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Detecting Entanglement with Jarzynski’s Equality
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We present a method for detecting the entanglement of a state using non-equilibrium processes.
A comparison of relative entropies allows us to construct an entanglement witness. The relative
entropy can further be related to the quantum Jarzynski equality, allowing non-equilibrium work to
be used in entanglement detection. To exemplify our results, we consider two different spin chains.
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In quantum information theory, entanglement is con-
sidered not only an interesting phenomenon, but also a
resource which can be used in quantum computation.
Entanglement has therefore been the topic of much re-
search. A separable state can be written as a convex
sum of pure product states, σ =

∑

i piσ
1
i ⊗ σ2

i ⊗ · · · ⊗ σn
i

where the pis are the weights of the product states, σj
i ,

with
∑

i pi = 1, while an entangled state cannot. Many
methods have been devised to measure and detect en-
tanglement, even for thermal and for many-body sys-
tems [1]. The entanglement witness [2] is an expectation
value of an operator which is bounded for any separable
state, whereas entangled states can exceed this bound. A
thermodynamic witness allows us to use thermodynamic
quantities such as the magnetic susceptibility [3] to de-
tect entanglement. The major advantage of using a such
a witness is that we can detect thermal many-body en-
tanglement using experimentally measurable quantities.
Thus far, these thermodynamic witnesses have only

been used for detecting entanglement in equilibrium sys-
tems. However, a result from condensed matter theory,
Jarzynski’s equality [4], allows the change in free energy
between two equilibrium states to be related to the non-
equilibrium work done needed to drive the system from
one state to the other. While the work done can be mea-
sured or calculated in an experiment, the change in free
energy cannot. Thus Jarzynski’s equality can be used to
experimentally estimate the change in free energy dur-
ing a non-equilibrium process [5]. It is the aim of this
letter to use Jarzynski’s equality to witness equilibrium
entanglement using non-equilibrium processes. Our work
also raises the exciting possibility of using this witness to
detect entanglement in biological systems.
In our construction of an entanglement witness, we use

the relative entropy, a directed distance from an initial
state ρi to a final state ρf , given by

S(ρf ||ρi) = tr(ρf log ρf )− tr(ρf log ρi). (1)

This is a measure of entanglement [6] when ρi = σcss

is the closest separable state to ρf . Formally, we have

for the relative entropy of entanglement, ERE(ρf ) =
minρi∈S S(ρf ||ρi), where we take the minimum over the
set of separable states S, to find σcss. The relative en-
tropy can measure entanglement for both equilibrium
and non-equilibrium, pure and mixed states, and there-
fore for thermal, open and closed systems.
We can now construct an entanglement witness using

the relative entropy by introducing an arbitrary state ρ∗.
Since the set of separable states is convex, and the rela-
tive entropy is a directed distance, if the distance from
σcss to ρ is larger than the distance from ρ∗ to ρ, then
ρ∗ is entangled. Fig. (1) gives a two dimensional repre-
sentation of this idea. Hence our witness is

S(ρ||σcss) ≥ S(ρ||ρ∗). (2)

If ρ∗ satisfies this inequality, we know it must be entan-
gled. The witness is best when ρ is a pure state and hence
is located at the edge of the outer ellipse in Fig. (1). We
will refer to this inequality as the relative entropy wit-
ness. We note that this witness can detect entanglement
in both equilibrium and non-equilibrium states.
Although originally a classical result, it has been shown

that Jarzynski’s equality,

〈e−βW〉 = e−β∆F , (3)

where β−1 is the temperature, W is the work done on the
system and ∆F is the change in free energy between the
initial and final equilibrium states, is valid for both open
[7] and closed quantum systems [8, 9, 10]. The brackets
〈· · ·〉 denote an average over all possible realisations of
the work, or trajectories in phase space. Both the path
and the rate at which the system is driven are fixed for
the equality, though each are arbitrary.
There are several different methods (for a review, see

reference [11]), in the literature for deriving a quantum
version of Jarzynski’s equality, however we discuss the
one which has been successfully theoretically verified [12].
In a closed quantum system, instead of classical trajec-
tories in phase space, we define the quantum equivalent
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FIG. 1: This is a 2d representation of the multidimensional
Hilbert space. The small oval represents the set of separable
states, and the large oval the set of all states. σcm is a com-
pletely mixed state, and σcss is the closest separable state to
ρ. Any state along the pink curve, such as σ′, has the same
“distance” in terms of the relative entropy as σcss to ρ.

