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We explore the connection between quantum brachistochrone (time-optimal) evolution of a three-
qubit system and its residual entanglement called three-tangle. The result shows that the entan-
glement between two qubits is not required for some brachistochrone evolutions of a three-qubit
system. However, the evolution between two distinct states cannot be implemented without its
three-tangle, except for the trivial cases in which less than three qubits attend evolution. Although
both the probability density function of the time-averaged three-tangle and that of the time-averaged
squared concurrence between two subsystems become more and more uniform with the decrease in
angles of separation between an initial state and a final state, the features of their most probable

values exhibit a different trend.

PACS numbers: 03.65.Xp, 03.65.Vf, 03.65.Ca, 03.67.Lx

I. INTRODUCTION

The speed of the evolution of a quantum system gov-
erned by a given energy constraint is very important in
quantum information as it provides a useful tool for peo-
ple to estimate the fundamental limits that basic physical
laws impose on how fast information can be processed or
transmitted [1, 12, 13, 4]. Also, one can exploit the limit
on the speed of quantum evolution to construct an opti-
mal quantum gate with which the quantum time required
for a system to evolve between two mutually orthogonal
states is the shortest one [5] . However, two elementary
relations limit the speed of quantum evolution. On the
one hand, the time-energy uncertainty relation [6] im-
poses a lower limit on the time interval T' taken by a
quantum system to evolve from a given state to its or-
thogonal one. This bound on T is related to the spread

of energy of the system AFE, ie., T > ﬁ. On the other

hand, Margolus and Levitin [1] showed that such a quan-
tity is also related to the fixed average energy of the sys-
tem E, ie., T > &. These two relations together estab-
lish the limit time of quantum evolution speed, i.e., the
minimum time T(E, AFE) required for a system with the
energy E and the energy spread AFE to evolve through
two orthogonal states. Recently, Giovannetti, Lloyd and
Maccone |7, 8, 9] showed that there is an interesting con-
nection between quantum entanglement and the evolu-
tion speed of quantum systems. Some groups |17, 18,19, [10]
have studied the connection between entanglement and
the speed of evolution in mixed states. This connection
has been extensively studied for the evolution between
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orthogonal and nonorthogonal, pure and mixed, as well
as bipartite and multipartite cases |11, 112,13, 14, 115, [16].

Quantum brachistochrone evolution problem is used to
deal with the Hamiltonian generating the optimal quan-
tum evolution [¢(t)) between two prescribed states |¢r)
and |¢p) [17). That is, it searches the shortest time in-
terval T' taken by a quantum system for evolving from an
original state to a final one. This problem attracts a lot of
attention [17,18,119]. For instance, Carlini et al. [17] pre-
sented a general framework for finding the time-optimal
evolution and the optimal Hamiltonian for quantum sys-
tem with a given set of initial and final states. Brody and
Hook [18] established an elementary derivation of the op-
timum Hamiltonian, under constraints on its eigenvalues,
that generates the unitary transformation |¢;) — |¢F)
in the shortest duration. Carlini et al. [19] investigated
quantum brachistochrone evolution of mixed states.

Recently, Borras et al. |15] investigated the role of
entanglement in quantum brachistochrone evolution of
quantum system in a pure state and found that ” brachis-
tochrone quantum evolution between orthogonal states
cannot be implemented without entanglement”. More-
over, they |16] discussed quantum brachistochrone evolu-
tion of systems of two identical particles and found that
entanglement plays a fundamental role in the brachis-
tochrone evolution of composite quantum systems. That
is, quantum brachistochrone evolution of a composite
quantum systems composed of distinguishable subsys-
tems cannot be implemented without entanglement if
there are at least two subsystems attending evolutions.
In these two works [15, [16], they gave out the connection
between the entanglement of two subsystems (i.e., the lin-
ear entropy of two subsystems [15] or their squared con-
currence C? [16]) and time-optimal quantum evolutions
in the cases of two-qubit systems, two-qutrit systems and
three-qubit systems.
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In three-qubit systems, there is another entanglement
shared by all the three qubits, i.e., the so-called residual
entanglement by Coffman, Kundu, and Wootters [20]. It
is termed as three-tangle 74 ¢ [21] and can be expressed

s [20]

