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Noise-induced looping on the Bloch sphere: Oscillatory effects in dephasing of qubits

subject to broad-spectrum noise
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For many implementations of quantum computing, 1/f and other types of broad-spectrum noise
are an important source of decoherence. An important step forward would be the ability to back
out the characteristics of this noise from qubit measurements and to see if it leads to new physical
effects. For certain types of qubits, the working point of the qubit can be varied. Using a new
mathematical method that is suited to treat all working points, we present theoretical results that
show how this degree of freedom can be used to extract noise parameters and to predict a new
effect: noise-induced looping on the Bloch sphere. We analyze data on superconducting qubits to
show that they are very near the parameter regime where this looping should be observed.

PACS numbers: 85.25.Cp, 03.65.Yz, 75.10.Jm

Motivated by the prospect of quantum computation
and communication, coherent quantum operation and
control of small systems has become a central area of
physics research. The isolation of these systems from ex-
ternal noise is a key problem, as noise produces decoher-
ence. In solid-state systems, some level of 1/f or other
broad-spectrum noise (BSN) is almost always present,
and is typically difficult to eliminate [1]. Indeed, in su-
perconducting qubits, single-electron and other tunnel-
ing devices, this type of noise is recognized as the factor
chiefly responsible for dephasing [2, 3, 4, 5].

One interesting question is the extent to which the
characteristics of the BSN can be determined by mea-
surements on the qubit itself. This has been consid-
ered by several authors [6, 7, 8, 9]. For the most part,
these authors considered the case of pure dephasing noise.
Some theoretical work has been done for ”mixed” noise,
which causes both relaxation and dephasing, but this has
usually been limited to Gaussian approximations [10],
asymptotic analysis, or small numbers of RTNs [11].

In this Letter, we show how to treat mixed noise ana-
lytically for all times, fully taking into account the non-
Gaussian effects. This will enable us to show how to back
out the characteristics of the noise from qubit measure-
ments. A new physical effect is predicted: noise-induced
looping on the Bloch sphere. We shall analyze data on
superconducting flux qubits to show that they are close
to the regime in which this effect comes into play. How-
ever, we stress that this effect can occur in any two-level
system that is subject to BSN, which can include qubit
implementation from atomic and molecular physics as
well as solid-state ones.

The effective Hamiltonian of a qubit is often written
as H = − 1

2 (εσ
′

z +∆σ′

x) − 1
2
~h′ (t) · ~σ′, where ε and ∆

are the energy difference and tunneling splitting between
the two physical states. For example, in a flux qubit ε
is proportional to the applied flux through the supercon-
ducting loop and ∆ is the Josephson coupling. ~h′ (t) is
the noise, a random function. We shall be interested in

the case where ~h′ (t) comes from K random telegraph
noise sources (RTNs) with a wide range of switching
frequencies, giving rise to BSN. The coordinate system
will be rotated by the angle θ = tan−1(∆/ε) so that
σ′

z = cos θσz − sin θσx and the qubit energy eigenstates
are along the z-axis. θ is called the working point of the
qubit and H is then

H = −1

2
B0σz −

1

2

K
∑

k=1

sk (t)~gk · ~σ (1)

where B0 =
√
ε2 +∆2. ~gk is the coupling of the k-th

RTN to the qubit. sk (t) switches randomly between the
values -1 and 1 with an average switching rate γk. To-
gether, these sources generate the random field ~h (t) =
∑K

k=1 sk (t)~gk. We assume throughout that B0 ≫ h(t).
~gk is at an angle θk to the z-axis, which can be thought of
as the angle between the noise axis and the energy axis.
The pure dephasing case, the basis of much work in this
field, corresponds to θk = 0. We deal only with classical
noise, which is generally thought to be appropriate for
the systems of interest here. Eq.1 is general enough to
describe almost any qubit subject to classical noise, since
an arbitrary power spectrum can be constructed with ap-
propriate choices of coupling constants ~gk and rates γk.
For simplicity, we drop throughout any azimuthal depen-
dence of the noise and ~gk = gk(sin θk, 0, cos θk).
In many cases, the RTN sources have a fixed direction.

For example, it has been shown that for superconducting
flux qubits the chief noise source is flux noise [12], which
would put the noise along the z-axis (ε direction), and
gives θk = θ. We also stress that the working point θ is
tunable for many different qubit architectures, either by
changing ǫ or ∆ [13, 14, 15].
A convenient solution method for noise from an ensem-

ble of RTNs with an arbitrary distribution of ~gk and γk
has recently been given [16]. This ”quasi-Hamiltonian”
method lends itself to perturbative treatment for both
fast (weak-coupling) RTNs: gk cos θk ≪ γk and slow
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(strong-coupling) RTNs: gk cos θk ≫ γk. The occurrence
of the trigonometric factor in these inequalities is crucial:
it comes from non-analyticity at the point gk cos θk = γk
which leads to qualitatively different behavior in the two
regimes. The method can treat experiments that involve
an arbitrary sequence of control pulses. Because it gives
analytic results for the non-Gaussian effects of BSN over
the whole range of θ , we can identify new systematic
effects.
In this work we shall restrict attention to two common

experimental protocols: Energy Relaxation (ER), which
measures nER (t) = 〈σz (t)〉, and Spin Echo (SE), which
measures nSE (t) = 〈σx (t)〉 with a π-pulse at t/2. Addi-
tional information about the noise may be available by
the use of more complicated pulse sequences [8].
The solutions so obtained are:

nER(t) ≃ exp

[(

−2
M
∑

m=1

γmǫ22m sin2 θm + Γ1

)

t

]

