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Bohmian trajectories from a Dynamical Systems point of view

Abstract

Vortices are known to play a key role in the dynamics of thenfuia trajectories de-
fined within the framework of the de Broglie-Bohm formalisihgquantum mechanics. It
has been rigourously proved that the motion of a vortex irageociated velocity field can
induce chaos in these trajectories, and numerical studies éxplored the rich variety of
behaviors that due to their influence can be observed. Inptper, we go one step fur-
ther and show how the theory of dynamical systems can be asmahstruct a general and
systematic classification of such dynamical behaviorss Bhould contribute to establish
some firm grounds on which the studies on the intrinsic sttatity of Bohm’s quantum

trajectories can be based. An application to the two dineeasiisotropic harmonic oscil-
lator is presented as an illustration.
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1 Introduction

Some interpretational difficulties][1] with the standardsien [2] led David Bohm to develop
in the 1950's([3] an alternative formulation of quantum megics. Despite initial criticisms,
this theory has recently received much attentidrn [4, 5],rfwexperimented in the past few
years an important revitalization, supported by a new cdatnally oriented point of view.
In this way, many interesting practical applications, uttthg the analysis of the tunnelling
mechanism[6,]7,18], scattering processes [9| 10, 11], ocldwsical-quantum correspondence
[12,13], just to name a few, have been revisited using thighaoint of view. Also, the chaotic
properties of these trajectories [14, 15] 16, [17, 18], orerfandamental issues, such as the
extension to quantum field theofy [19], or the dynamicalior@f Born’s probability rule[[20]
(one of the most fundamental cornerstones of the quantuomthkave been addressed within
this framework .

Most interesting in Bohmian mechanics is the fact that theoty is based on quantum
trajectories, “piloted” by the de Broglie’s wave which cesa (quantum) potential term addi-
tional to the physical one derived from the actual forcestaq in the systeni [3]. This term
brings into the theory interpretative capabilities in terafi intuitive concepts and ideas, which
are naturally deduced due to fact that quantum trajectpriade causal connections between
physical events well defined in configuration and time. Omig ideas have been established
as the basis of many numerical studies, it becomes, in onrapiof great importance to pro-
vide firm dynamical grounds that can support the argumersiscan quantum trajectories. For
example, it has been recently discussed that the chaotiegres of quantum trajectories are
critical for a deep understanding of Born’s probability gtian postulate, considering it as an
emergent property [20]. Unfortunately very little proggese. rigorous formally proved math-
ematical results, has taken place along this line due tceitledf a solid theory that can foster
this possibility. Moreover, there are cases in the liteatlearly demonstrating the dangers of
not proceeding in this way. One example can be found in R&], [2here a chaotic character
was ascribed to quantum trajectories for the quartic p@terstupporting the argument solely
on the fact that numerically computed neighboring pairsasste exponentially. This analy-
sis was clearly done in a way in which the relative importaotéhe quantum effects could
not be gauged. Something even worse happened with thesesplirted in[[22], that were
subsequently proved to be wrong in a careful analysis ofrtjedtories[[23].

Recently, some of the authors have made in Ref$[[15, 16, h@ we consider a relevant
advance along the line proposed in this paper, by consiglénmrelationship between the even-
tual chaotic nature of quantum trajectories and the vasteoasting in the associated velocity
field which is given by the quantum potential, a possibilitgtthad been pointed out previously
by Frisk [14]. Vortices has always attracted the interestoiéntists from many different fields.
They are associated to singularities at which certain nmadtieal properties become infinity or
abruptly change, and play a central role to explain manyésteng phenomena both in clas-
sical and quantum physids [25]. In these papers it was shbatrguantum trajectories are, in
general, intrinsically chaotic, being the motion of theogaty field vortices a sufficient mecha-
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nism to induce this complexity [15]. In this way, the preseof a single moving vortex, in an
otherwise classically integrable system, is enough to myaketum trajectories chaotic. When
two or few vortices exist, the interaction among them mayumah the annihilation or creation
of them in pairs with opposite vorticities. These phenonmemakes that the size of the regular
regions in phase space grows as vortices disappear [17dll¥iih has been shown that when
a great number of vortices are present the previous condsisilso hold, and they statistically
combine in such a way that they can be related with a suitafipeld Lyapunov exponent, as a
global numerical indicator of chaos in the quantum trajeeto[16]. Summarizing, this makes
of chaos the general dynamical scenario for quantum t@jest and this is due to the existence
and motion of the vortices of the associated velocity field.

