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model

J. Biddle,1 B. Wang,1 D. J. Priour, Jr,1, 2 and S. Das Sarma1

1Condensed Matter Theory Center, Department of Physics,
University of Maryland, College Park, Maryland 20742, USA

2Physics Department, University of Missouri, Kansas City, Missouri 64110, USA
(Dated: October 23, 2018)

Localization properties of particles in one-dimensional incommensurate lattices without interac-
tion are investigated with models beyond the tight-binding Aubry-André (AA) model. Based on
a tight-binding t1 − t2 model with finite next-nearest-neighbor hopping t2, we find the localization
properties qualitatively different from those of the AA model, signaled by the appearance of mobility
edges. We then further go beyond the tight-binding assumption and directly study the system based
on the more fundamental single-particle Schrödinger equation. With this approach, we also observe
the presence of mobility edges and localization properties dependent on incommensuration.
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The physics of quantum transport in random disor-
dered potentials has been a subject of substantial inter-
est for condensed matter physicists for decades. The ex-
tended Bloch waves in a periodic lattice could undergo
a quantum interference induced transition into localized
states due to random disorder by a mechanism commonly
referred to as Anderson localization [1]. Matter waves
can also be localized in deterministic potentials that ex-
hibit some similarities to random disorder [2, 3, 4, 5].
Quasi-periodic potentials, such as incommensurate lat-
tices (the superposition of two or more lattices with in-
commensurate periods), are notable examples and have
been extensively studied with the Aubry-André model
[2]. Such potentials have been shown to exhibit interest-
ing quantum transport phenomena in themselves. Incom-
mensurate potentials, for example, are theorized to have
fractal spectrums [6]. However, it remains challenging to
study these phenomena in solid state experiments, as it
is difficult to systematically control the disorder in solid
state systems. In contrast to the solid state systems, ul-
tracold atoms loaded in optical lattices offer remarkable
controllability over the system parameters, making it an
attractive platform for the study of the localization of
matter waves. Recently, Anderson localization of non-
interacting Bose-Einstein condensates (BEC) has been
observed in a one-dimensional matter waveguide with a
random potential introduced with laser speckles [7]. Sim-
ilar experiments have also been done in quasi-periodic
optical lattices[8, 9].

Localization of noninteracting particles in one dimen-
sional incommensurate lattices is often studied with the
Aubry-André model (AA) with nearest neighbor (nn)
hopping, where one of the lattices is assumed to be rela-
tively weak and can be treated as a perturbation . Within
the framework of the AA model, there is a duality point,
at which a sharp transition from all eigenstates being
extended to all being localized occurs. However, in ul-
tracold atom experiments, one can tune the depth of each

lattice in a controllable way and bring the system out of
the tight-binding regime. To explore the physics of local-
ization for shallow lattices, it is of interest to go beyond
the AA model and the tight-binding assumption [10].

In this work, we first study the tight-binding t1 − t2
model, which extends the AA model by including the
next-nearest neighbor (nnn) hopping. The inclusion of
the nnn hopping destroys the self-duality possessed by
the AA model and the localization properties of the sys-
tem become more complex through the emergence of mo-
bility edges. We then examine the system directly with
the single particle Schrödinger equation. We discretize
the equation and solve it numerically without any fur-
ther assumption. Within this formalism, we also find the
existence of mobility edges, consistent with the t1 − t2
model results, and we find localization properties with
non-trival dependence on incommensuration.

Consider diffuse, noninteracting, ultra-cold atoms in
a one-dimensional incommensurate lattice, where the
atoms can only move along the x-axis. The lattice po-
tential is given by

V (x) =
V0

2
cos(2kLx) +

V1

2
cos(2αkLx+ δ), (1)

where V0 and V1 describe the depth of the primary and
secondary lattices respectively, kL is the wave-vector of
the primary lattice along the x-axis, α is an irrational
number characterizing the degree of incommensurability
between the periods of the two lattices, and δ is an ar-
bitrary phase (in our calculations it is chosen to be zero
for convenience, without loss of generality). When the
depth of the primary lattice is sufficiently large as com-
pared with the recoil energy Er ≡ (~kL)2/2m as well as
the depth of the secondary lattice V1, the physical prop-
erties of the system can be studied with the well-known
single-band tight-binding Aubry-André model:

t(un−1 + un+1) + Vnun = Eun, (2)
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FIG. 1: Inverse participation ratio of all eigenstates for t1−t2
model with α = (

√
5− 1)/2. The size of the system is chosen

to have 1000 sites. The four panels correspond to t2 = 0,
0.01, 0.05, and 0.1 respectively. (t1 is the unit for energy.)
Darker shading corresponds to more extended states while
lighter shading corresponds to more localized states.

in which only the coupling between nearest-neighbors
(nn) is retained and the incommensurate modulating po-
tential Vn = V cos(2παn). The duality point is given
by V/t = 2. The nn hoping term, t, is determined by
the primary potential and can be approximated by the
expression

t ≈ 4√
π
Er(

V0

Er
)3/4exp(−2

√
V0

Er
), (3)

lattice potential and its magnitude can be roughly esti-
mated by applying Gaussian approximation for the Wan-
nier states:

