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Abstract. We investigate the efficiency of atom-cavity based photon-generation

schemes to deliver single photons of arbitrary temporal shape. Our model applies

to Raman transitions in three-level atoms with one branch of the transition driven

by a laser pulse, and the other coupled to a cavity mode. For any possible shape

of the single-photon wavepacket, we derive an unambiguous analytic expression for

the shape of the required driving laser pulse. We furthermore discuss the constraints

limiting the maximum probability for emitting any desired photon, and use these to

estimate upper bounds for the efficiency of the process. The model is not only valid

for Vacuum-Stimulated Raman Adiabatic Passages (V-STIRAP) in the strong-coupling

and bad-cavity regime, but it generally allows controlling the coherence and population

flow in any Raman process.
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Figure 1. Atom-cavity coupling shown on the energy scale of the bare atomic states,

|x〉, |e〉, and |g〉, with the latter two being electronically stable. The photon number

state of the cavity is denoted as |0〉 or |1〉. A driving laser couples |e, 0〉 ↔ |x, 0〉 with
Rabi frequency Ω(t), and the cavity couples |x, 0〉 and |g, 1〉 with an effective Rabi

frequency 2g, where g is the atom-cavity coupling constant. The cavity field decays

at rate κ, thus projecting the system into |g, 0〉 under the desired photon emission.

Spontaneous emission from the excited state at the polarisation decay rate γ is the

major loss mechanism.

Driven by a wide range of possible applications in quantum information physics

[1, 2] and quantum cryptography [3], a large variety of single-photon emission schemes

has been explored experimentally and theoretically throughout the last decade [4].

Amongst these, only cavity-based single-photon sources [5, 6, 7, 8, 9, 10] are in principle

able of deterministically producing streams of single photons emitted into narrowband

and indistinguishable radiation modes [11], which makes them the most promising

candidates. Moreover, with the photon generation process being reversible, these

sources could also act as receivers, and thus form a universal quantum interface. The

latter has been extensively discussed by J. I. Cirac and H. J.Kimble in their seminal

papers on entanglement distribution in quantum networks [12, 13]. The key to this

type of application is the availability of photon wave packets symmetric in space and

time, as only these allow for a time-reversal of the emission process. Custom photon

shaping is also of interest for generating approximate Gaussian pulse shapes which are

shown to maximise the tolerance against mode-mismatch in interference-based quantum

information processing schemes [14]. Albeit the shaping of photons has been studied in

the context of electromagnetically induced transparency [15], it has been neglected to a

large extend in cavity-related work. For instance, the application of coherent population

transfer schemes, such as STIRAP or V-STIRAP, in quantum-information processing

(QIP) requires the optimisation of these processes to a high degree of efficiency. While

we have solved this issue for STIRAP [16], a different approach is needed if an atom

is coupled to a cavity. We investigate this latter case in the following, and rely on an

exact analytic solution similar to the one considered in [17]. This allows us to maximise

the probability of delivering single photons of any arbitrary temporal shape.

First, we discuss how to tweak atom-cavity based photon-generation schemes to
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actually deliver single photons of arbitrary temporal shape. Our model applies to

Raman transitions in three-level atoms with one branch of the transition driven by

a laser pulse, and the other coupled to a cavity mode. Fig. 1 outlines the levels and

transitions involved and introduces all relevant parameters. For the sake of simplicity,

we assume that laser and cavity are resonant with the respective transitions and neglect

any possible detuning in the remainder of this paper. With the system prepared in

state |e, 0〉 at time t = 0, driving the atom with a suitably shaped laser pulse leads to

a nearly deterministic single-photon emission from the cavity. For any desired possible

shape of the single-photon wavepacket, we derive an unambiguous analytic expression

for the shape of the driving laser pulse. Its applicability is then tested against some

concise examples.