In this paper, we extend and rigorously justify the numérniesults in [16 17, 15] concern-
ing the behavior of quantum trajectories and its structyrpriesenting the general analysis of
a particular problem of general interest, namely a two—dsi@al harmonic oscillator, where
chaos does not arise from classical reasons. In this wayrowede a systematic classification
of all possible dynamical behaviors of the existing quantusjectories, based on the appli-
cation of dynamical systems theofy [24]. This classifiaagoovides a complete “road—map”
which makes possible a deep understanding, put on firm gepwhthe dynamical structure for
the problem being addressed.

2 Bohmian mechanicsand quantum trajectories

The Bohmian mechanics formalism of quantum trajectori@gsfrom the suggestion made by
Madelung of writing the wave function in polar form

Y(r,t) = R(r, t)e*"),

where R? = ¢ andS = (Iny — Inv)/(2i) are two real functions of position and time.
For convenience, we sét = 1 throughout the paper, and consider a particle of unit mass.
Substitution of this expression into the time-dependetir&@tinger equation allows to recast
the quantum theory into a “hydrodynamical” formi [5], whichgoverned by,

=V (R vs), (1)
9s  (VS)? 1 V2R
a2 Ve @

which are the continuity and the “quantum” Hamilton-Jacedpiations, respectively. The qual-
ifying term in the last expression is customarily includ@tte this equation contains an extra
non-local contribution (determined by the quantum stape); %VQR/R, called the “quantum”
potential. Together with/, this additional term determines the total forces actinthersystem,
and it is responsible for the so-called quantum effectsemynamics of the system.
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Figure 1:lllustration of the dynamical consequences of a time—istiobs symmetry.

Similarly to what happens in the standard Hamilton-Jacbéoty, Eqgs.[(l1) and {2) allow
to define, for spinless particles, quantum trajectoriesibggration of the differential equations
system:i' = —VV (r) — VQ(r). Alternatively, one can consider the velocity vector field

19VY -9V
2 P
Notice that, in general, this Bohmian vector field is not Héoniian, but it may nevertheless
have some interesting properties. In particular, for thengxe considered in this paper it
will be shown that it is time-reversible, this symmetry allog the study of its dynamics in a
systematic way.

Let us recall that a systemt, = X (r,t), is time-reversible if there exists an involution,
r = O(s), that is a change of variables satisfyi®g = I|d and© =+ Id, such that the new
system results in = DO !(s)X(6(s),t) = —X(s,t). One of the dynamical consequences
of reversibility is that ifr(¢) is a solution, then so it i®(r(—t)). This fact introduces sym-
metries in the system giving rise to relevant dynamical tangs. For example, let us as-
sume thaO(x,y) = (x,—y) is a time-reversible symmetry (see Hig. 1). Then any saiutio
r(t) = (z(t),y(t)) defines another solution given Wy.(—t), —y(—t)). Let us remark that
this fact constraints the system dynamics since if, for edem(t) crosses the symmetry axis
(y = O is invariant undeP) then the two solutions must coincide.

We conclude this section by stressing that time-reversyéems generated a lot of interest
during the 80’s due to the fact that they exhibit most of theperties of Hamiltonian systems
(see [26] 217, _28]). In particular, this type of systems cavehguasi-periodic tori which are
invariant under both the flow and the involutién That is, KAM theory fully applies in this
context. Furthermore, some interesting results concgthie splitting of separatrices have been
developed successfully for time-reversible systems [2@lyiding powerful tools for the study
of homoclinic and heteroclinic chaos.

Xy =VS = 3)
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3 Model and canonical form

The system that we choose to study is the two dimensionabjsiatharmonic oscillator. With-
out loss of generality, the corresponding Hamiltonian epmrforr = (x,y) can be written in

the form L/ o o
g __ e v L 5 2
H(z,y) = 2<8x2+8y2)+2(x +y°).

