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Abstract

We propose a quantum optical interface between an atomic and solid state system. We show

that quantum states in a single trapped atom can be entangled with the states of a semiconductor

quantum dot through their common interaction with a classical laser field. The interference and

detection of the resulting scattered photons can then herald the entanglement of the disparate

atomic and solid-state quantum bits. We develop a protocol that can succeed despite a significant

mismatch in the radiative characteristics of the two matter-based qubits. We study in detail

a particular case of this interface applied to a single trapped 171Yb+ ion and a cavity-coupled

InGaAs semiconductor quantum dot. Entanglement fidelity and success rates are found to be

robust to a broad range of experimental nonideal effects such as dispersion mismatch, atom recoil,

and multi-photon scattering. We conclude that it should be possible to produce highly entangled

states of these complementary qubit systems under realistic experimental conditions.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

Quantum entanglement, long considered to be the most puzzling aspect of quantum

mechanics [1, 2], is now realized to be a potential resource for enhanced processing and

communication of information. The field of quantum information science exploits quantum

entanglement for tasks that are otherwise impossible or inefficient using conventional in-

formation processing approaches [3]. Recent advances in the control of physical systems,

ranging from isolated atoms and photons to individual degrees of freedom in condensed

matter, have shown great promise in the development of quantum information hardware [4].

The majority of work to date has been centered around entanglement of identical quantum

systems such as identical atoms and photons. There is great interest in extending entangle-

ment over disparate quantum systems. Such hybrid entanglement can exploit advantages

of each individual system to enhance capabilities of quantum technology. An important

example is the hybrid entanglement between matter and photonic quantum systems. This

type of entanglement, which has been demonstrated using both trapped ions [5] and atomic

ensembles [6], enables one to combine the advantages of the long coherence times of atomic

systems with the ability of photonic systems to transport quantum information. Another

important example is the recent entanglement of two different species of trapped atomic

ions, where one species (Al+) has excellent coherence properties and the other (Be+) allows

efficient qubit measurement [7].

Here, we theoretically investigate the possibility of creating hybrid entanglement between

semiconductor and atomic quantum systems. Specifically, we propose a protocol for entan-

gling a quantum dot (QD) in a microcavity with a trapped atom through a common photonic

interaction. Such hybrid entanglement is expected to stimulate new concepts for distributed

quantum computation that exploit the long coherence times of trapped ions with the fast

dynamics and strong atom-photon interactions of a QD. We show that a common photonic

channel can link these disparate systems to achieve hybrid-matter quantum entanglement

despite significant mismatches between atomic and semiconductor qubits.

Photon mediated entanglement has been proposed for entangling like systems such as

atoms [6, 8], NV centers in diamond [9], and cavity-coupled QDs [10, 11]. It has been

experimentally demonstrated between electrostatically trapped ions [12] and atomic ensem-

bles [13–15]. To extend such ideas to entangle different matter qubits requires a protocol
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that is robust to significant mismatch in spectral and temporal properties. In this paper we

propose such a protocol in which the atomic system is coupled to a free-space field by elas-

tic scattering, while the QD is coupled via cavity interaction. We extensively investigate a

particularly promising implementation of this protocol in which an electrostatically trapped

171Yb+ ion is entangled with a cavity coupled indium arsenide (InAs) QD. We address

the central challenges in realizing this hybrid quantum link, including the mismatch in the

optical spectra of these systems and decoherence processes that are particular to each node

of the hybrid circuit. In particular, we analyze in detail “which-path” decoherence due to

atom recoil and multi-photon scattering and derive an analytical expression for entanglement

fidelity and entanglement rate.

In section II, we give a low-level description of the proposed entanglement protocol.

Section III provides detailed calculations of the atom scattering amplitudes, and analyzes the

effect of dispersion. Section IV considers atom motion and recoil, and calculates the fidelity

under realistic experimental conditions. In section V we consider the effects of leakage of

which-path information due to multi-photon scattering. The final section investigates the

validity of the weak excitation approximation which is extensively used to calculate both

atomic and scattering and reflection from the cavity-QD system.

II. BASIC PROTOCOL

Fig. 1a illustrates the proposed method for entangling a QD with an atom. The QD is

coupled to a resonant microcavity while the atom is electromagnetically confined at a remote

location. Each system consists of a qubit represented by the two states, |0〉 and |1〉, where

state |0〉 is coupled to a third excited state |e〉 via an optical transition. We consider the case

where this transition in the QD and atom occur at similar (not necessarily identical) optical

wavelengths. The entanglement method we consider is general, and can apply to a broad

range of atomic and semiconductor systems. However, to perform calculations we specialize

to the case of an InGaAs QD that is entangled with an electrostatically trapped 171Yb+ ion.

The assumed level structure for these two qubit systems is shown in Fig. 1b. We focus on

171Yb+ because of its optical 2D3/2 to 3[3/2]1/2 transition, which occurs at 935 nm and is

therefore compatible with the near infrared transition wavelength of InGaAs QDs. For the

QD, the qubit states can reside in the Zeeman split spin states of a single charge carrier, with
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FIG. 1: (a) Proposed setup for entangling an atom with a QD. A trapped atom and a cavity-

coupled QD are held at different spatial locations. Both QD and atom have a level structure

shown in the inset, and a common pump beam excites both systems. The reflected light from

the cavity is mixed with the scattered light from the atom on a 50/50 beamsplitter. Path lengths

are set for constructive interference at detector 1. A detection event at detector 2 places the two

systems in an entangled state. (b) Specific level structure for the QD and atom. The spin states

of a singly charged QD can serve to create the desired qubit states, while the positive or negative

trion state (|t±〉)serves to couple the qubit to the cavity. The two qubit states are split in energy

by ∆B due to an applied magnetic field. For the atom we consider the specific example of a

171Yb+ ion and use the hyperfine |1, 1〉 and |2, 2〉 states (with hyperfine splitting ∆A = 0.86 GHz)

in the 2D3/2 manifold to store quantum information, while optical transition to the |1, 1〉 state in

the 3[3/2]1/2 manifold results in elastic scattering of the pump field. Selection rules ensure that

scattering will occur only when the atom is in state |2, 1〉.

an optical coupling to an excited trion state, as recently demonstrated [16, 17]. The loading

of a single spin into a microcavity coupled QD has also been recently achieved [18]. For

the atom, the qubit states are represented by long-lived electronic/nuclear hyperfine states,

with an optical coupling to a dipole-allowed excited electronic state [19]. We consider the

hyperfine qubit states residing in the metastable 2D3/2 level, with a coupling to the excited

3[3/2]1/2 level at 935 nm [20].