The three states {|e, 0〉, |x, 0〉, |g, 1〉} span the Hilbert space of the system, and their

corresponding probability amplitudes c(t) = [ce(t), cx(t), cg(t)]
T evolve according to the

Schrödinger equation

ih̄
d

dt
c(t) = − h̄

2









0 Ω(t) 0

Ω(t) 2iγ 2g

0 2g 2iκ









c(t), (1)

where the rotating wave approximation has been applied and higher photon number

states are neglected. The decay is taken into account phenomenologically by imaginary

diagonal elements. We thus deal with spontaneous transitions within the system as if

they give rise to total losses. This is well justified, as any spontaneous transition leads

to dephasing, and therefore to a loss of the photon’s usefulness, even if it were emitted

thereafter. Without loss of generality, we furthermore assume Ω and g to be real, with

g being a constant coupling and the Rabi frequency of the driving pulse, Ω(t), varying

with time.

The usual way to model such a system is to assume some time dependency of the

Rabi frequency Ω(t) and to solve the Master equation of the full system numerically,

which yields the time-dependent probability amplitudes, and by consequence also the

wave function of the photon emitted from the cavity. In order to achieve a high efficiency

and/or a particular shape of the photon, a recursive feedback algorithm, often based on

a variational principle, is then applied to optimise Ω(t) [18].

In contrast to this traditional procedure, we instead start from the far end and

impose the desired shape of the evolution of the photon’s probability amplitude,

ψph(t) =
√
η ψ0(t), (2)

where ψ0(t) denotes the normalised photon wavefunction with
∫ |ψ0(t)|2dt = 1, and η

denotes the total probability for a single-photon emission from the cavity. As the field

amplitude of the photon is solely determined by the probability amplitude of state |g, 1〉
scaled by

√
2κ, it is clear that

cg(t) = ψph(t)/
√
2κ, (3)
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and from the Schrödinger equation we also obtain

cx(t) = − i

g
[ċg(t) + κcg(t)] . (4)

Furthermore, with the population from the system being lost only via two possible

channels (γ and κ), we can write the probability to find the system in state |e, 0〉 simply

as

ρee(t) = 1− ρxx(t)− ρgg(t)−
t
∫

0

dt [2γρxx(t) + 2κρgg(t)] , (5)

where the ρij = cic
∗

j are the density matrix elements of the three-level system. Note

that we have chosen Tr[ρ(0)] = 1 to satisfy the initial conditions. With the Hamiltonian

not comprising any detuning and assuming ψph to be real, one can easily verify that

the probability amplitude cx(t) is purely imaginary, while ce(t) and cg(t) are both real.

Hence we can write

ce(t) =
√

ρee(t). (6)

With the desired photon shape as a starting point, we thus have found analytical

expressions for the probability amplitudes of all levels involved. Finally, the expression

for ċe from Eq.(1) yields the Rabi frequency

Ω(t) = −2i
ċe(t)

cx(t)
= −i ρ̇ee(t)

cx(t)
√

ρee(t)
, (7)

which is a real function that defines the driving pulse one needs to apply to obtain the

desired photon shape.

The simplicity of the above procedure is striking. At first glance, it even seems

that any desired single-photon pulse can be produced from the cavity. We therefore

emphasise that one needs to verify that the desired photon is physically feasible. For

instance, the initial conditions, ce(0) = 1 and cx(0) = cg(0) = 0, together with Eqs.

(3) and (4) restrict the possible photon shape to pulses with d
dt
ψ0(0) = ψ0(0) = 0. In

connection with Tr[ρ(0)] = 1, this also assures that ce(0) = 1. A further restriction

arises from Eq. (4), which requires ψph ∈ C1 (i.e. continuous in its first derivative).

Also the overall efficiency η must remain within reasonable bounds, as will be evident

from the following examples.

We now apply the above recipe to obtain a few specific photon shapes that are

of general interest. First, we consider photon wavepackets on a finite support ranging

from 0 to T that are symmetric in time. A particular shape that meets the above initial

condition is

ψph(t) =
√
η ψ0(t) =

√
η

√

8

3T
sin2(πt/T ). (8)

From Eqs. (2-7), we are able to obtain the exact expression for Ω(t) that generates this

symmetric photonic wave packet ‖.
‖ Analytic expressions for Ω(t) immediately result from entering Eqs. (2-7) into any Computer Algebra