of quantum transition probabilities [8, 9, 10]. An ini-
tial Hamiltonian Hi and a final Hamiltonian Hf have
eigenvalues Ei

n, E
f
m and eigenvectors |φi

n〉, |φ
f
m〉 respec-

tively. We perform a measurement of the energy at time
ti and then again at tf so that the system is in a spe-
cific energy eigenstate. The quantum transition prob-
abilities are then defined as qm,n = |〈φf

m|U(tf )|φ
i
n〉|

2

where U(tf ) = T̂<e
−i

R tf
0

H(s)ds is the time evolution

operator, and T̂< is the time ordering operator. qm,n

can be interpreted as the probability that the final state
of the system is |φf

m〉 given that it was initially in the
state |φi

n〉. The average is then given as 〈e−βW〉 =
∑

n(e
−βEi

n/Zi)
∑

m qm,ne
−β(Ef

m−Ei
n) where the work is

defined as W = Ef
m − Ei

n and Zi = tr(e−βHi) is the
initial partition function.

Consider now an open quantum system (subsystem,
S) interacting with a bath, B, with total Hamiltonian
H(t) = HS(t) +HSB +HB and arbitrary coupling, HSB

[7]. As only the subsystem is time dependent, the change
in energy of the total system equals the work done on the
subsystem. Hence the average in equation (3) is identical
to the closed system case. Further, the free energy of the
total system is given by F (t) = FS(t) + FB . This allows
Jarzynski’s equality to be written 〈e−βW〉 = e−β∆FS [7].

Other fluctuation theorems have also been derived.
One equality which will be useful [9] is 〈e−(βfEf−βiEi)〉 =
e−(βfFf−βiFi). This demonstrates that a change in tem-
perature between the initial and final state can also be
taken into account. However, unless βi = βf , the quan-
tity (βfEf −βiEi) no longer relates to work. We refer to
this equation as the Jarzynski-Tasaki equality.

Consider again the relative entropy, equation (1). We
now restrict each of the states to be in thermal equi-
librium. Thus we have initial and final states, σcss =
e−βiHi/Zi and ρ = e−βfHf /Zf respectively. Similarly,
ρ∗ = e−β∗H∗

/Z∗. Expanding equation (1), we can write
the relative entropy in terms of a change in free en-
ergy [13, 14], S(ρ||σcss) = ∆(βF ) − tr(ρf∆(βH)) where

∆(βF ) = βfFf −βiFi and ∆(βH) = βfHf −βiHi. Com-
bining this identity with the Jarzynski-Tasaki equality,
we find that

S(ρ||σcss) = −tr(ρ∆(βH)) − ln〈e−(βfEf−βiEi)〉. (4)

Equation (4) relates the entanglement to the average
change in energy at different temperatures (in a possi-
bly driven system). When βf = βi, we can instead relate
the entanglement to the average work done in creating
the quantum correlations of ρ from the purely classical
correlations of σcss. In addition to this being an inter-
esting result in itself, we can also use this definition of
the relative entropy in the entanglement witness, equa-
tion (2). We call this the relative Jarzynski witness and
discuss this in more detail below.
An open quantum system (or subsystem) can also

be considered. As discussed previously, such systems
also obey Jarzynski’s equality, 〈e−βW〉 = e−β∆FS where
FS(t) is the free energy of the subsystem. We define
Y (t) = tr(e−β(HS(t)+HSB+HB)) as the partition function
of the total system and ZB = tr(e−βHB ) as the partition
function of the bath. The partition function of the sub-
system, ZS(t) = tr(e−βFS ) = Y (t)/ZB can be associated
with an effective Hamiltonian [7],

Heff (t) = −
1

β
ln

[
trB(e

−β(HS(t)+HSB+HB))

trB(e−βHB )

]

, (5)

so that ZS(t) = trS(e
−βHeff (t)). Using these equations,

and since the initial and final states must be in equi-

librium, we have ρS = e−βHeff (t)/ZS(t) for each state.
This only represents the state of the system when it is in
equilibrium.
The relative entropy can now be defined in terms of the

effective Hamiltonian and the work done on the subsys-
tem, S(ρS ||σS,css) = −βtr[ρS(H

eff
f −Heff

i )]− ln〈e−βW〉.
Hence we can write the entanglement witness for an
open quantum system, S(ρS ||σS,css) ≥ S(ρS ||ρ

∗
S), where

ρ∗S = e−βHeff,∗

/Z∗
S as the state is in equilibrium.