Entanglement is established by first initializing the state of each of the two qubits to

superposition state |ψi〉 = (|0〉 + |1〉)/
√

2. The QD system can be initialized using experi-

mentally demonstrated single [21] and two-laser coherent control techniques [22, 23], while
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the atom can be controlled using optical pumping and microwave or stimulated Raman tran-

sitions [19, 20]. Following initialization, a laser pulse is coherently split into two components

directed to the two quantum systems. One of the components is reflected off of the cavity

containing a QD while the second component drives the atom off resonance, resulting in an

elastically scattered field that is phase coherent with the input field. Phase coherence of the

elastically scattered component has been experimentally verified through Young’s interfer-

ence [24], and has also been theoretically investigated [25]. We define |α〉 as the coherent

field reflected from the cavity, and |β〉 as the field elastically scattered from the atom. The

two fields are combined on a beamsplitter whose path lengths are set for constructive inter-

ference at detector 1 (shown in Fig. 1a), requiring optical interferometric stability over the

system. A detection event at detector 2 will collapse the state of the atom and QD into an

entangled state.

To understand the entanglement formation process, we first assume that both fields are

quasi monochromatic, phase coherent, and sufficiently weak that they can be expanded to

first order in photon number. In later sections we will derive the entanglement fidelity under

more realistic experimental conditions. We define ω↑ and ω↓ as the trion resonant frequencies

for the two different spin states of the charged QD, which are detuned by ∆B due to an

applied external magnetic field. The cavity resonant frequency is defined as ωc, and input

field frequency as ω. The reflection coefficient r and transmission coefficient t of the cavity

are [10, 26, 27]

r(ω) =
−i∆ + CL(δqd, γqd)

1− i∆ + CL(δqd, γqd)
(1)

t(ω) =
1

1− i∆ + CL(δqd, γqd)
(2)

where δqd = ω− ω↑,↓ is the detuning between the cavity and the QD (which depends on the

spin state of the QD), and ∆ = (ω − ωc)/κ is the laser-cavity detuning scaled to the cavity

linewidth κ. The QD exciton decay rate is given by γqd, C = 4g2/(γqdκ) is the QD-cavity

cooperativity, g is that QD-cavity coupling strength, and L(δ, γ) = γ/(γ−iδ) is a Lorentzian

profile [10]. The amplitude of the reflected field is given by α = αinr(ω), where αin is the

incident field amplitude.

The incident field is set to be resonant with the cavity (ω = ωc) so that ∆ = 0. We also

set ω↑ = ωc so that the QD is resonantly coupled to the cavity mode when it is in state

|0〉 = | ↑〉. In this case we have δqd = 0, and in the limit of large atomic cooperativity
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|C| � 1, the cavity reflectivity approaches r(ωc) = 1. If the QD is instead in state |1〉 = | ↓〉

there is little coupling between the QD and cavity either due to selection rules (g = 0) or

large detuning (δqd � g2/κ). Thus, CL(δqd, γqd) → 0 and t(ωc) → 1, so all of the light

is transmitted through the cavity. Therefore, the qubit state of the QD will switch the

cavity from being highly reflecting to highly transmitting. This operation can be viewed

as a controlled-NOT gate between the state of the QD and the propagation direction of

the scattered light. Controlled reflectivity of a cavity via a single QD has been reported in

several works [18, 28, 29].

For the atom, we assume that the driving field is detuned from the resonant transition

frequency ωa by δa = ω−ωa. If the atom is in state |0〉, it will induce off-axis elastic scattering

via the near resonant optical transition to state |e〉. The scattered field is collected by an

objective lens and coupled into a single mode fiber. We define β as the coherent state

amplitude of the field scattered into the fiber. In contrast, when the atom is in state |1〉 it

will not scatter any light since it cannot make an optical transition due to selection rules. For

the case of 171Yb+ , we identify |0〉 and |1〉 states as the F = 1,mF = 1 and F = 2,mF = 2

hyperfine levels of the metastable (53 ms lifetime) electronic 2D3/2 state, with a frequency

splitting of 0.86 GHz. With the 935 nm input laser field linearly polarized parallel to a

weak magnetic field, the |0〉 state couples to the 3[3/2]1/2 F = 1,mF = 1 hyperfine level we

identify as state |e〉, while the |1〉 state remains dark, as indicated in Fig. 1b.

Under the assumption that the reflected field from the cavity and scattered field from the

atom are sufficiently small so that they can be expanded to first order in photon number, a

detection event at detector 2 will collapses the state of the QD and atom onto

|ψf〉 = D−1[(α− β)|0〉qd|0〉a + α|1〉qd|0〉a − β|0〉qd|1〉a] (3)

where D2 = (|α − β|2 + |α|2 + |β|2). By tuning the phase and amplitude of the input

fields so that α = β, the above state becomes a maximally entangled Bell state |ψf〉 =

(|1〉qd|0〉a − |0〉qd|1〉a)/
√

2. It should be noted that, so long as the quasi-monochromatic

limit is valid, a perfect entangled state can be generated even when the QD and atom have

different resonant frequencies and decay rates.