012407 (1)

where C4(pc) is the concurrence of the two subsystems A
and BC'. In detail, concurrence is a useful tool for quan-
tifying the entanglement of bipartite quantum systems
and it is given by [22]

OAB = max{O, /\1 —

TABC = Cfx(Bc) - CE&B -

AQ _)\3 _)\4}7 (2)

where A1 > Ao > A3 > A4 are the square roots of the
eigenvalues of the matrix pap(o; ® of)pip(o) @ ol).
Here pap is the matrix of the bipartite quantum system
AB and p% g is its complex conjugation. a is the Pauli
matrix expressed in the same basis as

ay:(?‘oi). 3)

Different from concurrence Cy(pcy which is shared only
by two subsystems A and BC, T4pc is real entanglement
shared among the three particles of the system. That is,
it is invariant under permutations of the three qubits,
i.e., TABC = TBCA = TCAB-

In this paper, we will explore the connection between
three-tangle 74pc and quantum brachistochrone evolu-
tion of a three-qubit system. Our result shows that in
some special cases of quantum brachistochrone evolu-
tion of a three-qubit system, the entanglement between
two subsystems C% 5 (C3.) is not required. However,
the evolution between two distinct states cannot be im-
plemented without three-tangle 7, except for the trivial
cases in which there are less than three qubits attending
quantum brachistochrone evolution. Our result is tighter
than that in Ref.[15] for quantum brachistochrone evolu-
tion of a three-qubit system. Moreover, we find that both
the probability density function of the time-averaged
three-tangle and that of the time-averaged squared con-
currence between two subsystems become more and more
uniform with the decrease in angles of separation between
an initial state and a final state, but the features of their
most probable values exhibit a different trend.

The paper is organized as follows. In Sec. II A, we de-
scribe the way for the calculation of time averaged three-
tangle in quantum brachistochrone evolution. In Sec. II
B, we discuss the role of three-tangle 74p¢ in quantum
brachistochrone evolution and find that brachistochrone
evolutions cannot be implemented without 74pc. How-
ever, the entanglement of each two qubits is not neces-
sary in some brachistochrone evolutions. In Secs. III
A and IIT B, we give the probability density of (7) in
quantum brachistochrone evolutions between two sym-
metric states with the different angles of separation
(0/2 = w/8,7/4,31/8,7/2) and that between two gen-
eral states, respectively. A brief discussion and summary
are given in Sec. IV.

II. TIME AVERAGED ENTANGLEMENT
DURING BRACHISTOCHRONE EVOLUTION

A. Time averaged three-tangle in quantum
brachistochrone evolution

Quantum brachistochrone evolution problem means
searching the shortest possible time for generating the op-
timal quantum evolution [1(¢)) from an initial quantum
state |¥y) to a final quantum state |¥ ) under the con-
straint that the difference between the maximum eigenen-
ergy and the minimum one of the Hamiltonians Hrp
generatmg the unitary transformation |¥;) — |Up) =

e 7" |¥;) is not more than a given constant energy 2w.
This constraint is necessary as it is easy to implement
a quantum evolution connecting the two alluded states
and taking an arbitrarily small time 7T if the differences
between the eigenenergies of the Hamiltonians are arbi-
trarily large |[15]. The time-optimal evolution is given by
[15, [17, 18]

wt cosy 0
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Here |¢(0)) = |¥;) and |[¢(T)) = |¥p) represent the
initial state and the final one, respectively, and
ho
T=—. 5
5 ()

0 can be regarded as the angle of separation of the initial
and the final states. If this pair of states are orthogonal,
e., <\I/[|\I/F> =0 (9 = 7T), then

wh
T = %a (6)
W) = cos(% )|‘1’1>+Sln( )|‘1’F> (7)

During the time-optimal evolution, the time averaged
three-tangle can be calculated as follows