(2)

nSE(t) ≃ e−(Γ2+Γ3)t

[

1 +

M
∑

m=1

ǫ1m sin(gmt cos θm)

]

(3)

where M is the total number of slow RTNs and N is
the total number of fast RTNs, labeled by m and n re-
spectively; M + N = K. Γ1 and Γ2 are the energy
relaxation and dephasing rates caused by fast RTNs,
Γ3 =

∑

m γm is the overall dephasing rate from slow
RTNs. ǫ1m = γm/ (gm cos θm) and ǫ2m = gm/B0 are
the small parameters of the perturbation theory. For
any value of θ, the portion of the spectrum where the
perturbation theory breaks down is a small fraction of
the whole, so we expect the approximation to be well-
controlled.
The slow RTNs’ contribution to the ER signal is much

smaller than Γ1 and thus can be neglected. RTN is non-
Gaussian noise, which accounts for the relatively com-
plicated appearance of the formulas. We wish to use
observations of these signals to back out information on
the distribution of the ~g’s and γ’s.
The fast RTNs’ contribution to qubit decoherence is

fully captured by two decay constants Γ1 and Γ2. For
them, our results coincide with Redfield theory [17] and

Γ1 =
N
∑

n=1

2γng
2
n sin

2 θn
4γ2

n + B2
0

, (4)

Γ2 =
Γ1

2
+ Γφ, where Γφ =

N
∑

n=1

g2n cos
2 θn

2γn
. (5)

These fast RTNs give rise to purely exponential decay, as
is well known [18].
In contrast, the slow RTNs give rise to the Γ3 term

in the exponent of nSE, which gives exponential decay,
but also to the more complex and θm-dependent fac-
tors. These factors give rise to decays which are quasi-

Gaussian over short range of time and possibly oscilla-
tions at longer times.

For purposes of fitting, it is necessary for us to specify a
not completely general but yet still flexible model for the
noise. Let n (γ) =

∑K
k=1 δ (γ − γk) be the distribution of

rates and take contant values gk = g, θk = θ. If there is
a range of couplings then g in the following formulas can
be regarded as the root-mean-square coupling. We will
assume a broad noise spectrum by taking n (γ) = αγs−1

for γmin < γ < γmax and 0 otherwise. Note s = 0 gives
1/f noise. This power-law assumption is often useful for
analyzing experimental data while the method itself is
capable of treating arbitrary distributions. The task of
data analysis is then to determine g, α, s, γmin, and γmax

from observations of nSE (θ, t). The data are relatively
insensitive to γmax, making it difficult to determine. We
will comment on other limitations of the model below.
The results of the fitting can be used to make predictions
for future experiments.

With these assumptions, the previous results can be
simplified into

nER(t) ≃ e−Γ1t, (6)

nSE(t) ≃ e−(Γ2+Γ3)t

[

1 +
Γ3

γc
sin(γct)

]

, (7)

where γc = g cos θ is the critical coupling strength that
separates fast and slow RTNs and Γ3 =

∫ γc

γmin

n(γ)γdγ.
The key point is that by tuning the working point θ, one
effectively changes the relative number of fast and slow
RTNs in the environment. Since the two kinds of RTNs
have different qualitative effects on the qubit, we can use
this fact to get information about the noise.

Given these results, it is convenient to define

ΦSE (t, θ) =
nSE (θ)

nSE (θ = π/2)

= e−Γ3t

[

1 +
Γ3

γc
sin γct

]

, (8)

where ΦSE (t, θ = 0) correspond to the ”phase-memory
functional” defined by other authors [11]. Note Γ2(θ) ≃
Γ1(θ = π/2)/2, thus it drops out in Eq.8.

We shall now use these formulas to determine some
parameters of the noise experienced by the flux qubit
(sample A) in Ref.[14]. For this system, ∆/h = 5.445
GHz and ε/h varies from 0 to 1 GHz, meaning that cos θ
varies from 0 to about 0.2. Fig.1 shows the fit of Eq.8
to the experimental results at cos θ = 0.18. This gives
Γ3 = 0.99 MHz and γc = 2.1 MHz. The fit is certainly
excellent, but we note that a Gaussian, as used by the
authors of Ref.[14] fits equally well over this time range,
with only a hint of deviation at the longest times. The
working point can be calculated from cos θ = ε/B0, thus
fitting γc(θ) determines g/h = 9.6 MHz, as shown in
Fig.2(a). Fitting the data of Γ3(θ) in Fig.2(b) gives s = 0
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FIG. 1: (Color Online) Echo phase memory functional ΦSE

data in Fig.4A of Ref.[14]. We fit the 36 data points to Eq.8

(green solid line) and Gaussian model ΦG

SE = e−Γ
2

G
t
2

(blue
dashed line) respectively. The center of the first plateau is
thus predicted to be at τP = 5π/2γc ≃ 3.7µs.