6



III. FIDELITY UNDER PULSED EXCITATION

The ideal protocol described in section II considers the quasi-monochromatic limit, where

the input pulses are sufficiently long in time to be considered as single frequency. In a real

experiment, the entanglement operation must be completed before the QD and atom have

had time to decohere, which requires excitation with short optical pulses. The coherence

time of the atomic hyperfine states is long (53 ms), but the QD spin coherence time is

much shorter (10 ns) due to hyperfine interactions with nuclear spin [30]. Recent progress

in optical locking of nuclear spin polarization suggests that much longer lifetimes in the

microsecond regime may be possible [31]. Nevertheless, it is important to consider the effect

of short pulses (0.1− 10 ns) on the fidelity of the generated entangled state.

Because we consider the weak excitation regime, the cavity-QD system and trapped atom

are linear scatterers. Therefore, we may analyze the effect of time varying excitation by

fourier decomposing the time dependent input fields and looking at the scattering behavior

of each fourier component independently. Such approach would not be valid in the strong

excitation limit where nonlinear scattering occurs due to absorption saturation. We defer

that discussion to section VI.

In order to analyze the spectral properties of the field scattered by the atom, we need

a more precise expression for its scattering amplitude. To derive this amplitude, we begin

with the standard system Hamiltonian for the atom given by

H =
∑
k

~b̂
†
kb̂k +

σz
2
ωa +

∑
k

~gk
(
σ+b̂ke

ik·r + σ−b̂
†
ke
−ik·r

)
+

~
∫
dω
[
Ω(ω)σ+e

i(kω ·r−ωt) + Ω∗(ω)σ−e
−i(kω ·r+ωt)

]
+ Vtrap

In the above equation b̂k is a bosonic operator for a free space mode obtained using box

boundary conditions, ωa is the resonant frequency of the atom, σz is the population difference

operator for atom scattering transition, and σ− is the transition lowering operator. The

scattered modes are coupled to the atomic dipole by the coupling strength gk = −d ·

εk
√
ωk/~ε0V where V is the quantization volume and d = dẑ is the atomic dipole moment.

We assume that the input field is sufficiently bright so that it may be treated as a set of

classical Rabi frequencies Ω(ω). The input field is assumed to be largely collimated and

propagating along the x-axis so kω = x̂ω/c. The potential Vtrap is the harmonic trapping

potential of the atom, while r is the location of the atom in the trap.
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We first consider the stationary atom limit, where r is a real vector. Atomic recoil, which

requires us to account for the quantized operator nature of r, will be addressed in the next

section. When the atom is in qubit state |0〉 the Heisenberg equations of motion for the

atomic and cavity field operators are given by

db̂k

dt
= −iωkb̂k − igkσ−eik·r (4)

dσ−
dt

= −(iωa + γa)− i
∫
dωΩ(ω)ei(k·r−ωt) (5)

where we have added the decay term γa which accounts for the total dipole decay, including

dephasing. In Eq. 5 we assume that the scattered field is very weak as compared to the

strong classical field Ω, so its driving term is ignored in the equation. We also make the weak

excitation approximation that the atom remains mostly in the ground state, so σz → −1 [10].

Eq. 5 can be solved by direct integration to give

σ− = −iL(δa, γa)

γa

∫ ∞
−∞

dωΩ(ω)ei(kω ·r−ωt) (6)

where δa = ω − ωa and, as before, L(ω, γ) = γ/(iω + γ). In deriving the above equation we

consider only the forced response of the atom driven by the classical Rabi frequency, and

ignore the transient response due to turn-on of the input field. Plugging into Eq. 5 and

integrating, we subsequently obtain

b̂k = −πe−iωkt
gkL(δa, γa)

γa
Ωωke

i(kω−k)·r (7)

The classical pump field that drives the atom is derived from a laser source and is therefore

a coherent state. The atom is a linear scatterer so the scattered field must also be a coherent

state whose quantum state is fully characterized by the scattered amplitude

βk = 〈b̂k〉 = −πL(ωa, γa)

γa
Ω(ωk)e

i(kω−k)·r (8)

In Appendix A we show that the total number of scattered photons Ns =
∑

k |βk|2 is given

by

Ns = |L(ωa, γa)|2
(
γr
γa

)2

σ0ni (9)

where ω0 is the center frequency of the incident field, ni is the input photon flux density

given by ni = I/~ω0 where I is the input field intensity, γr is the radiative decay rate of the

atom to state |0〉, and σ0 = 3λ2/2π is the atomic cross section.
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FIG. 2: Model for collection optics. All k-vectors between the angles ∆θi and ∆θo from the

input propagation direction (shaded region) are collected by the fiber. All other k-vectors are not

collected

The important quantity for our analysis is β(ω), the amplitude of the coherent field

coupled to the fiber at frequency ω. Since the collection optics are comprised of only linear

optical elements, the fiber amplitude β(ω) is related to the free space scattered amplitudes

βk by the linear transformation

β(ω) =
∑
|k|=ω/c

skβk (10)

where sk are a set of complex scattering coefficients representing a unitary transformation.