In this paper, we consider the particular combination oée&jatesiy,, = 1/1/7 with energy
1, andys o = 22/ 27, po1 = 2y/+/ 27 with energy2. It can be immediately checked that the
time evolution of the resulting wave function is given by

w _ (Ae_it + 2$Be_21t + 2yce_2it)e_§(1,2_i_y2)7
NLS \ 27 \ 27

wherd A = A+iD, B = B+iF andC = F +iC, subject to the usual normalization condition
|A|?2 + |B|* + |C]* = 1. In addition, we further assume the conditi®® # EF in order
to ensure the existence of a unique vortex in the velocitg falany time. Accordingly, the
guantum trajectories associated[tb (4) are solutions afybem of differential equations:

(4)

—2(BC — EF)y — V2(BD — AE) cost —/2(AB + DE)sint

j:‘ = v(x’y’t) 7 (5)
. 2(BC — EF)z+V2(AC — DF)cost — v2(DC + AF)sint 5
y - V(Jf,y,t) I ( )

where

V(z,y,t) = 2(B*+ E*a® +2(C* + F*y* + 4(BF + EC)xy + D* + A?
+2v2((AB + DE) cost + (AE — DB)sint)x
+2V2((DC + AF) cost + (AC — DF)sint)y.

To integrate this equation a 7/8—th order Runge-Kuttafsarigl method has been used. More-
over, since the vector field is periodic, the dynamics can bk mvonitored by using strobo-
scopic sections. In particular, we plot the soluti@rit),y(¢)) at timest = 2mn for n =
1,2,...,10* and for several initial conditions.

In Fig.[2 we show the results of two such stroboscopic sestiéis can be seen the left plot
corresponds to completely integrable motions, whereasdanight one sizeable chaotic zones
coexisting with stability islands, this strongly suggegtihe applicability of the KAM scenario.
However, our vector field is neither Hamiltonian nor timeaesible, and then the KAM theory
does not directly apply to this case. However, we will showvl@aosuitable change of variables

1The choice of notation for the real and imaginary part€ ohay look arbitrary at this point, but it makes
simpler the notation for the canonical form introduced ie tiext section.
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Figure 2: Stroboscopi®r-periodic sections for the quantum trajectories generhteéqgs. [5) and[{6) for
different values of the normalized constants.

Leftplot: A =0.37,D = —0.02, B=C =0.44 andE = —F.

Right plot: A = 0.4, D = —0.018, B = 0.37 andC = E = 0.49.

can be performed that unveils a time-reversible symmetstiag in our vector field. For this
purpose, we first recall that the structure of gradient wdatds is preserved under orthogonal
transformations. In this way, if we consider the transfdiorer = Ms, with M* = M,
applied tor = VS(r,t), we have that = VS(s,t), beingS(s,t) = S(Ms,t). In other words,
any orthogonal transformation can be performed on the wavetion instead of on the vector
field.

Lemma 3.1. If Eq. (4)) satisfies the non-degeneracy conditiBd’ # EF, then there exist an
orthogonal transformation and a time shift, such that thev@function takes the form

= (fle_it N 2xBe 2 N 2yié’e_2“)e_%(rz+y2)
NZ3 2 V2T 7

whered, B,C € R, B > 0, C # 0 satisfyA? + B2 + C? = 1.

(7)

We will refer to the wave functiori{7) as the canonical forn{d)f and the rest of the paper
is devoted to the study of this case. For this reason, thentthei coefficients will be omitted,
since it is understood thd? = £ = F' = 0. In Table[l we give the actual values the canonical
coefficients after the transformation corresponding taréselts in Fig[R.

Proof. For convenience, we consider the complexified phase space + iy, so that the wave
function (4) results in

V(z,2,t) = («‘ie_it 1+ Be %ty 4 ée_ziti) e 2%,
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Left plot Right plot
A 0.370540146272978 0.400404795176082
B 0.656772411113622 0.705788460189184
C 0.656772411113622 0.584413081188110

Table 1: wave function coefficients in the canonical model corresjiagnto the results of Fig]2Hats have
been omitted as discussed in the text.

where\/TA = A+iD,/2nB = B+ C +i(E — F),andy27C = B — C +i(E + F). Then,
it is easy to check that the vortex, i.e. the set of points whlee wave function vanishes, has
the following position with respect to time

B _|A||B|ei(t—b+a) + |A||é|e_i(t_c+“)

2yt = =
" Bl —|C[?

)

whereA = | Aleél*, B = |B|e” andC = |C|e'. Notice that the vortex is well defined thanks to the
non-degeneracy assumption, and its trajeEt(nUows an ellipse. This ellipse does not appear
in the usual canonical form, but this can be made so by peifgythe rotation:z — ze* and
the time shift:t — ¢ + A. In this way

_|A||B‘ei(t—b+a—u+)\) + |AHCA|e—i(t—c+a+u+>\)

2y (T ~ =
" B> — |C[?