T
w0 = 7 [ o )

where 7(¥(t)) is the three-tangle of a three-qubit system
in the state ¥ 4pc(t). For an arbitrary three-qubit pure
state

W) ase =Y agrlijk)ase, (5% €{0,1}),  (9)

its three-tangle Tapc(¥) can be calculated as follows:
[20]

TAB()(\I/) =4|d1 —2d2-‘r4d3|, (10)



where
di = agopaii; + agp1aT0 + ag10a301 + A00a011
dy = apoo@111G1000011 + Q000A111A1010010
+ @poo®111@110G001 + G011A10001010010
+ @011@100@1100001 + A010G101@1100001,
d3 = appo@110a101G011 + G111@001A0104100- (11)

For example, the three-tangle 7 in a standard
Greenberger-Horne-Zeilinger (GHZ) state |GHZ) =
%(|000> +]111)) is 1 and that in a W state |WW) =

2=(1001) +010) +[100)) is 0.

B. Role of three-tangle in quantum
brachistochrone evolution

Borras et al. [15, [16] showed that quantum brachis-
tochrone evolution between orthogonal states cannot be
implemented without the typical entanglement of two
subsystems (such as linear entropy or concurrence). For
a three-qubit entangled quantum system, its concurrence
satisfies the following relation,

That is, Ci( BO) includes three parts. Our question is,
is each term of the three parts in 0124(3()) necessary in a
quantum brachistochrone evolution?

Let us consider two specific cases of time-optimal evo-
lution of three-qubit symmetric states with the following
two pairs of initial and final states to analyze the role of
the three terms C3 5, C%., and Tapc.

(i) o) = %(I110>+I101>+|011>)—>I‘If}w>
CoSw sino
= \/§(|000>+|111>)+W(|001>
+ [010) 4 [100)), (13)
(i) |v2) = %<|ooo>—z'|111>>%|w%>
— L j000y = j111Y), (14)
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Here (U}|9%) =0 (j = 1,2).

In the case (i), the three-tangle 74pc in the initial
state |U1) is 0. The final state |U}.) is a superposition
of GHZ) and |W) and its three-tangle is determined by
the coefficient . When o = 0 the final state is a |GH Z)
state and its three-tangle is 1. When a = 7 the final
state is a |W) state and its three-tangle is 0. During
the time-optimal evolution, the state of the three-qubit
system ABC' at the time ¢ is described by Eq.[@). Let
£ = %L, the state can be written as

|‘I’(§,O¢)>ABC = cosé (|110> + |101> + |011>)ABC

L
V3

cosa
+ sin&[——=(|000) + |111
3| 7 (1000) 4 [111)) aBc
sina
+ W(|100> +|010) 4+ [001)) ac]-
(15)
The three-tangle in the state |¥ (€, a))apc is given by
1 1
7€, a)apc = 4|Zsin4§cos4a - gsin2§coszﬁsin2a
2
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The time average three-tangle can be calculated by

_|_

sin’¢sindacosal. (16)
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FIG. 1: Plot of (7(a)) as a function of o (o € [0, §]) for the
time-optimal evolutions from |¥r)1 to [Ur)1.

The relation between the time averaged three-tangle
(t(or)) and the parameter « is shown in Fig.l. For

W} = [W) = Z5(]110) + [101) + [011)) — |U}) =
|GHZ) = %(|000> +[111)) (a = 0), (7(0)) = 0.7215; for
[W7) = 5= (1110) +[101) +[011)) — [T}) = —=(|001) +
|010) 4 |100)) (o« = 7/2), (r(7/2)) = 0.1667. From Fig[l]
one can see that the time averaged three-tangle is maxi-
mal when the three-qubit quantum system evolves from

the state |WW) = %(|110> + |101) + |011)) to the state
|GHZ) = %(|000> + |111)). Moreover, the time aver-
aged three-tangle is larger than zero, which means the
three-tangle Tapc = 1 is necessary in these evolutions.