To proceed, we need a model for the collection optics. Here we consider a simple model,

illustrated in Fig. 2, where all k-vectors between a solid angle ∆i and ∆o (taken with respect

to the propagation direction of the pump) are collected by the fiber. The remaining k-vectors

do not couple to the fiber. Thus, sk = s if k is within the collection window, and sk = 0

if k is outside the collected solid angle. The omission of solid angles between 0 and ∆i is

included in order to reject the input beam. For a well collimate input, we can take the

limit that ∆i → 0. The simple model we consider captures all of the relevant physics, and

provides good numerical accuracy for our calculations. A more accurate model would treat

sk as a gaussian transverse distribution, matching the gaussian profile of the single mode

fiber. This model would significantly complicate the calculations but would ultimately yield

similar results.
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Our calculations focus on the paraxial limit, where the collected solid angle ∆o is small, so

that the collected light propagates nearly parallel to the input beam. We focus on this range

of collection angles because it is known to minimize the effect of atomic recoil [24, 25], as

we will analyze in more detail in the next section. Using the simple model for the collection

optics, we shown in Appendix B that in the paraxial limit

β(ω) = β0L(δa, γa)Ω(ω) (11)

with

β0 =
dω

3/2
0

2cγa
√

2ε0~LxA

∫
A

dθdφeik0(x̂−k̂)·r (12)

In the above equation the integral is taken over the collection area, while A = 2π(cos ∆i −

cos ∆o) ≈ π(∆2
o −∆2

i ) is the area that the collection region occupies on the unit sphere and

Lx is the length of the quantization volume in the x direction. For simplicity we assume that

ωk can be replaced by its average value ω0 and k0 = ω0/c. We do not make this substitution

in the Lorentzian function, however, because near resonance this function will vary rapidly

even over a narrow bandwidth of interest.

In the monochromatic limit, we could always achieve the matching condition α = β by

changing the amplitude and phase of the incident fields. But under pulsed excitation, the

reflection coefficient of the QD-cavity system has a spectral profile described by Eq. 2, while

the atom scattering amplitude follows primarily a Lorentzian profile. Thus, each spectral

component will require a different matching condition. Since we cannot satisfy the matching

condition perfectly for each frequency we expect that the generated state will no longer be

perfectly entangled. It has previously been shown that the spectral width over which high

reflection is achieved when a QD is coupled to a cavity is given by the inverse modified

spontaneous emission lifetime of the cavity enhanced QD transition [10], typically 10-50

GHz. This bandwidth represents a response time which is much faster than any decay rates

of the atom. Thus, we expect the fidelity of the generated entangled state to be dominated

by the dispersive properties of the atom, which are much narrower in frequency the those of

the QD.

To calculate the fidelity of the generated entangled state under pulsed excitation, we

begin with the state of the system after the field from the QD-cavity system is mixed with

the scattered field from the atom on the beamsplitter, as shown in Fig. 1. We once again

assume that the scattered fields are sufficiently weak so that they may be expanded to first
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order in photon number. After the beamsplitter the state of the fields, atom and QD can

be written as

|ψf〉 =

∫
dω

1

2
√

2

[∫
(α(ω)− β(ω)) |00〉+ α(ω)|01〉 − β(ω)|10〉

]
v̂†ω|0〉+ |f〉 (13)

In the above state the operator v̂ω is the bosonic operator for a photon in the mode detected

by detector 2, and state |f〉 is an un-normalized state representing the remaining components

of the wavefunction that do not contain any photons in the detection mode. From the

expressions for the reflection coefficients we have

α(ω) = α0r(ω)Ω(ω) (14)

β(ω) = β0L(δa, γa)Ω(ω) (15)

where α0 and β0 are complex amplitudes that can be adjusted by selecting the amplitude

and phase of the input pulse. In the ideal case we would have α(ω) = β(ω) for all frequen-

cies, which would reproduce the ideal fidelity of the monochromatic limit. Unfortunately,

dispersion prohibits us from achieving this for all values of ω. The best we can do is adjust

the amplitudes so that α(ω0) = β(ω0), where ω0 is the center frequency of the pulse.

The fidelity of the entangled state can be determined by first calculating the reduced

density matrix of the QD-atom system conditioned on a detection event at detector 2. This

reduced density matrix is given by

ρ =
Trfields{P|ψf〉〈ψf |}

Tr{P|ψf〉〈ψf |}
(16)

where P is a projector onto the subspace containing at least one photon in the detection

mode for detector 2. The fidelity can be calculated using F = 〈ψ−|ρ|ψ−〉, where |ψ−〉 is the

ideal spin singlet entangled state. The expression for fidelity is given by

F =
1

4

∫
dω |α(ω) + β(ω)|2∫

dω |α(ω)|2 + |β(ω)|2 −Re{α(ω)β(ω)}
(17)

Fig. 3 plots the fidelity as a function of the pulse duration of the external field for

several values of the detuning from atomic resonance. The curves are obtained by numerical

integration of Eq. 17. We assume the input pulse is gaussian with a spectrum given by

Ω(ω) = Ω0e
−τ2(ω−ω0)2/4ei(k·r−ωt), where τ is the pulse duration. To calculate the reflection

coefficient for the cavity containing the QD we use parameters that are appropriate for InAs

QDs coupled to photonic crystal defect cavities. Using experimental values from recent
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FIG. 3: Entanglement fidelity as a function of pulse duration for several different values of atomic

detuning δa = ω − ωa. For each detuning, there is a certain value of the pulse duration where

the fidelity quickly drops from 1 (ideal entangled state) to 0.25 (no coherence between α and β).

Larger δa enables shorter pulses before fidelity drops.

work [28], we set g/2π = 16 GHz, δqd = 0, κ/2π = 25 GHz, and γqd/2π = 1 GHz. For the

171Yb+ atomic ion we use γa/2π = 4.2 MHz, the linewidth of the 3[3/2]1/2 state.