)

where itis clear that by choosig = ¢ — b and2\ = ¢+ b — 2q, the desired result is obtained.
Then, the corresponding wave function in these new cootelia

Y= <|.»Zl|e_it + |l§’|e_21tz + |CA|e—2itZ)e—ézzei(Qa—b;C)7

that can be further simplified since the factispe— ") plays no role in the Bohmian equations
for the quantum trajectories. Finally, by recovering theféioients in cartesian coordinates, one
obtainsA = /7| A|, B = \/3(|B| +IC]), C=./3(]B|—|C|])andD = E = F = 0, which
renders Eq[{7). O

4  Study of the canonical form

Throughout the rest of the paper we consider the wave fum@pwith A, C # 0, B > 0 and
D = E = F = 0. Let us remark that by changing the time» —t¢, if necessary, we can further

2We use here the term trajectory to refer to the evolution efvbrtex, despite the fact that it is not a solution
of the ODE.
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restrict the study to the cage > 0. The corresponding quantum trajectories are then obtained
from the vector field

P —2BCy — V2ABsint 2BCx + V2AC cost
v V(z,y,t) ’ V(z,y,t) ’

(8)

whereV (z,y,t) = 2B?2>4+2C%y*+2v/2ABx cos t+2v/2ACy sin t+ A2. In these coordinates,
the only vortex of the system follows the trajectory given by

(20(t), yu(t)) = (- % cost, —% sint),

which corresponds to an ellipse of semi-anes A/(v/2B) andb = A/(+/2C), respectively.

In Fig.[3 we show some stroboscopic sections correspondirigis (canonical) velocity
field for different values of the parameterandb. As can be seen, a wide variety of dynamical
behaviors, characteristics of a system with mixed dynamsfound. In the left-top panel,
which corresponds to the case in which= b (vortex moving in a circle), we have sections
corresponding to a totally integrable case. As we move frefintd right and top to bottom
some of these tori are broken, and these areas of stochasteixist with others in which the
motion is regular, this including different chains of istisn Moreover, the size of the chaotic
regions grows as the value bteparates from that af

This variety of results can be well understood and ratiaedby using some standard tech-
nigues of the field of dynamical systems, in the following wAithough the vector field(8) is
not Hamiltonian, it is time-reversible with respect to thealution©(xz, y) = (z, —y). This re-
sultis very important for the purpose of the present pajperest implies that the KAM theory
applies to our system if we are able to write down our vectdd frethe form X, = X, + <X,
£ < 1, being the dynamics corresponding Xy integrable andX; time-reversible. More
specifically, let us assume that, does not depend anand X; be27-periodic with respect to
t. Moreover, let us assume that f&, there exists a family of periodic orbits whose frequency
varies along the family (non-degeneracy condition). Tloem,result guarantees that when the
effect of the perturbation.X; is considered, most of the previous periodic orbits give ts
invariant tori of frequenciesl, w), wherew is the frequency of the unperturbed periodic orbit.
Of course, the persistence of these objects is conditian#gbtfact that the vectdi, w) satis-
fies certain arithmetic conditions (s€el[27] 28] for dejafBnce these arithmetic conditions are
fulfilled for a big (in the sense of the Lebesgue measure) fsthieanitial orbits, the important
hypothesis that we have to check in order to ascertain thicappity of the KAM theory is
the non-degeneracy of the frequency map.

In our problem, two such integrable cases exists. First] i= 0 the vortex is still at
the origin and the time periodic part in the vector field dizegrs. As a consequence, all the
guantum orbits of the system appear as ellipses centerba atigin in thexy-plane. It will
be shown in the next section that the corresponding frequesiies monotonically along the
orbits. This case has not been explicitly included in Elgu@ tb its simplicity. Second, and
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L K
2 1 0 1 2 2 1 0 1 2

Figure 3:Stroboscopier-periodic sections corresponding to the quantum trajeggenerated by the canonical
velocity field defined by Eql{8) fon = 0.4 and,b = 0.4,0.44,0.48 and 0.68 from left-top to right-bottom,
respectively.

as will be analyzed in Sedt] 6, # = C, or equivalentlya = b, that is the vortex moves in

a circle, the vector field is also integrable for any valuedofThe corresponding stroboscopic
sections are shown in the top-left panel of Fig. 3). Heresthecture of the phase space changes
noticeably, since two new periodic orbits, one stable aedther unstable, appear. Moreover,
the obtained integrable vector field dependstoriWe will show that this time dependence
can be eliminated by means of a suitable change of coordinat®ewing that our problem
remains in the context described in the previous paragrdjie rest of the panels in Fif] 3
can be understood as the evolution of this structure as titerpation, here represented by the
difference betwee® andC), as dictated by the KAM theorem.