V ≈ V1

2
exp(− α2√

V0/Er

). (4)

We note that V depends on V1, α, and V0/Er. As a näıve
extension to the AA model, we ask what will happen if
the coupling between next-nearest-neighbors is included.
To answer this question, we consider the model:∑

d=1,2

td(un−d + un+d) + Vnun = Eun (5)

where Vn = V cos(2πn). We solve the equation by di-
rect diagonalization. To quantify the localization of the
wave function, we compute the inverse participation ratio
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FIG. 2: Inverse participation ratio on the t2 − V plane for
α = (

√
5 − 1)/2 based on the t1 − t2 model. The four pan-

els correspond to four eigenstates labeled by i, with ascend-
ing eigenenergies. Blue regions correspond to more extended
states and red regions correspond to more localized states.

(IPR):

IPR(i) =
∑

n |u
(i)
n |4

(
∑

n |u
(i)
n |2)2

, (6)

where the superscript i denote the i-th eigenstate (or-
dered according to energy from low to high). For spa-
tially extended states, IPR approaches zero whereas it is
finite for localized states [11].

Fig. 1 shows the IPR values of all eigenstates as a
function of the effective strength V of the secondary
lattice based on the tight-binding t1 − t2 model with
α = (

√
5 − 1)/2 for various values of t2 (t1 is chosen

to be unit of energy). The calculation for Fig. 1 is done
for a system with 1000 sites in the primary lattice. For
small values of t2 (e.g. t2 = 0.01), the localization prop-
erties of the system have essentially the same features as
those determined by the AA model. However, when t2 =
0.05 or higher, AA duality is clearly destroyed and local-
ization transitions appear to be energy dependent. For
lower energies, the transition can appear for V < 2t1 and
for higher energies, the transition can appear for V > 2t1.

In order to demonstrate the dependence of the local-
ization transition on t2 , we show the distribution of IPR
on the t2−V plane for four different eigenfunctions with
α = (

√
5− 1)/2 in Fig. 2. For the calculation, the size of

the system is chosen to be 40,000. At t2 = 0, the t1 − t2
model reduces to the AA model, and from Fig. 2, one
can see the sharp transition when V is increased across
the duality point V = 2. However, the localization prop-
erty of the system is greatly complicated when t2 is finite.
Besides the appearance of mobility edges, our results also
reveal that the dependence of the localization property
on t2 is not monotonic, e.g. at fixed V < 2 when t2 is
increased the ground state could be tuned from extended
to localized, but further increasing of t2 could bring the
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ground state into an extended state again.
We infer from the results presented in Figs. 1 and 2

that 1) the AA duality is destroyed by having t2 6= 0;
2) instead of the V = 2t1 dual point, the system has
energy dependent mobility edges for t2 6= 0; 3) the pre-
cise localization condition deviates up or down from the
V = 2t1 AA condition depending on the energy of the
eigenstate and the value of t2. As illustrated by Figs.
1 and 2, the t1 − t2 model itself could be of interest.
However, for the study of localization properties in 1D
incommensurate lattices, its validity must be dealt with
caution, especially when t2 is not sufficiently small as
compared with t1. The tight binding nn and nnn hoping
integrals t1 and t2 can be estimated with the Wannier
basis, which is fully determined by the primary lattice.
One can easily estimate that when V0 = 3Er, the ra-
tio of t2/t1 is on the order of 10%. To get higher t2/t1
ratio, one will need to tune the lattice potential shal-
lower and should expect the tight-binding approximation
to break down at some point. Alternatively, to study the
interesting physics of localization in this regime, we nu-
merically solve the single-particle Schrödinger equation
without any tight-binding approximation:

(− ~2

2m
d2

dx2
+ V (x))ψ(x) = Eψ(x). (7)

To achieve this goal, we discretize the Schrodinger equa-
tion in the position basis with a finite system size of
length L = Na, where a is the lattice constant of
the primary lattice associated with V0. The continuous
Schrödinger equation is now cast into the following form:

(− ~2

2m
)
ψn+1 − 2ψn + ψn−1

δ2
+

(V0 cos(2kLnδ) + V1 cos(2kLαnδ))ψn = Eψn, (8)

where δ = Na/M is the step interval for the discretiza-
tion with M denoting the total number of steps. Then we
proceed by diagonalizing the M ×M matrix of the dis-
cretized Hamiltonian and study the first N eigenstates
with smallest energy eigenvalues. These states would
correspond to the ground band for the case with no sec-
ondary lattice (i.e. V1 = 0). In our calculations for the
following results, we have set N = 500, M = 80, 000, and
2kL= 1.

IPR values (obtained with Eq.( 6) by replacing un with
ψn) of the first N eigenstates as a function of the sec-
ondary lattice strength V1 are shown in Fig. 3 for a
primary lattice strength of V0 = 30Er. In Fig. 3(a) the
irrational ratio α is set to be the inverse golden mean,
(
√

5 − 1)/2 whereas in Fig. 3(b), α = π/2. The bold-
dashed line represents the AA duality point calculated
with Eqs. (3) and (4). We can see that the localization
properties shown in Fig. 3 closely resemble the well-
known results from the AA model (see top panel in Fig.
1). We do note, however, that the IPR results of Fig.