In the long pulse limit, the fidelity approaches its ideal value all atomic detunings. How-

ever, for each value of atomic detuning the fidelity makes a rapid transition from F = 1 to

F = 0.25 at some critical pulse duration. Thus, the range of pulses for which the monochro-

matic approximation is valid will depend on δa. At detuning of δa = 0.1 GHz, the transition

occurs roughly at 10 ns pulse duration, which is on the order of the coherence time of the

QD. By increasing the detuning to 1 GHz, the fidelity transitions at 1 ns pulse duration,

well below the QD decoherence time. By further increasing the detuning to 10 GHz it is

possible to use 100 ps pulses. Thus, by increasing the atomic detuning we can use shorter

pulses to achieve high fidelity. This tradeoff occurs because the dispersion, dominated by a

Lorentzian function, is maximum near resonance and tails off with larger detuning.

The disadvantage of going to larger detuning is that we need to use more pump power
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FIG. 4: Solid line plots pulse duration required to achieve fidelity of 0.9 as a function of δa. Dashed

line plots pump intensity required to achieve 0.1 scattered photons in the pulse. As ∆ωa increases,

we can use shorter pulses but require higher excitation energies to achieve the same scattering rate.

If the coherence time of the QD is 10 ns, the shaded region represents the parameter regime where

entanglement can be achieved.

in order to achieve the same scattering rate. The number of scattered photons is given

by Eq. 9. From this equation one can see that as δa increases the Lorentzian decays in

amplitude, forcing us to increase the incident photon density ni to attain the same number

of scattered photons. The tradeoff between pulse duration and pump intensity is shown in

Fig. 4. The panel plots both the pulse duration required to achieve a fidelity of 0.9 (solid blue

curve) and the pump intensity required to scatter Ns = 0.1 photons (dashed green curve)

as a function of δa. The choice of Ns = 0.1 ensures that the collected field is sufficiently

weak to be expanded to first order in photon number. The shaded area, labeled the coherent

excitation regime, represents the operating region where the pulse duration is less than 10

ns, the typical dephasing time of the InAs QD electron spin [32]. The coherence time of the

atom is longer (53 ms), so the QD limits the coherence time of the overall entangled state.

One can see from the figure that pump intensities as low as 2 W/cm2 would be sufficient to
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enable the use of 10 ns pulses with the specified scattering rate.

IV. DECOHERENCE DUE TO ATOM RECOIL

Entanglement between the atom and QD relies on the assumption one cannot distinguish

whether a photon was reflected from the cavity or scattered from the atom, even in principle.

Atomic recoil can serve to betray this ”which-path” information. When the atom scatters

a photon there is a probability that it will recoil, leaving residual kinetic energy in the

motional degrees of freedom of the center-of-mass wavefunction. To achieve high fidelity we

require that this recoil probability is small.

Atomic recoil is already present in the expression for the scattered field amplitude given

in Eq. 11 and Eq. 12. Previously we assumed that the position r of the atom was fixed, and

therefore the integral term in the expression was simply a complex constant. To include the

effect of recoil, we must keep r as the position operator and trace it out over the motional

degrees of freedom of the atom. We define the initial state of the atom-QD system by the

density matrix

ρi =
∑
n

p(n)|ψnf〉〈ψnf | (18)

where

|ψni〉 =
1

2
(|00〉+ |11〉+ |10〉+ |01〉) |n〉|vac〉 (19)

In the above equations, |n〉 is the harmonic oscillator eigenstate for the center of mass

motion of the atom, |vac〉 is the vacuum field for all optical modes, and p(n) is assumed to

be a thermal distribution. After interaction with the two input fields, the state in Eq. 19 is

transformed into

|ψnf〉 = |ψd〉|n〉|v〉+ |fn〉 (20)

with

|ψd〉 =
1

2

[(
α− β√

2

)
|00〉+

α√
2
|01〉 − β√

2
|10〉

]
(21)

The state |v〉 represents a single photon in the detection mode that is monitored by detector

2, while |fn〉 is once again a wavefunction orthogonal to |v〉 representing the state of the

QD, atom, and all fields when there are no photons in mode v̂. Conditioned on a detection

event at detector 2, the final density matrix of the system is given by

ρf =
Trn{

∑
n p(n)|ψnf〉〈ψnf |}

Tr{
∑

n p(n)|ψnf〉〈ψnf |}
(22)
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where Trn represents a trace over all degrees of freedom except for the qubit states of the

atom and QD.

The fidelity F of the final state can be defined as the overlap between the actual state of

the system and the desired state |ψ−〉 = (|01〉 − |10〉)/
√

2. Thus,

F = 〈ψ−|ρf |ψ−〉 (23)

Using the definition of ρf in Eq. 22 we attain the following expression for the fidelity:

F =
1

4

|α|2 + 〈|β|2〉+ 2αRe{〈β〉}
|α|2 + 〈|β|2〉 − αRe{〈β〉}

(24)

where

〈β〉 =
∑
n

p(n)〈n|β|n〉 (25)

〈|β|2〉 =
∑
n

p(n)〈n||β|2|n〉 (26)

(27)

The expressions in Eq. 26 and Eq. 27 can be evaluated under the assumption that the ion

occupies a thermal distribution. In the case, we can then write [24, 33, 34]

〈ei(k−k′)·r〉 = e−η
2(1−cos θ̂ cosφ)(n̄+1/2) (28)

where n̄ is the average excitation number of the atom in the harmonic potential, and η =

k
√

~/2matomωt with matom being the mass of the atom and ωt the trap frequency. The

dimensionless constant η is called the Lamb-Dicke parameter and determines the extent

to which an atom will recoil. Since we are primarily interested in small angles θ̂ and φ,

we expand the cosine terms in the exponent to second order in these angles. Using this

approximation, we show in Appendix C that

〈β〉 = −
√
〈|β|2〉1− exp (−η2(n̄+ 1)∆2)

η2(n̄+ 1)∆2
(29)

〈|β|2〉 =
3

8
Ns∆

2 (30)

The above expression is derived in the limit that ∆i → 0 and ∆o = ∆. The matching

condition α = β cannot be satisfied because β now fluctuates due to recoil. The fidelity is

maximizes when α = −
√
〈|β|2〉 which indicates that α is set to the average amplitude of β

15
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FIG. 5: Entanglement fidelity as a function of collection angle for the atom emission with various

atom thermal states, characterized by the average vibrational occupation number n̄.

and has the same phase. Under this optimal condition, the fidelity is given by

F =
1

2

1 + 1−exp (−η2(n̄+1)∆2)
η2(n̄+1)∆2

2− 1−exp (−η2(n̄+1)∆2)
η2(n̄+1)∆2

(31)

This expression allows us to calculate the fidelity of the entangled state in the monochromatic

limit as a function of the atom temperature (n̄) and the collection angle.