(true 1/f noise), α = 0.77 and γmin = 0.048 MHz. Note
this dependence is very sensitive to the value of s thus
can be used to identify the noise distrubition n(γ). We
have carried out the analysis for the results of a similar
experiment of Ref.[15]. All results are given in Table I.
An interesting consistency check is to compute Γ1 from
the model with the parameters determined since Γ1 can
be fitted from nER(t) independently. For the data of

Ref.[14] (column A of Table I), we find Γ
(th)
1 = 0.02 MHz,

while the measured value is Γ
(ex)
1 = 0.65 MHz. This

strongly suggests an additional source of high-frequency
noise not captured by our noise model. For the data

of Ref.[15] (column B), we find Γ
(th)
1 = 5.4 MHz and

Γ
(ex)
1 = 5.7 MHz; this shows that the noise model is

reasonably complete for this experiment.
The experiments are typically fit by the Gaussian the-

ory for dephasing noise [10, 19]. Galperin et al. [11]
have pointed out the importance of non-Gaussian effects
and have shown numerically that these effects appear in
ΦSE (t) at strong coupling and longer times. This takes

A B
∆/h (GHz) 5.445 3.9
ε/h (GHz) 0 ∼ 1 0 ∼ 0.925

Γ
(ex)
1 (MHz) 0.65 5.7

g/h (MHz) 9.6 135
γmin (MHz) 0.048 0.098

n(γ) 0.77/γ 0.75/γ

Γ
(th)
1 (MHz) 0.02 5.4

TABLE I: Noise characteristics extracted from Ref.[14] (col-
umn A) and Ref.[15] (column B).
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FIG. 2: Fitting of sample A data from Ref.[14]. Both γc and
Γ3 are fitted from ΦSE at various working point. (a) Critical
rate γc versus the working point cos θ. (b) Linear regression
to Γ3 = α(γc − γmin).

the form of ”plateaus”. Eqs.7 and 8 allow us to quantify
and systematically analyze these deviations from Gaus-
sian behavior at arbitrary θ.

Note that for BSN, α is the parameter that controls
the appearance of the plateaus for 1/f noise. Physi-
cally, it describes the overall scale of the noise since
K =

∫ γmax

γmin
n(γ)dγ. Fig.3 shows the behavior of ΦSE (t)

for various values of α. In these plots we have used the
parameters of Ref.[14] and varied only α. The experi-
mental value α = 0.77 is closest to Fig.3(b). Fig.3(c)
shows that the experiments are not far from seeing some
non-Gaussian behavior.

Fig.3 shows that as α is reduced a series of plateaus
becomes visible and the phenomenon is better described
as oscillations, as would be expected from Eq.8. This
could be done by reducing the number of RTNs, which
is presently a very active area of research [20]. Fig.3(d)
shows these plateaus quite clearly, and confirms that the
period of these oscillations is given by 2π/(g cos θ). The
observation of a period that is adjustable by changing
the working point would be an unambiguous signature of
the effect.

The physical interpretation of the oscillations is sim-
ple. ΦSE (t) is a measurement of the probability that
the Bloch vector has returned to its starting point on
the equator in the rotating frame. The Gaussian theory
treats the sphere as a plane and the decoherence as a
random walk on that plane. In the more rigorous theory,
there is an additional process - a return to the starting
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FIG. 3: (Color Online) ΦSE with different noise intensity α.
In all subfigures, solid black line corresponds to cos θ = 0.2
and solid red line corresponds to cos θ = 0.5. The correspond-
ing ΦSE calculated from Gaussian approximation are plotted
as dashed green lines. Note ΓG ∝

√
α cos θ and Gaussian

approximation works well in the short time region until the
emergence of the first plateau, if there is one. All subfigures
share the same axes labels as in (c).

point after looping the sphere. This process is only pos-
sible for the slow RTNs whose fields can persist over a
time long enough for the loop to occur. It is due to mo-
tion along lines of latitude on the sphere and only the
z-component of these fields produces this. This explains
why the characteristic looping time is 2π/(g cos θ).
This looping depends on having not too much spread

in the distribution of the ~gk. Clearly a very wide spread
would wash out the oscillations, as seen in Eq.3. On the
other hand, a wide spread that weights the frequency
components of the power spectrum unequally is not con-
sistent with the usual picture of the origin of 1/f noise as
being due essentially to a spread in γk.
In conclusion, we have exploited a new mathematical

method to obtain the qubit decoherence behavior as a
function of working point θ for qubits that are subject to
BSN coming from classical sources. Varying θ changes
the ratio of strongly and weakly-coupled RTNs. It there-
fore furnishes a convenient method to back out noise
parameters from observations of the qubits themselves.
This allows us to refine the picture of non-Gaussian os-
cillations in qubit decoherence. In particular we have
supplied a method to observe the oscillations, and have
identified their physical origin as noise-induced looping
on the Bloch sphere. This looping should be observable
in many different qubit implementations.
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