FIG. 3: Inverse participation ratio obtained by solving
the Schrödinger equation and calculated AA duality point
(dashed line) at V0 = 30Er (a) α = (

√
5− 1)/2; (b) α = π/2.

FIG. 4: (a) Inverse participation ratio obtained by solving
the Schrödinger equation and calculated AA duality point
(dashed line) at V0 = 2Er (a) α = (

√
5− 1)/2, solid lines are

estimated location of localization transitions; (b) α = π/2.

3 indicate a dependence on the specific value of α with
α = (

√
5 − 1)/2 providing a sharper AA duality than

α = π/2.
In Fig. 4(a) we show the IPR values for the case of

V0 = 2Er and α = (
√

5 − 1)/2. In this case, the eigen-
states no longer appear to localize all at once, but in dis-
crete steps (represented by the solid lines in the figure).
This localization behavior is similar to what we observed
in the t1−t2 model (see bottom panel in Fig. 1). Also the
transitions occur at fairly large values for V1, where the
secondary lattice can no longer be treated as a pertur-
bation. We have also studied the cases where V0 = 2Er,
α = π/2 (Fig. 4(b)) and α = (

√
5 + 1)/2 (not shown in

the figure). In these cases no localization was observed
in the eigenfunctions for any value of V1 investigated (up
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FIG. 5: Inverse participation ratios of the ground state wave-
function for the case V0 = V1 and α equal to fractional multi-
ples of (

√
5− 1)/2. The solid blue line represents an approx-

imate analytical boundary between localized and extended
regions based on the AA duality point.

to V1 = V0). This suggests that incommensurability be-
tween the lattices is not a sufficient condition to observe
localization for shallow cases.

To examine the dependence of the localization transi-
tions on α, we set V0 = V1 and calculate the IPR of the
ground state for various values of V0 and α (the values of
α examined are all proportional to (

√
5 − 1)/2). These

results are shown in Fig. 5. We see fairly distinct re-
gions of localized and extended states, with localization
tending towards areas of larger values for V0 and smaller
magnitudes for α. The blue line in Fig. 5 represents
the set of points (α,V0) such that the AA duality point
(calculated from Eqs. (3) and (4)) is equal to the lat-
tice strength V0. These sets of points serve as a simple
heuristic estimation of the boundary between localized
and extended states based on AA duality condition. Al-
though in principle we should not expect the AA duality
point obtained from Eqs. (3) and (4) to be applicable
in the case of shallow lattices, this simple analytical re-
sult is in good qualitative agreement with our numerical
findings.

We now briefly discuss how some of these results may
be observed in cold atom experiments. We consider a
diffuse BEC that is loaded into an incommensurate op-
tical lattice, confined by a harmonic trap, Vtrap = Ωx2.
We assume that the diffuse gas is prepared in the ground
state. At time T = 0, the harmonic trap is suddenly
turned off and the BEC is allowed to diffuse. Localiza-
tion can be observed by monitoring the IPR of the den-
sity wave function over time. In Fig. 6, we present the
calculated values for the IPR as a function of V1 for the
wave function after a fixed period of time, T0 ≈ ~/Er,
has passed since the trap was turned off for the cases with
V0 = 2Er, Ω/Er ≈ 10−7, α = (

√
5 − 1)/2 and α = π/2.
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FIG. 6: Inverse participation ratio of ground state wavefunc-
tion at time T0 ≈ ~/Er after the trap potential Vtrap = Ωx2

has been turned off (Ω/Er ≈ 10−7).

In the figure, we see the two cases are similarly delocal-
ized for small values of V1. But for larger values of V1, the
IPR for the α = (

√
5−1)/2 case begins to grow, showing

increasing degree of localization, while in the α = π/2
case it remains constant.

In conclusion, we have studied the localization proper-
ties of noninteracting particles in a one-dimensional in-
commensurate optical lattice system based on a tight-
binding t1 − t2 model with nearest-neighbor as well as
next-nearest-neighbor hopping. We reveal the emergence
of mobility edges when the next-nearest-neighbor hop-
ping is finite. We have also gone beyond the tight-binding
approximation by directly modeling the system with the
fundamental single-particle Schrödinger equation, which
is expected to provide more reliable theoretical descrip-
tion of the system especially for the case with shallow pri-
mary lattice potential. By diagonalizing the discretized
Hamiltonian, we numerically solve the Schrödinger equa-
tion. Our results clearly show the existence of mobility
edges. Our study also reveals that the emergence of lo-
calization is sensitive to the magnitude of the irrational
ratio α of the incommensurate lattice potentials when the
system is well outside of the tight-binding regime. Our
results also establish the fragile nature of the AA duality
which gives way to mobility edges as soon as longer range
hopping, even at the nnn level, is turned on. It will be
interesting to verify our predictions about the sensitive
qualitative dependence of 1D incommensurate localiza-
tion on V0, V1, Er, and α through experiments in cold
atomic systems [7, 8, 9].
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