System (CAS). For the sake of clarity, we refrain from reproducing them here.
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Figure 2. Symmetric single-photon wavepackets from atom-cavity systems. The

upper trace shows the normalised photon shape ψ0(t), and the lower trace the Rabi

frequencies Ω(t) required to obtain these photons from a system with (g, κ, γ) =

2π × (15, 3, 3)MHz within T = 3.14µs. Case (a) shows Ω(t) for the sin2 pulse from

Eq. (8) for three different efficiencies, η = (0.3, 0.96, 1.1). The dashed vertical line

indicates the singularity in Ω for the physically impossible case with η = 1.1. Case (b)

shows Ω(t) to obtain the top-hat like pulse from Eq. (13) with an efficiency of η = 0.95.

Fig. 2(a) shows ψ0(t) from Eq. (8) together with Ω(t) for three different efficiencies η,

one of them being non-physical, i.e. having η > 1. For low efficiencies, almost no quanta

are lost from the atom-cavity system. In this case, cg(t) closely follows the ratio Ω(t)/2g,

so that the photon shape and Ω(t) have very similar form. This is not so for efficiencies

close to unity, as the atom-cavity system then gets depleted by time. To maintain the

required probability flow into |g, 1〉, an indefinitely increasing Rabi frequency is required.

It falls back to zero only towards the end of the pulse, resulting in the state transfer

from |g, 1〉 back to |e, 0〉, thus eventually stopping the photon emission at time T .

The third depicted case is most instructive as we are asking for an overall photon

emission probability of η = 1.1, which is physically not possible. Obviously, our

procedure leads to a singularity in the required Rabi frequency at the very moment

the initial state is completely depleted (i.e. when ρee = 0). Only up to that point, the

shape of the emitted photon would follow the desired shape. We can use this fact for

finding the maximum efficiency at which one can produce a photon of a given specific

shape and duration. To do so, we seek conditions that deplete the atom-cavity system

as much as possible, while at the same time following the desired photon shape and
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staying within the physically allowed regime where all diagonal elements of the density

matrix to remain positive. It is evident from Eq. (5) that the latter condition might get

violated by ρee if one choses a too-high photon emission probability. Hence we conclude

that the maximum possible efficiency, ηmax, is reached when

ρee(tm) = 0 for some tm ∈ ]0, T ] and ρee(t) ≥ 0 for all t ∈ [0, T ]. (9)

In some special cases this leads to a closed expression for ηmax, whereas in general, at

least an upper bound for the maximum efficiency, ηsup ≥ ηmax, is found by asking for

ρee(t = T, g, κ, γ, η)
∣

∣

∣

η=ηsup
= 0. (10)

In the particular case of a photon shape ending as smoothly as it started, i.e. for
d
dt
ψ0(T ) = ψ0(T ) = 0, the above condition yields

ηsup =



1 +
1

2C



1 +
∫ T

0

(

ψ̇0(t)

κ

)2

dt









−1

. (11)

Here, C is the cooperativity parameter of the cavity, with 2C = g2/(κγ). It is evident

that a finite cooperativity parameter imposes the pulse-shape independent upper limit

ηcav = 2C/(2C + 1) ≥ ηsup ≥ ηmax (12)

on the efficiency. With increasing pulse length T , the integral in Eq. (11) asymptotically

vanishes and the maximum efficiency is eventually only a function of the cavity

parameters. This can already be seen from the sin2 pulse from Eq. (8) and the

parameters stated with Fig. 2(a), as these yield values of ηsup = 0.961400 and ηcav =

0.961538, which barely differ from one another.

As a further relevant example, we show in Fig. 2(b) the Rabi frequency Ω(t) required

to obtain a nearly top-hat like photon pulse which we model as

ψph(t) =
√
η

√

10

9T

(

sin2(2πt/T ) + 1.19 sin7(πt/T )
)

. (13)

In this particular case, maintaining the probability flux from the cavity constant despite

the ongoing depletion of the atom-cavity system now results in Ω2(t) ∝ (T̃ − t)−1 within

the range of the flat top, as ρee decreases linearly with time. Note that T̃ is the pseudo

end-time the system would get depleted if one continues extracting light at a constant

rate.

An interesting variant of the simple symmetric photon pulses are twin-peak photons.

