ln4lim2 −

→
−+⎥

⎦

⎤
⎢
⎣

⎡
∂

∂
−

∂

∂
−

λλλ   (4.11) 

 consequences for Schrodinger and one body Klein-Gor
ger equation P is given by (3.32) and for singular  

 Consider some don equation.       
a) For Schrodin
 

                             )0(lim 00
2

0
>−=

→
VVVr

r
                                  (4.12) 

potential from (4.7) we obtain 
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{ }2 2
, , ,0

lim 4 ln
2

P
n st n add n addr

Pa a r a r
mdλ

−

→
− −

, ,
, ,

ˆ

1

n add n stn r
n n n st n add

a aE H Pu u a a
m

dP

λ λ λ λ
∂ ∂⎡ ⎤∂ ∂

= + − −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
         (4.13) 

ression at the origin, except 

se or whe . Therefore only for 

We see that the last parenthesis of eq. (4.13) is divergent exp

the regular ca n 0=adda 0=
∂
∂
λ
P

 has this expression a viable 

sense, i.e. when we choose lorVm 0,≠λ . 
  So when SAE procedure (which is necessary in a singular potential case) is not used, the 
FH theorem takes usual form (4.5).   

  en P does not depend on   Wh λ ( lorVm 0,≠λ ),there remains only the first row in 
(4.13) 

          ⎥
⎦

⎢
⎣ ∂

−
∂

+
∂

=
∂ λλλλ addnstnn

r
n

n aa
m

uu ,,                    (4.14) 

 particular case, when P lculations must be pe d by function (3.40). In this 
ase singularities from (4.13)

⎤⎡ ∂∂∂∂ stnaddn aaPHE ,,
ˆ

In , ca rforme
c  disappear. We find  

   

0=

                            ⎥
⎤

⎢
⎡

∂

∂
−

∂

∂
+

∂
∂

=
∂
∂

λλλλ
stn

addn
addn

stnn
r

n
n a

a
a

a
m

u
H

u
E ,

,
,

,2
1

                            (4.15) ⎦⎣

ˆ

b)  body Klein - Gordon equation 

                    

For one

( ) 0)1(
2

22 =⎥⎦
⎤

⎢⎣
⎡ +

−−−+′′ u
r
llmVEu                   (4.16)  

We obtain for lorV0≠λ  

( )                                       
⎭
⎬
⎫

⎩
−

∂−∂ 2
B

VE λλ                                      (4.17) 

An

⎨
⎧ ∂

−=
∂ 1 VVEE

d for m=λ we get 
              

                    
⎭
⎬
⎫

⎩
⎨
⎧ ∂

+=
∂ aaPmE add

∂
∂

−
∂−∂ m

aa
mVEm

st
addst                                               (4.18) 

 

Where 

                         0)2/1( 2
0

2 >−+= VlP                                                     (4.19) 
in case of singular potentials F  has 

       

The main result here is that eynman-Hellmann theorem
to be modified.  
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V. Conclusions 

this article we consider problems, related to the singular potentials in light of 
pervirial and FH theorems. Main results can be summarized as follows: 

al 

 ( virial theorem, wave function and its derivatives at origin, recurrence 
relations between average values of different powers of 

 
      In 
hy

1. We have derived a hypervirial theorem for general second order differenti
equation.  

2. For regular potentials we generalized known results concerning the Schrodinger 
equation

r ) 
3. We obtain virial theorem for singular potential, by means of which some physical 

results are derived (existence of one level for pure 2−r  potential, possibility of 
having massless bound state attractive Coulomb potential  in the 
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