To conclude the paper, let us now discuss in detail the twagnable cases in the next two
sections.
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5 Theintegrable autonomous case

ForA =0, B # 0 andC # 0 it is easily seen that the vector field (8) is integrable. At
the orbits of the quantum trajectories in thg-plane are ellipses around the origin (position
at which the vortex is fixed). Also, the frequency of the cep@nding trajectories approaches
infinity as they get closer to the vortex position. Let us n@mmpute the frequency of these
solutions. First, we introduce a new time variablesatisfyingdt/dr = B?z* + C?y?, and then
solve the resulting system, thus obtaining

z(7) = acos(BCT + B), y(r) =asin(BCT + f), 9)

whereq is the distance from the vortex. Next, we recover the origiinae, ¢, by solving the
differential equation defining the previous change of \ada

dt  ,B*+C? B2 (2

pri o 5 + o 5 cos(2BCT + 203),
whose solution is given by
2 B? - C*?
— = in(2B8 203).
EE o T T sy orype SEBOT +20)
N s ?{ -
ol

Notice that this equation is invertible sin@BCd| < 1, and thenr = vt + f(2BC~t), f being
a 2r-periodic function. Finally, introducing this expressimo (9), one can conclude that the
solution has a frequency given by

2BC
a?(B?2+ C?)
that varies monotonically with respect to the distance ®wbrtex. Then, forA < 1, the
existence of invariant tori around the vortex is guaranteed

w= BCy =

6 Theintegrable non-autonomous case

Let us consider now the case of non-vanishing valuds ef C for any A # 0. In this case, we
havea = b # 0, and systeni {8) can be written as

Xtag = (080, 0ol

(10)
Viv,y,t)  V(z,y,t)

whereV (z,y,t) = (z + acos(t))® + (y + asin(t))%. This vector field corresponds to the
following Hamiltonian

1 ~
H(z,y,t) = ~3 InV(x,y,t),

that it is actually integrable.
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Lemma 6.1. Let us considee (energy), the symplectic variable conjugate tand define the
autonomous Hamiltonia®/ (x, y, t,e) = H(x,y,t) + e, then we have that

Ho(z,y,t) = 17(55, Y, t)e‘m2_g2
is a first integral of?{y, in involution and functionally independent. As a consegeeifa =
b # 0 the system is completely integrable.

Proof. It is straightforward to see that the Poisson bracket witipeet to the canonical form
dx A dy + dt A de satisfies{H,, H,} = 0. Moreover,H, does not depend an so that it is an
independent first integral. ]

Taking these results into account, one can completely statet the picture presented in
the top-left plot of FigLB. Since the system is integralilés foliated by invariant tori, despite
the two periodic orbits that are created by a resonancedanted when parameter changes
from A = 0to A # 0. Next, we characterize these two periodic orbits:

Lemma6.2. If A > 0, the system has two periodic orbits given by
re(t) = (x+(t),y+(t)) = (ax cost,aysint),

where the coefficients, anda_ are given bya, = —2£ve+td V2“2+4 Moreover, the orbit_(t) is
hyperbolic with characteristic exponentga* — 1)'/2, andr (¢) is elliptic with characteristic
exponentsti(1 — a% )2 If A < 0the same result holds just switching the roles pfanda._.

Proof. It is known that if the set§?#, '(c), ¢ € R} are bounded differentiable submanifolds,
their connected components carry quasi-periodic dynamidésreover, the critical points of
H, determine the periodic orbits of the system. Thereforesetgeriodic orbits are given by

expressionstf/ = %—‘;, and2yX7 = %—‘y’, which can also be written as
z((z+acost)? + (y +asint)’) =+ acost,
y((x +acost)’ + (y +asint)?) =y +asint.

from which we obtain our two periodic orbits:, () = a4 cost, andy(t) = ay sint, with
ay = 1/(ay + a). In addition, it is easy to check that > 1 anda? < 1, respectively.