In the case (ii), the state of the three-qubit system at
the time ¢ is

() = —

ﬁ(ei% |000) — i~ |111)). (18)



The three-tangle of the three-qubit system during the
time-optimal evolution is TaApc = Oj(BC) = 1, ie.,
C%p = C4. = 0, which means the entanglement of each
two qubits Cap (Cac or Cpe) is not required in this
time-optimal evolution. However, it requires the three-
tangle Topc. In other words, this time-optimal evolution
cannot be implemented without the three-tangle 74p¢.

Certainly, there is at least a class of initial states and
final states making the three-tangle be Tapc = Oj(BC) =
1 during the time-optimal evolution. That is, the initial
state is

/ 1 . R
W) = (e i) — e kim), - (19)
the final state is
WF) = ﬁe”*‘lklm + e klm)), (20)

and the state at the time ¢ during the time-optimal evo-
lution is

(1)) = %( PR k) — e~ 98 | Fm)). (21)

Here ¢4 and ¢p are two arbitrary real numbers. k,l,m €
{0,1} and k =1 — k.

From these two special cases of time-optimal evolutions
of three-qubit symmetric states, one can see that the en-
tanglement of each two qubits Cap (Cac or Cpc) is not
necessary in some brachistochrone evolutions. However,
the brachistochrone evolutions cannot be implemented
without the three-tangle 7.

III. THREE-TANGLE IN QUANTUM
BRACHISTOCHRONE EVOLUTION

A. Three-tangle in quantum brachistochrone
evolution between two symmetric states

In order to explore the typical features of (7) in all
possible brachistochrone evolutions of a three-qubit sys-
tem ABC between a pair of symmetric states, we are
going to sample systematically the aforementioned set of
time-optimal evolutions by generating randomly pairs of
symmetric states |Ur)apc and |VUp)apc with a given
overlap (U;|Up) = cos(6/2), i.e.,

|\IJI>ABC = Cl|000> + o > + |010> + |100>}

%ﬂom
+C3%{|11o> +1101) + [011)} + ca[111), (22)
W r) ane = da]000) + @%ﬂoon +1010) + [100)}
+d3%{|110> +1101) + [011)} + da[111),(23)

where
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It is easy to see that the three qubits A, B, and C are
symmetric (uniform) in the initial state |U;) 4pc and the
final state |Up)apc.

We use the same way as Refs.[15, [16] to generate
randomly these pairs of states. In detail, let us use
o) = Zi:l cklk) to describe a general state of a
three-qubit system. Here {|k)} (kK = 1,2,3,4) is a set
of basis states for the three-qubit system ABC, i.e,
{Ik)} = {|000>,%{|001> +1010) + |100>},¢L§{|110> +

1101) + [011)},[111)}, and Y5, |ex|> = 1. Each pair
of states |¥r) and |¥Up) can be generated with the Haar
measure [23] by random 4 x 4 unitary matrices My, 4 uni-
formly distributed upon the vectors |¥r0) = (1,0,0,0)T
and [Upo) = (cosf, sing,0,0)t, ie., V) = Myxa|¥10)
and |Up) = Myx4|V o). For each rotation matrix Myxq,
the pair of symmetric states |U;) apc and |V ) apc have
an overlap (Ur|¥p) = cos(0/2). As the matrix Myyq4 is
a random unitary one, the initial state |¥;) and the fi-
nal state |¥p) generated by this matrix are a random
pair with an overlap (U;|Up) = cos(0/2). For each
of these pairs of states, we calculate the time averaged
three-tangle (7) in the quantum brachistochrone evolu-
tion connecting the initial state |¥;)4pc and the final
state |Ur)apc.

The probability densities of (7) and P({(C}pcy)) in
quantum brachistochrone evolutions between two sym-
metric states with the different angles of separation
(0/2 = ©/8,7/4,37/8,7/2) are shown in Fig[2(a) and
Figll(b), respectively. From this figure, one can see
that both P({7)) and P((CZ(BC)» become more uni-
form when the angle becomes smaller. The smaller the
angle 6/2, the larger the most probable values of the
time averaged entanglement (C’Z( BC)>. On the contrary,

the smaller the angle 6/2, the smaller the most probable
values of the time averaged entanglement (7). Except
for the trivial evolution between |¥;) and |Up) = |¥)),
the time-optimal evolution between two symmetric states
cannot be implemented without the three-tangle 7.