Fig. 5 plots the entanglement fidelity as a function of collected solid angle for different trap

temperature. Calculations were performed for a 1 MHz trap frequency, using the emission

frequency of 935nm and the mass of 171 atomic mass units for 171Yb+ . For these numbers,

the Lambe-Dicke parameter is given by η = 0.09, which means that the atom is in the

Lamb-Dicke regime for n̄ < 11.1. One can see from Fig. 5 that for n̄ = 10, the fidelity is

greater than 0.9 even for large collection angles. For higher trap temperatures there is a

tradeoff between the fidelity and the collection angle.
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V. PHOTONIC LEAKAGE OF WHICH-PATH INFORMATION

The tradeoff between fidelity and collection angle implies that there will be a tradeoff

between fidelity and entanglement success probability, because larger collection angle results

in higher collection efficiency of scattered photons. The entanglement success probability is

given by

Psuccess = 1− e〈|β|2〉/4 = 1− e3Ns∆2/32 (32)

The factor of 4 in the exponent of the above equation accounts for the fact that each photon

has a 25% probability of triggering detector 2.

To investigate the entanglement success probability we need to determine how large we

can make Ns. The expression for fidelity in Eq. 31 does not depend on Ns because it was

derived under the assumption that the scattered field is sufficiently weak so that it could

be expanded to first order in photon number. If we make Ns too large this assumption will

no longer be valid. Thus, we need to derive a more precise expression for the fidelity that

accounts for both recoil and the probability that more than one photon is scattered by the

atom.

If the atom scatters more than one photon, this can lead to leakage of ”which-path”

information. This information leakage can be understood from the following simple argu-

ment. First, we note that in general the collection efficiency of scattered light is small. Even

with a collected solid angle of 45o, which corresponds to a numerical aperture of 1, only

20% of the photons are collected into the fiber. Reflection and absorption losses from the

optics will serve to degrade this collection efficiency even more. Thus, if the atom scatters

two photons it is much more likely that only one of the photons is collected than it is that

both photons are collected. The photon which fails to be collected is never mixed on the

beamsplitter, and therefore retains the information that the atom caused a scattering event

causing the entanglement to decohere. Thus, in order to achieve high fidelity entanglement

the probability of scattering two photons must remain low.

To analyze multi-photon scattering we retain the amplitude of the field scattered by the

atom to all orders in photon number, but expand the field collected into the fiber to first

order in photon number. This approximation is valid because, as noted previously, fiber

collection efficiency is small in the limit we consider so even if the atom scatters many

photons the probability that more than one of them is collected into the fiber is still small.
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After the atom scatters the input field the state of the system becomes

|ψni〉 =
[
(1 + αâ†)(1 + βb̂†)|00〉|χ〉+ |11〉|0〉+ (1 + α†)|01〉|0〉+ (1 + βb̂†)|10〉|χ〉

]
|n〉

(33)

In the above equation the state |00〉|χ〉 denotes the atom and the QD are both in qubit state

|0〉, and χ = −
√
Ns(1− 3∆2/8) is the coherent state amplitude of the uncollected field.

Because we consider only small collection efficient χ ≈ −
√
Ns. Other states are defined

analogously, and state |n〉 is once again the harmonic oscillator state of the atom center of

mass. Following the same procedure as in section IV, the fidelity can be obtained by tracing

over both the field and atom center of mass motion to obtain

F =
1

2

1 + e−Ns/2 1−exp(−η2(n̄+1)∆2)
η2(n̄+1)∆2

2− 1−exp(−η2(n̄+1)∆2)
η2(n̄+1)∆2

(34)

The above equation gives the entanglement fidelity due to both recoil and multi-photon

scattering in the monochromatic limit. One can see the interference term is degraded by

e−Ns/2, which means that to achieve high fidelity we need Ns � 1. The number of photons

collected into the fiber will be subsequently much smaller, which highlights the need for

efficient collection of photons.

For a fixed fidelity F , Eq. 34 gives a relationship between the scattered photon number

Ns and the collected solid angle ∆. Thus, the entanglement success probability given in

Eq. 32 becomes a function only of ∆. Fig. 6 plot Psuccess as a function of ∆ for several

different trap temperatures with the same atom trap parameters used in Sec. IV, where the

entanglement fidelity is held fixed at F = 0.9. For all trap temperatures other than n̄ = 0,

an optimal rate exists for a specific collection angle ∆. This optimal rate is determined

by a balance between recoil and photon collection efficiency. For n̄ = 0 the atom is in the

Lamb-Dicke regime where recoil is not a factor, so the entanglement rate is limited only by

the fraction of light that can be collected by the optics.

Fig. 7 plots the optimal efficiency as a function of n̄. The efficiency is optimized with

respect to the collection angle for each point, with the additional constraint that ∆ cannot

exceed 45o. For cold states of atomic motion within the Lamb-Dicke regime (n̄ < 11.1),

the efficiency is independent of n̄. As the atomic motion leaves the Lamb-Dicke regime,

the collection angle must be reduced to maintain the desired fidelity, leading to a lower

success probability. In a trap with frequency ωt/2π > 1 MHz for an atomic 171Yb+ ion,

18



5 15 25 35 45
0

0.002

0.004

0.006

0.008

0.01

∆ (degrees)

E
nt

an
gl

em
en

t S
uc

ce
ss

 P
ro

ba
bi

lit
y n = 10

n = 30
n = 100
n = 300

FIG. 6: Success probability for creating entanglement as a function of collection angle. The fidelity

is fixed at F=0.9.