These have equal probabilities of having the photon in either one or the other of

two imposed time bins, which are each represented by a well-defined spatio-temporal

mode function. Such photons are commonly used in quantum communication and

cryptography, where time-bin entanglement is used to encode quantum bits [3, 19].

To calculate the driving-pulse Rabi frequency needed to obtain such photons from a

cavity, we assume that the twin-peak photons are described by

ψph(t) =
√
η ψ0(t) =

√
η

√

8

3T
sin2(2πt/T ). (14)
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Figure 3. Twin-peak single-photon wavepackets from atom-cavity systems. The

upper trace shows the normalised photon shape ψ0(t), and the lower trace the Rabi

frequencies Ω(t) required to obtain these photons from a system with (g, κ, γ) =

2π × (15, 3, 3)MHz, within T = 6.28µs and an overall efficiency of η = 0.95. Case

(a) shows Ω(t) for the symmetric case from Eq. (14), and case (b) shows the same with

a phase change of π between peaks, which is achieved by a corresponding phase jump

of π in the driving Rabi frequency.

From Eqs. (2-7), we obtain again the exact expression for Ω(t) that evenly distributes

the photon amongst the two peaks. Fig. 3(a) shows that the two required peaks in Ω(t)

are actually quite different from one another. This can be attributed to the fact that

the probability to remain in the atom-cavity system is only 50% at the beginning of the

second pulse. Hence we need to drive the system stronger to get the same probability

flow from the cavity as with the first pulse. A variant of the twin-peak photon is shown

in Fig. 3(b). Here, the relative phase between first and second peak equals π, which is

obviously achieved by a phase jump of π in the driving Rabi frequency. This particular

example corresponds to a zero-area photon pulse, with the integral pulse area of ψph

being zero. Such a special pulse shape is of particular interest to population transfer

and loss-free pulse propagation schemes [20, 21]. Applied to single photons, it might be

very useful in either single-atom or ensemble-based quantum memories.

For all the above examples, we would like to remind the reader that the desired

ψph(t) is indeed the expected result from Eq. (1), as Ω(t) has been found by solving the

problem analytically. Nonetheless, to validate our results, we also solved the Schrödinger
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equation numerically. Taking Ω(t) from all the above examples, we found that the

photon pulse shape obtained from the numeric calculation reflects the desired pulse

shape exactly, i.e. it deviates by at most the numerical error of the algorithm. This

shows convincingly that our method for calculating Ω(t) indeed leads to the desired

single-photon pulses.

Furthermore, we emphasise that our method equally applies to single-photon pulses

of infinite support, such as solitons or Gaussians. To properly account for these, the

initial condition of having the quantum system in state |e, 0〉 then holds at t = −∞.

By consequence, also the integral in Eq. (5) is running from −∞ to t. Apart from

these minors changes to the initial boundary conditions, the procedure to calculate Ω(t)

remains unchanged. Note that the maximum efficiency for a given pulse shape is still

obtained whenever the system is totally depleted at the end of the pulse. In case of an

infinite support, this means the efficiency is maximum if ρee(∞) = 0.

We have introduced a very simple recipe for calculating the driving pulse in a

(vacuum) stimulated Raman transition to obtain any physically possible time evolution

of the final quantum state and we have been discussing how this can be done with

maximum efficiency. Under these optimum conditions, the qualitative behaviour of

the driving pulse deviates strongly from the desired photon shape. For the sake of

clarity, we have restricted the discussion to the resonant case, and we have also been

disregarding any possible phase modulation. Extension of our method to include these

is straightforward, but beyond the scope of this short letter. Here, we have simply

discussed how to obtain single-photon wave packets of arbitrary shape from an atom

coupled to a cavity. Nonetheless, the model generally allows controlling the coherence

and population flow in Raman processes such as STIRAP [22]. Hence it is seamlessly

linking coherent control techniques [18] with adiabatic passage protocols. We are

convinced that the shaping of single-photon pulses and/or controlling the time evolution

of Raman processes with such an unprecedented precision will have a large impact on

many applications in quantum information physics, atomic physics, spectroscopy and

ultracold atoms.
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