B. Three-tangle in quantum brachistochrone
evolution between two general states

Two general states with a given overlap cos(6/2) for a
three-qubit system can be described as follows:

|W;) = ¢1]000) + c2[001) + ¢3]010) + ¢4]100)
¢5110) + ¢6[101) + ¢7]011)} + ¢5]111), (26)
d1]000) + do|001) + d3]010) + dy|100)
+ d5[110) + dg|101) + d7[011) + dg|111), (27)

_|_
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FIG. 2: (Color online) (a) Probability density functions
P((1)) of the three-tangle (r) corresponding to quantum
brachistochrone evolutions of a three-qubit system between
two symmetric states with different angles of separation
(0/2 = =n/8,7/4,37/8,7/2); (b) probability density func-
tions P((Cf\( Bc))) of the time averaged squared concurrence
(C’i( BC)) corresponding to the same evolutions.

where

8 8
S olenl? = D ldkl* =1, (28)
k k
8

> erdy = cos(0/2). (29)

k

Similar to the case with quantum brachistochrone evolu-
tion between two symmetric states, we can also calculate
the probability density functions P((7)) of the time av-
eraged three-tangle () and the probability density func-
tions P((Cf‘( Bcy)) of the time averaged squared concur-

rence (C’i( Bey) corresponding to the same evolutions for
0/2 = n/8,m/4,3n/8,m/2, shown in FigsBla) and Bi(b),
respectively. From Figl3l one can get the similar result
for the case with two symmetric states in this time.
Compared with the case between two symmetric states,
the most probable values of the time averaged entangle-
ment (7) is smaller with the same angle of separation.

IV. DISCUSSION AND SUMMARY

There are two classes of trivial evolutions in a three-
qubit system. One is the evolution between two same
states and the other is that for less than three subsys-
tems. In the first case, the three-qubit system does not
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FIG. 3: (Color online) (a) Probability density functions
P((1)) of the three-tangle (r) corresponding to quan-
tum brachistochrone evolutions of a three-qubit system be-
tween two general states with different angles of separation
(0/2 = ©/8,7/4,3n/8,7/2); (b) probability density func-
tions P((Ci(BC)>) of the time averaged squared concurrence
(C’i( BC)) corresponding to the same evolutions.

evolute as |Ur) = |U(t)) = |¥p). In the second case,
the initial state is [¥;) = |¢); ® |¢) ;% and the final state
is [Up) = |¢); ® [¢);0 (here i # j # k € {4,B,C}).
That is, the qubit ¢ is a stationary particle and it is
not correlated with the qubits j and k in the evolu-
tion. Similar to the case for the system composed of
two identical particles discussed in Ref.[16], the time-
averaged three-tangle required for these trivial quantum
brachistochrone evolutions need not be greater than zero.
As these evolutions are not genuine three-qubit quantum
brachistochrone evolutions, they do not affect our result.

In summary, we have explored the connection between
three-tangle and quantum brachistochrone evolution of
a three-qubit system. We have shown that the evolu-
tion between two distinct states cannot be implemented
without three-tangle, except for the trivial cases in which
there are less than three qubits attending in quantum
brachistochrone evolution or the final state and the ini-
tial state are the same one. However, the entanglement
between two qubits is not required in some quantum
brachistochrone evolutions. Moreover, we have found
that both the probability density function of the time-
averaged three-tangle (7) and that of the time-averaged
squared concurrence (CZ( BC)) between two subsystems
become more and more uniform with the decrease in an-
gles of separation 6/2 between an initial state and a final
state. However, the features of their most probable val-
ues exhibit a different trend. The result between two



symmetric states agrees with that between two general
states.
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