We have shown that it is possible to detect entangle-
ment in a state ρ∗ or ρ∗S using a non-equilibrium process.
There are three ways we can use the entanglement wit-
ness. First, if we have a specific state ρ∗ in mind but
don’t know whether it is entangled, the witness allows us
to detect entanglement in this state. Second, if we have
the Hamiltonian of a system, we can detect entanglement
in that system. We ask for which values of the parame-
ters of the system, such as a magnetic field, is the system
entangled? In this case we find out in which ρ∗s of the
system entanglement can be detected. Computationally,
linking equation (2) to Jarzynski’s equality simply gives
a different way to calculate the relative entropy. It is
in the third method, the experimental applications, that
are exciting in this respect.
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Experimentally, we can relate the relative Jarzynski
witness to non-equilibrium processes. For the closed
quantum system when βf = βi, and the open quantum
system, this corresponds to a series of measurements. We
drop the subscript S that denotes the subsystem in the
open quantum system here since the work done in the
open system is equal to the change in energy of the to-
tal, closed, system. Hence the discussion is valid for both
open and closed systems.
Since we consider a quantum system, measurements

of the energy on many replicas of the same system will
give different values. As the quantum Jarzynski equality
demonstrates, each time we measure an initial and a final
energy of a system to calculate the work, we obtain differ-
ent results. After many measurements of the initial state
(σcss) and the final state (ρ), we can calculate the average
〈e−βW〉. We then repeat this procedure with initial state
ρ∗ and compare the resulting experimental values of the
relative entropy. The value of tr(ρ(Hf − Hi)) can also
be experimentally measured. For instance, if a magnetic
field is driving the process, this corresponds to the change
in the field multiplied by the final state magnetisation.
We can now detect entanglement in ρ∗.
When βf 6= βi we can use the Jarzynski-Tasaki equal-

ity and a similar argument holds. However, it is no longer
the work done that is measured. Instead we measure the
initial and final temperatures of the system in addition
to the energy eigenvalues.
A problem with using our Jarzynski witness is the pos-

sibility that σcss is not an equilibrium state of the sys-
tem, and therefore we cannot define Jarzynski’s equal-
ity. However, we find that we do not require σcss to
be in equilibrium itself. Instead, we require only that
we have an equilibrium state σ′ of the system where
S(ρ||σcss) = S(ρ||σ′). The states satisfying this equal-
ity are represented by the pink curve in Fig. (1).
We now illustrate the entanglement witness with two

examples. We first consider a three qubit XXZ spin
chain as we can define both the initial and final states
to be in equilibrium. In the second example, we use a
seven qubit chain to demonstrate what happens when
the closest separable state is not in equilibrium and we
must use a different equilibrium state σ′.
For each example, we have calculated the witness us-

ing the relative entropy witness and using the Jarzynski-
Tasaki witness, and find both give the correct results.
This also allows us to successfully numerically verify
the Jarzynski-Taskaki equality. We calculate the time
evolution operator exactly in the three qubit case as
[H(t1), H(t2)] = 0, and using the method described in
[15] for seven qubits as [H(t1), H(t2)] 6= 0. This method
allows an approximation of U(tf ) to be calculated us-

ing U(tf ) =
∏M−1

n=0 e−iH(tn)∆t. We use ∆t = 0.001 to
give accurate results. We use these examples rather than
that of an open quantum system since the closest sepa-
rable state to ρn given below is known. This allows us

FIG. 2: This plots Jz versus B and T when N = 3, and
shows the values for which we can detect entanglement in ρ∗.
The state is entangled between the surface of the plot and the
axes.

to do some of the calculation analytically which allows
further insight into the problem.
We take our state to be close to the pure symmetric

state, ρn = (1/n)Ŝ(|00 · · · 01〉)Ŝ(〈00 · · · 01|) where Ŝ is
the total symmetrisation operator, whose closest separa-
ble state [16, 17] is known to be

σcss,n =
1

nn

n∑

k=0

(n−1)kŜ(| 000
︸︷︷︸

k

... 111
︸︷︷︸

n−k

〉)Ŝ(〈000
︸︷︷︸

k

... 111
︸︷︷︸

n−k

|).