Doppler cooling is expected to result in a mean thermal vibrational index of n̄ < 10, where

success probabilities can be greater than 10−2. If we use a 10 MHz experimental repetition

rate, this would result in greater than 105 successful entanglement operations per second.

Additional losses to reflection from optics and imperfect fiber coupling would serve to reduce

this number.

VI. VALIDITY OF WEAK EXCITATION LIMIT

In addition to multi-photon scattering, we must also consider the validity of the weak

excitation approximation. All of our calculations so far assumed that the atom and cavity-

QD system are driven with sufficiently weak excitation such that σz → −1, where σz is the

population inversion operator. For the QD, it has been previously shown that the weak

excitation limit is valid so long as Nref/τp � 1/τmod, where Nref is the number of photons

reflected from the cavity, τp is the input pulse duration, and τmod is the modified spontaneous
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FIG. 7: Optimum collection efficiency as a function of the average thermal vibration index of the

trapped ion. The efficiency is optimized with respect to collection angle at each point, with fidelity

fixed at F = 0.9. The collection angle is restricted to not exceed 45 degrees. The shaded area

represents the regime where efficiency is limited by the collection angle of the optics. Unshaded

region represents regime where efficiency is limited by recoil, and thus decreases as the ion gets

hotter.

emission lifetime of the QD [11]. For any Nref one can in principle satisfy weak excitation

by make τp sufficiently long. It should also be noted that from the matching condition α = β

and the condition that Ns � 1 (due to multi-photon scattering) we know that Nref � 1. In

addition, for the input pulse spectrum to fit within the high-reflection window given in Eq. 2,

τp > τmod [10]. When these two conditions are combined they automatically guarantee that

weak excitation is satisfied for the QD. Thus, for the QD weak excitation does not impose

any additional constraints on the entanglement success probability and can be generally

satisfied by using sufficiently long input pulses.
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We now derive a similar result for the atom. We use Eq. 6 to show that

〈σ+σ−〉 =
|L(ω0)|2

γ2
|Ω(r, t)|2 (35)

where Ω(r, t) = dE(r, t)/~. The weak excitation approximation is valid so long as 〈σ+σ−〉 �

1. This condition can be recast into a more recognizable form. The easiest way to do this

is to assume that the input optical pulse is a square pulse of duration τ starting at t = 0,

with electric field amplitude E. Thus∫ ∞
0

|E(r, t)|2dt = |E|2τ =
n~ω0

cε0
(36)

where the last equality comes from Poynting’s theorem. Eq. 35 becomes

nσ0|L(ω0)|2
(
γr

γ

)2

τ
=
Ns

τ
� γ (37)

We attain a condition for the atom which states that the rate of scattered photons should

be small compared to the atom decay rate. Although this condition was attained using the

assumption of a square pulse, we expect this relation to hold for most pulse shapes.

As was the case for the QD, the limitations imposed by weak excitation restrict only the

rate of emitted photons, not on total photon number. In this way, weak excitation provides

a weaker restriction than multi-photon scattering, and can in general be well satisfied by

picking sufficiently long pulses. In a practical experiment the clock cycle for generating

entanglement will almost always be long compared to the atom decay rate. This ensures

that all transients have decayed between consecutive cycles of the experiment. If we combine

this requirement with the restriction placed by multi-photon scattering that Ns � 1, then

Eq. 37 is automatically satisfied. Thus, at the point where nonlinearities become important

the system will already have decohered due to multi-photon scattering.

VII. CONCLUSION

We conclude that it appears feasible to entangle a QD and an atom by weakly scattering

light from each system and interfering these fields to produce an appropriate single-photon

detection event that heralds the entanglement. Differential dispersion, atom recoil, and the

multi-photon scattering can all be managed by properly selecting the input pulse duration,

collected solid angle, and input pump power. It is noted that to implement the proposed
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protocol it is necessary to overcome difficult experimental challenges. For example, the

protocol requires phase-locking of all optical pulses for qubit rotation of both atom and

QD, which will require pulling all optical pulses from a common laser source or using mul-

tiple phase-locked lasers, adding to the experimental difficulty. In addition, decay of the

atomic 171Yb+ to other transitions will require periodic re-pumping into the 2D3/2 mani-

fold. Nevertheless, the work we present suggests that entanglement between an atomic and

semiconductor system is within the reach of presently available technological capabilities.
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APPENDIX A: CALCULATION OF TOTAL SCATTERED PHOTON NUMBER

The average number of scattered photons can be calculated by N =
∑

k〈b̂
†
kb̂k〉 =∑

k |βk|2. Plugging Eq. 8 into this expression we obtain

N =
∑
k

π2 g
2
k|L(ω0)|2

γ2
Ω(ωk)ei(kω−k)·r (A1)

→ V

2πc

∫ 2π

0

dφ

∫ π

0

dθ

∫
dωω2 sin θπ2 g

2
k|L(ω0)|2

γ2
Ω(ωk)ei(kω−k)·r (A2)

=
|L(ω0)|2

γ2

d4ω3
0

6~3ε0c3

∫ ∞
−∞

dω|E(ω)|2 (A3)

The amount of energy in the pump beam can be determines using Poynting’s theorem:

W =

∫ ∞
0

dt

∮
E×B

µ0

· dâ

=
A

cµ0

∫ ∞
0

E2(t)dt

where A is the cross sectional area of the pump beam. Using the definition

E(t) =

∫
dωE(ω)e−iωt (A4)
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we attain

W = Aπcε0

∫
dω|E(ω)|2 = Ni~ω0 (A5)

where Ni is the total number of photons in the pump and ω0 is the center frequency of the

quasi-monochromatic pump beam. Defining the photon density ni = Ni/A we then have∫
dω|E(ω)|2 =

~ω0ni
πcε0

(A6)

Plugging this expression back into Eq. A3, and using

γr =
ω3

0d
2

6πε0~c3
(A7)

leads directly to Eq. 9.