Finally, the stability of these orbits can be obtained bysidering the following associated
variational equations,

()= (o —ontn ) () (11)

Solutions for this equation can be easily obtained by usiegcbmplex variable = w; + iw,,
and solving: = —ie**a? z. We have the following set of fundamental solutions

wy(t) = eVt ((1 —a?)cost F y/at — 1sint),
wo(t) = eTVa1 ((1 —a?)sint 4 y/a* — 1cost),
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for the hyperbolic case, and

wy(t) = Cos(j:t\/l - ai)(i—\/l — a4 cost — (1+a?)sint)

+sin(£t4/1 — at)(£4/1 — al cost + (1 + a%)sint),

wy(t) = cos(:l:t\/l — ai)(:l:\/l — a4 sint + (1 +a?)cost)

+sin(ty /1 —at)(£4/1 —ad sint — (1 +a?) cost),

for the elliptic one. Finally, the corresponding charastér exponents can be obtained by a
straightforward computation of the monodromy matrix. O

Remark 6.3. Notice that the chaotic sea observed in [Elly. 3 is associaid¢dd intersection of
the invariant manifolds of the hyperbolic periodic orbiattwe have computed.

Now, and in order to apply KAM theorem, we compute locally fregjuency map of this
unperturbed system around the vortex and the elliptic periorbit. To this end, we perform a
symplectic change of coordinates in a neighborhood of thegects in order to obtain action-
angle variables up to third order in the action.

In general, leH(z,y,t,e) = H(x,y,t)+e be a Hamiltonian that ir-periodic with respect
to ¢t and has a first integrak(x, y, t). Let us consider the generating functicﬁix, t,I,F) =
tE + S(z,t, 1), determining a symplectic change of variablesy, t,e) — (1,0, t, E') defined
implicitly by

oS oS 08
Yy = a—x, e=FE+ E, 0= W
wheref is also2r-periodic. This transformation is introduced in such a waattthe new
Hamiltonian depends only oh

08 S
H (x a—x,t) + 5, = h(D). (12)

Since a first integral of the system is known, we can define ¢dheesponding action as
IzF(x,y,t)zF(x,g—i,t). (13)

From Eq. [1B), we obtain locally the equati%é = f(x,t,I), so that we haveS(z,t,1) =
[ f(z,t,I)dz+ g(t, I). Introducing this expression into {112), we obtain the faflog equation
for g:

of

h(I)— H(x, f,t) — Edm 14

99 _
ot
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and can conclude that, singenust be2r-periodic with respect to, thenh (/) has to satisfy

h(I) = <H(x, fit)+ / aa—{dx> = (H(x, f,1)), (15)

where(-) denotes average with respecttid-inally, we notice that sincg'is a first integral, we
can defing; so thaty) become2r-periodic.

Computations are simplified observing that the left hané sidEq. (14) does not depend
on x (we use the fact that’ is a first integral), so we can set= 0. According to this, we
have to solve(f,t) = I, whereF'(-,t) = F(0,-,) and then we have to compute the average
h(I) = (H(f,t)), whereH (-, t) = H(0, -, ).

First, let us consider a neighborhood of the vortex flor- 0. To this end, we introduce
the new variables = —acost + A, andy = —asint + A,, so that the Hamiltonia#/, =
H,(A,, A,,t) and the first integrak, = F,(A,, A, t) are

1
H, = ~3 In(AZ + A2) — a\, cost — al sint, (16)
F, = (A2 + A?) exp(—a® 4 2aA, cost + 2aA sint — A2 — A2),

Proposition 6.4. There exist a symplectic change of varial{lés, A, ¢, e) — (1,6, t, E), with
0 € T, setting the vortex at = 0, such that the new Hamiltonian becomes

2 a? 2 .2a?
hv([):—lln]—a——e I 3a’e
2

2
5 5 5 I* + Os(1).

Proof. According to the above discussion, we havgf,, ) = f2e-@"+2efosint=fi — [ Then,
by introducing this expression ib (16) ones obtains

- L b
Hv(fv,t) = —511’1]— E — ?