(6)
We will identify the states ρn and σcss,n with thermal
equilibrium states, e−βH/Z, and hence we will not have
exactly the states above. However, we find that the rela-
tive entropy calculated in each case is identical to many
significant figures.
The Hamiltonian of the XXZ spin chain is

H = −

n∑

l=1

[
J

2

(
σx
l σ

x
l+1 + σy

l σ
y
l+1

)
+ Jzσ

z
l σ

z
l+1 +Bσz

l

]

,

(7)
where J and Jz are coupling strengths, and B is a mag-
netic field.
For our first example, the three qubit spin chain,

we require Jz and B to be time dependent. Both ρ3
and σcss,3 can be written as thermal equilibrium states,
ρ = e−βH/Z, of the Hamiltonian. For the initial state
to be σcss,3, we require that Bi = β−1 log(2)/2 and
Jz,i = (2J − β−1 log(3))/4 at a low temperature. For
concreteness, we take β−1 = 0.01 and J = 1. For the
final state to be ρ3, we have Bf = 1/2 and Jz,f = 0.
We can now detect entanglement in an arbitrary equi-

librium state, ρ∗3 using the entanglement witness. Fig.
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FIG. 3: This plots Jz versus B and T when N = 7, and
shows the values for which we can detect entanglement in ρ∗.
The state is entangled between the surface of the plot and the
axes.

(2) shows the values of the magnetic field, Jz and the
temperature for which we can detect entanglement: we
can detect that ρ∗3 is entangled in the region between
the surface and the axes. Hence, experimentally driving
a system from the state ρ∗3 with values of B, Jz and T
that are within the surface to the state ρ will allow en-
tanglement to be detected on comparison with the same
process starting at σcss,3.
Our second example is the 7 qubit spin chain, with

B time dependent and Jz = 0. For any 7 qubit
chain, we cannot identify σcss,7 with a thermal equi-
librium state, and hence we use σ′

7 = [(77 − 7 ×
66)|0000000〉〈0000000|+66Ŝ(|0000001〉)Ŝ(〈0000001|)]/77

instead. For the initial state to be σ′
7, we require that

Bi = β−1 log[70993/46656]/2+ J at a low temperature.
For concreteness, we again take β−1 = 0.01 and J = 1,
and for the final state to be ρ7, we have Bf = 0.92.
We can now detect the entanglement of a state ρ∗7 as

before. Fig. (3) shows the values of B, Jz and the tem-
perature for which we can detect entanglement. Again,
we can detect that ρ∗7 is entangled in the region between
the surface and the axes.
We note that although Jz = 0 for both the initial and

final state Hamiltonians, this is not necessarily so for ρ∗.
Indeed, we can detect when ρ∗ is entangled in many other
situations. This is due to the fact that the Hilbert space
of the Hamiltonian is spanned by the set of n compu-
tational eigenvectors, {|00 · · ·0〉, |00 · · · 01〉 · · · |11 · · · 1〉}.
Hence the entanglement witness applies to any state ρ∗

that exists within this Hilbert space. For example, we
could introduce a Dzyaloshinskii-Moriya interaction to
the Hamiltonian of ρ∗ and still use the witness to detect
entanglement in the system.

A possible application of this work is the detection of
entanglement in biological systems. The photosynthetic
bacteria, Prosthecochloris aestuarii, can be modelled us-
ing a seven spin Hamiltonian. Using experimental values
[18, 19] and simplifying the model to an isolated system,
we can use this Hamiltonian to construct a specific state
ρ∗. The 7 qubit chain defined above can then be used
in the witness. In this simplified model, we do not de-
tect any entanglement. However, we expect that the full
model, and a more appropriate Hamiltonian Hf which is
closer to H∗ will allow entanglement to be detected.

We have presented a witness which uses the relative
entropy to detect entanglement. When the states are in
equilibrium, we have shown that Jarzynski’s equality can
be used to detect entanglement. Hence this witness en-
ables entanglement to be detected using non-equilibrium
processes. Using this witness, we have considered two
examples. In one we can define an equilibrium closest
separable state to ρ, and in the other we instead define
an entangled equilibrium state which has the same di-
rected distance to ρ in terms of the relative entropy.
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