APPENDIX B: FIELD AMPLITUDE COLLECTED INTO OPTICAL FIBER

For each frequency ω we define a fiber mode bω. The collection lens and fiber are linear

optical components, which means that the fiber mode is related to the free space modes by

the linear transformation

bω =
∑
k=ω/c

skb̂k (B1)

The sum is carried out over all free space modes that have the same energy as the fiber

mode due to linearity. Unitarity requires that∑
k=ω/c

|sk|2 = 1 (B2)

We define ∆θ as the angle between the k and the input field propagation direction which

is assumed to be along the x axis. We adopt a simplified model that the collection optics

collect all k-vectors satisfying ∆i < ∆θ < ∆o. Thus, for k-vectors satisfying this condition

sk = C, where C is a constant, while sk = 0 for all other k-vectors.

The constant C must be determined from the condition Eq. B2, which results in∑
k=ω/c

|C|2 = 1 (B3)

To evaluate the above sum we make the additional assumption that the lens collects k

vectors propagating very close to the x-axis. In this paraxial wave limit, the sum can be
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converted to an integral as∑
k=ω/c

|C|2 = |C|2 LyLz
(2πc)2

∫
dθ

∫
dφω2 sin θ (B4)

where Ly and Lz are the length of the bounding box from the quantization of the free space

modes in the y and z directions, and angles θ and φ are defined in Fig. 2. From the above

equation we attain

C =
2πc

ω

1√
LyLz

1√
A

(B5)

where A = 2π(cos ∆i − cos ∆o) ≈ π(∆2
o −∆2

i ). Using this expression we then have

βω = 〈bω〉

=
2πc

ω

1√
LyLz

1√
A

∑
[θ,φ]∈[∆φ,∆θ]

〈b̂k〉

where b̂k is given in Eq. 7. We again turn the sum into an integral and perform some

algebraic manipulation to attain

βω = −d
2ω3/2L(δa, γa)Ω(ω)e−iωt

2cγa
√

2ε0~LxA

∫
dθ

∫
dφei(kω−k)·r (B6)

where angles θ and φ are illustrated in Fig. 2. We assume that the input pulse has a narrow

bandwidth centered around ω0 so that we may make the substitutions ω3/2 ≈ ω
3/2
0 and

exp(kω − k) ≈ exp[k0(x̂ − k̂)]. We do not, however, make this approximation for L(δa, γa)

which is a rapidly varying function of ω near resonance. With these approximations we

attain the result stated in Eq. 11 and Eq. 12.

APPENDIX C: CALCULATION OF AVERAGE SCATTERING AMPLITUDE

DUE TO ATOMIC RECOIL

We assume that the collection optics are frequency independent over the bandwidth of

the collected signal. We assume quasi-monochromatic input so that L(δa, γa) = γa/[γa −

i(ωa − ω0)]. We can construct a fiber mode of the form

b̂ =
∑
ω

χE∗(ω)eiωtbω (C1)

where χ is a normalization constant. This is the only mode that the collected field will

couple to. To understand why, we first note that we can construct a complete basis using
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the above mode along with a set of other orthogonal modes that can be calculated using

Schmidt decomposition. We can then calculate the field amplitude using

〈β〉 = 〈b̂〉 =
∑
ω

χE∗(ω)eiωt〈βω〉 (C2)

Since βω is proportional to the complex conjugate of the expansion coefficient χE∗(ω)eiωt, it

will have a maximum overlap with the mode in Eq. C1, and will be orthogonal to all other

modes, ensuring the mode in Eq. C1 is the only one that contains photons.

Unitarity determines the value of χ from∑
ω

|χ|2|E(ω)|2 = 1 (C3)

which leads to

χ =
πc
√

2ε0√
Lx~ω0

1√
n

(C4)

Plugging the above expression into Eq. C2 and turning the sum into an integral we obtain

〈β〉 = B

∫
dθ

∫
dφ〈ei(kω0−k)·r〉 (C5)

where

B =
−d2ω2

0

4πc2ε0~

√
n

A

L(δa, γa)

γa
(C6)

We now use relation Eq. 28 to write

〈β〉 = B

∫
dθ

∫
dφe−2η2(1−cos θ̂ cosφ)(n̄+1/2) (C7)

Because we are working in the paraxial limit we can expand the exponent to second order

in θ̂ and φ. Defining ∆ =

√
θ̂2 + φ2 we have∫

dθ

∫
dφe−2η2(1−cos θ̂ cosφ)(n̄+1/2) = 2π

∫ ∆o

∆i

d∆∆e−η
2∆2

=
e−η

2∆2
o − e−η2∆2

i

η2
(C8)

Taking the limit ∆i → 0 and plugging into the above equation we attain the expression in

Eq. 26.

Similarly, we can write

〈|β|2〉 = |B|2
∫
dθ

∫
dφ

∫
dθ′
∫
dφ′〈e−(k−k′)·r〉 (C9)
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It is straightforward to show that the lowest order contribution to the exponent is fourth

order in θ, θ′, φ, and φ′. Since we are only expanding to second order in these variables, we

have

〈|β|2〉 = |B|2
∫
dθ

∫
dφ

∫
dθ′
∫
dφ′ = |B|2A2 (C10)

which leads directly to Eq. 27.
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