Finally, we only have to compute the first terms in the expamsif f3 obtaining
12 = eI — 2ae2™ sint I + 642> sin®t I> + ...
and use thatsin ) = 0 and(sin“ t) = 5. O

On the other hand, a neighborhood of the elliptic periodimtdor A > 0 can be studied
by means of the variables= a, cost + A, andy = a4 sint + A,. One thus obtains that the
Hamiltonian and the first integral are given by

1
H, = —3 InVy 4+ ayA,cost +arAysint,
F, =V, exp(—a%r —2a, A, cost — 2a, Ay sint — A2 — Az),

whereV, = (a + ay)*(1+ 2a4A; cost + 2a,Aysint + a? A2 + a3 A7),
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Proposition 6.5. There exist a symplectic change of varialllés, A, t. e) — (I,0,t, E), with
0 € T, setting the periodic orbit af = (a, + a)?e~*, such that the new Hamiltonian becomes

1 -1 1+ 211,

hy(I)=—1In(a+a;)* + 5/ 1 J* + O5(1),
where we have introduced the notation
a2
Joq__ &1
(ar + a)?
and also
I, — 1 1, — a*(41a® — 88a® + 119a* — 54a* + 18)

V1—al’ 36v1 —a*(a® +1—2a*)(1+ a?)

Proof. As before, we consider a solutigh (1, t) for the equationt”, (f,,t) = I. For conve-
nience, we introduce the notatidn= (a. + a)2e~** (1 — .J) in order to set the periodic orbit at
J = 0. Then, it turns out that the expression

R 8 R R
(1 — a2 cos(2t)) f7 + (a+(1 +a?)sint — gai sin® t) 24+ 04(fs) =,

approximates the previous equation farand that the following expansion in terms.bf
F2 = an(t)J + asp(t) I + aq(t)J* + ...

holds, where
B 1
~1—a%cos2t’

—a;(1+a?)sint + $a3 sin®¢

q (t)

) =
aa(t) (1 — a? cos(2t))5/? ’
0 3(agr(14ay)?sint — 2a} sin® t)?
w2 =5 (1 — a2 cos2t)*

Hence, we have to compute the average of

£2
Hi(fy:1) = —Inay +a)” = %hl(l —J) - %

that follows from the fact thato;) = II;, (a3/2) = 0 and(az) = Il,. These averages are
computed easily by using the method of residues. ]
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Time Stroboscopic
Integrable Hamiltonian Reversible sections
A=0,B#0,C#0 yes no yes Ellipses
around origin
A#£0,B=C yes yes yes Top-left panel
in Fig.[3
A#0,B#C no no yes Rest of panels
in Fig.[3

Table 2: Dynamical characteristics of the quantum trajectoriesegatied from the different possibilities in the
canonical mode[{8) for the pilot wave functidd (4).

7 Conclusion

In this paper we present an scheme to study in a systematith&agtrinsic stochasticity and

general complexity of the quantum trajectories that arebts@s of quantum mechanics in the
formalism developed by Bohm in the 1950’s. In our opiniorstApproach, which based on
the ideas and results of the dynamical systems theory, cerushky contribute to establish firm

grounds that foster the importance of the conclusions afréustudies relying on such trajec-
tories, thus avoiding errors and ambiguities that has haggbén the past. As an illustration

we have considered the simplest, non—trivial combinati@igenstates of the two dimensional
isotropic harmonic oscillator.

The corresponding velocity field is put in a so—called cacalform, and the characteristics
of the corresponding quantum trajectories studied in Heliais proved that only one vortex
and two periodic orbits, one elliptic and the other hypeidabrganize the full dynamics of
the system. In it, there exist invariant tori associatedhi® tortex and the elliptic periodic
orbit. Moreover, there is a chaotic sea associated to therbyfic periodic orbit. The KAM
theory has been applied to this scenario by resorting to tatdaitime-reversible symmetry,
that is directly observed in the canonical form for the vélotield determining the quantum
trajectories of the system. It should be remarked that theltereported here concerning the
hyperbolic periodic orbit constitute a generalization lndge previously reported ih [115], in
the sense that here a more concise and constructive appimach associated dynamics, is
presented. We summarize the dynamical characteristickeotlifferent possibilities arising
from the canonical velocity field[8) in Tablé 2, that repretsea true road—map to navigate
across the dynamical system, i.e. quantum trajectoriasatie defined based on the pilot effect
[3] of the wave function[(4). Also, note that the generic mpde. whenE, F or G do not
vanish, does not satisfy any of the properties consideréukitable.

Finally, the method presented here is, in principle, gdizatale to other more complicated
situations in which more vortex and effective dimensionisteXSome methods have been de-
scribed in the literature that can be applied to these situs{30]. This will be the subject of
future work.
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